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a b s t r a c t 

This article presents data from the investigation of the 

thermal characteristics and mechanical behaviors of 

twelve different compositions of a polyurethane shape 

memory polymer (SMP). Each of the SMP compositions 

has a unique molar ratio of three monomers: (i) hex- 

amethylene diisocyanate (HDI), (ii) N,N,N 

′ ,N 

′ -Tetrakis(2- 

Hydroxypropyl)ethylenediamine (HPED), and (iii) Tri- 

ethanolamine (TEA). The thermal characteristic datasets for 

each composition include the glass transition temperatures, 

as obtained from differential scanning calorimetry (DSC) 

and dynamic mechanical analysis (DMA), and the thermal 

degradation thresholds, as found from thermogravimetric 

analysis (TGA). The mechanical behaviors of the SMPs are 

represented by the failure stresses and strains, as obtained 

by cyclic tensile testing and failure testing, respectively. The 

interpretation of these measurements as well as a discussion 

of the potential usage of candidate SMP compositions for 

medical devices can be found in the companion article by 

Kunkel et al . (2018) [1] , “Synthesis and characterization 
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of bio-compatible shape memory polymers with potential 

applications to endovascular embolization of intracranial 

aneurysms.”

© 2020 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

S

1

 

e  

(  

T  

c  

b  

m  
pecifications Table 

Subject Polymers and Plastics 

Specific subject area Thermal and mechanical properties of polyurethane shape memory polymer 

Type of data Table 

Figure 

.txt Text Files 

.xlsx Excel Files 

.m MATLAB Script File for Plotting the Data 

How data were acquired Instruments used for thermomechanical characterizations: 

(i) dynamic mechanical analysis (TA Instruments, Q800) 

(ii) differential scanning calorimetry (TA Instruments, Q20) 

(iii) thermogravimetric analysis (TA Instruments, Q50) 

(iv) uniaxial tensile testing (Instron, 5969) 

Data format (i) Raw 

(ii) Analyzed (data may be further analyzed using the included 

SMP_plots_calculations.m MATLAB script) 

Parameters for data collection SMPs of twelve varying ratios of HDI, HDEP, and TEA were considered: 

HDI: 53.5-62.3% of the total composition 

HPED: 2.7-46.5% of the total composition 

TEA: 0.0-35.0% of the total composition 

All the specimens were fabricated in a nitrogen-protected environment. 

Description of data collection (i) TA instrument Q800 in tension mode was used for DMA testing. 

(ii) TGA was performed using a TA Q50. 

(iii) DSC was done using a TA Q20. 

(iv) All mechanical testing was performed under an Instron uniaxial 

mechanical testing machine with a thermal-control chamber. 

(iii) An in-house MATLAB (MathWorks) program was used to determine the 

onset temperature of thermal degradation, which was used as reference for the 

DSC measurements. 

Data source location School of Aerospace and Mechanical Engineering, The University of Oklahoma, 

Norman, OK 73019, USA (35 °12’36.6”N, -97 °26’35.3”W) 

Data accessibility With the article 

Related research article Kunkel, R.P., Laurence, D.W., Wang, J., Robinson, D., Scherrer, J., Wu, Y., 

Bohnstedt, B.N., Chien, A., Liu, Y., and Lee, C. H., 2018, "Synthesis and 

characterization of bio-compatible shape memory polymers with potential 

applications to endovascular embolization of intracranial aneurysms," J Mech 

Behav Biomed Mater, 88, pp. 422-430. 

https://doi.org/10.1016/j.jmbbm.2018.08.037 

. Data Description 

The included data concerns the thermomechanical and tensile properties of twelve differ-

nt SMP compositions with varied molar ratios of the monomers hexamethylene diisocyanate

HDI), N,N,N 

′ ,N 

′ -tetrakis(2-hydroxypropyl) ethylenediamine (HPED), and triethanolamine (TEA).

he molar ratios used in each composition, labelled SMP1-12, are found in Table 1 from the

ompanion article [1] . The thermomechanical properties of each composition were examined

y dynamic mechanical analysis (DMA), dynamic scanning calorimetry (DSC), and thermogravi-

etric analysis (TGA). Uniaxial cyclic tensile testing and failure testing were used to obtain the

http://creativecommons.org/licenses/by/4.0/
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Table 1 

The elastic moduli from uniaxial cyclic tensile testing and the percent reduction in elastic moduli with respect to the first cycle for each SMP composition. The elastic modulus values 

(in MPa) for the first cycle are provided in the first row. Data are presented as mean ±standard error of the mean (n = 2). 

SMP 

Composition 

Cycle 1 Elastic 

Modulus (MPa) 

Cyclic Elastic Modulus Reduction with respect to Cycle 1 (%) 

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 

SMP1 24.35 ± 0.10 3.97 ± 0.77 4.68 ± 0.88 5.23 ± 0.85 5.27 ± 1.02 5.36 ± 1.07 5.42 ± 1.01 5.60 ± 0.96 5.68 ± 0.71 7.24 ± 0.73 

SMP2 21.34 ± 0.29 2.04 ± 0.36 2.34 ± 0.44 2.61 ± 0.80 2.80 ± 0.81 2.79 ± 0.89 2.78 ± 0.83 2.99 ± 1.17 2.76 ± 1.01 2.83 ± 1.12 

SMP3 19.02 ± 0.29 0.61 ± 0.48 1.16 ± 0.13 1.15 ± 0.00 1.20 ± 0.06 0.84 ± 0.10 0.77 ± 0.22 -0.26 ± 0.94 0.24 ± 0.38 0.26 ± 0.25 

SMP4 20.44 ± 0.04 1.87 ±0.53 2.50 ± 0.46 2.60 ± 0.50 2.69 ± 0.55 2.88 ± 0.45 2.87 ± 0.43 2.82 ± 0.48 2.92 ± 0.49 2.94 ± 0.43 

SMP5 19.92 ± 0.96 2.03 ± 0.46 2.57 ± 0.63 2.82 ±0.77 2.91 ± 0.73 2.94 ± 0.75 2.96 ± 0.85 3.01 ± 0.86 2.91 ±0.75 3.03 ± 0.85 

SMP6 21.02 ± 1.58 1.91 ± 0.08 2.49 ± 0.20 2.86 ± 0.10 2.91 ±0.30 3.03 ± 0.15 3.06 ± 0.17 3.05 ±0.31 3.02 ± 0.27 2.98 ± 0.27 

SMP7 18.81 ± 0.06 1.25 ± 0.09 1.67 ± 0.19 1.71 ± 0.07 1.87 ± 0.32 1.84 ± 0.50 1.82 ± 0.50 1.78 ± 0.46 1.68 ± 0.48 1.68 ± 0.68 

SMP8 19.45 0.90 1.31 ± 0.34 1.75 ± 0.27 2.01 ± 0.51 2.14 ± 0.70 2.05 ± 0.67 2.11 ± 0.62 2.01 ± 0.64 1.88 ± 0.56 2.06 ± 0.54 

SMP9 18.50 2.09 0.43 ± 0.45 0.98 ± 0.56 0.85 ± 0.49 0.95 ± 0.54 0.82 ± 0.40 1.01 ± 0.50 1.07 ± 0.46 0.85 ± 0.29 0.87 ± 0.26 

SMP10 15.87 0.98 0.75 ± 0.20 -0.47 ± 1.25 -2.35 ± 3.36 0.31 ± 0.60 0.57 ± 0.72 0.59 ± 0.65 0.60 ± 0.64 0.49 ± 0.61 0.49 ± 0.45 

SMP11 15.48 0.26 0.74 ± 0.00 0.80 ± 0.21 0.95 ± 0.05 1.19 ± 0.08 1.21 ± 0.18 1.09 ± 0.05 1.35 ± 0.37 1.46 ± 0.13 1.40 ± 0.05 

SMP12 13.37 0.39 1.30 ± 0.27 1.24 ± 0.12 1.28 ± 0.46 1.59 ± 0.47 1.62 ± 0.44 1.38 ± 0.66 1.31 ± 0.41 1.67 ± 0.39 1.68 ± 0.53 
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Fig. 1. Storage moduli (MPa) for all twelve SMP compositions as a function of temperature ( °C), as found through the 

DMA testing. 
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echanical properties for each composition. A summary of the contents of the included data

les can be found in the Appendix . 

The DMA, DSC, and TGA measurements are included in four .txt files. Each file contains

hree columns – Column 1: the composition label (1–12), Column 2: the testing environment

emperature in degree Celsius, and Column 3: the test-specific physical quantity. The test-

pecific physical quantity provided in the third column of each .txt file is defined as follows:

DMA_storage.txt”, the shear storage moduli (MPa) ( Fig. 1 ); “DMA_tanDelta.txt”, the tan( δ) val-

es ( Fig. 2 ); “DSC_data.txt”, the heat flows (μW/g) from the second DSC testing cycle ( Fig. 3 );

TGA_data.txt”, the remaining weight percentages of the SMP sample ( Fig. 4 ). From the data

ontained in each .txt file, essential thermal characteristics for each SMP composition may be

erived, such as the glass transition temperature (T g ), as shown in Table 2 in the companion

rticle [1] . Specifically, T g for a sample may be found from the DMA data as the temperature

orresponding to the maximum tan( δ) value. Using the DSC .txt file, T g is the temperature at

hich the local minimum of heat flow ( μW/g) occurs. 

The mechanical data obtained from the uniaxial cyclic testing and failure testing are con-

ained within the .xlsx workbooks: “Uniaxial_cyclic_tensile.xlsx” and “Failure_data.xlsx”, respec-

ively. In each Excel workbook, there is one sheet dedicated to each tested specimen and mul-

iple specimens included for each composition. The sheets are named in the format “SMP-X_Y”,

here X denotes the composition number carrying a value of 1–12, and Y indicates the ID for

he specific tested specimen. Within each sheet, the data is organized in columns (from the

rst to the last): (i) the testing time (s), (ii) the total cycle count, (iii) the extension (mm), (iv)

he applied load (N), (v) the tensile stress (MPa), and (vi) the tensile strain (mm/mm). The av-

rage elastic modulus reduction relative to the first cycle for each SMP composition is shown

n Table 1 , whereas Fig. 5 shows the average stress reduction for the second and tenth cy-

les, relative to the first cycle, for each SMP composition. In addition, the stress-strain curves

rom the cyclic uniaxial testing of representative specimens of each SMP composition are found

n Fig. 6 . 
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Fig. 2. DMA testing results of the tan( δ) values for each SMP composition versus temperature ( °C). 

Fig. 3. DSC testing results of the heat flow ( μW/g) versus temperature ( °C). 

 

 

 

 

2. Experimental Design, Materials and Methods 

2.1. Shape memory polymer synthesis and sample preparation 

For a detailed account of the SMP synthesis process, we refer the reader to Kunkel et al .

[1] and Wilson et al . [3] . In brief, the synthesis of SMP follows a six step process: (i) secure

a sealed nitrogenous environment; (ii) measure the desired molar masses of HPED, and TEA

into a glass beaker; (iii) measure the desired mass of HDI into a separate disposable plastic
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Fig. 4. Weight percentage of the remaining SMP versus temperature ( °C), obtained via the TGA for the twelve SMP 

compositions. 

Fig. 5. Average stress reduction values (%) relative to the first cyclic loading from cyclic tensile testing at the second and 

the tenth cycles, for each SMP composition. 
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Fig. 6. Measured stress and strain for ten cycles of loading of a representative dog-bone sample specimen of each SMP 

composition: (a) SMP-1, (b) SMP-2, (c) SMP-3, (d) SMP-4, (e) SMP-5, (f) SMP-6, (g) SMP-7, (h) SMP-8, (i) SMP-9, (j) SMP- 

10, (k) SMP-11, and (l) SMP-12. The red gradient of increasing darkness shows the progression from Cycle 1 to Cycle 10. 

 

 

 

 

 

container; (iv) use a stirring device to mix the monomers in the glass beaker; (v) add the HDI

from the plastic container to the HPED and TEA in the glass beaker and stir slowly; and (vi)

stop stirring the mixture and remove the SMP from the nitrogen environment when the liquid

becomes transparent. 

2.2. Quantification of the thermomechanical properties of the synthesized SMPs 

DMA, DSC, and TGA were used to quantify the thermomechanical properties of each of the

twelve SMP compositions. DMA was used to find the storage modulus, loss modulus, and glass
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ransition temperatures (T g ). DSC heat flow plots were used for verification of the T g value ob-

ained from DMA. TGA was used to find the thermal stability of each SMP composition. 

DMA (TA Instruments, Q800) was performed in a nitrogen environment on SMP beams mea-

uring 45 mm x 8 mm x 1 mm. Samples were heated from 20 °C to 120 °C at a rate of 5 °C/min

n tension mode. The cyclic loading frequency was set to 1 Hz. From DMA, the storage mod-

lus, loss modulus, and tan( δ) as a function of the temperature were retrieved for each speci-

en as a direct output of the testing device. The curves in Fig. 2 were creating by plotting the

utput tan( δ) versus the instantaneous temperature, which was collected from the device. The

emperature corresponding to the maximum of the tan( δ) curve was determined as the T g , as

ecommended by the instrument’s manufacturer [4] . 

The TA Q20 (TA Instruments) was used to perform a cyclic DSC process on samples in a

itrogenous environment. In each cycle, samples were heated from 20 °C to 160 °C at 5 °C/min

ncrements, cooled from 160 °C to 20 °C with 50 °C/min increments, and held at 20 °C for 3 min.

easurements were visualized on standard heat flow plots, and the glass transition tempera-

ure for each sample was determined as the local minimum of the heat flow as a function of

emperature. 

TGA (TA Instruments, Q50) was used to determine the thermal degradation threshold tem-

erature. SMP samples were heated at 10 °C/min from 31 °C to 600 °C in a nitrogen environment.

he thermal stability of each sample was defined with an in-house MATLAB (MathWorks, MA)

rogram that pinpointed the onset of thermal degradation as the intersection of two linear re-

ressions between the TGA curves: below the T g and between 90% and 85% of the remaining

ass. For more details about performing linear regression, we refer the reader to Ref. [5] . 

.3. Mechanical testing for the synthesized SMPs 

Failure testing and cyclic tensile testing (Instron 5969) were used to characterize the mechan-

cal behaviors of each SMP composition. Specifically, failure testing provided the failure stress

nd failure strain, while cyclic testing quantified the changes in the elastic modulus and the

yclic stress reductions. 

For both mechanical tests, ASTMD638 dog-bone specimens [6] were created for each of the

welve SMP compositions. The dimensions of the testing region were measured along several

ocations to calculate the undeformed (original) cross-sectional area ( A ) of each specimen, which

as later used in the calculation of the nominal stress, 

σ = 

F 

A 

(1)

here F is the instantaneous load applied by the Instron testing device. Cyclic stress reduction

alues reported in Figure 5 were calculated by 

S R i = 

(
1 − σmax ,i 

σmax , 1 

)
× 100% , (2)

here the subscript i indicates the cycle number and σ max , i is the maximum stress of cycle

 . Furthermore, the elastic modulus can be quantified as the slope of a linear portion of the

nloading curve using the standard equation 

E = 

σ

ε 
, (3)

here ɛ is the normal strain (i.e. the change in the length of the specimen divided by the initial

ength, ε = δ/ L 0 ). The elastic modulus reduction with respect to the first cycle can then be found

ith 

E R i = 

(
1 − E i 

E 1 

)
× 100% , (4)

here E i is the elastic modulus measured for the i th cycle. The included MATLAB script file may

e used to derive these stress quantities from the Uniaxial_cyclic_tensile.xlsx data file. 
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To avoid slippage during testing, double-sided padded tape was added to both sides of the

dog-bone specimen’s gripping regions before mounting. The extension reading of the Instron

mechanical testing machine was calibrated after each specimen was mounted and before testing

began, according to the procedure described by Kunkel et al. [1] . 

Tensile failure testing and cyclic testing were performed at 10 °C above the T g of each speci-

men with a strain rate of 2 mm/min. Five failure tests were performed for each specimen, and

the most consistent three tests (as determined by the elastic modulus and failure stress values)

were utilized in the subsequent analyses. For cyclic testing, each sample underwent three cy-

cles of preconditioning at 25% of the failure strain, before being subjected to ten loading and

unloading cycles at 50% of the failure strain. 
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Appendix: List of Included Files and Descriptions 

Supplementary File Name Description Related Figure(s) or Table(s) 

Uniaxial_cyclic_tensile.xlsx Raw uniaxial cyclic tensile testing data Table 1 

Figs. 5–6 

Failure_data.xlsx Raw cyclic failure testing data 

TGA_data.txt Raw data from TGA testing Fig. 4 

DSC_data.txt Raw data from DSC testing Fig. 3 

Table 2 in companion article [1] 

DMA_tanDelta.txt Raw data from DMA testing Fig. 2 

Table 2 in companion article [1] 

DMA_Storage.txt Raw data from DMA testing Fig. 1 

SMP_plots_calculations.m Analyze and plot data from 

Uniaxial_cyclic_tensile.xlsx 
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