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Abstract
Classical stochastic processes can be generated by quantum simulators instead of the more standard

classical ones, such as hidden Markov models. One reason for using quantum simulators has recently

come to the fore: they generally require less memory than their classical counterparts. Here, we

examine this quantum advantage for strongly coupled spin systems—in particular, the Dyson

one-dimensional Ising spin chain with variable interaction length. We find that the advantage scales

with both interaction range and temperature, growing without bound as interaction range increases.

In particular, it is impossible to simulate Dyson’s original spin chain with the most memory-efficient

known classical algorithm since it requires infinite memory, while quantum simulators can do so

since they use only finite memory. Thus, quantum systems can very efficiently simulate strongly

coupled one-dimensional classical systems.
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The idea of a quantum computer, often attributed to Feynman [1], recognizes that while
simulating quantum many-body systems is difficult, it is apparently something that the
physical quantum system to be simulated itself accomplishes with ease. For this reason, it was
conjectured that a “quantum computer”—one that operates on a quantum instead of classical
substrate—might have a significant advantage in such a simulation. As modern computational
technology approaches its quantum limits, the potential for a quantum advantage is becoming
increasingly appealing. This has motivated diverse implementations of quantum hardware
from trapped ions [2, 3], cold atoms in optical lattices [4, 5], superconducting circuits [6, 7],
photons [8, 9] to liquid and solid-state NMR [10, 11] and quantum dots [12].
The phrase “quantum simulation” often refers to (as originally conceived) the simulation
of a quantum system [13]. However, this is not the only avenue in which we find quantum
advantages. For instance, there is a variety of classical systems that can be simulated
quantally with advantage [14] including simulating thermal states [15], fluid flows [16, 17],
electromagnetic fields [18], diffusion processes [19, 20], Burger’s equation [21], and molecular
dynamics [22].
Quantum advantages can also be found outside of the realm of simulation. Some mathematical
problems can be solved more efficiently using a quantum computer. The most well-known of
these include Shor’s factorization algorithm [23], Grover’s quantum search algorithm [24],
quantum eigen-decomposition algorithm [25], and quantum linear systems algorithm [26].
For factorization, Shor’s algorithm scales polynomially [23] while the best classical algorithm
currently known scales exponentially [27]. While neither algorithm has been proven optimal,
many believe that the separation in scaling is real [28].
Quantum advantages also exist in the context of stochastic process generation. Sequential
generation and simultaneous generation are two important problems in this field [29]. In
1988, Crutchfield and Young [30] introduced memory efficient classical algorithms for both
of these problems. While there are a small number of known cases (processes) for which
this algorithm can be surpassed [31–33], there remains no better general classical algorithm.
Our focus here is the problem of simultaneous generation, the potential quantum advantage
therein, and the separation in classical-quantum scaling. [Quantum algorithms for sequential
generation have been studied recently [34–36].]
Reference [37] provided a quantum algorithm that can generally perform simultaneous
generation using less memory than the best known classical algorithms. Recently, we
introduced a new quantum algorithm—the q-machine—that improved this efficiency. The
latter demonstrated constructively how attention to higher-order correlations in the stochastic
process can lead to an improved quantum algorithm for generation [38]. A sequel provided
more detailed analysis and derived the quantum advantage of the q-machine in closed form
[39]. This quantum advantage has also been verified experimentally for a simple case [40].
Just as for integer factorization, proof of optimality of a simultaneous-generation algorithm
is challenging in both classical and quantum settings. However, with minor restrictions,
one can show that the current quantum algorithm is almost always more efficient than the
classical [38].
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While the existing results demonstrate a quantum advantage for generic processes, a significant
question remains: What is the scaling behavior of this advantage? That is, to truly understand
the nature of the advantage, it is critical to know how it depends on problem size. The strong
separation in scaling between the classical and quantum integer factorization algorithms led
many to expect that the separation will persist even as new algorithms are developed. We
wish to demonstrate an analogous separation in scaling, thus solidifying the importance of
the current quantum construction—the q-machine.
We choose as our testing ground the generation of equilibrium states for the one-dimensional
Ising system with N -nearest neighbor interaction. Here, the coupling range N is our problem-
size parameter. We choose a spin-spin coupling that decays as a power law in N . This is a
natural choice, both since this model has been studied in detail over four decades [41–44]
and since it provides a physically grounded benchmark.
To understand the use of such a system in this problem context, consider a one-dimensional
chain of spins (with arbitrary classical Hamiltonian) in contact with a thermal reservoir.
After thermalizing, the resulting bi-infinite chain of spins (considered together at some
instant t = t0) can be regarded as a (spatial) stochastic process. Successful generation of
this stochastic process is then equivalent to generating its equilibrium states.
We quantitatively define the quantum advantage as the ratio of necessary memories for
classical and quantum algorithms. Our main result is that the quantum advantage scales as
NT 2/ log T . We also show that classically simulating Dyson’s original model requires infinite
memory. In other words, exact classical simulation of the Dyson spin chain is impossible.
Dyson-Ising Spin Chain We begin with a general one-dimensional ferromagnetic Ising
spin chain [50, 51] defined by the Hamiltonian:

H = −
∑

〈i,j〉
J(i, j)sisj , (1)

in contact with thermal bath at temperature T , where si, the spin at site i, takes on values
{+1,−1}, and J(i, j) ≥ 0 is the spin coupling constant between sites i and j. [Throughout,
T denotes the effective temperature kBT .] Assuming translational symmetry, we may replace
J(i, j) by J(k) with k ≡ |i − j|. Commonly, J(k) is a positive and monotone-decreasing
function. An interaction is said to be long-range if J(k) decays more slowly than exponential.
In the following, we consider couplings that decay by a power law:

J(k) = J0

kδ
, (2)

where δ > 0. The spin chain resulting from these assumptions is called the Dyson model [41].
To approximate such an infinite-range system we consider one with finite-range interactions.
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For every interaction range N , we define the approximating Hamiltonian:

HN = −
∑

i

N∑

k=1

J0

kδ
sisi+k . (3)

[N is the interaction range and should not be mistaken with the size of the lattice which
is infinite here.] This class of Hamiltonians can certainly be studied in its own right, not
simply as an approximation. But why is the Dyson model interesting? The ferromagnetic
Ising linear spin chain with finite-range interaction cannot undergo a phase transition at
any positive temperature [52]. In contrast, the Dyson model has a standard second-order
phase transition for a range of δ. Dyson analytically proved [41] that a phase transition
exists for 1 < δ < 2. The existence of a transition at δ = 2 was established much later [43].
It is also known that there exists no phase transition for δ > 3 [42], where it behaves as a
short-range system. Finally, it was demonstrated numerically that the parameter regime
2 < δ ≤ 3 contains a phase transition [44], however, this fact has resisted analytical proof.
For δ ≤ 1, the model is considered nonphysical since the energy becomes non-extensive.
Notably, the driven quantum Dyson model has been studied experimentally of late, since it
exhibits many interesting nonequilibrium phases, such as the recently introduced discrete
time crystal (DTC) [45]. The experimental system consists of a lattice of hundreds of spin-half
particles stored in a Penning trap. Particles have been chosen to be 9Be+ [46], 40Ca+ [47] or
171Yb+ [48, 49] ions. Using a combination of static electric and magnetic fields, the Penning
trap confines ions. A general spin-spin coupling is implemented with an optical dipole force
(ODF) induced by a pair of off-resonance laser beams. The ODF then produces Dyson-type
interactions, where δ is tunable over 0 ≤ δ ≤ 3. Physically, δ = 1, 2, 3 corresponds to
Coulomb-like, monopole-dipole, and dipole-dipole couplings, respectively.
For these reasons this family of Hamiltonians, derived from the Dyson spin system, offer a
controlled way to investigate the consequences of nontrivial correlations.
Simulators The concept of a stochastic process is very general. Any physical system that
exhibits stochastic dynamics in time or space may be thought of as generating a stochastic
process. Here, we consider not time evolution, but rather the spatial “dynamic”. For
example, consider a one-dimensional spin chain with arbitrary classical Hamiltonian in
contact with thermal reservoir. After thermalizing, a spin configuration at one instant of
time may be thought of as having been generated left-to-right (or equivalently right-to-left).
The probability distribution over these spatial-translation invariant configurations defines a
stationary stochastic process.
We focus, in particular, on stationary, discrete-time, discrete-valued stationary stochastic
processes. Informally, such a process can be seen as a joint probability distribution P(.) over
the bi-infinite chain of random variables . . . X−1X0X1 . . .. Formally, the process denoted by
P =

{
A,Σ,P(.)

}
is a probability space [53, 54]. Each spin random variable Xi, i ∈ Z, takes

values in the set A. For specificity, the observed symbols come from an alphabet A = {↓, ↑}
of local spin states, but our results easily extend to any finite alphabet. P(·) is the probability
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measure over the bi-infinite chain of random variables X−∞:∞ = . . . X−2X−1X0X1X2 . . . and
Σ is the σ-algebra generated by the cylinder sets in A∞. Stationarity means that P(·) is
invariant under index translation. That is, P(XiXi+1 · · ·Xi+m) = P(Xi+nXi+1+n · · ·Xi+m+n),
for all m ∈ Z+ and n ∈ Z. For more information on stochastic processes generated by spin
system we refer to Refs. [55, 56].
Consider a device that generates a stochastic process. We call this device a simulator of
the process if and only if there is no way to distinguish the process outputs from those
of the simulator. Given a physical system that yields a stochastic process, a device that
generates this process is then said to simulate the physical system. In some contexts, the
word “simulation” implies an approximation. In contrast, we require our simulators to be
exact.
How do these simulators work? Generally, we implement the algorithms by writing computer
programs. Two common formalisms used as algorithms for generating stochastic processes
are Markov Chains (MC) [57, 58] and Hidden Markov Models (HMM) [53, 59, 60]. The latter
can be significantly more compact in their representations (more efficient algorithms) and,
for this reason, are sometimes the preferred implementation choice.
HMMs represent the generating mechanism for a given process by a tuple

{
S,A, {T (x) :

x ∈ A}
}
, where S is a finite set of states, A is a finite alphabet (set of symbols), and

{T (x) : x ∈ A} is a set of |S| × |S| substochastic symbol-labeled transition matrices. The
latter’s sum T = ∑

x∈A T
(x) is a stochastic matrix.

As an example, consider the Even Process [61, 62]. The process can be explained by a simple
procedure. Consider a biased coin that with probability p generates heads and with 1− p
generates tails. To generate the Even Process we use the algorithm:




Step A: Flip the coin.
Step B: If the result is heads, output 0 and go to Step A. Else output 1 and go to Step C.
Step C: Output 1 and go to Step A.

This algorithm is depicted by the HMM shown on the left of Fig. 1a. For this HMM,

S = {A,B}, A = {0, 1}, T (0) =
(
p 0
0 0

)
, and T (1) =

(
0 1− p
1 0

)
. The HMM, as an algorithm,

simply tells the computer that: if we are in state A then, with probability p, output 0 and
stay at state A and, with probability 1− p, output 1 and go to state B. If we are in state B,
output 1 and go to state A.
The goal of sequential generation is to produce a very long realization of the process. For
this, we use one computer with a code that runs the algorithm. At each step, the computer
must memorize the current HMM state. Since the HMM has 2 states, we require 1 bit of
memory for this process, independent of its bias p.
Here, though, we are interested in simultaneous generation where the goal is to generate
M realizations of a process simultaneously, each of which is statistically independent of the
others. The net result is M computers each with the above code, as on the right side of
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Here we focus on stationary, discrete-time, discrete-valued stationary stochastic processes. Informally such a process
can be seen as a joint probability distribution P(.) over the bi-infinite chain of random variables . . . X≠1X0X1 . . ..
Formally the process denoted by P =

)
A,�,P(.)

*
, is a probability space [47, 48]. Each random spin variableXi, i œ Z,

takes values in the set A. Here, the observed symbols come from an alphabet A = {¿, ø} of local spin states but our
results easily can be extend to any finite alphabet. P(·) is the probability measure over the bi-infinite chain of random
variables X≠Œ:Œ = . . . X≠2X≠1X0X1X2 . . . and � is the ‡-algebra generated by the cylinder sets in AŒ. Stationarity
means that P(·) is invariant under index translation. That is, P(Xi1Xi2 · · ·Xim) = P(Xi1+nXi2+n · · ·Xim+n), for all
m œ Z+ and n œ Z. For more information on stochastic processes generated by spin system we refer to [49, 50].
Physical systems, under certain assumptions such as thermal equilibrium, manifest spatial stationary stochastic
processes. Consider a device that can generate stochastic processes. We call a device the simulator of our physical
system if and only if there is no way to distinct the device from the physical system based on the stochastic process
they generate. This means if we put them in black boxes we can not find out which one is which. Often, “simulation”
refers to an approximation. In contrast, we require our simulators to be perfect.
How do these simulators work? Generally we implement the algorithms by writing computer programs. Two common
formalisms used as an algorithm for generation of stochastic processes are Markov Chains (MC) [51, 52] and Hidden
Markov Models (HMM) [47, 53, 54]. The latter can be significantly more compact in their representations (more
e�cient algorithms) and, for this reason, are sometimes the preferred implementation choice.
HMMs represent the generating mechanism for a given process by a tuple

)S,A, {T (x) : x œ A}
*

where S is a finite
set of states, A is a finite set of alphabets and {T (x) : x œ A} are |S| ◊ |S| substochastic symbol-labeled transition
matrices. The latter’s sum T =

q
xœA T

(x) is a stochastic matrix.
As an example consider the Even Process [55, 56]. The process can be explain by a simple procedure. Consider Alice,
she has a biased coin that with probability p generates heads and with 1 ≠ p generates tales. To generate the Even
process she use this algorithm:

Y
_]
_[

Step A: Flip the coin, if the result is heads output 0 and go to the beginning
of step A, else output 1 and go to the next step.

Step B: Output 1 and go to the step A.

Using this algorithm, in a long run she eventually generates the Even process.
Memory
A unifilar HMM is one in which each row of each sub-stochastic matrix has at most one nonzero element. A fledgling
literature on minimal nonunfilar HMMs [29] exists, but constructive methods are largely lacking and, as a consequence,
much less is known [30–32].
‘-Machine A given stochastic process can be correctly generated by any number of alternative unifilar HMMs. The
one requiring the minimum amount of memory for implementation is called the ‘-machine [58] and was first introduced
in Ref. [28]. A process’ statistical complexity Cµ [58] is the the Shannon entropy of the ‘-machine’s stationary state
distribution: Cµ = H(S) = ≠ q

‡œS Pr(‡) log2 Pr(‡). Key to our analysis of classical simulator resources, it measures
the minimal memory for a unifilar simulator of a process. Cµ has been determined for a wide range of physical systems
[59–65]. Helpfully, it and companion measures are directly calculable from the ‘-machine, many in closed-form [66].
Ising ‘-machine How do we construct the ‘-machine that simulates the process P(N,T )? First, we must de-
fine process’ Markov order [52]: the minimum history length R required by any simulator to correctly continue a
configuration.3 Specifically, R is the smallest integer such that:

P(Xt| . . . , Xt≠2, Xt≠1) = P(Xt|Xt≠R, . . . ,Xt≠2, Xt≠1) .

For any finite and nonzero temperature T , Ref. [50, Eqs. (84) ≠ (91)] shows that P(N,T ) has Markov order N . One
concludes that su�cient information for generation is contained in the configuration of the N previously generated

3More precisely, we mean that an ensemble of simulators must be able to yield an ensemble of configurations that agree (conditioned
on that past) with the process’ configuration distribution.
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FIG. 1: (a) Left: Even Process ε-machine. Right: Schematic of simultaneous generation
problem. Each black box contains an Even Process generator. They all share the same
memory for tracking the individual generator states. (b) Alternative HMMs: Even Process
generators, each with different memory costs. Top: Unifilar HMMs, since for every state and
symbol there is at most one outgoing edge from that state emitting that symbol. Below:
Nonunifilar HMM, since for example state G can go to different states G or H emitting
symbol 0.

Fig. 1a. Similar to the sequential problem, each computer must memorize the current state
of its HMM. If each computer uses its own memory, each needs 1 bit of memory as before.
The total memory is then M bits.
However, we can reduce the amount of memory required by using one large shared memory
among the computers. Figure 1a emphasizes this schematically. In this way, according to
Shannon’s coding theorem [63], we can encode the HMM states to reduce the amount of
memory down to M H(S) ≤M bits, where H(S) = −Pr(A) log2 Pr(A)− Pr(B) log2 Pr(B).
The memory per instance is then just H(S).
Every process has an infinite number of alternative HMMs that generate it. For example,
Fig. 1b shows three HMMs that each generate the Even Process, each with different H(S)
and as a result different memory costs. Now, an important question when considering all
possible generators is, which HMM needs the minimum memory or, equivalently, minimum
H(S)?
ε-Machine A unifilar HMM is one in which each row of each substochastic matrix has
at most one nonzero element. Informally, this means the current state and next symbol
uniquely determine the next state. Many statistical and informational quantities can be
calculated in closed form from a process’s unifilar HMM; see Ref. [73] and discussion therein.
For example, in Fig. 1b the top two HMMs are unifilar and the bottom one is nonunifilar.
For a given process, finding the optimal HMM for simultaneous generation—an HMM with
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minimum state-entropy H(S)—in the space of all HMMs is still an open question. Restricting
to the space of unifilar HMMs, though, the optimal HMM can be found. It is the ε-machine
[64], first introduced in Ref. [30]. ε-Machine states S are called causal states. Due to
ε-machine’s unifilarity property, every generated past uniquely maps to a causal state. A
process’ statistical complexity Cµ [64] is the the Shannon entropy of the ε-machine’s stationary
state distribution: Cµ = H(S) = −∑σ∈S Pr(σ) log2 Pr(σ). And, this is the required memory
for simultaneous generation.
Attempts have been made to find smaller models among nonunifilar HMMs [31]. As of now,
though, only a handful of examples exist [31–33, 65]. Practically speaking, the ε-machine is
the most memory-efficient algorithm for generating stochastic processes. Its memory Cµ has
been determined for a wide range of physical systems [66–72]. Helpfully, it and companion
informational measures are directly calculable from the ε-machine, many in closed-form [73].
We denote the process generated by the physical system with Hamiltonian Eq. (3) at
temperature T by P(N, T ). How do we construct the ε-machine that simulates the process
P(N, T )? First, we must define process’ Markov order [58]: the minimum history length R
required by any simulator to correctly continue a configuration. Specifically, R is the smallest
integer such that:

P(Xt| . . . , Xt−2, Xt−1) = P(Xt|Xt−R, . . . , Xt−2, Xt−1) . (4)

[More precisely, an ensemble of simulators must yield an ensemble of configurations that
agree (conditioned on that past) with the process’ configuration distribution.]
Reference [56, Eqs. (84) − (91)] showed that for any finite and nonzero temperature T ,
P(N, T ) has Markov order N . One concludes that sufficient information for generation is
contained in the configuration of the N previously generated spins. (Figure 2a shows this
fact schematically for N = 2.) More importantly, the ε-machine that simulates P(N, T ) has
2N causal states and those states are in one-to-one correspondence with the set of length-N
spin configurations.
Second, another key process characteristic is its cryptic order [74, 75]: the smallest integer K
such that H[SK |X0X1 . . .] = 0, where H[W |Z] is the conditional entropy [63] and SK is the
random variable for Kth state of the ε-machine after generating symbols X0, X1 . . .. Using
the fact that the ε-machine’s states are in one-to-one correspondence with the set of length-N
spin configurations [56], it is easy to see that P(N, T )’s cryptic order K = N , the Markov
order. We will use this fact in the quantum algorithm construction to follow.
Figure 2b shows the ε-machines of the processes P(N, T ) for N = 1, 2, and 3. Let’s explain.
First, consider the spin process P(1, T ) that, as we pointed out, is a Markov-order R = 1
process. This means to generate the process the simulator only need remember the last
spin generated. In turn, this means the ε-machine (Fig. 2b left) has two states, ↑ and ↓. If
the last observed spin is ↑, the current state is ↑ and if it is ↓, the current state is ↓. We
denote the probability of generating a ↓ spin given a previous generated ↑ spin by p↓↓↓↑↑↑. The
probability of an ↑ spin following a ↑ spin is the complement.
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Independent Sufficient Next

S−7 S−6 S−5 S−4 S−3 S−2 S−1 S0 S1 S2

(a)

"" "#

## #"

"

#

###

"##

##"

#"# "#"

""#

#""

"""

p"""""""""

p###""""""

p""""#"#"#

p###"#"#"#

p"""#"#"#"

p####"#"#"

p"""######

p#########

p""""""

p###"""

p######

p"""### p############

p"""#########

p###"##"##"## p####"##"##"#

p#####"##"##"

p""""##"##"##

p"""#"##"##"#

p###"#""#""#"

p###""#""#""#

p"""##"##"##"

p####""#""#""

p"""""#""#""#

p""""#""#""#" p"""#""#""#""

p###"""""""""

p""""""""""""

(b)

FIG. 2: (a) A Markov order-N process generates a spin configuration from left-to-right.
Markov order N = 2 shown. The values of an isolated spin S0, say, is undetermined. To
make this (stochastic) choice consistent with the overall process and the particular
instantiation on the left, it is sufficient to consider only the previous N (2) spins
(highlighted in green). (b) ε-Machine generators of 1D-configuration stochastic processes in
Dyson-Ising systems of increasing correlational complexity (N = 1, 2, 3): P(1, T ) (left),
P(2, T ) (middle) and P(3, T ) (right).

Second, consider the process P(2, T ) with Markov-order R = 2 and so longer-range inter-
actions. Sufficient information for generation is contained in the configuration of the two
previously generated spins. Thus, the ε-machine (Fig. 2b middle) has four states that we
naturally label ↑↑, ↑↓, ↓↑, and ↓↓. If the last observed spin pair x−1x0 is ↑↓, the current state
is ↑↓. Given this state, the next spin will be ↑ with probability p↑↑↑↑↓↑↓↑↓ and ↓ with probability
p↓↓↓↑↓↑↓↑↓. Note that this scheme implies that each state has exactly two outgoing transitions. That
is, not all state-to-state transitions are allowed in the ε-machine.
Having identified the state space, to complete the ε-machine construction we determine
the ε-machine transition probabilities {T (x)}x∈A. To do this, we first compute the transfer
matrix V for the Ising N -nearest neighbors with the Hamiltonian in Eq. (3) at temperature
T and then extract conditional probabilities, following Ref. [56]. (See the Method section
following for details.) The minimum memory for simultaneous generation or, as it is called,
the statistical complexity Cµ(N, T ) of process P(N, T ) follows straightforwardly from the
process’ ε-machine.
q-Machine By studying a specific process (similar to the ε-machine in left of Fig. 2b),
Ref. [37] recently demonstrated that quantum mechanics can generate stochastic processes
using less memory than Cµ. This motivates a search for more efficient quantum simulators
of processes with richer correlational structure.
A process’ quantum simulator is a pair {f,M}, where f : A∞ → Ω is a function from the
set A∞ of past sequences to a set of quantum states Ω andM is some measurement process.
Given a particular past x−∞:0, applying the measurementM to the quantum state f(x−∞:0)
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leads to a correct probability distribution over future P(x0:n|x−∞:0). If f(·) is a deterministic
function, the simulator is called unifilar and if f is probabilistic function, the simulator is
called nonunifilar. After generating x0:n, the new past is x−∞:n and f can be used to map
it to the new quantum state f(x−∞:n). By repeating the same measurement and mapping
procedure, we generate a realization of the process. One can also define quantum simulator
in a way thatM automatically maps f(x−∞:0) to the correct quantum state f(x−∞:n) and
generates the correct probability distribution over x0:n [77].
Reference [38] introduced a class of unifilar simulators, called q-machines, that can generate
arbitrary processes. As in the classical setting, nonunifilar quantum simulators are much less
well understood [34, 35, 65]. The q-machine construction depends on an encoding length L,
each with its own quantum cost Cq(L). Each of these simulators simulate the same process
correctly. It is known that the cost Cq(L) is constant beyond the process’ cryptic order
[75]. Based on numerical evidence, it is conjectured that this is also the minimal Cq value.
Thus, we restrict ourselves to this choice (L = K) of encoding length and refer simply to the
q-machine and its cost Cq.
The q-machine’s quantum memory Cq is upper-bounded by Cµ, with equality only for the
special class of zero-cryptic-order processes [75]. And so, Cµ/Cq gives us our quantitative
measure of quantum advantage.
Reference [39] recently introduced efficient methods for calculating Cq using spectral decom-
position. Those results strongly suggest that the q-machine is the most memory-efficient
among all unifilar quantum simulators, but as yet there is no proof. The quantum advantage
Cµ/Cq has been investigated both analytically [38, 39, 76–78] and experimentally [40].
A process’ q-machine is straightforward to construct from its ε-machine. First, since the
ε-machine is unifilar, every generated past realization maps to a unique causal state. Second,
every causal state σi maps to a pure quantum state |ηi〉. Using these two maps we can
map every generated past realization uniquely to a quantum state. Each signal state |ηi〉
encodes the set of length-K (cryptic order) sequences that may follow σi, as well as each
corresponding conditional probability:

|ηi〉 ≡
∑

w∈AK

∑

σj∈S

√
P(w, σj|σi) |w〉 |σj〉 , (5)

where w denotes a length-K sequence and P(w, σj|σi) = P(X0 · · ·XK−1 = w,SK−1 = σj|S0 =
σi). The resulting Hilbert space is the product Hw ⊗Hσ. Factor space Hσ is of size |S|, the
number of classical causal states, with basis elements |σi〉. Factor space Hw is of size |A|K ,
the number of length-K sequences, with basis elements |w〉 = |x0〉 · · · |xK−1〉. Performing
a projective measurement in the |w〉 |σ〉 basis results in a correct probability distribution.
After generation of a particular realization by measurement, the next corresponding quantum
state can be indicated uniquely. This means we can repeat the measurement process and
continue generating the process.
Now, let us return to simultaneous generation where the goal is to generate M process
realizations simultaneously where each is statistically independent of the others. As before,
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we have M q-machines as in Fig. 1a. Also similar to the classical setting, we can reduce the
amount of required memory by having the q-machines use a single shared memory. According
to quantum coding theorem, we can encode the HMM states to reduce the amount of memory
to MS(ρ) qubits where S(·) is von Neumann entropy and ρ is the density matrix defined by:

ρ =
∑

i

πi |ηi〉 〈ηi| . (6)

As a result, each q-machine needs Cq = S(ρ) qubits of memory for simultaneous generation.
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FIG. 3: (a) Classical memory Cµ(N, T ) required for simulating process P(N, T ) for
interaction ranges N = 1, . . . , 6, a range of temperatures T = 1, . . . , 50, and δ = 2. Note
Cµ(·) is an increasing function of N and T . (b) Rescaling the classical memory requirement
Cµ(N, T ) to (N − Cµ)/(N − 1) shows a tight data collapse, which is especially strong at
high temperatures (T > 2). The asymptotic behavior is a power-law with scaling exponent
γ = 2. The inset zooms in to show Cµ’s convergence with increasing N . While the figure
shows the case δ = 2, the slope γ at high T is independent of δ.

Analysis We begin by considering the case where spin couplings decay with exponent δ = 2.
Figure 3a displays Cµ(N, T ) and Fig. 4a displays Cq(N, T )—the Cµ and Cq of processes
P(N, T )—versus T for interaction ranges N = 1, . . . , 6. The most striking feature is that
the classical and quantum memory requirements exhibit qualitatively different behaviors.
The classical memory increases with T , saturating at Cµ = N , since all transitions become
equally likely at high temperature. As a result there are 2N equally probable causal states
and this means one needs N bits of memory to store the system’s current state. For example,
in the nearest-neighbor Ising model (process P(1, T )) high temperature makes spin-↑ and
spin-↓, and thus the corresponding states, equally likely. [At T =∞ these processes have
only a single causal state and thus Cµ = 0. This is a well known discontinuity that derives
from the sudden predictive-equivalence of all of the causal states there.]
Also, in the low-temperature limit, this system is known to yield one of only two equally
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likely configurations—all spin-↑ or all spin-↓. In other words, at low temperature p↓↓↓↑↑↑ and p
↑↑↑
↓↓↓

converge to zero, while p↑↑↑↑↑↑ and p
↓↓↓
↓↓↓ converge to one. [It should be pointed out that at any finite

temperature p↓↓↓↑↑↑ and p
↑↑↑
↓↓↓ are nonzero and, therefore, the ε-machine states remains strongly-

connected.] This is reflected in the convergence of all curves at Cµ = 1 bit. Equivalently,
this means one needs only a single bit of memory to store the current state.
We can similarly understand the qualitative behavior of Cq(N, T ) for a fixed N . As tempera-
ture increases, all length-N signal states become equivalent. This is the same as saying that
all length-N spin configurations become equally likely. As a consequence, the signal states
approach one another and, thus, Cq(N, T ) converges to zero.
In the low temperature limit, the two N -↑ and N -↓ configurations are distinguished by the
high likelihood of neighboring spins being of like type. This leads to a von Neumann entropy
(Cq) of S(ρ) = 1 qubit.
Figure 3a reveals strong similarities in the form of Cµ(T ) at differentN . A simple linear scaling
leads to a substantial data collapse, shown in Fig. 3b. The scaled curves (N − Cµ)/(N − 1)
exhibit power-law behavior in T for T > 2. Increasing the temperature to T = 300 (beyond
the scale in Fig. 3b) numerical estimates from simulations indicate that this scaling is given by
γ ' 2.000. The scaling determines how the classical memory saturates at high temperature.
This behavior is generic for different coupling decay values δ > 1 and, more to the point, the
scaling is independent of δ. We do not consider δ < 1, where the system energy becomes
nonextensive.
Now, we can analyze the decrease in Cq with temperature. Figure 4a shows that Cq is also a
power-law in T . By measuring this scaling exponent in the same way as above, we determined
that α ' 2.000. Furthermore, we find analytically that for high T :

Cq(N, T ) ∝ log2(T )
T 2 . (7)

To see this, first consider nearest-neighbor coupling N = 1. Due to symmetry we have
p ≡ Pr(↑ | ↑) = Pr(↓ | ↓) = F/D, where F = exp (βJ) and D = exp (βJ) +

√
exp (−2βJ)

with β = 1/T . At high temperature β is small and we have D = 2 + β2 and F = 1 + β + β2.
Again, by symmetry we have π1 = π2 = 1/2 and, therefore, the density matrix in Eq. (6) is:

ρ =




1/2
√
p(1− p)

√
p(1− p) 1/2


 , (8)

which has two eigenvalues: β2/4 and 1− β2/4. As a consequence Cq, being ρ’s von Neumann
entropy, is:

Cq = S(ρ) ' −
(
β2

4 log2
β2

4 +
(

1− β2

4

)
log2

(
1− β2

4

))
' log2 (T )

2T 2 . (9)
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FIG. 4: (a) Cq(·) is an increasing function of N , but a decreasing function of T and bounded
by 1 qubit, independent of N and T . Quantum memory Cq(N, T ), similar to Cµ(N, T ),
shows a data collapse in N that is especially tight at high temperature (T > 2). The
asymptotic behavior is a power-law with numerically estimated scaling exponent α = 2.
(Red dashed line.) The lower inset zooms to highlight convergence with increasing N .
Though the curves are for the case with δ = 2, the slope α at high T is independent of T .
(b) Magnetic field effects on classical Cµ(N, T ) and quantum Cq(N, T ) memory requirements
for simulating the processes generated by Hamiltonian ĤN for N = 1, . . . , 6 over a range of
temperatures T = 1, . . . , 10 at B = 0.3. Cq(N, T ) curves are those under the dashed blue
line.

Examining the numerator, for any r > 0 we have log2 (T ) < T r. So, for large T :

1
T 2 <

log2 (T )
T 2 <

1
T 2−r , (10)

for all r > 0. This explains the fat tails of Cq for large T and establishes that for N = 1 the
scaling exponent is α = 2.
Increasing the temperature the link between spins weakens. At high temperature the only
important neighbor is the nearest. As a consequence, the high temperature behavior is
similar to the case of N = 1 and, in addition, it is independent of N . This verifies and adds
detail to our numerical estimate.
This behavior is generic for different coupling decay values δ > 1 and, moreover, the scaling
exponent α is independent of δ. Notably, in this case no rescaling is required. The exponent
directly captures the extreme compactness of high-temperature quantum simulations.
Taking these results together, we can now appreciate the substantial relative advantage of
quantum versus classical simulators.
Define the quantum advantage η as the ratio of the minimum required memory for the
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classical simulation to the minimum required memory for the quantum simulation:

η(N, T ) ≡ Cµ(N, T )/Cq(N, T ) . (11)

For fixed temperature T ' 2, Cµ(N, T ) is approximately linear in N and for a fixed N is
approximately independent of T . As a consequence, the asymptotic quantum advantage is:

η(N, T ) ∝ N
T 2

log2(T ) , (12)

which scales faster than any T r for r < 2. Thus, the answer to our motivating question is
that the quantum advantage does, in fact, display scaling: it increases with interaction range
N and also increases strongly with temperature T .
Up to this point we focused on finite interaction-range systems, interpreting the chosen
models as a family of approximations to the Dyson model. Consider, though, Dyson’s original
spin chain [41] which has infinite-range interactions. In this case, the classical memory cost
of simulation diverges: limN→∞Cµ(N, T ) → ∞. That is, it is impossible to simulate the
Dyson model classically. In contrast, quantum memory cost is finite—limN→∞Cq(N, T ) < 1
qubit—and so it can be simulated quantally. There is perhaps no clearer statement of
quantum advantage.
Naturally, one might ask how our results are modified by the presence of an external magnetic
field. Consider the one-dimensional ferromagnetic Ising spin chain with Hamiltonian:

ĤN = −
∑

i

N∑

k=1

J0

kδ
sisi+k −

∑

i

Bsi . (13)

Figure 4b shows that, due to symmetry breaking at low temperature, both Cq(N, T ) and
Cµ(N, T ) converge to zero. (All spins at low temperature align with magnetic field and, as a
consequence, no memory is needed.) The high temperature behaviors for both memory costs
are the same as before, though, and the quantum advantage remains the same.

DISCUSSION

It is notoriously hard to find quantum advantage and even harder to prove [79]. We found
such an advantage in the realm of stochastic process simulation. Concretely, we analyzed
the N -nearest neighbor Ising spin system and demonstrated that its quantum advantage
displays a generic scaling behavior—quadratic in temperature and linear in interaction range.
What does this mean? The most striking conclusion is that a strongly interacting classical
system can be simulated with unbounded quantum advantage. One stark contrast is that it
is impossible to classically simulate Dyson’s original spin chain while quantum simulators
can do so and with finite memory cost.
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How broadly might we expect to see this quantum advantage? Or, is it merely a feature
of strongly coupled spin systems? Define a universal spin model as one that can simulate
any other spin model. That is, by using the low-energy sector of such universal models, the
physics of every classical spin model can be reproduced. Recently, Ref. [80] showed that the
2D Ising model with external fields is universal in this sense. This suggests that the quantum
advantage described here may not be limited to the particular spin system we consider, but
might also be universal. As a result, one should expect to see the quantum advantage for
other physical systems.
The Ising model has lent great insight to condensed matter physics, however it is a classical
model. Given that we are examining the difference between classical and quantum simulators,
it is natural to wonder about this difference in the context of a truly quantum Hamiltonian.
Is the quantum advantage amplified? Are there systems for which we find no quantum
advantage? And, is this their defining characteristic?
Here, we studied the cost of exact simulation of stochastic processes. Both classical and
quantum costs, though, can be very different when approximation is allowed. For example,
at high (but finite) temperature, we can approximate the process P(N, T ) as independent,
identically distribution (IID). One does not require any classical or quantum memory to
generate an IID process and, as a result, there would be no quantum advantage. Apparently,
the difference between required classical memory for exact simulation and approximate
simulation can be quite large. In contrast, the price we pay to go from approximate to exact
quantum simulation is relatively small.

METHOD

We show how to construct the ε-machine simulator of the process P(N, T ), following Ref.
[81]. Consider a block of spins of length 2N , divided equally into two blocks. We denote
spins in the left (L) and right (R) halves by: sLi and sRi for i = 1, . . . , N , respectively. We
map the left and right block configurations each to an integer η∗ by:

η∗ =
N∑

i=1

(
s∗i + 1

2

)
2i−1 , (14)

where ∗ can be either L or R. For each block we can have 2N different configurations.
Consequently, the label η∗ varies between 0 and 2N − 1. The internal energy of a given block
with configuration η∗ is given by:

Xη∗ = −B
N∑

i=1
s∗i −

N−1∑

i=1

N−i∑

k=1
Jis
∗
ks
∗
k+i , (15)
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and the interaction energy between two blocks is:

YηL,ηR = −
N∑

i=1

i∑

k=1
Jis

L
N−k+1s

R
k . (16)

With these we construct the transfer matrix:

VηL,ηR = e−(1/2XηL+YηL,ηR+1/2XηR )/T . (17)

The right eigenvector of V corresponding to the largest eigenvalue is denoted by u. Reference
[56] shows that the ε-machine labeled-transition matrices can be written as:

T (x)
η0,η1 =





1
λ
Vη0,η1

uη1
uη0
, η1 =

(
bη0

2 c+ x(2N−1)
)

0, otherwise
, (18)

where x ∈ {0, 1}, 0 for spin down and 1 for spin up. Then, the ε-machine simulator of
P(N, T ) is

{
S, A, {T (x)}x∈A

}
, where A = {0, 1} and S = {i : 0 ≤ i ≤ 2N − 1}.
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