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Computational models of brain dynamics fall short of performance in speed 
and robustness of pattern recognition in detecting minute but highly 
significant pattern fragments. A novel model employs the properties of 
thermodynamic systems operating far from equilibrium, which is analyzed 
by linearization near adaptive operating points using root locus techniques. 
Such systems construct order by dissipating energy. Reinforcement learning 
of conditioned stimuli creates a landscape of attractors and their basins in 
each sensory cortex by forming nerve cell assemblies in cortical 
connectivity. Retrieval of a selected category of stored knowledge is by a 
phase transition that is induced by a conditioned stimulus, and that leads to 
pattern self-organization. Near self-regulated criticality the cortical 
background activity displays aperiodic null spikes at which analytic 
amplitude nears zero, and which constitute a form of Rayleigh noise. Phase 
transitions in recognition and recall are initiated at null spikes in the presence 
of an input signal, owing to the high signal to noise ratio that facilitates 
capture of cortex by an attractor, even by very weak activity that is typically 
evoked by a conditioned stimulus.  

Key words: action-perception cycle; dissipative structures; ECoG 
electrocorticogram; non-equilibrium thermodynamics; phase transition; 

reinforcement learning; self-organized criticality 

 

1.   Introduction 
 

Cognitive neurodynamics describes the process by which brains 

direct the body into the world and learn by assimilation from the 

sensory consequences of the brain-directed actions. Repetition of the 

process constitutes the action-perception cycle by which knowledge 

is accumulated in small increments. Each new step yields a freshly 

constructed frame that is updated by input to each of the sensory 

cortices (Freeman, 2004a,b). The continually expanding knowledge 

base is expressed in attractor landscapes in each of the cortices. The 

global memory store is based on a rich hierarchy of landscapes of 

increasingly abstract generalizations (Freeman, 2005, 2006b). The 

first step of the acquisition of new knowledge is the selection by a 

stimulus of an attractor among landscape of attractors for the primary 

categories of sensory stimuli in each modality, for example, the 

repertoire of odorant substances that an animal can seek, identify, 

and respond to at any one stage of its lifelong experience. Each 

attractor is based in a nerve cell assembly of cortical neurons that 

have been pair-wise co-activated in prior Hebbian association and 

sculpted by habituation and normalization (Kozma and Freeman, 

2001). Its basin of attraction is determined by the total subset of 

receptors that has been accessed during learning. Convergence in the 

basin to the attractor gives the process of abstraction and 

generalization to the category of the stimulus. This categorization 
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process holds in all sensory modalities (Freeman and van Dijk, 1987; 

Barrie, Freeman and Lenhart, 1996; Ohl, Scheich and Freeman, 

2001; Freeman and Burke, 2003; Freeman and Rogers, 2003; 

Freeman, 2006a). The convergence to and holding of a cortical state 

by an attractor provides a frame that typically includes each entire 

primary sensory cortex and lasts about a tenth of a second. The 

action-perception cycle includes 3-5 frames plus transition times 

between frames that repeat at rates in the theta range (3-7 Hz).  

A major aim of cognitive neurodynamics is to model the cycle. 

On the one hand information-based models of the action-perception 

cycle succeed in describing the sensory input to cortex, the cortical 

evoked potentials, and the motor output in response to the input. 

They fail in modeling the mobilization of knowledge, because the 

portions of the knowledge base that are recalled from the attractor 

landscapes cannot be measured or expressed in bits of information 

(Lucky, 1989), yet those portions are the major determinants of 

cortical responses to stimulus. A further difficulty is that 

convergence in numerical models is by tree search and gradient 

descent, which are computationally intensive. von Neumann (1958) 

noted: “…the mathematical or logical language truly used by the 

central nervous system is characterized by less logical and 
arithmetical depth than what we are normally used to. … We require 
exquisite numerical precision over many logical steps to achieve 
what brains accomplish in very few short steps (pp. 80-81)”.  

On the other hand there is no question that brains are open 

thermodynamic systems operating far from equilibrium. Brains burn 

glucose to store energy in glycogen (“animal starch”) and high-

energy adenosinetriphosphate (ATP), and in transmembrane ionic 

gradients; they dissipate free energy in proportion to the square of the 

dendritic ionic current densities that are manifested in epiphenomenal 

electric fields, and that mediate the action-perception cycle (Freeman 

and Vitiello, 2006) by controlling the pulse frequencies of axons. 

Brain imaging techniques such as fMRI are indirect measures of 

metabolic dissipation of free energy, relying on secondary increases 

in blood flow and oxygen depletion. The dendrites dissipate 95% of 

the metabolic energy in summed excitatory and inhibitory ionic 

currents; axons dissipate 5% of the energy in action potentials that 

carry the summed output of dendrites by analog pulse frequency 

modulation. The aim of this report is to sketch how records of 

dendritic potentials recorded from the cortical surfaces of human and 

animal brains (electrocorticogram, ECoG) can be used to describe 

how brains that produce mind and behavior act as thermodynamic 

engines held at pseudo-equilibrium in self-organized criticality. 

Thereby von Neumann’s “very few short steps” that enable action-

perception cycles turn out to be sequential phase transitions (Kozma 

and Freeman, 2002; Kozma et al., 2005). 

 

2.   Spatial and spectral properties of dendritic potentials in 

ECoG 

 
Examples of cognitive brain dynamics are drawn from the olfactory 

system, which is the simplest system from the standpoint of sensory 

pre-processing yet prototypical in being phylogenetically the 

precursor of the other sensory systems (Freeman, 2001). In sleep and 

at rest the work of dendrites is revealed by robust background 

activity with Gaussian amplitude distributions and 1/f
2
 ‘brown noise’ 
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power spectra. Amplitude increases with arousal (Fig. 1, A), and 

spectral peaks emerge on engagement with the environment. 

Oscillations occur in the gamma range (30-80 Hz) in frames 

triggered by inhalations at frame rates in the theta range (3-7 Hz). In 

the presence of input carried by a learned odorant substance, the 

gamma waves synchronize over the olfactory bulb and mobilize an 

attractor in a landscape of attractors (Fig. 1, B) governing the 

expression of spatial patterns of amplitude modulation (AM) and 

phase modulation (PM) of a gamma carrier wave (Fig. 2, A). Each 

pattern is recorded with 8x8 electrode arrays and plotted as a point in 

64-space. Projection into 2-space of points derived from multiple 

trials with different substances reveals clusters (Fig. 2, B) that reflect 

the underlying attractor landscape.  

 
 
Fig. 1. A. Cat olfactory cortical electrocorticogram (ECoG). From Freeman 

(p. 404, 1975/2004) B. Olfactory attractor landscape. The recurrent state 

changes between inhalation and exhalation reflect a different type of phase 

transition in each direction. From Skarda and Freeman (1987)  

 

Cortex is bistable, having a receiving phase during which the 

landscape is latent, and a transmitting phase during which the 

landscape is brought on line during the sensory receptor input 

barrage brought by inhalation.  Selection by sensory input of one of 

the basins of attraction precipitates spontaneous symmetry breaking 

(Freeman and Vitiello, 2006) in the form of a phase transition from 

the receiving phase to the transmitting phase. During exhalation 

another phase transition returns the bulb to the receiving phase. 

These properties are schematized by adapting the phase diagram for 

water (Fig. 8, A), which is the static, time-invariant relation between 

energy and entropy at equilibrium, to the relation (B) between the 

rate of increase in order (negentropy) and power (rate of energy 

dissipation) far from equilibrium. The order parameter is indexed 

(Fig. 8, B) by the ratio, (He(t)) of mean analytic power to the 

Euclidean distance between feature vectors at successive digitizing 

steps in 64-space (Fig. 2, B); a small step within a cluster indicates a 

stable pattern and therefore a high degree of order. A large step is 

required in jumping from one cluster to another cluster, as in moving 

from the control phase to the stimulated phase. Power is estimated 

(Fig. 8, B)from mean square analytic amplitude, A
2
(t), derived with 

the Hilbert transform applied to the ECoG to calculate the analytic 

signal (Freeman, 2004a.b; 2005; 2006a).  

 

3.   Piece-wise linear analysis of dendritic potentials by root 

locus 
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The dendrites are normally kept within a narrow near-linear 

range by the time-invariant nonlinearity of the axonal trigger zones, 

so the dynamics of local populations is approximated with a 2
nd

 or 3
rd

 

order ordinary differential equation (Freeman, 1975/2004). The time-

invariant sigmoid function (Fig. 3) is evaluated by fitting an equation 

derived from the Hodgkin-Huxley equation for the neuron to the 

normalized conditional pulse probability on the ECoG amplitude and 

frequency (A). Piece-wise linearization is by taking the derivative of 

the curve to calculate the slope of the tangent at the operating point 

(B), which at rest is at unity gain, giving the condition required for 

the steady state.  

 
Fig. 2, A. Contour plots show ECoG amplitude from a 8x8 (6x6 mm) surface 

array. B. Projection of points from 64-space to 2-space is by step-wise 

discriminant analysis; the origin of the display space is translated and the 

coordinate axes are rotated to minimize within-group variance and maximize 

between-group variance. From Freeman and Viana Di Prisco (1986)  

 

Perturbation by impulse input (electric stimulus to an afferent 

pathway, Fig. 4, A) gives a brief increase in pulse density in 

proportion to intensity and an exponential decay with rate also 

proportional to input intensity. Extrapolation to zero amplitude at 

threshold gives zero decay rate (a step response, Fig. 4, B), which 

implies that excitatory populations are self-stabilized by homeostatic 

regulation at unity gain. Stability is expressed by a pole ∆ at the 

origin of the complex plane and by a point attractor in the phase 

space of brain state space.  

The impulse response of the interactive excitatory-inhibitory 

population oscillates about an exponentially decaying baseline shift 

(Fig. 5, A) that is imposed by periglomerular excitation (Fig. 4, A), 

and with a fixed frequency and an exponentially decay envelope of 

which the rate likewise increases with input intensity. Piece-wise 

linear analysis using the root locus technique (Fig. 5, B) extrapolates 

to a complex conjugate pole pair on the imaginary axis, which is 

governed by the pole at the origin within the limits indicated by the 

vertical and diagonal limits partitioning the complex plane. 

Excitatory impulse input that bypasses the excitatory bias gives a 

vertical root locus (Fig. 6, A) indicating the importance of the basal 

excitatory bias for establishing oscillations that have the same carrier 

frequency in the distributed population with normal input.  
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Fig. 3, A.  Normalized pulse probability conditional on ECoG amplitude in 

the gamma range with the numerical derivative. B. Unity gain (steady state) 

is offset to a non-zero value dependent on arousal (Fig. 1, A) for excitatory 

populations and at zero wave density for excitatory-inhibitory populations 

generating oscillations From Freeman (1979).  

 

 

 
 

Fig. 4, A. Impulse responses of the periglomerular mutually excitatory 

population. B. Root locus plot of the rate constants calculated by piece-wise 

linearization of the equations for dynamics of mutual excitation at an 

observed operating point. From Freeman (pp. 289-292, 1975/2004)  

 

The amplitude of the bias is time-varying, as revealed by 

repeated sampling of the impulse response at fixed near-threshold 

intensity. The spontaneous variation gives a very different root locus 

(Mode 2), because it crosses the imaginary axis into the right half of 

the complex plane with increasing response amplitude (Fig. 6, B) and 

converges back to the imaginary axis in the gamma range, indicating 

the existence of a limit cycle attractor in the gamma range and thus 

the stable transmitting state that must be accessed by phase 

transition.  

Interactions of excitatory and inhibitory neurons in cortex give 
oscillations in the beta (12-30 Hz) and gamma (30-80 Hz) ranges 
through a wide range of feedback delays, giving broad spectral bands 
that can be modeled with multiple negative feedback loops (Freeman, 
1975/2004). Superposition holds in small-signal ranges, so that the 
pass bands can be simulated with transfer functions for linear filters. 
When brown noise is filtered in the beta or gamma range, the 
analytic signals from the multichannel ECoG both at rest and at work 
give fluctuating peaks of mean amplitude, A(t), separated by sharp 
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null spikes at which A(t) approaches zero (Figure 7, A). At null 

spikes the phase, φ(t), is undefined, so the spatial standard deviation 
as a time function, SD

X
(t), across channels increases in a sharp spike, 

contrasting with fixed SD
X
(t) and mean φ(t) in peaks of mean A(t). 

 
 

Fig. 5, A.  Impulse responses of excitatory-inhibitory population with 

excitatory bias. B. Root locus plot showing the dependence of decay rate on 

stimulus intensity at a constant frequency of oscillation. From Freeman (pp. 

361-364, 1975/2004).  

 

 
Fig. 6, A. Root locus plot showing the dependence of decay rate on stimulus 

intensity with no excitatory bias. B. Spontaneous variation in frequency and 

decay rate of impulse responses reveals a limit cycle attractor in the gamma 

range. From Freeman (pp. 363, 374, 1975/2004.  

 

This operation reproduces the inverse relation of A(t) and SD
X
(t) 

(Figure 7, B). The null spikes are beats in a type of Rayleigh noise 
(Freeman, 1975/2004). They are defects that resemble vortices and 
show that the lower is the coherent mesoscopic background analytic 
amplitude, the higher is the amplification of the response to impulse 
input. The root loci suggest that the null spike exposes a singularity 
in cortical dynamics, at which the cortical mechanism approaches 
criticality. At criticality all wavelengths coexist, and the mesoscopic 
system can be captured by microscopic input that is amplified by a 
Hebbian assembly. Being dependent on the background activity that 
is self-stabilized, the critical state is self-organized at each level of 
arousal (Fig. 8, B).  
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Fig. 7, A. The mean analytic amplitude, A(t), and the spatial SDX(t) are inversely 

correlated. The inhibitory feedback acts as a band pass filter on the ECoG output, 

which results in episodic decreases in coherent power by interference without 

reduction in total power, resembling beats in Rayleigh noise. The wide range of 

feedback frequencies is supported by the power-law distribution of feedback distances 

and delays. B. Simulation is by band pass filtered 1/f2 brown noise that can be 

generatedby summing multiple time series of random numbers (Schroeder, 1991). 

From Freeman (2006a).  

 

4.   Thermodynamic phase diagram from ECoG analysis  
 
The first step is to display the static, time-invariant phase 

diagram for water at equilibrium in the coordinates of entropy 
(pressure) vs. energy (temperature) to identify the two phase 
boundaries, the triple point, and the critical point (Fig. 8, A). The 
diagram is adapted to the open, dissipative state by adopting two new 
coordinates: the rate of increase in order measuring negentropy and 
the rate of energy dissipation (power) (B). Order is indexed by the 
pragmatic information, H

e
(t) (Freeman, 2006a), and power by mean 

square analytic amplitude, A
2
(t). At equilibrium the critical point is at 

the origin (0,0), which holds under deep anesthesia with total 
suppression of ECoG and action potentials (Fig. 1, B).  

 

 
 

Fig. 8 A.  Time-invariant thermodynamic phase diagram. From Blauch (2007). B. 
Adaptation to pseudo-equilibrium by introducing two dynamic state variables and 
fixing the critical point at the origin. From Freeman (2007b) 
 

With increasing arousal, the order, the power, and the critical 
point increase together. The critical point that governs cortical 
dynamics is collocated with the non-zero point attractor at the origin 
of the complex plane (Fig. 3, B), and the phase boundary between 
receiving and transmitting phases is collocated with the imaginary 
axis. Convergent linear dynamics is described with root locus 
techniques to the left; divergent dynamics is predicted by root loci 
extending into the right half of the complex plane.   

The dynamic operating point of the receiving state (∆, ‘rest’ in 
Fig. 9, B) is maintained by extracortical input at a steady state with 

greater dissipation and lower order than the critical point (∆, SOC, 
Fig. 9, B). This operating point (fig. 9, A) shows the mean value 
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about which the fluctuations occur in amplitude of the impulse 
responses. In the complex plane its location corresponds to a pair of 
complex conjugate poles showing the frequency and decay rate of the 
cortical impulse response in the presence of inhibitory feedback (Fig. 
5, A). During the null spikes of the Rayleigh noise the sensitivity of 
the cortex increases as the background noise goes to zero, as shown 
by the increase in amplitude of the impulse response. The decay rate 
of the impulse response decreases toward zero (Freeman, 1975/2004) 
as the cortex approaches the critical point. At that point of criticality, 
the linear analysis predicts that the signal-to-noise ratio in the cortex 
approaches infinity. Any input containing action potentials that target 
a nerve cell assembly can activate it and access the attractor that 
implements recognition and recall. When the Rayleigh noise returns, 
it bears the AM pattern of that attractor and maintains it for 3 to 5 
cycles of the carrier frequency.  

The key piece of evidence is that the operating point is shifted in 
the direction of decreased dissipation (compare Fig. 6, B and Fig. 9, 
B). The phase transition to from reception to transmission with a 
discontinuity in analytic phase is followed by an early increase in 
order, then by a massive increase in both order and dissipation 
(Freeman, 2005, 2006a). The second phase transition without a 
discontinuity in analytic phase returns the cortex to its receiving 
‘rest’ state. The loop repeats 3 to 5 times in an action-perception 
cycle, between a conditioned stimulus and the conditioned response 
in a helix in time that projects into the ellipse seen in Fig. 9.  
 

 
 

Fig. 9 A. The critical point is translated by arousal toward increased dissipation and 

order (right upward). The operating point is displaced toward increased dissipation and 

decreased order by centrifugal input from other parts of the brain (Mode 1i). The 

conjoint increase in order and dissipation is replicated by orthodromic afferent 

electrical stimulation (Mode 1e). Spontaneous variation leading to symmetry breaking 

(Mode 2) is attributed to the amplitude fluctuations shown in Fig. 7. The inset square 

shows the part of the complex plane that is used for linear analysis (Freeman, 

1975/2004). B. Early in a phase transition the power and order both decrease 

(Freeman, 2005). Next order increases; thereafter power increases; after peaking both 

power and order decrease into the receiving phase, so that the cycle rotates clockwise. 

The ellipse is a projection into the plane of a helix in time, with 3 to 5 repetitions in an 

action-perception cycle. From Freeman (2007b).  

 

5. Discussion 
 

This neural mechanism depends on robust maintenance by 
cortex approximating scale-free dynamics at criticality (Linkenkaer-
Hansen et al, 2001; Freeman, 2007a ), where all frequencies and 
wavelengths of activity may simultaneously be expressed, as 
revealed in the power-law distributions of spectra and other 
parameters and variables. Its operation can explain the fact that the 
first step in a phase transition is reduction in amplitude, not in the 



            Thermodynamic model of brain dynamics         9                                 Freeman 

 

surge of dissipation expected following sensory impact. It explains 
how a faint whiff, whisper, frisson or glimpse can capture an entire 
prepared sensory cortex in a literal eye blink without necessity for 
logical tree search or gradient descent. It accounts for the fact that the 
AM pattern thus retrieved is not a representation of a stimulus but the 
mobilization of the knowledge that a subject has accumulated about 
the stimulus through reinforcement and Hebbian learning. It accounts 

for the attentional blink (Fragopanagos, Kockelkoren and Taylor, 

2005). It explains the cross-spectral correlation of beta-gamma with 

the peaks of activity in the theta range, and for the fact that 
psychometric studies of frame repetitions do not closely correlate 
with theta or alpha, because percept formation requires coincidence 
of null spikes and limbic sampling through its control of sniffs, 
whisks, and saccades.  

The key finding on which this study is based is the 
demonstration that the neural correlates of conditioned stimuli (CS) 
in all sensory cortices, not just olfaction, have the form of spatial 
patterns of amplitude modulation (AM) of chaotic carrier waves with 
frequencies in the beta and gamma ranges. The 64 electrodes with 
which the AM patterns are measured are close enough together to be 
well within the correlation diameters of the patterns, yet not so close 
as to significantly over-sample the textures. The optimal form for 
classification of AM patterns with respect to CS is the analytic 
amplitude from the Hilbert transform (Freeman, 2005). The times of 
onset and offset of the individual frames are best demarcated by the 
analytic phase differences divided by the duration of the digitizing 
step, giving the analytic frequency. Owing to the shared wave form 
that includes the conic spatial pattern of phase modulation (Freeman, 
2004a), each frame can be described by a 64x1 column feature vector 
that specifies a point in 64-space for classification, and that serves 
also as the vectorial order parameter. The rate of change of AM 
pattern in normalized 64-space gives a scalar index of the rate of 
change in the order parameter, corresponding to the rate of decrease 
in entropy in a system at equilibrium. The square of the analytic 
amplitude corresponds to an index of the rate of energy dissipation 
by the dendrites driving ionic currents across the dendritic and axonal 
membranes, which is echoed in the minute passive potential 
differences as the current flows across the extracellular resistance, 
giving the ECoG. The electric field is a mean-field quantity, owing to 
sharing of the extracellular current pathway by all neurons in the 
neighborhood of each electrode.  

The simulation of the AM patterns and their classification 
(Freeman, 2006a) has shown that each AM pattern emerges by 
synchronization of the pre-existing background activity. The main 
support for this conclusion comes from recognition that the AM 
patterns are not representations of CS, because they change when the 
significance and context of fixed CS are modified. They are 
expressions of knowledge by the subject about the class to which the 
CS belongs. That knowledge is embedded in the synaptic matrix of 
the sensory and limbic cortices. Each class is based in a microscopic 
Hebbian nerve cell assembly that has been formed by incremental 
learning during the training process. The role of the Hebbian 
assembly is to support induction, abstraction and generalization, 
which it does by responding as a whole to excitation of any small 
number of inputs in any combination. Then the assembly selects the 
AM pattern through the pre-existing constraints embodied in cortical 
synapses.  
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Therefore, as widely believed, the volley of sensory input does 
retrieve a memory embedded at least in part in sensory cortex. What 
is new in the thermodynamic model is the explanation of how such a 
Hebbian assembly can bring an entire sensory area into the stable, 
ordered fluctuation of an AM pattern. The proposed process is that 
each phase transition taking cortex from a receiving state to 
transmitting state begins with the onset of a null spike, in which the 
mesoscopic analytic power approaches zero. The analytic phase and 
frequency are then undefined, but the microscopic activity continues 
unabated, as reflected in the high spatial standard deviation, SD

X
(t). 

Well before the amplitude returns to a high value, oscillations re-
synchronize to a new value of carrier frequency across the null spike, 
as shown by the increase in the index of the order parameter 
indicating stabilization of the new AM pattern.  

The origin of the pre-existing background activity has been 
traced to the interaction among excitatory neurons, which is 
stabilized by refractory periods and not by thresholds or inhibition. 
The role of inhibitory neurons is to impose negative feedback, 
facilitated by their interactions through gap junctions (Steyn-Ross et 
al., 2007) and by the tuning of membrane permeabilities (Traub et 
al., 1996; Whittington et al., 2000), but depending on negative 
feedback as shown by the near quarter-cycle lag of the oscillations of 
the inhibitory neurons behind those of the excitatory neurons at the 
same frequency (Freeman, 1975/2004; Ahrens and Freeman, 2001). 
The gamma frequencies arise by short, local delays; the beta 
frequencies emerge by longer, more distant delays. Negative 
feedback acts as a band enhancement filter and gives rise to the 
Rayleigh noise with null spikes at rates proportional to the center and 
width of the pass band (Freeman, 2006a). The value of piece-wise 
linear analysis using Hamiltonians becomes apparent in 
demonstrating the stability boundary of linear approximations along 
the imaginary axis of the complex plane, which translates into the 
phase boundary across which the phase transition occurs with a 
discontinuity in the analytic phase.  

The linear analysis yields two critical exponents: the zero 
eigenvalue representing the point attractor that governs the 
background activity, and the complex eigenvalue near 40 Hz that 
governs the gamma fluctuations. The existence of both the implied 
point attractor and limit cycle attractor were predicted by 
extrapolation to zero input and have been confirmed by surgical 
isolation of parts of the olfactory system (Freeman, 1975/2004; Gray 
and Skinner, 1988). Both attractors are engulfed by chaotic attractors 
in the intact system (Freeman, 1987). The key event in the phase 
transition is the abatement in the null spike of mesoscopic (classic) 
power that reveals the microscopic (quantal) power. The cortex 
approaches criticality at which microscopic input that is provided by 
the Hebbian cell assembly that captures the system and re-expresses 
its microscopic pattern in a mesoscopic pattern over the whole of the 
receiving cortex (Freeman and Vitiello, 2007).  

 
6. Conclusion and Summary  

 

Perhaps the most significant departure here from conventional 
views of brain function is the shift from information-based dynamics 
to knowledge-based dynamics, in which microscopic information 
processing extends from sensory receptors to the selection of a 
Hebbian cell assembly, after which mesoscopic knowledge 
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processing takes over. The key role is played by the AM pattern, 
which is the behavioral connection with the CS, the feature vector of 
the knowledge fragment, and the order parameter by which the phase 
transition is verified. The analytic phase shows that minor state 
transitions occur as frequently as bubbles in boiling water, but a 
phase transition can only be assured when it enables the construction 
of a behaviorally related AM pattern. The nature of the phase 
boundary is revealed by piece-wise linear exploration of the 
dynamics using the impulse responses and root locus techniques, 
with describing functions to express the relations of the parameters of 
the dynamics to the physiological and pharmacological properties of 
the neurons, their synaptic connections, and the subjects’ behaviors. 
Further interpretation of the root loci in the receiving and 
transmitting states and the critical exponents of the transition through 
the singularity between them will require modeling with with 
equations relying on the tools of classical physics, neuropercolation 
(Kozma et al., 2005), dissipative quantum field theory (Freeman and 
Vitiello, 2007), and renormalization group theory (Freeman and Cao, 
2007). 
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