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Abstract

Coe�cient Optimal Control Problems for Elliptic PDE

by

Peter U. Vinella

Doctor of Philosophy in Mathematics
University of California, Berkeley

Professor Lawrence Craig Evans, Chair

In this thesis, we consider a class of optimal control problems known as coe�cient control
problems. Such problems are constrained by uniformly elliptic PDE in which the controls
appear as some of the coe�cients in the di�erential operator. We begin with a brief review
of standard optimal control theory and show that it does not apply to control coe�cient
problems generally by means of two counterexamples. We then present existence results
for the solution to such problems under two di�erent assumptions regarding the controls:
Lipschitz continuity with a bounded Lipschitz constant and the case in which the admissible
set of controls is closed under H-convergence. We then present a new maximum principle
for the latter class of problems which we subsequently use to characterize the nature and
behavior of optimal solutions.
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Preface

The motivation behind this thesis was a problem that I was given arising from the turmoil in
the �nancial markets following the collapse of Lehman Brothers in September 2008. My task
was to price hundreds of millions of dollars of interest swaps in connection with a lawsuit
brought against Lehman by one of its clients. Such an exercise would typically involve
discounting the various cash �ows using some benchmark interest rate that was modeled
using an Itô di�usion. This, in turn, requires calibrating the coe�cients the SDE on each
valuation date to re�ect prevailing market conditions. However, interest rates are not directly
observable in the market and the standard calibration methods rely on heuristics rather than
empirical data. Given the market volatility at the time, these models were found wanting
for this particular exercise.

While interest rates themselves are not directly observable in the market, prices of various
classes �nancial instruments that are derived from them are directly observable, most notably
zero-coupon bonds issued by the U.S. Treasury Department. Moreover, the price of such a
�nancial instrument can be shown to be the solution to a PDE whose coe�cients are the
same as those of underlying interest rate process (i.e. the well-known Black-Scholes PDE).
Hence, the problem of estimating the coe�cients of the stochastic interest rate process can
be transformed into estimating the coe�cients of a PDE. Additionally, since these prices are
observable in market, we can formulate an estimation scheme with the goal of minimizing
the di�erence between computed and observed prices (in other words, a norm-minimization
problem). This suggests that we can pose our calibration problem as one in which the
coe�cients of the PDE act as controls governing the evolution of the price of zero-coupon
bonds whose values are chosen to achieve some optimal result (i.e. minimizing the estimation
error between computed and observed prices) � in other words, an optimal control problem,
albeit one which is in�nite dimensional with PDE-constraints.

As is the the case with this calibration problem, optimal control problems generally involve
�controlling� the evolution of the state of a given system in order to achieve some prescribed
objective. Often, this evolution is described by a di�erential equation which is subject to
various constraints imposed on permissible states and controls such as in the case of classical
calculus of variation problems. The theory establishing the existence of optimal solution to
such problems along with necessary conditions for optimality is well understood in a �nite
dimensional setting. Further, this theory has been extended to in�nite dimensional problems
generally and, in particular, those which are constrained by a PDE that is linear with respect
to the controls. However, there are still many open problems regarding the existence and
characterization of optimal solutions in the case of nonlinear problems generally.
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In this thesis, we consider two special cases of such nonlinear problems. First, in the case
of estimating the coe�cients of a SDE such as the calibration problem above, we can rely
on the fact that these coe�cients must be Lipschitz continuous with bounded Lipschitz con-
stants. This allows us to pass to the limits without having to rely on linearity. Consequently,
under this assumption, we can demonstrate both the existence of optimal controls as well
as characterize those controls using standard methods. In the second case, we show that
solutions exist and be characterized by a maximization principle for a broader class of prob-
lems in which the di�usion coe�cient is closed under H-convergence. However, it should
be noted that these results are only a small step toward resolving the problem estimating
unobservable coe�cients of Itô di�usions.

This thesis is organized as follows.

In Chapters 1 and 2, we introduce the basic optimal control problem and we review some
key results from general optimal control theory. In particular, review standard Lagrange
optimization methods in in�nite-dimensions which can be applied to special classes of optimal
control problems.

In Chapter 3, we introduce optimal control problems constrained by an elliptic PDE. We
begin with basic results from PDE theory which establish the existence and uniqueness of the
weak form of feasible solutions. We then review a special class of such problems which are
linear with respect to the controls. In this case, we can apply the general theory developed
in Part 2 following the pioneering work J.L. Lions in the 1960's.

In Chapter 4, we explore optimal control problems constrained by an elliptic PDE that are
nonlinear with respect to the controls. Here, we introduce two counterexamples to show that
solutions to such problems do not exist generally. In light of these counterexamples, we then
turn our focus to a special class of nonlinear optimal control problems whose controls appear
as coe�cients of the PDE constraint. We begin with establishing the existence of solutions
to such problems beginning with a discussion of H-convergence. We also show that the
solutions to such problems exist if the controls are assumed to be Lipschitz continuous with
the same bounded Lipschitz constant. Following this, we introduce a maximum principle
for such problem which essentially replaces the variational inequality used to characterize
solutions. Finally, we analyze the nature and behavior of optimal solutions under a variety
of simplifying assumptions.

In developing this material, I generally follow J.L. Lions [60], F. Tröltzsch [84], and M.Hinze,
et al. [40] in laying out the basic optimal control theory as it applies to PDE-constrained
problems. Additionally, I have generally followed Murat and Tartar in developing the concept
of H-convergence as it applies to PDE-constrained optimal control problems. Further, I have
generally relied on Evans [27] for much of the material regarding PDE theory. Other authors
as well as references to speci�c results are cited throughout the text. Lastly, well-known
results are generally presented with only a reference to an authoritative source rather than
a proof itself. Results presented with a proof are generally mine, that of my of advisor, the
proof is original, or some combination of the above unless noted otherwise.
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CHAPTER 1

INTRODUCTION

1.1. The basic optimal control problem

In the abstract, an optimal control problem involves �nding a state-control pair (u0, α0)
contained in a given admissible set A which minimizes a given objective (or cost) func-
tional I : A → R such that

I
[
u0 (α) , α0

]
≤ I [u, α] for all (u, α) ∈ A,

where u represents the state of a given system while α represents the control (policy).

Notation. Throughout this paper, A denotes the admissible set and the superscript �0�
indicates an optimal solution. �

An additional term is often included in the objective functional to account for the cost (or
penalty) of using a speci�c control. As such, the objective functional often takes the form

I [u, α] = J [u, α] +K [α] ,

where K represents the cost of using a particular control α. Additionally, we generally
consider problems that are subject to equality and inequality constraints on the choice of
states and/or controls.

Given this, we formally state such problems as follows:

Problem A. (The general optimal control problem)
min

(u,α)∈A
I [u, α] ,

subject to e (u, α) = 0

c (u, α) ∈ K

for a given admissible set A ⊂ X×Y , where X and Y are given real Banach spaces known as
the state space and the control space , respectively. The control operators e : A → Z
and c : A → W are also given, where Z and W are given real Banach spaces known as the
value spaces . In particular, the operator identity

e (u, α) = 0

represents equality constraints and is called the state equation . Similarly the operator
c represents inequality constraints which are de�ned as

c (u, α) ∈ K,
where K is a convex cone in W .
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1.2. THE REDUCED FORM

A state-control pair (u, α) ∈ A is said to be feasible if it satis�es the equality and inequality
constraints,

e (u, α) = 0 and c (u, α) ∈ K,
where Z∗ is the dual of the value space Z. The feasible set is the collection of feasible
solutions and is denoted as F .

For the purposes of this paper, we only consider problems which have equality constraints.
However, the results presented herein can be extended to those problems which also have
inequality constraints using an appropriate extension of the Karush-Kuhn-Tucker conditions
from standard optimization theory (cf. [84, ch. 6]). Additionally, we only consider problems
in which any state u ∈ X is admissible baring any explicit constraints set forth in the
problem statement. Lastly, we ignore any penalty on the choice of control as this only
constrains the regularity of any solution and does impact its existence. Consequently, our
canonical problem under consideration in this paper is of the form:

Problem B. (The general equality constrained optimal control problem){
min

u∈X,α∈A
I [u, α] ,

subject to e (u, α) = 0,

where X is the given state space, Y is the given control space such that A ⊂ Y , and e
represents the equality constraints.

Notation. Unless otherwise noted, we follow PDE convention that the state of a given
system is denoted by the lower case letters u, v, and w while controls are denoted by the
lower case Greek letters α and β. �

1.2. The reduced form

Faced with optimal control problems such as Problem B, in many cases, it possible to express
the state u as an explicit function of the control α such that the mapping α 7→ u (α) is unique.
If such a mapping exists, we say that it is a control-to-state operator and we denote it
as S : A → X. Additionally, we denote the state as uα to explicitly indicate its dependence
on the control α, where

uα := S (α) .

Remark. In general, a control-to-state operator may need not be onto and it might not be
possible to attain a particular state regardless of the choice of controls. Consequently, we
say that the state u is attainable if there exists a control α ∈ A such that u = S (α). �

Given the existence of an appropriate control-to-state operator, we can express optimal
control problems of the form Problem B in reduced form which we de�ne as:

Problem C. (The general optimal control problem in reduced form){
min
α∈A

Î [α] ,

subject to ê (α) = 0,

2



1.2. THE REDUCED FORM

where A ⊂ Y is the admissible set of controls, Î : A → R is the reduced objective
functional de�ned as

Î [α] := I [S (α) , α] = I [uα, α] (α ∈ A) ,

and ê : A → Z is the reduced constraint operator , de�ned as

ê (α) := e (S (α) , α) = e (uα, α) (α ∈ A) .

Additionally, we say the collection of all feasible solutions of such problems, F̂ , de�ned as

F̂ = {α ∈ A | ê (α) = 0} = {α ∈ A | e (S (α) , α) = 0} ,
is the reduced feasible set .

Notation. For the remainder of the paper, we will use the same notation for full and
reduced form of the objective functional and constraint operator unless otherwise noted. �
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CHAPTER 2

REVIEW OF OPTIMIZATION AND OPTIMAL CONTROL

THEORY

In this chapter we review some key results from standard optimization theory and its appli-
cation to equality constrained optimal control problems in in�nite dimensions. Many of the
classical results are provided without proof which can be found in the cited references.

In this chapter, assume that X, Y, and Z are given real Banach spaces with dual spaces
X∗, Y ∗, and Z∗, respectively (i.e. the space of bounded linear functionals on each of those
spaces).

Notation. Given a Banach space W and its dual space W ∗, we denote the dual pairing of
w ∈ W and z ∈ W ∗ as

〈z, w〉W ∗,W = z (w) ∈ R.

If it is obvious from the context, we often drop the subscript and simply denote the dual
pairing as

〈z, w〉

Additionally, if the mapping A is linear, we often use the �multiplication� notation and for
w ∈ W,we write

Aw := A (w) .

Lastly, we use x, y, and z to represent elements of general Banach spaces and u,v, and
w to represent elements of Banach spaces of functions to emphasize the fact that they are
functions. �

2.1. Existence of optimal solutions

We now identify conditions under which solutions to optimal control problems that can be
expressed in reduced form exist.

2.1.1. Under the weak topology. Recall that closed, bounded sets in in�nite di-
mensional spaces are not compact generally. Therefore, we turn to alternative topologies
on general Banach spaces from which we can derive the necessary compactness properties.
Here, we generally follow Evans [25] and [84, ch.2.4].

Definition. For a normed linear space W , we say the topology induced by its norm is the
strong (norm) topology . Additionally, we say the topology onW induced byW ∗, referred
to as the weak topology , is the weakest topology on W under which every element of W ∗

remains continuous and is denoted as σ (W,W ∗).

4



2.1. EXISTENCE OF OPTIMAL SOLUTIONS

We now review some properties of the weak topology.

2.1.1.1. Weak convergence.

Definition. Suppose that {xj}j∈N ⊂ X.

(i) We say that {xj}j∈N converges strongly to x ∈ X if it converges in the norm-
topology, i.e.

lim
j→∞
‖xj − x‖ = 0.

(ii) We say that {xj}j∈N converges weakly to x ∈ X, denoted as

xj ⇀ x,

if for all x∗ ∈ X∗

〈x∗, xj〉 → 〈x∗, x〉 as j →∞.

Remark. If X is a Hilbert space with the inner product ( · , · ), then by the Riesz Repre-
sentation Theorem, a sequence {xj}j∈N ⊂ X converges weakly to x ∈ X provided

(y, xj)→ (y, x) as j →∞
for all y ∈ X. �

Theorem 2.1.1. Assume that {xj}j∈N ⊂ X and x ∈ X.

(i) If xj → x, then xj ⇀ x.
(ii) If xj ⇀ x, then the xj are bounded in X and ‖x‖ ≤ lim inf

j→∞
‖xj‖.

Proof. See Brezis [15, p.58]. �

2.1.1.2. Weak continuity. Here, we o�er a number of continuity statements under the
weak topology. Equivalent statements exist under the weak* topology unless otherwise
noted.

Definition. A mapping f from a topological space (Ω, τΩ) to another topological space
(Ψ, τΨ) is said to be continuous at a point x ∈ Ω if and only if the preimage of every open
neighborhood of f (x) is an open neighborhood of x. Further, f is said to be continuous
on V ∈ Ω if it is continuous at each x ∈ V . In particular, we say that a function f from
one normed linear space to another is (strongly) continuous if it is continuous under the
norm topology and weakly continuous if it is continuous under the weak topology.

Theorem 2.1.2. If f : X → Y is strongly continuous at x ∈ X, then f is weakly continuous
at x.

Proof. See Aliprantis [3, p.233]. �

Definition. Suppose {xj}j∈N ⊂ X such that xj → x ∈ X. We say the function f : X → Y

is sequentially continuous at x if f (xj) → f (x) ∈ Y . Similarly, we say that f is
sequentially weakly continuous at x if xj ⇀ x ∈ X and f (xj) ⇀ f (x) ∈ Y .

Theorem 2.1.3. If f : X → Y is (weakly) continuous, then is it sequentially (weakly)
continuous. Further, if f is sequentially continuous, then it is continuous.

5



2.1. EXISTENCE OF OPTIMAL SOLUTIONS

Proof. See Rudin [76, p.395]. �

Remark. The second statement follows from the fact that a Banach space is metrizable
under the norm topology. This does not necessarily hold under the weak topology. �

De�nitions.

(i) The function f : X → R is said to be (strongly) lower semicontinuous if for
every sequence {xj}j∈N ⊂ X such that xj → x ∈ X, we have

lim inf
j→∞

f (xj) ≥ f (x) .

(ii) f is said to be (strongly) upper semicontinuous if for every sequence {xj}j∈N ⊂
X such that xj → x ∈ X,

lim sup
j→∞

f (xj) ≤ f (x) .

(iii) f is said to beweakly lower semicontinuous if for every sequence {xj}j∈N ⊂ X
such that xj ⇀ x ∈ X,

lim inf
j→∞

f (xj) ≥ f (x) .

(iv) f is said to be weakly upper semicontinuous if for every sequence {xj}j∈N ⊂
X such that xj ⇀ x ∈ X,

lim sup
j→∞

f (xj) ≤ f (x) .

The next result follows immediately from the de�nition above.

Theorem 2.1.4. The function f : X → R is (weakly) continuous if and only if it is (weakly)
lower and upper semicontinuous and

f (x) = lim inf
j→∞

f (xj) = lim sup
j→∞

f (xj) ,

for every {xj}j∈N ⊂ X such that xj → x ∈ X (xj ⇀ x ∈ X).

The next result emphasizes the key role that convexity plays in in�nite dimensional opti-
mization.

Theorem 2.1.5. Assuming f : X → R is convex, then it is strongly lower semicontinuous
if and only it is weakly lower semicontinuous.

Proof. See Clarke [20, p.52]. �

2.1.1.3. Weak compactness. We now o�er a number of statements regarding compactness
under the weak topology. Equivalent statements exist under the weak* topology unless
otherwise noted.

De�nitions.Let V ⊂ X.

(i) V is said to be weakly closed if its complement is open under the weak topology.

6



2.1. EXISTENCE OF OPTIMAL SOLUTIONS

(ii) V is said to be weakly sequentially closed if for any sequence {xj}j∈N ⊂ V
such that xj ⇀ x , we have x ∈ V .

Theorem 2.1.6. Let V be a nonempty subset of X. Consider the following statements :

(i) V is weakly closed.
(ii) V is weakly sequentially closed.
(iii) V is strongly sequentially closed.
(iv) V is strongly closed.

Then (i)⇒ (ii)⇒ (iii)⇔ (iv). Further, if V is convex, then these statements are equivalent.

Proof. See Peypouquet [70, p.12]. �

De�nitions. Let V ⊂ X. We say

(i) V is weakly compact if it is compact under the weak topology.
(ii) V is weakly sequentially precompact (a.k.a. weakly sequentially rela-

tively compact) if for any sequence {xj}j∈N ⊂ V , there exists a subsequence
{xjk}k∈N ⊆ {xj}j∈N such that xjk ⇀ x ∈ V .

(iii) V is weakly sequentially compact if it is weakly sequentially closed and pre-
compact (i.e. every sequence in V contains a subsequence which converges weakly
to a point in V ).

Theorem 2.1.7 (Eberlein-�mulian Theorem). A subset of a normed linear space is weakly
compact if and only if it is weakly sequential compact.

Proof. See Holmes [43, p.147]. �

The next result shows that a bounded, closed set in a re�exive Banach space is sequentially
compact under the weak topology. It follows immediately from the Banach-Alaoglu Theorem
which implies that a weakly closed unit ball in a re�exive Banach is weakly compact (and
hence, weakly sequentially compact)..

Theorem 2.1.8. (i) Every bounded, weakly closed subset of a re�exive Banach space is weakly
sequentially compact.

(ii) Every bounded sequence in a re�exive Banach space has a weakly convergent subsequence.

Proof. See Royden [74, p. 284] �

2.1.1.4. Existence results. The following result, known as James' Theorem, establishes
an analog to the extreme value theorem under the weak topology.

Theorem 2.1.9 (James' Theorem). A nonempty, bounded, weakly closed subset V of a real
Banach space X is weakly compact if and only if every continuous linear real-valued function
f on X attains its extrema on V.

Proof. See Holmes [43, p.157]. �

7



2.1. EXISTENCE OF OPTIMAL SOLUTIONS

The next result shows follows immediately from Theorems 2.1.6 and 2.1.8.

Theorem 2.1.10. Every bounded, closed, convex subset of a re�exive Banach space is weakly
sequentially compact.

Proof. See Clarke [20, p.101]. �

Given these results, we state an alternative form of James' Theorem in the special case of
re�exive Banach spaces.

Theorem 2.1.11. A nonempty, bounded, closed, convex subset V of a re�exive Banach space
X is weakly sequentially compact if and only if every continuous linear real-valued function
f attains its extrema on V.

Given the properties of the following weak topology, we can express a more general theorem
for the existence of optimal solutions which we use extensively in the sequel.

2.1.2. Under the norm topology. Although James' Theorem establishes conditions
under which extrema exist for certain classes of optimization problems, it relies on the weak
topology which is di�cult from a computational perspective. We now state an existence
result under the norm topology which uses convexity to provide the necessary compactness
properties. We begin by considering unconstrained optimization problems of the following
form:

Problem D. (The general unconstrained optimization problem)

min
u∈V

f (u) ,

where f : V → R is lower semicontinuous and V is a nonempty, closed, bounded, and convex
subset of a re�exive Banach space X.

We now present one of the key results of this chapter. The proof presented below is due to
Tonelli and is often referred to as the direct method .

Theorem 2.1.12 (In�nite dimensional form of the extreme value theorem). Assume we are
given Problem D, where X is re�exive and the admissible set V ⊂ X is nonempty, closed,
bounded, and convex. If f : V → R is lower semicontinuous and convex on V , then f
achieves its minimum on V.

Proof. Assume that f : V → R is lower semicontinuous and convex and de�ne M as

(2.1.1) M := inf
u ∈ V

f (u) ≥ −∞.

Under this assumption there is a minimizing sequence {uj}j∈N ⊂ V such that f (uj) → M
as j → ∞. Also by assumption, V ⊂ X is nonempty, closed, bounded, and convex and X
is re�exive. Therefore V is weakly sequentially compact by Theorem 2.1.10. Thus there is
a subsequence {ujk}k∈N ⊆ {uj}j∈N ⊂ V that converges weakly to some u0 ∈ V . Since f is
real-valued,

f
(
u0
)
> −∞.

8



2.2. CHARACTERIZATION OF OPTIMAL SOLUTIONS

Moreover, {ujk}k∈N is also minimizing sequence of f and thus f (ujk)→M as k →∞. Since
f is lower semicontinuity and convex, it weakly lower semicontinuous by Theorem 2.1.5.
Consequently, we have

−∞ < f
(
u0
)
≤ lim inf

k→∞
f (ujk) = M.

Therefore M is �nite and, f attains its minimum on V . �

Remark. Recall that a function g : X → R ∪ {∞}, where X is a normed linear space X is
coercive if

lim
‖x‖→∞

g (x) =∞.

Under the assumption the objective functional f is coercive, we no longer need the require-
ment that the admissible set V is bounded to establish the existence of a minimizer (cf. [20,
p.102]). �

We now turn our attention to equality constrained optimization problems of the form:

Problem E. (The equality constrained optimization problem){
min
u∈V

f (u) ,

subject to e (u) = 0,

where f : V → R is lower semicontinuous, V is a nonempty, closed, bounded, and convex
subset of re�exive Banach space X, and the constraint operator e : V → Z is given.

By Theorem 2.1.12 such problems have solutions provided that there is at least one feasible
solution. This is capture in the statement below.

Theorem 2.1.13. Assume that we are given an unconstrained optimization problem of the
form Problem D with a solution x0. Then for a given constraint operator e : V → Z, the
constrained optimization problem of the form Problem E has a solution provided that the
feasible set is nonempty.

2.2. Characterization of optimal solutions

In this section, we derive several necessary optimality conditions for general optimal control
problems with equality constraints of the form Problem E. In doing so, we rely on in�nite
analogs of the �nite-dimensional derivative which are discussed in Appendix A. Here, we
generally follow Hinze et al. [40].

2.2.1. The co-state equation.

Definition. Suppose we are given a problem of the form Problem E. We say the function
L : X × Y × Z∗ → R de�ned as

(2.2.1) L (u, α, p) = f (u, α)− 〈p, e (u, α)〉Z∗,Z (u ∈ X,α ∈ A, p ∈ Z∗)
is the augmented objective functional .

9



2.2. CHARACTERIZATION OF OPTIMAL SOLUTIONS

Remark. We use the term �augmented objective functional� herein to avoid confusion with
the term �Lagrangian� which is also used in the literature to describe the integrand of the
cost functional in standard calculus of variations theory. �

Above we used the the stationary points of the objective functional to identify possible
minimizers to a constrained optimization problem. Since the objective functional f and the
constraint function e (u, α) in this case are assumed to be Fréchet di�erentiable at every
(u, α) ∈ X ×A , we can compute the partial derivatives of L from its de�nition directly.

Therefore �x (u, α) ∈ X ×A. Then for any v ∈ X, we have

〈DuL (u, α, p) , v〉X∗,X = 〈Duf (u, α) , v〉X∗,X − 〈p,Due (u, α) v〉Z∗,Z

= 〈Duf (u, α)−Due (u, α)∗ p, v〉X∗,X ,

where Due (u, α) is the Fréchet derivative with respect to u and Due (u, α)∗ is its adjoint
operator.

Since this is true for any v ∈ X, we have the operator identity

(2.2.2) DuL (u, α, p) = Duf (u, α)−Due (u, α)∗ p.

Hence, if there exists p ∈ Z∗ for a particular (u, α) ∈ X ×A such that

Due (u, α)∗ p = Duf (u, α)

then
DuL (u, α, p) = 0

and thus (u, α, p) ∈ X ×A× Z∗ is a stationary point of L. This gives rise to the following
de�nition.

Definition. Assume that we are given a problem of the form Problem E. Then for a given
(u, α) ∈ X ×A, we say the following equation for an unknown p ∈ Z∗

(2.2.3) Due (u, α)∗ p = Duf (u, α)

is the co-state equation . If a solution p exists, it is called a co-state .

Remark. Equation (2.2.3) is also commonly referred to as the adjoint equation . Similarly,
a solution p to this equation is often called the adjoint state . We use the term, �co-state�,
herein to avoid confusion with the adjoint operator and, in particular, the adjoint PDE which
is discussed extensively in the sequel. �

Remark. Recall that �nite dimensional case, we can solve for a co-state (known as a La-
grange multiplier in this case) using (2.2.3) if a minimizer is a regular point. There is a
analogous result in in�nite dimensions which shows that we can solve for the co-state if a
minimizer is a regular point in the in�nite dimensional sense (cf. [47, p.28]). However, in
our case, we address the issue of the existence and uniqueness of the co-state using results
from standard PDE theory. Consequently, we do not need to rely on this result and it is
outside the scope of this thesis. �
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2.2. CHARACTERIZATION OF OPTIMAL SOLUTIONS

2.2.2. The variational inequality. We now derive a maximum principal that is an
in�nite dimensional analog to Fermat's stationary point theorem from ordinary calculus.
Ideally, we would like to express this result in terms of the gradient of the objective functional.
However, we cannot de�ne a true derivative in a general Banach space. Instead, we turn to
the �rst variation, as an analog to the standard directional derivative, to derive the result.

Theorem 2.2.1. Suppose u0 ∈ V is a solution to Problem D, where V is a nonempty subset
of a real Banach space X. Further assume that the �rst variation of the objective functional
f at u0 in the direction u − u0, denoted δf (u0), exists, where u ∈ X. Then u0 satis�es the
variational inequality

δf
(
u0
) (
u− u0

)
≥ 0.

Proof. Let u0 ∈ V be a solution to Problem D, where V ⊂ X is nonempty and �x
u ∈ X. By assumption u − u0 is feasible direction since δf (u0) is assumed to exist. Then
by A.4.1, there exists a real, positive sequence {τj}j∈N ↓ 0 such that

u0 + τj
(
u− u0

)
∈ V

for all j. Since u0 is a minimizer, we get

lim
j→∞

f (u0 + τj (u− u0))− f (u0)

τj
≥ 0.

Upon inspection, the left-hand side is the de�nition of the �rst variation (cf. A.4.2) and by
assumption, the limit exists. Thus, we have

δf
(
u0
) (
u− u0

)
≥ 0.

�

In the case that f is convex and Gâteaux di�erentiable, we can state the following necessary
optimality condition which is analogous to Fermat's well-known result from ordinary calculus.

Theorem 2.2.2. Suppose u0 ∈ V is a solution to Problem D, where V is a convex subset
of a real Banach space X. Additionally assume that f is Gâteaux di�erentiable at u0 and
denoted the Gâteaux derivative as Gf (u0). Then

(2.2.4)
〈
Gf
(
u0
)
, u− u0

〉
≥ 0 (for all u ∈ X) .

If u0 is in the interior of V , then Gf (u0) = 0.

Proof. Fix x ∈ V . Since f is Gâteaux di�erentiable at u0 by assumption, the direc-
tional derivative exists at u0 and is equal to the Gâteaux derivative. Since V is convex by
assumption, every direction in V is feasible. Therefore we can apply the Theorem 2.2.1 above
to all u ∈ V and thus we have

Gf
(
u0
) (
u− u0

)
≥ 0 (u ∈ V ) .

Since Gf (u0) ∈ X∗, we can write the above expression as〈
Gf
(
u0
)
, u− u0

〉
≥ 0.
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2.2. CHARACTERIZATION OF OPTIMAL SOLUTIONS

Now assume that V is open. Then we can chose λ > 0 small enough such that u0 + λu, u0−
λu ∈ V for any u ∈ V . Therefore �x u ∈ V and choose such a λ and de�ne v as

v := u0 + λu.

Under this de�nition, v is admissible and we can apply the above inequality to get

0 ≤ Gf
(
u0
) (
y − u0

)
= Gf

(
u0
) ((

u0 + λu
)
− u0

)
= λGf

(
u0
)
u

by the linearity of the Gâteaux derivative. Similarly, we can de�ne w as

w := u0 − λu
and thus we have

0 ≤ Gf
(
u0
) (
u− u0

)
= −λGf

(
u0
)
u.

Combining the two results implies

λGf
(
u0
)
u = 0.

Since λ > 0 and the choice of x was arbitrary, we have

Gf
(
u0
)

= 0.

�

The next result follows from that fact that if a function is Fréchet di�erentiable, then it is
Gâteaux di�erentiable (cf. Theorem A.3.2).

Corollary 2.2.3. Suppose u0 ∈ V is a solution to Problem D, where V is a convex subset
of a real Banach space X. Additionally assume that f is Fréchet di�erentiable at u0 and
denoted the Fréchet derivative as Df (u0). Then

(2.2.5)
〈
Df

(
u0
)
, u− u0

〉
≥ 0 for all x ∈ A.

If u0 is in the interior of V , then Df (u0) = 0.

We now formulate the variational inequality for optimal control problems which can be
expressed in reduced form.

Theorem 2.2.4 (The variational inequality for optimal control problems). Suppose (u0, α0) ∈
X × A is a solution to Problem B such that the admissible set A is convex subset of a real
Banach space Y . Additionally, assume that the constraint operator e : X×A → Z is Fréchet
di�erentiable at (u0, α0) and that Due (u0, α0) is invertible. Also assume that a control-to-
state operator S de�ned as α 7→ uα for α ∈ A exists and that it is Fréchet di�erentiable at
α0. Lastly assume that the co-state p0 ∈ Z∗ exists. Then for any α ∈ Y , we have

(2.2.6)
〈
Dαf

(
u0, α0

)
−Dαe

(
u0, α0

)∗
p0, α− α0

〉
Y ∗,Y

≥ 0,

where Dαe (u0, α0)
∗
is the adjoint operator of Dαe (u0, α0).

Proof. Let (u0, α0) ∈ X × A be a solution to the given optimal control problem and
let S be the control-to-state operator de�ned as α 7→ uα for α ∈ A. Using this operator, we

12



2.2. CHARACTERIZATION OF OPTIMAL SOLUTIONS

can state our optimal control problem in reduced form and we have(
u0, α0

)
=
(
S
(
α0
)
, α0
)
,

where u0 := uα
0
such that α0 is a solution to the problem in reduced form.

Now let f̂ : A → R be the reduced objective functional and let ê : A → Z be reduced
constraint operator, respectively, where

f̂ (α) := f (S (α) , α) and ê (α) := e (S (α) , α) .

Then by the chain rule for Fréchet di�erentiation (cf. Theorem A.3.3), we have

(2.2.7) Df̂
(
α0
)

= Duf
(
S
(
α0
)
, α0
)
DS

(
α0
)

+Dαf
(
S
(
α0
)
, α0
)
,

where DS (α0) ∈ L (Y,X) is the Fréchet derivative of the control-to-state operator at α0

which exists by assumption. Consequently, for α ∈ Y , we have

Df̂
(
α0
)
α =

(
Duf

(
S
(
α0
)
, α0
)
DS

(
α0
)
+Dαf

(
S
(
α0
)
, α0
))
α

= Duf
(
S
(
α0
)
, α0
)
DS

(
α0
)
α+Dαf

(
S
(
α0
)
, α0
)
α

=
〈
Duf

(
S
(
α0
)
, α0
)
, DS

(
α0
)
α
〉
X∗,X

+
〈
Dαf

(
S
(
α0
)
, α0
)
, α
〉
Y ∗,Y

=
〈
DS

(
α0
)∗
Duf

(
S
(
α0
)
, α0
)
, α
〉
Y ∗,Y

+
〈
Dαf

(
S
(
α0
)
, α0
)
, α
〉
Y ∗,Y

=
〈
DS

(
α0
)∗
Duf

(
S
(
α0
)
, α0
)
+Dαf

(
S
(
α0
)
, α0
)
, α
〉
Y ∗,Y

=
(
DS

(
α0
)∗
Duf

(
S
(
α0
)
, α0
)
+Dαf

(
S
(
α0
)
, α0
))
α.

Since this true for all α ∈ Y , we have the following operator identity

(2.2.8) Df̂
(
α0
)

= DS
(
α0
)∗
Duf

(
S
(
α0
)
, α0
)

+Dαf
(
S
(
α0
)
, α0
)
.

Note that the �rst term on the right-hand side is problematic since we must also consider
the sensitivity of the objective functional to perturbations in the state variable as well as
those in the control. Thus we would like to remove this in order to have a problem truly in
reduced form dependent only on the control.

Consequently, we turn to the constraint operator. Recall that in reduced form, the state
equation is

ê (α) = 0
(
for all α ∈ F̂

)
,

where F̂ is the reduced feasible set which is nonempty since α0 is a solution to the reduced
problem by assumption. Di�erentiating both sides of this equation, we get

Dê (α) = 0
(
α ∈ F̂

)
.

Therefore, using the chain rule once again, we have

Due (S (α) , α)DS (α) +Dαe (S (α) , α) = 0
(
α ∈ F̂

)
.
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2.2. CHARACTERIZATION OF OPTIMAL SOLUTIONS

By assumption Due (u0, α0) = Due (S (α0) , α0) is invertible. Thus, we have

(2.2.9) DS
(
α0
)

= −Due
(
S
(
α0
)
, α0
)−1

Dαe
(
S
(
α0
)
, α0
)
.

Hence the adjoint p0 state exists and is given by

p0 =
(
Due

(
S
(
α0
)
, α0
)∗)−1

Duf
(
S
(
α0
)
, α0
)

(2.2.10)

=
(
Due

(
S
(
α0
)
, α0
)−1
)∗
Duf

(
S
(
α0
)
, α0
)
.

Since X is re�exive, (2.2.9) implies

DS
(
α0
)∗

= −
(
Due

(
S
(
α0
)
, α0
)−1

Dαe
(
S
(
α0
)
, α0
))∗

= −Dαe
(
S
(
α0
)
, α0
)∗ (

Due
(
S
(
α0
)
, α0
)∗)−1

Recalling DS (α0)
∗

: X∗ → Y ∗, we have

DS
(
α0
)∗
Duf

(
S
(
α0
)
, α0
)
= −Dαe

(
S
(
α0
)
, α0
)∗ (

Due
(
S
(
α0
)
, α0
)∗)−1

Duf
(
S
(
α0
)
, α0
)

= −Dαe
(
S
(
α0
)
, α0
)∗
p0

by (2.2.10).

Substituting this into (2.2.8), we get

Df̂
(
α0
)

= DS
(
α0
)∗
Duf

(
S
(
α0
)
, α0
)

+Dαf
(
S
(
α0
)
, α0
)

= −Dα

(
S
(
α0
)
, α0
)∗
p0 +Dαf

(
S
(
α0
)
, α0
)
.(2.2.11)

Since α0 is an optimal solution, it also satis�es the variational inequality by Corollary 2.2.3
and thus 〈

Df̂
(
α0
)
, α− α0

〉
Y ∗,Y

≥ 0 (α ∈ Y ) .

Substituting 2.2.11 into above expression, we have〈
Dαf

(
u0, α0

)
−Dαe

(
u0, α0

)∗
p0, α− α∗

〉
Y ∗,Y

≥ 0 (α ∈ Y ) .

�

2.2.3. The optimality system. We now summarize the results derived above as a
single statement describing �rst-order necessary optimality conditions for optimal control
problems that can be expressed in reduced form.

Definition 2.2.5. Assume that we are given a problem of the form Problem B, where f is
the objective functional, e is the constraint operator, and A ⊂ Y is the admissible set. Then
assuming all the derivatives exist, we call the system of equations
(2.2.12)

e (u, α) = 0 (the state equation)

Due (u, α)∗ p−Duf (u, α) = 0 (the co-state equation)

〈Dαf (u, α)−Dαe (u, α)∗ p, α− β〉Y ∗,Y ≥ 0 (β ∈ Y ) (the variational inequality)
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2.2. CHARACTERIZATION OF OPTIMAL SOLUTIONS

the problem's optimality system , where (u, α, p) ∈ X×A×Z∗. Here X is the state space,
Y is the control space, and Z∗ is the dual of the value space Z.

Alternatively, we can state this system in terms of the partial derivatives augmented objective
functional L.

Theorem 2.2.6. Assume that we are given a problem of the form Problem B where f is the
objective functional, e is the constraint operator, and the admissible set A is convex. Then
its optimality system is given by

DpL (u, α, p) = 0 (the state equation)

DuL (u, α, p) = 0 (the adjoint equation)

〈DαL (u, α, p) , α− β〉Y ∗,Y ≥ 0 (β ∈ A) . (the variational inequality)

for any (u, α, p) ∈ X × A × Z∗, where L : X × A × Z∗ → R is the augmented objective
functional.

Proof. Assume that we are given such an optimal control problem let L be the aug-
mented objective functional. Then L is given by

L (u, α, p) = f (u, α)− 〈p, e (u, α)〉Z∗,Z ((u, α, p) ∈ X ×A× Z∗) .

A simple calculation shows that the partial derivative of L with respect to the co-state state
p at any (u, α, p) ∈ X ×A× Z∗ is given by

DpL (u, α, p) = e (u, α) .

Hence we can express the state equation as

DpL (u, α, p) = 0 (for any p ∈ Z∗) .

Additionally, recall that in deriving the co-state equation we showed at (2.2.2) that

DuL (u, α, p) = Due (u, α)∗ p−Duf (u, α) (for any (u, α, p) ∈ X ×A× Z∗) .

Consequently, we can express the co-state equation in terms of L as

DuL (u, α, p) = 0.

Lastly, from same computation, we have

〈DαL (u, α, p) , β〉Y ∗,Y = 〈Dαf (u, α)−Dαe (u, α)∗ p, β〉Y ∗,Y (β ∈ A) .

Thus we can express the variation inequality as

〈DαL (u, α, p) , α− β〉Y ∗,Y ≥ 0 (β ∈ A) .

�

Summarizing the above calculations, we state �rst-order optimality conditions for problems
of the form Problem B that can be expressed in reduced form.
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Theorem 2.2.7. Let (u0, α0) be a solution to a problem of the form Problem B and assume
that there exists a p0 ∈ Z∗ which is a solution to the co-state equation. Then (u0, α0, p0)
satis�es the optimality condition assuming that the Lagrangian in Fréchet di�erentiable at
that point.

2.3. Application to optimal control problems

In the two preceeding sections of this thesis, we showed that if a suitable control-to-state
operator S exists, we can restate a general optimal control problem of the form Problem B
as a standard optimization problem. We then showed solutions to such problems exist by
an extension of the extreme value theorem under the following hypotheses:

Assumption 2.3.1 (Hypotheses for the existence of solutions to a general optimal control
problem).

(i) The state, control, and value spaces (X, Y , and Z, respectively) are real Banach
spaces and X and Z are re�exive.

(ii) The admissible set A ⊂ Y is nonempty, closed, and bounded, convex (or simply
closed and convex if the reduced objective functional is coercive).

(iii) The control-to-state operator S is injective and weakly continuous.
(iv) There exists at least one feasible solution to the constrained problem.
(v) The reduced objective functional is lower semicontinuous and convex.

Subsequently, we established three �rst-order necessary optimal conditions for such problems
under the following hypotheses:

Assumption 2.3.2 (Hypotheses for the existence of an optimality system ).

(i) The control-to-state operator S is Fréchet di�erentiable at α0 in any direction,
where α0 is a solution to the reduced problem.

(ii) The full objective functional f and constraint operator e are Fréchet di�erentiable
at any solution (u0, α0) = (S (α0) , α0).

(iii) The co-state equation has a solution as in the case whereDue (u0, α0) is invertible.

Given these hypotheses, we state the main result of this chapter.

Theorem 2.3.3. Assume we are given an optimal control problem of the form Problem B,
then a solution exists under the assumptions (2.3.1). Further, assuming that such a solution
exists, it satis�es the optimality system provided that the assumptions (2.3.2) are met.
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CHAPTER 3

ELLIPTIC PDE OPTIMAL CONTROL PROBLEMS

For the remainder of this thesis, we consider optimal control problems which are constrained
by uniformly elliptic PDE of the form

(3.0.1)

{
Lu = f in U

u = g on ∂U,

where U is a given open subset of Rn with C1 boundary, the boundary condition g is given,
and u is unknown. The given nonhomogeneous term f is assumed to be in L2 (U) and the
given di�erential operator L is linear, second order, and elliptic written in divergence form
as

(3.0.2) Lu (x) = −
n∑

i,j=1

(
aij (x)uxi

)
xj

+
n∑
i=1

bi (x)uxi + c (x)u

for given coe�cients aij, bi, c (i, j = 1, . . . , n). We assume there exists a real constant θ > 0
such that

n∑
i,j=1

aijξiξj ≥ θ |ξ|2 > 0 (a.e. x ∈ U)

for all nonzero ξ ∈ Rn. We note that without loss of generality, we need only consider
problems in which the boundary condition g is identically zero in the trace sense (cf. [27,
pp. 271-275]).

Definition. Given such a constraint, we consider the following two types of problems
de�ned below:

(i) Linear problems , in which the control on appears solely in the nonhomoge-
neous term of the constraint PDE and as such, a linear (or a�ne) with respect
to the controls. They are typically of the form

(3.0.3) Lu = f (α) ,

where the given nonhomogeneous term f is an a�ne mapping from the admissible
set A to the value space Z of the form

(3.0.4) f (α) = Aα + g (α ∈ A) ,

such that A : Y → Z is a given linear operator and g is given.

(ii) Coe�cient control problems , in which the controls appear as one of more
coe�cients in the di�erential operator and are generally nonlinear with respect
to the controls.
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3.1. THE EXISTENCE OF FEASIBLE SOLUTIONS

We begin our study of elliptic PDE optimal control problems with a brief review of linear
problems primarily to introduce the necessary PDE theory to establish the existence of fea-
sible solutions. However, such problems have the additional bene�t that much of the general
optimal control theory developed in the previous chapter can be used to both establish the
existence of optimal solutions as well as characterize them using standard Lagrange methods.
In presenting optimal control results, I generally follow J.L. Lions [60], F. Tröltzsch [84],
and M.Hinze, et al. [40] while I generally follow Evans [27, ch.6] with regard to the PDE
theory.

Assumption. For the remainder of this chapter, we de�ne the admissible set A ⊂ L2 (U)
as

(3.0.5) A :=
{
α ∈ L2 (U) | α ≤ α (x) ≤ α for x ∈ U

}
,

where 0 < α < α < ∞. We note that under this de�nition, A is clearly nonempty, closed,
bounded, and convex.

Further, we assume that the objective functional I : H1
0 (U)×A → R is of the form

(3.0.6) I [u, α] =
1

2
‖u− û‖2

L2(U) +
µ

2
‖α‖2

L2(U) ,

where û is the given target function and µ ≥ 0 is the given penalty associated with control
α ∈ A. �

Remark. Optimization and optimal control problems which have an objective functional of
the form (3.0.6) are often referred to as norm minimizing problems . In such problems,
the objective function is bounded from below and given our particular objective function as
de�ned at (3.0.6), it bounded by zero. �

Notation. For the remainder of the the thesis, we drop the subscript from the L2-norm
and inner product and simply use

‖ · ‖ := ‖ · ‖L2(U) and ( · , · ) := ( · , · )L2(U)

unless otherwise noted. �

3.1. The existence of feasible solutions

It is well-know that classical solutions to uniformly elliptic PDE of the form (3.0.1) may not
exist generally. Therefore, in the section, we introduce the concept of weak solutions to such
problems, as well the Lax-Milgram Theorem, which establishes the conditions under which
such solutions exist and are unique.

3.1.1. The Sobolev spaces H1
0 (U) and H−1 (U).

Definition. Assume that u, v ∈ L1
loc (U) and α is a multi-index. We say that v is the

αth-weak derivative of u, denoted as

Dαu = v,

if ∫
U

uDαφdx = (−1)|α|
∫
U

vφdx
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3.1. THE EXISTENCE OF FEASIBLE SOLUTIONS

for all test functions φ ∈ C∞c (U), where C∞c (U) is the space of smooth functions with
compact support.

Definition. We de�ne the Sobolev space

W k,p (U)

as the collection of locally summable functions u : U → R such that for each multi-index α
with |α| ≤ k, Dαu ∈ Lp (U). In particular, if p = 2, we write

Hk (U) = W k,2 (U) (k = 0, 1, . . .) .

Further, we write
W k,p

0 (U)

to denote the closure of C∞c (U) in W k,p (U) and, in particular,

Hk
0 (U) = W k,2

0 (U) (k = 0, 1, . . .) ,

Remark. Under this de�nition, we can interpret W k,p
0 (U) as the collection of functions

u ∈ W k,p (U) such that

Dαu = 0 on ∂U in the trace sense for all |α| ≤ k − 1.

�

It is well-known that equipped with the following norm,

‖ · ‖Wk,p(U) =


(∑

|α|≤k
∫
U
|Dαu|p dx

)1/p

(1 ≤ p <∞)∑
|α|≤k ess supU |Dαu| (p =∞) ,

W k,p (U) is a Banach space for 1 ≤ p ≤ ∞. It is also well-known that equipped with the
following inner product,

(u, v)Hk(U) =
∑
|α|≤k

∫
U

Du ·Dvdx
(
u, v ∈ Hk (U)

)
,

Hk (U) is a separable Hilbert space for any k. In particular, this is true for H1
0 (U), where

the norm and inner product are given by

‖ · ‖H1
0 (U) =

(
‖u‖2

L2(U) + ‖Du‖2
L2(U)

)1/2

and
(u, v)H1

0 (U) = (u, v)L2(U) + (Du,Dv)L2(U) ,

respectively. And as a Hilbert space, H1
0 (U) is re�exive and also isomorphic to its dual by

the Riesz representation theorem. However, for the purposes of this thesis, we identify its
dual with the space H−1 (U) endowed with the norm

‖f‖H−1(U) := sup
{
〈f, u〉H−1(U),H1

0 (U) | u ∈ H
1
0 (U) , ‖u‖H1

0 (U) ≤ 1
}

where f is a bounded linear functional on H1
0 (U).

H−1 (U) can be categorized as follows:
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3.1. THE EXISTENCE OF FEASIBLE SOLUTIONS

Theorem 3.1.1. Assume f ∈ H−1 (U). Then there exists functions f 0, f 1, . . . , fn in L2 (U)
such that

(3.1.1) 〈f, v〉 =

∫
U

f 0v +
n∑
j=1

f jvxjdx
(
v ∈ H1

0 (U)
)
.

and

‖f‖ = inf


∫
U

n∑
j=1

∣∣f j∣∣2 | f satis�es (3.1.1) for f0, . . . , fn ∈ L2 (U)

 .

We note that by de�nition, we have H1
0 (U) ⊂ L2 (U). In fact, by the Rellich-Kondrachov

Theorem the embedding is compact and thus H1
0 (U) is a dense subspace of L2 (U). Further,

following Evans (cf. [27, pp.299-300]), it can be shown that L2 (U) ⊂ H−1 (U) and that the
embedding is continuous. Consequently, for any u ∈ H1

0 (U) we have

(3.1.2) 〈v, u〉H−1(U),H1
0 (U) = (v, u)L2(U)

(
v ∈ L2 (U) ⊂ H−1 (U)

)
.

by the Riesz Representation Theorem. These embeddings will be used extensively in the
sequel.

Notation. For the remainder of this thesis, we drop subscript from the H1
0 (U) dual pairing

and simply denote it as
〈 · , · 〉 = 〈 · , · 〉H−1(U),H1

0 (U)

unless noted otherwise. �

3.1.2. Weak solutions to elliptic PDE.

Definition. Given a uniformly elliptic PDE of the form (3.0.2), de�ne the bilinear form
B : H1

0 (U)×H1
0 (U)→ R as

(3.1.3) B [u, v] =

∫
U

n∑
i,j=1

aijuxivxj +
n∑
i=1

biuxiv + cuvdx
(
for all u, v ∈ H1

0 (U)
)
,

where aij, bi, c (i, j = 1, . . . , n) are the coe�cients of L dependent on x ∈ U . We say u ∈
H1

0 (U) is a weak solution to the PDE if it satis�es

(3.1.4) B [u, v] = (f, v)

for all v ∈ H1
0 (U).

We note that we can de�ne the weak of PDE of the form (3.0.2) in which the nonhomogeneous
term f ∈ H−1 (U) as

(3.1.5) B [u, v] = 〈f, v〉 .

Theorem 3.1.2 (Lax-Milgram Theorem). Assume that H is a Hilbert space and that B :
H ×H → R is a bilinear mapping for which there exists constants a, b > 0 such that

|B [u, v]| ≤ a ‖u‖ ‖v‖ (u, v ∈ H) (boundedness)

and
b ‖u‖2 ≤ B [u, u] (u ∈ H) (coercivity) .
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3.2. THE EXISTENCE OF OPTIMAL SOLUTIONS

Lastly, let f : H → R be a bounded linear functional on H. Then there exists a unique
element u ∈ H such that

B [u, v] = 〈f, v〉 (for all v ∈ H) .

Proof. See Evans [27, p. 316]. �

Theorem 3.1.3. Assume that we are given a bilinear form B of the form (3.1.3) in which
the coe�cients are in L∞ (U). Then there are constants α, β > 0 and γ ≥ 0 such that

|B [u, v]| ≤ α ‖u‖H1
0 (U) ‖v‖H1

0 (U)

and

(3.1.6) β ‖u‖2
H1

0 (U) ≤ B [u, u] + γ ‖u‖2
L2(U) .

Proof. See Evans [27, p. 318]. �

Consequently, if γ = 0, then we then we apply the Lax-Milgram Theorem to show that a
solution to a given uniformly elliptic PDE exists and is unique such as in the cases in which
(i) each of the bi are identically zero and c ≥ 0 or (ii) c is su�cient large (cf. [27, p.320]).

3.2. The existence of optimal solutions

To ensure the existence of feasible solutions in the sequel, we assume the state space is
H1

0 (U), the control space Y is L2 (U), and the value space Z is H−1 (U) ,the dual of H1
0 (U).

Additionally, we assume that the coe�cients of the di�erential operator L admit weak solu-
tions. Given this, we are concerned in this chapter with linear problems of the form:

Problem F. (The elliptic linear problem){ min
u∈H1

0 (U),α∈A
I [u, α] ,

subject to Lu = f (α) .

Now recall that in Section 2.1 above, we established the existence of solutions to general
optimal control problems under assumptions set forth in Assumptions 2.3.1. Speci�cally,

(i) The state, control, and value spaces are real Banach spaces and the state and
control spaces are re�exive.

(ii) The admissible set is a nonempty, closed, bounded, convex subset of a re�exive
Banach space (or in the case that the objective functional is coercive, merely
nonempty, closed, and convex).

(iii) The control-to-state operator is injective and weakly continuous (this ensures
that (a) the problem can be expressed in reduced form and (b) a solution to
the reduced problem can be appropriately extended to the full optimal control
problem).

(iv) There is least one feasible solution to the reduced problem.
(v) The reduced objective functional is lower semicontinuous and convex.
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3.3. CHARACTERIZATION OF OPTIMAL SOLUTIONS

Under the problem statement above, hypotheses (i) and (ii) are satis�ed. Under the assump-
tion that the coe�cients of L admit a unique solution, hypothesis (iv) is met. This, in turn,
ensures that the mapping α→ uα is injective for any admissible control α ∈ A and thus it is
a candidate for a control-to-state operator. Hypothesis (v) follows from the fact our problem
is norm minimizing and the norm is both continuous and convex. Additionally, S is a�ne
and bounded by (3.1.2) and thus it is continuous. Consequently, it is weakly continuous and
therefore hypothesis (iii) is satis�ed. This is captured in the following result.

Theorem 3.2.1. Assume we are given a optimal control problem of the form Problem F in
which the PDE constraint is of the form 3.0.3. Then it satis�es Assumptions 2.3.1 and thus
there exists at least one optimal solution.

3.3. Characterization of optimal solutions

For this section, assume that we are given a linear problem of the form Problem F.

3.3.1. The state equation. In the Introduction to this thesis, we de�ned the state
equation for a general optimal control problem as the operator identity

e (u, α) = 0.

for a state-control pair (u, α) ∈ X ×A, where X is the state space, the admissible set A is
a subset of the control space Y , and e : X ×A → Z is the given constraint operator taking
values in the value space Z. Consequently, the strong form of the state equation in the case
of a linear problem under consideration in this chapter is given by

Lu− f (α) = 0
(
(u, α) ∈ H1

0 (U)×A
)
,

where L is a uniformly elliptic di�erential operator and the nonhomogeneous term f (α) ∈
L2 (U) for all α ∈ A.

As for the weak form of the state equation, by the embedding H1
0 (U) ↪→ L2 (U) ↪→ H−1 (U)

we have

0 = 〈e (u, α) , v〉
= 〈Lu− f (α) , v〉
= 〈Lu, v〉 − 〈f (α) , v〉
= 〈Lu, v〉 −B [u, v] ,

for any v ∈ H1
0 (U) by (3.1.5), where B is the bilinear form associated with L de�ned at

(3.1.3). This implies
B [u, v] = 〈Lu, v〉 ,

and thus the weak form of the state equation is given by

B [u, v]− (f (α) , v) = 0
(
for all v ∈ H1

0 (U)
)
.
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3.3. CHARACTERIZATION OF OPTIMAL SOLUTIONS

3.3.2. The co-state equation. At (2.2.3), we de�ned the abstract form of the co-state
equation as

Due (u, α)∗ p = DuI (u, α) ,

where I is the objective functional, e is constraint operator, Due (u, α)∗ is the adjoint operator
of Due (u, α), the partial Fréchet derivative of e with respect to the state and a solution p is
the co-state assuming it exists. We now state a concrete form of this equation for Problem
F.

Lemma 3.3.1 (Gradient of the objective functional). Let I : H1
0 (U)×A → R be a functional

de�ned as,

I [u, α] =
1

2
‖u− û‖2

L2(U) +
µ

2
‖α‖2

L2(U) ,

where û and µ are given. Then I is Fréchet di�erentiable at any (u, α) ∈ H1
0 (U) × A and

its Fréchet derivative is given by

DI [u, α] (v, β) = DuI [u, α] v +DαI [u, α] β,

for any (v, β) ∈ H1
0 (U)×A, where

(3.3.1) DuI [u, α] = u− û and DαI [u, α] = µα.

Proof. We begin by explicitly computing the partial derivative of I [u, α] with respect
to the state u. Therefore �x (u, α) ∈ H1

0 (U) × A and v ∈ H1
0 (U) and de�ne the function

i : R→ R as

i (τ ;u, v) := I [u+ τv, α] =
1

2

∫
U

|u+ τv − û|2 dx+
µ

2

∫
U

|α|2 dx.

for any τ ∈ R. Taking the derivative of i with respect to τ , we have

i′ (0;u, v) =
1

2

d

dτ

∫
U

|u+ τv − û|2 dx |τ=0

= (u− û, v) .

On the other hand, by (A.1.2) we have

i′ (0;u, v) = (GuI [u, α] , v)

for any v ∈ H1
0 (U), where GuI [u, α] is the Gâteaux derivative with respect to u. Combining

these two results we have

(GuI [u, α] , v) = (u− û, v)
(
for all v ∈ H1

0 (U)
)

and thus we have the operator identity

(3.3.2) GuI [u, α] = u− û
for a given (u, α) ∈ H1

0 (U)×A.

I now claim that I is Fréchet di�erentiable. Therefore consider the following expression

I [u+ v, α]− I [u, α] = (GuI [u, α] , v) + r (u; v)
(
v ∈ H1

0 (U)
)
,

23



3.3. CHARACTERIZATION OF OPTIMAL SOLUTIONS

where r : H1
0 (U)→ R and �x v ∈ H1

0 (U). After rearranging terms, we have

r (u; v) = I [u+ v, α]− I [u, α]− (GuI [u, α] , v)

=
1

2

∫
U

|(u+ v)− û|2 − |u− û|2 − 2 (u− û) vdx

=
1

2

∫
U

|v|2 dx =
1

2
‖v‖2 .(3.3.3)

Dividing both sides by ‖v‖, we see that
|r (u; v)|
‖v‖

→ 0 as ‖v‖ → 0

and thus I is Fréchet di�erentiable with respect to u at any (u, α) ∈ H1
0 (U)×A.

We can similarly compute DαI. For this, �x (u, α) ∈ H1
0 (U) × A and β ∈ A and de�ne

i : R→ R as

i (τ ;α, β) = I [u, α + τβ]

=
1

2

∫
U

|u− û|2 dx+
µ

2

∫
U

|α + τβ|2 dx.

Again taking the derivative of i with respect to τ and evaluating it at τ = 0, we have

i′ (0;α, β) =
µ

2

d

dτ

∫
U

|α + τβ|2 dx |τ=0

= (µα, β) .

Using (A.1.2) once more, we have

(GαI [u, α] , β) = i′ (0;α, β) = (µα, β)

and thus

(3.3.4) GαI [u, α] = µα

for any (u, α) ∈ H1
0 (U)×A.

The fact I is actually Fréchet di�erentiable follows for a calculation nearly identical to the
one presented above and thus

(3.3.5) DαI [u, α] = µα

for any (u, α) ∈ H1
0 (U)×A. �

We now compute the strong and weak forms of the partial derivative of the state operator
with respect to the state.

Lemma 3.3.2. Assume that we are given a function e : H1
0 (U)×A → H−1 (U) de�ned as

e (u, α) = Lu+ f (α) ,

where L is uniformly elliptic operator of the form (3.0.2). Then for (u, α) ∈ H1
0 (U)×A, the

strong form its partial derivative with respect to the state u at (u, α) ∈ H1
0 (U)×A is given
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by operator identity
Due (u, α) = L,

and its weak form by

Due (u, α) = B [u, v]
(
for any v ∈ H1

0 (U)
)
,

where B is weak bilinear form associated with L.

Additionally, its partial derivative with respect to control α

(3.3.6) Dαe (u, α) = −A.

Proof. Assume the set up above. We begin with computing Due (u, α). For this, �x
(u, α) ∈ H1

0 (U) × A and v ∈ H1
0 (U) such that u and v are su�ciently smooth and de�ne

the function i : R→ R as

i (τ ;u, α) = e (u+ τv, α) = L (u+ τv) + f (α) (τ ∈ R) .

This implies

i′ (τ ;u, α) =
d

dτ
L (u+ τv) = Lv (τ ∈ R) .

On the other hand, by (A.1.2) we have

Gue (u, α) v = i′ (0;u, v) = Lv,

and thus the strong and weak forms of the co-state equation are given by

Gue (u, α) = L and Gue (u, α) v = B [u, v] , respectively.

We now show that the weak form e (u, α) is Fréchet di�erentiable with respect to u. Since
the strong form is obvious, we only need to show that the weak form Fréchet di�erentiable.
Again �x (u, α) ∈ H1

0 (U) × A and v ∈ H1
0 (U). Following the de�nition Fréchet derivative

at A.3.1, for any w ∈ H1
0 (U), the residual is given by

〈r (v;u) , w〉 = 〈e (u+ v, α) , w〉 − 〈e (u, α) , w〉 − (Gue (u, α) v, w)

= B [u+ v, w]−B [u,w]−B [v, w] = 0.

Hence e (u, α) is Fréchet di�erentiable with respect to u at any (u, α) ∈ H1
0 (U)×A.

Following the same steps as above, we can similarly compute Dαe (u, α). Fix (u, α) ∈
H1

0 (U)×A and β ∈ A and de�ne the function i : R→ R this time as

i (τ ;u, α) = e (u, α) = L (u)− f (α + τβ) .

This implies

i′ (τ ;u, 0) = − d

dτ
f (α + τβ) |τ=0= −Aβ ⇒ Gαe (u, α) β = −Aβ,

and thus we have
Gαe (u, α) = −A.

A simple calculation nearly identical to the immediately shows that residual term is also
zero and thus e (u, α) is Fréchet di�erentiable with respect to the control α at any (u, α) ∈
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H1
0 (U)×A and is given by

Dαe (u, α) = −A.
�

The next results follows immediately from the lemmas above.

Theorem 3.3.3. Assume that we are given an linear problem of the form Problem F, where
L is the elliptic operator. Then the strong form co-state equation is given by

L∗p = u− û,
û is the given target function and L∗ is the adjoint of L and its weak form is given by

B [p, v] = (u− û, v)
(
v ∈ H1

0 (U)
)
,

where B is the bilinear form associated with L.

3.3.3. The variational inequality. At 2.2.6, we we de�ned the variational inequality
for a general optimal control problem in which I is the objective functional, e is the constraint
operator, and A is the admissible set, as

(3.3.7)
〈
DαI

[
u0, α0

]
−Dαe

(
u0, α0

)∗
p0, β − α0

〉
Y ∗,Y

≥ 0 (α ∈ A ⊂ Y ) ,

where (u0, α0) ∈ X×A is an optimal state-control pair and p0 ∈ Z∗ is the associated co-state
assuming it exists. Here we assume state space X, the control space , and the value space Z
are real, re�exive Banach spaces with dual spaces X∗, Y ∗ and Z∗.We now provide a concrete
statement of this inequality for linear problems such as Problem F.

Theorem 3.3.4. Assume that (u0, α0) ∈ H1
0 (U)×A is a solution to a given linear problem

of the form Problem F.Then the variational inequality associated with the problem is given
by (

µα0 − A∗p0, α− α0
)
≥ 0

(
α0 ∈ A

)
,

where µ is the control penalty constant and p0 ∈ H1
0 (U) is the co-state assuming it exists.

Proof. Assume the set up above. By (3.3.1) and (3.3.6), we have

DαI
[
u0, α0

]
= µα0

and
Dαe

(
u0, α0

)∗
= −A∗,

where A∗ : H1
0 (U) → L2 (U) is the dual of the linear operator A : L2 (U) → H−1 (U).

Substituting these into the above expression of the variational inequality, we have(
µα0 − A∗p0, α− α0

)
≥ 0

(
α0 ∈ A

)
.

�

3.3.4. The optimality system. Given the results above, we state the strong and weak
forms of the optimality system for linear problems of the form Problem F. Speci�cally, for
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(u, α) ∈ H1
0 (U)×A, the strong form is given by

(3.3.8)


Lu− f (α) = 0

L∗p− (u− û) = 0

(µα− A∗p, β − α) ≥ 0 (β ∈ A) ,

where p ∈ H1
0 (U). Its weak form is

(3.3.9)


B [u, v]− (f (α) , v) = 0 for all v ∈ H1

0 (U)

B [p, v]− (u− û, v) = 0 for all v ∈ H1
0 (U)

(µα− A∗p, β − α) ≥ 0 β ∈ A,

where p ∈ H1
0 (U).
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CHAPTER 4

COEFFICIENT CONTROL PROBLEMS

We now turn our attention to a special class of optimal control problems constrained by
elliptic PDE in which the controls appear in some of the coe�cients of the second-order
term of the di�erential operator. Again, our goal is to identify conditions that establish
the existence of optimal solutions to such problems, as well as characterize them using a
maximum principle. Unlike linear problems studied in the previous chapter, however, we
cannot simply apply the extension of standard Lagrange methods to do this, as we show
through two counterexamples below.

In this chapter, we again assume that U is an bounded, open subset of Rn with C1 boundary
and that the state, control, and value spaces are H1

0 (U) , L2 (U), and H−1 (U), respectively.
Additionally, we assume that the di�erential operator has the form:

(4.0.1) Lαu := −div (αDu) = −
n∑

i,j=1

(
αij (x)uxi

)
xj

(
u ∈ H1

0 (U)
)
,

where the superscript α indicates that one or more of the operator's coe�cients are con-
trols. Additionally, we ignore the control penalty and simply set the parameter µ to zero.
Consequently, we are interested in optimal control problems of the form:

Problem G. (The elliptic coe�cient control problem)

min
u∈H1

0 (U),α∈A

1

2
‖u− û‖2 ,

subject to −
n∑

i,j=1

(
αij (x)uxi

)
xj

= f in U

u = 0 on ∂U,

where û ∈ L2 (U) is the given target function and f ∈ L2 (U) is given. To ensure that feasible
solutions exist, we assume that

αij ∈ L∞ (U) (for all i, j = 1, . . . , n)

and that there exists θ > 0 such that
n∑
i,j

αijξiξj ≥ θ |ξ| > 0 (a.e. x ∈ U)

for all ξ ∈ Rn. However, we leave the choice of the admissible set A until later in the chapter.
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4.1. Counterexamples to the existence of solutions to nonlinear optimal control

problems

We begin this chapter by presenting two counterexamples which show optimal solutions to
general non-linear PDE-constrained optimal control problems may not exist.

4.1.1. Problems with a nonlinear nonhomogeneous term. While we are gener-
ally interested in coe�cient control problems for the remainder of this thesis, the following
counterexample found in Jahn [48, p.24-26] shows that even in the case of a linear problem
which were discussed in the previous chapter, optimal solutions may not exist in the case in
which nonhomogeneous term is nonlinear with respect to the controls.

Example 1. Let U = [0, 1] ⊂ R and consider the following ODE

(4.1.1)

{
ux (x) + α (x)u (x) = 0 in U a.e.

u (0) = 1, u (1) = 0,

where α ∈ L2 (U) is the control. A simple calculation con�rms that the solution this ODE
is given by

u (x) = C −
∫ x

0

|α (y)|2 dy (x ∈ U) .

Applying the given the boundary conditions, we also have

C = 1

and

1−
∫ 1

0

α (y)2 dy = 0,

which implies
‖α‖2 = 1.

Hence α ∈ L2 (U) is feasible if it lies in the admissible set

A :=
{
α ∈ L2 (U) | ‖α‖2 = 1

}
,

which we note is closed and bounded.

Given this, we consider optimal control problems of the form
min

u∈C1(U),α∈A
I [α] ,

subject to ux (x) + α (x)2 = 0 in U

u (0) = 1, u (1) = 0,

where the objective functional I : A → R is de�ned as

(4.1.2) I [α] =

∫
U

x2α (x)2 dx (α ∈ A) .

Clearly,
inf
α∈A

I [α] ≥ 0

29



4.1. COUNTEREXAMPLES

and we now show that in fact
inf
α∈A

I [α] = 0.

To see this, de�ne

αj (x) =


j for x ∈

[
0, 1

j2

)
0 for x ∈

[
1
j2
, 1
]

for all j. Then for each j, we have

‖αj‖2 =

∫ 1

0

|α (y)|2 dy =

∫ 1/j2

0

j2dt = 1

and thus αj ∈ A for all j. Moreover, by (4.1.2) we have

I [αj] =

∫ 1

0

x2αj (x)2 dx =

∫ 1/j2

0

x2j2dx =
1

3j4

for each j and hence we have

inf
α∈A

I [α] = 0.

Consequently, our optimal control has solution if there exists α ∈ A such that I [α] = 0.
Therefore, assume such a control α ∈ A exists. Then by (4.1.2), we have∫ 1

0

x2α (x)2 dx = 0.

However, the integrand is non-negative and thus αmust be identically zero almost everywhere
on U . But this is implies that α0 /∈ A which is a contradiction. Hence no optimal solution
exists. �

4.1.2. Controls that appear as coe�cients of the di�erential operator. In this
counterexample, �rst constructed by Murat (cf. [82, p.49]), we consider a one-dimensional
coe�cient control problem to show that solutions to such problems do not exist generally.

Example 2. Let U = (0, 1) and consider the following ODE

(4.1.3)

{
− (α (x)uαx (x))x + α (x)uα (x) = 0 in U

uα (0) = 1, uα (1) = 2,

where the admissible set A de�ned as

A =

{
α ∈ L∞ (U) | a :=

√
2− 1√

2
≤ α (x) ≤

√
2 + 1√

2
=: b a.e. x ∈ U

}
.

Further, de�ne the objective functional I : A → R as

(4.1.4) I [α] =

∫
U

∣∣uα − (1 + x2
)∣∣2 dx.
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As in the counterexample above, we wish to show that

inf
α∈A

I [α] = 0

and yet, there is no α0 ∈ A such that

I
[
α0
]

= 0.

Therefore consider the following sequence {αj}j∈N ⊂ A, de�ned for each j by

αj (x) =


1−

(
1

2
− x2

6

)1/2

for
m

j
< x ≤ 2m+ 1

2j

1 +

(
1

2
− x2

6

)1/2

for
2m+ 1

2j
< x ≤ m+ 1

j

for m = 0, 1, . . . , j − 1. Clearly, αj (x) ∈ A for all j, since
√

2− 1√
2
≤ αj (x) ≤

√
2 + 1√

2
for all x ∈ U.

Recall that sequence {fj}j∈N ⊂ L∞ (U) is said to converge weakly* in L∞ (U) if there exists
f ⊂ L∞ (U) such that

lim
j→∞

∫
U

fjφdx =

∫
U

fφdx,

where for all test functions φ ∈ L1 (U).

Claim. Given the sequence {αj}j∈N de�ned above, we have

(4.1.5) αj
∗
⇀ α0 = 1 and

1

αj

∗
⇀

1

ω
in L∞ (U) , where ω =

1

2
+
x2

6
.

Proof. De�ne the function f as

(4.1.6) f (x) =

(
1

2
− x2

6

)1/2

(x ∈ (0, 1)) .

Additionally, de�ne the sequence of functions {ψj}j∈N as

ψj (x) =


−f (x) for

m

j
< x ≤ 2m+ 1

2j

f (x) for
2m+ 1

2j
< x ≤ m+ 1

j

for each j and m = 0, 1, . . . , j − 1, respectively. Then for any j, we have∫ 1

0

αjφdx =

∫ 1

0

φdx+

∫ 1

0

ψjφdx

=

∫ 1

0

φdx+

j−1∑
m=0

(∫ (2m+1)/2j

m/j

ψjφdx+

∫ (m+1)/j

(2m+1)/2j

ψjφdx

)
(4.1.7)
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Now we can approximate each of the integrals above using trapezoidal approximation as∫ (2m+1)/2j

m/j
ψjφdx =

1

2j

(
ψj

(
2m+ 1

2j

)
φ

(
2m+ 1

2j

)
+ ψj

(
m

j

)
φ

(
m

j

))
+ o

(
j−2
)

= − 1

2j

(
f

(
2m+ 1

2j

)
φ

(
2m+ 1

2j

)
+ f

(
m

j

)
φ

(
m

j

))
+ o

(
j−2
)

and ∫ (m+1)/j

(2m+1)/2j
ψjφdx =

1

2j

(
ψj

(
m+ 1

j

)
φ

(
m+ 1

j

)
+ ψj

(
2m+ 1

2j

)
φ

(
2m+ 1

2j

))
+ o

(
j−2
)

=
1

2j

(
f

(
m+ 1

j

)
φ

(
m+ 1

j

)
+ f

(
2m+ 1

2j

)
φ

(
2m+ 1

2j

))
+ o

(
j−2
)
.

Therefore, for each j we have
j−1∑
m=0

(∫ (2m+1)/2j

m/j
ψjφdx+

∫ (m+1)/j

(2m+1)/2j
ψjφdx

)
=

1

2j

j−1∑
m=0

(
f

(
m+ 1

j

)
φ

(
m+ 1

j

)
− f

(
m

j

)
φ

(
m

j

))
+ o

(
j−2
)

=
1

2j

(
j∑

m=1

f

(
m

j

)
φ

(
m

j

)
−

j−1∑
m=0

f

(
m

j

)
φ

(
m

j

))
+ o

(
j−2
)

=
1

2j
(f (1)φ (1)− f (0)φ (0)) + o

(
j−2
)
.

Substituting this into (4.1.7) and taking the limit, we have

lim
j→∞

∫ 1

0

αjφdx =

∫ 1

0

φdx

and thus
αj

∗
⇀ α0 = 1 in L∞ (U) .

Additionally, we have ∫ 1

0

1

αj
φdx =

j−1∑
m=0

(∫ (2m+1)/2j

m/j

1

1− f
φdx

+

∫ (m+1)/j

(2m+1)/2j

1

1 + f
φdx

)
.

Expressing the fractions under a common denominator and using trapezoidal approximation
again, we have

∫ (2m+1)/2j

m/j

1 + f

1− f2
φdx =

1

2j

 1 + f

(
2m+ 1

2j

)
1− f2

(
2m+ 1

2j

)φ(2m+ 1

2j

)
+

1 + f

(
m

j

)
1− f2

(
m

j

)φ(m
j

)
+ o

(
j−2
)
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and

∫ (m+1)/j

(2m+1)/2j

1− f
1− f2

φdx =
1

2j

 1− f
(
2m+ 1

2j

)
1− f2

(
2m+ 1

2j

)φ(2m+ 1

2j

)
+

1− f
(
m

j

)
1 + f2

(
m

j

)φ(m
j

)
+ o

(
j−2
)
.

Consequently, for each j we have

∫ 1

0

1

αj
φdx =

1

2j

 j∑
m=1

1

1− f2

(
m

j

)φ(m
j

)
+

j−1∑
m=0

1

1 + f2

(
m

j

)φ(m
j

)+ o
(
j−2
)

=
1

2j

 1

1− f2 (1)
φ (1) +

1

1− f2 (0)
φ (0) +

j−1∑
m=1

2

1− f2

(
m

j

)φ(m
j

)+ o
(
j−2
)
.

Hence by (4.1.6) and applying trapezoidal approximation again, we have

lim
j→∞

∫ 1

0

1

αj
φdx =

∫ 1

0

(
1

1− f (x)2

)
φdx =

∫ 1

0

 1

1

2
+
x2

6

φdx

and thus the claim is proved. �

Now since αj > 0 for all j, we can apply the Lax-Milgram Theorem to show that there exists
a unique solution to (4.1.3) uj ∈ H1 (U) for each j.

Claim. The sequence {uj}j∈N is bounded in H1 (U) .

Proof. Fix j and consider the ODE (4.1.3) where the coe�cient is αj. After integrating
by parts, we have

(4.1.8)
∫
U

(αju
αj
x ) vx + αju

αjv = 0

for any v ∈ H1
0 (U) . In particular, select v such that

v (x) = uαj (x)− 1− x.

Since v (0) = 0 and v (1) = 0, v ∈ H1
0 (U) . Substituting this v into (4.1.8), we have

0 =

∫
U

(αju
αj
x ) (uαj

x − 1) + αju
αj (uαj − 1− x) dx

=

∫
U

αj
(
(uαj

x )2 + (uαj)2)− αj (uαj
x + uαj (1 + x)) dx.

≥ a

(∫
U

(uαj
x )2 + (uαj)2 dx

)
− b

∫
U

|uαj
x |+ |uαj | |(1 + x)| dx.
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Rearranging terms, we get

a

∫
U

(uαj
x )2 + (uαj)2 dx ≤ b

∫
U

(|uαj
x |+ |uαj | |(1 + x)|) dx

which implies by Cauchy's inequality with ε

ab ≤ εa2 +
1

4ε
b2,

that

a

∫
U

(uαj
x )2 + (uαj)2 dx ≤ b

∫
U

|uαj
x |+ |uαj | |(1 + x)| dx

≤ b

∫
U

(
1

4ε
+ ε (uαj

x )2

)
+

(
ε (uαj)2 +

1

4ε
(1 + x)2

)
dx

≤ bε

∫
U

(uαj
x )2 + (uαj)2 dx+

b

4ε

∫
U

1 + (1 + x)2 dx

= bε

∫
U

(uαj
x )2 + (uαj)2 dx+ C.

for an appropriate constant C. Gathering like terms and picking ε small enough such that
a

2
≥ bε

we have
‖uαj‖H1(U) ≤ C

for all j and thus {uj}j∈N is bounded in H1 (U) . �

Consequently, passing to subsequence if necessary, there exist u0 ∈ H1 (U) such that uj ⇀ u0

in H1 (U) by Theorem 2.1.8. Additionally, by Rellich-Kondrachov Theorem, the embedding
H1 (U) ↪→ L2 (U) is compact. Thus following Evans [27, p.287-289] we have

(4.1.9) uj → u0 in L2 (U) .

Now by (4.1.3), we have

(4.1.10)
(
αju

j
x

)
x

= αju
j (j = 1, 2, . . .)

and thus the sequence
{

(αju
j
x)x
}
j∈N is bounded in L2 (U) since αjuj is bounded in L2 (U).

Hence after passing to subsequence if necessary, there exists v ∈ L2 (U) such that

(4.1.11) αju
j
x → v in L2 (U)

and by (4.1.10)

(4.1.12) vx = α0u
0,

since
αju

j → α0u
0 in L2 (U) .
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Recall that by (4.1.5), we have

(4.1.13)
1

αj

∗
⇀

1

ω
in L∞ (U)

and thus by (4.1.11) we have

ujx =
1

αj

(
αju

j
x

)
⇀

1

ω
v in L2(U).

On the other hand, by (4.1.9) we have

ujx ⇀ u0
x in H

−1(U).

Combining these results we have

u0
x =

1

ω
v ⇒ v = ωu0

x.

Hence by (4.1.12) we have the following ODE{
−
(
ωu0

x

)
x

+ α0u
0 = 0 in U

u0 (0) = 1, u0 (1) = 2,

where α0 and ω are given by (4.1.5) and the boundary conditions follow from (4.1.9). A
simple calculation shows that the unique solution to this ODE is given by

u0 (x) = 1 + x2

and thus by (4.1.4), we have

I [α0] =

∫
U

∣∣u0 −
(
1 + x2

)∣∣2 dx = 0.

Now we show that no such α0 ∈ A exists. Therefore assume there exist α ∈ A such that
I [α] = 0 which implies

uα (x) = (1 + x)2 (x ∈ U) .

Additionally, the state-control pair (α, uα) is feasible, hence we

0 = − (αuαx)x + αuα

= −2 (αx)x + α (1 + x)2 .(4.1.14)

A simple calculations show that the solution to this ODE is

α (x) = Cx−
1/2 exp

(
x2

4

)
(x ∈ U) ,

where C is a constant. However α0 is not bounded from below on U and Hence it is not
admissible which is a contradiction. Therefore no optimal solution exists. �

4.2. The existence of optimal solutions

We now show that it is possible to show existence of optimal solutions coe�cient control
problems under two di�erent assumptions. In the �rst, we consider problems in which
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the coe�cients of the di�erential operator are Lipschitz continuous with Lipschitz constant
bounded by a �nite real constant. In the second, we consider problems in which the admis-
sible set is closed under H-convergence, a property �rst proposed by Murat and Tartar in
connection with homogenization theory.

4.2.1. Existence under the assumption of Lipschitz continuous coe�cients.

Given a coe�cient control problem of the form Problem G, we now assume that the coe�-
cients of the di�erential operator are Lipschitz continuous and whose Lipschitz constant is
bounded by a given �nite constant. We note that this special class of problems is important
given our original motivation of estimating the coe�cients of It“o di�usions which are, in
fact, Lipschitz continuous. Establishing the existence of solutions to such problems relies on
the Arzela-Ascoli Theorem which provides a necessary property of a convergent minimizing
subsequence.

Notation. Given a function f : V → Y , we denote the Lipschitz constant, i.e. the smallest
constant M such that

‖f (x)− f (y)‖Y ≤M ‖x− y‖X (for all x, y ∈ V ) ,

as Lip [f ] and say that f is M -Lipschitz continuous. Additionally, we denote the space of all
real-valued Lipschitz continuous functions on V ⊆ X as C0,1 (V ). Lastly, for each �nite M ,
we de�ne the set C0,1

M (V ) as

C0,1
M (V ) :=

{
f ∈ C0,1 (V ) | Lip [f ] ≤M

}
.

�

For this subsection, assume X and Y are two normed linear spaces and V ⊆ X unless
otherwise noted. Additionally, we assume that the admissible set is given by

A :=

{((
aij
))
∈ C0,1

M (U,Mn) | a |ξ|2 ≤
n∑

i,j=1

aijξiξj ≤ a |ξ|2 for all x ∈ U

}
,

where a and a given real constants such that 0 < a < a <∞.

Theorem 4.2.1 (The Arzela-Ascoli Theorem). Let (X, dX) be a compact metric space. If
{fj}j∈N is a family of real-valued functions on X that are equicontinuous at each x ∈ X and

pointwise bounded on X, then {fj}j∈N is (i) uniformly equicontinuous and uniformly bounded

and (ii) it has a uniformly convergent subsequence.

Proof. See Knapp ([52, p.121]). �

The following theorem follow directly from the de�nitions.

Theorem 4.2.2. (i) Let V ⊆ X be bounded and suppose that {fj}j∈N is a family of Lips-

chitz continuous functions de�ned on V . Then {fj}j∈N is pointwise bounded on V and is
equicontinuous at each x ∈ V .
(ii) Let {fj}j∈N ⊂ C0,1

M (V ) for a given M such that they are uniformly Lipschitz continuous
on Rn. Further, assume they converge uniformly to f : Rn → R. Then f is M-Lipschitz
continuous.
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Given the above results, we can now apply the Arzela-Ascoli Theorem to identify a convergent
subsequence of a family of uniformly Lipschitz continuous functions in C0,1

M (V ) for a given
M .

Theorem 4.2.3. Let {fj}j∈N ⊂ C0,1
M (V ) be a uniformly Lipschitz continuous family of real-

valued functions on an open, bounded set V ⊂ Rn. Then there exists a M-Lipschitz continu-
ous function f : V̄ → R such that a subsequence {fjk}k∈N ⊂ {fj}j∈N such that {fjk}k∈N → f
uniformly.

Given the above theorem, we now are ready to show the existence of optimal solutions
beginning with the next result.

Theorem 4.2.4. Assume that
{((

aijk
))}

k∈N ⊂ A satis�es

aijk → aij0 uniformly for i, j = 1, . . . , n.

For each k, let uk ∈ H1
0 (U) be the weak solution to the PDE

(4.2.1)

−
n∑

i,j=1

(
aijk uxi

)
xj

= f in U

u = 0 on ∂U.

Then
uk → u0 strongly in H1

0 (U),

where u0 ∈ H1
0 (U) that is the weak solution to the PDE

(4.2.2)

−
n∑

i,j=1

(
aij0 uxi

)
xj

= f in U

u = 0 on ∂U.

Proof. Assume the setup above and �x ((aij)) ∈ A. Any Lipschitz continuous function
is uniformly continuous and thus bounded. Consequently, aij ∈ L∞ (U) for i, j = 1, . . . , n
and thus we can apply the Lax-Milgram Theorem to show there exists u ∈ H1

0 (U) such that
u is the unique weak solution to (4.2.2) with coe�cients ((aij)).

Consequently, for any v ∈ H1
0 (U) we have∫

U

n∑
i,j=1

aij0 u
0
xi
vxjdx = (f, v)

and ∫
U

n∑
i,j=1

aijk u
k
xi
vxjdx = (f, v)

for each k. Fixing both v ∈ H1
0 (U) and k ∈ N and subtracting the latter equation above

from the former we get ∫
U

n∑
i,j=1

(
aijk u

k
xi
− aij0 uxi

)
vxjdx = 0.
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This implies

0 =

∫
U

n∑
i,j=1

((
aijk u

k
xi
− aij0 ukxi

)
+
(
aij0 u

k
xi
− aij0 uxi

))
vxjdx

and thus after rearranging terms, we have∫
U

n∑
i,j=1

aij0
(
uk − u

)
xi
vxjdxxj =

∫
U

n∑
i,j=1

(
aij0 − a

ij
k

)
ukxivxjdx.

Setting v = uk − u, we have

(4.2.3)
∫
U

n∑
i,j=1

aij0
(
uk − u

)
xi

(
uk − u

)
xj
dx =

∫
U

n∑
i,j=1

(
aij0 − a

ij
k

)
ukxi
(
uk − u

)
xj
dx.

Now by the uniform ellipticity condition,
n∑

i,j=1

aijk ξiξj ≥ a |ξ|2 > 0 (a.e. x ∈ U)

for all nonzero ξ ∈ Rn. Therefore we have

(4.2.4)
n∑

i,j=1

aij0
(
uk − u0

)
xi

(
uk − u0

)
xj
≥ a

∣∣D (uk − u0
)∣∣2 .

On the other hand, by the Poincaré inequality (cf. Evans [27, p.280]), we have∥∥uk − u0
∥∥2 ≤ C

∫
U

∣∣D (uk − u0
)∣∣2 dx.

for some positive constant C and thus by (4.2.4), we have

(4.2.5)
∥∥uk − u0

∥∥2

H1
0 (U)
≤ C

∫
U

n∑
i,j=1

aij0
(
uk − u0

)
xi

(
uk − u0

)
xj
dx.

for a possibly di�erent constant C. Hence by (4.2.3)∥∥uk − u0
∥∥2

H1
0 (U)
≤ C

∫
U

n∑
i,j=1

(
aij0 − a

ij
k

)
ukxi
(
uk − u0

)
xj
dx.

Therefore, using Cauchy's inequality we have

lim
k→∞

∥∥uk − u0
∥∥2

H1
0 (U)
≤ C lim

k→∞

∫
U

n∑
i,j=1

(
aij0 − a

ij
k

)
ukxi
(
uk − u0

)
xj
dx

≤ C lim
k→∞

max
x∈U

∣∣aij0 − aijk ∣∣ ∥∥uk − u0
∥∥2

H1
0 (U)

and thus
uk → u0 strongly in H1

0 (U) .

�
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We now state the principal existence result of this section.

Theorem 4.2.5. An optimal control problem of the form Problem G admits a solution.

Proof. Recall that such a problem is norm-minimizing and thus, we have

inf
α∈A

I [uα, α] = M ≥ 0

for some positive constant M. Therefore, let
{((

αijk
))}

k∈N ⊂ A be a minimizing sequence.
We begin showing that for each i, j = 1, . . . , n, there exists αij0 such that αijk→α

ij
0 ∈ C

0,1
M (U).

Therefore, �x i and j. By assumption
{
αijk
}
k∈N ⊂ C0,1

M (U) for any k. Hence by Theorem 4.2.3{
αijk
}
k∈N is uniformly Lipschitz continuous and thus moving to a subsequence if necessary,{

αijk
}
k∈N converges uniformly to some αij0 such that Lip

[
αij0
]

= M . Hence αij0 ∈ C
0,1
M (U).

Additionally, since

a |ξ|2 ≤
n∑

i,j=1

αij (x) ξiξj ≤ a |ξ|2 (for all x ∈ U)

for all k, in the limit we have

a |ξ|2 ≤
n∑

i,j=1

αij0 (x) ξiξj ≤ a |ξ|2 (for all x ∈ U)

and thus we see that
((
αij0
))
∈ A. Consequently, we can use the direct method as set forth

in the proof to Theorem 2.1.12 to show that in fact

I
[
u0, α0

]
= M,

where u0 = uα
0 ∈ H1

0 (U) that is the unique weak solution to state equation associated with
a minimizer α0 =

((
αij0
))
.

Since aijk → aij0 uniformly as k → ∞ for i, j = 1, . . . , n, we can apply by Theorem 4.2.4 to
show that there is uk ∈ H1

0 (U) that is the unique weak solution to state equation associated
with

((
αijk
))

for each k. Moreover, uk → u0 in H1
0 (U). Hence u0 is feasible and thus (u0, α0)

is an optimal state-control pair. �

4.2.2. Existence under the assumption of H-convergence. We now show the exis-
tence of optimal solutions to coe�cient control problems of the form Problem G in which the
admissible set is closed under the property, H-convergence. This is based on work by Murat
and Tartar that generalized of earlier results by Spagnolo in connection with homogeniza-
tion, a �eld of PDE theory associated with the study of homogeneous materials comprising
a composite material. From our perspective, this work is important because we can use
H-convergence to show that a minimizing sequence of admissible controls will converge to
an admissible control and critically, in limit the associated state will be a solution to the
proper PDE constraint.
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Definition 4.2.6. For real constants a and b de�ne the set of admissible matrices as

Ma,b :=
{
A ∈Mn | ξTAξ ≥ a |ξ|2 > 0 and(4.2.6)

and ξTA−1ξ ≥ b |ξ|2 > 0 for all nonzero ξ ∈ Rn
}

Lemma 4.2.7. Assume that A ∈Ma,b. Then we have

a |ξ|2 ≤ ξTAξ ≤ 1

b
|ξ|2

for any ξ ∈ Rn. Further,Ma,b is nonempty if and only if ab ≤ 1.

Proof. Assume that A ∈Ma,b. Select ξ ∈ Rn and de�ne η ∈ Rn as

(4.2.7) η := Aξ.

Then by the de�nition ofMa,b, we have

b |η|2 ≤ ηTA−1η =
(
η,A−1η

)
.

Thus by (4.2.7), we get

b |Aξ|2 ≤
∣∣(Aξ,A−1 (Aξ)

)∣∣ ≤ |Aξ| |ξ|(4.2.8)

Thus after rearranging terms, we have

|Aξ| ≤ 1

b
|ξ| .

Multiplying both sides of the above equation by |ξ| and applying the Cauchy-Schwartz
inequality once again, we have

1

b
|ξ|2 ≥ |Aξ| |ξ| ≥ |(Aξ, ξ)| ≥ ξTAξ.

On the other hand, since A ∈Ma,b, we also have

a |ξ|2 ≤ ξTAξ

and thus we have
a |ξ|2 ≤ ξTAξ ≤ 1

b
|ξ|2

which is true for any ξ ∈ Rn for suitable constants a and b. Additionally, the above expression
implies

a |η|2 ≤ 1

b
|η|2 ⇒ ab ≤ 1.

Consequently,Ma,b is nonempty if and only if ab ≤ 1. �

Lemma 4.2.8. Assume that α ∈ L∞ (U,Ma,b). Then there exists u ∈ H1
0 (U) such that u is

the unique solution PDE

(4.2.9)

{
−div (αDu) = f in U

u = 0 on ∂U,
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where f ∈ L2(U) is given.

Proof. By assumption,

α (x) =
((
αij (x)

))
∈Ma,b (a.e. x ∈ U)

and thus for any ξ ∈ Rn

0 < a |ξ|2 ≤ ξTα (x) ξ (a.e. x ∈ U) .

Consequently, (4.2.9) is uniformly elliptic and αij (x) ∈ L∞ (U) for i, j = 1, . . . , n. Then by
the Lax-Milgram Theorem, there exists u ∈ H1

0 (U) which is a unique solution to (4.2.9). �

Given the above result, the following de�nition is meaningful.

Definition. We say that a sequence {αj}j∈N ⊂ L∞ (U,Ma,b) H-converges to α0 ∈
L∞ (U,Ma,b), denoted as

αj
H
⇀ α0,

if and only if for any f ∈ L2(U), the sequence of solutions uj ∈ H1
0 (U) of the PDE{

−div
(
αjDuj

)
= f in U

uj = 0 on ∂U,

exists and satis�es {
uj ⇀ u0 in H1

0 (U)

αjDuj ⇀ α0Du0 in
(
L2 (U)

)n
,

where u0 ∈ H1
0 (U) is the solution to the PDE{

−div
(
α0Du0

)
= f in U

u0 = 0 on ∂U.

The following is a well-known result due to Murat and Tartar [67, Section 9].

Theorem 4.2.9 (Sequential compactness underH-convergence). For every sequence {αj}j∈N ⊂
L∞ (U,Ma,b), there exists a subsequence (which we also denote as {αj}) such that

αj
H
⇀ α0,

where α0 ∈ L∞ (U,Ma,b) .

The next result follows immediately by applying the above theorem to a minimizing sequence
to prove the existence of an solution to our canonical optimal control problem.

Theorem 4.2.10. Assume that we given an optimal control problem of the form Problem G,
where the admissible set is A :=L∞ (U,Ma,b). Then it admits a solution.

Proof. Let A := L∞ (U,Ma,b) be the admissible set and again recall that given our
objective functional as de�ned at (3.0.6), we have

inf
α∈A

I [uα, α] = M ≥ 0,
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for a positive constant M . Therefore, let {αj}j∈N ⊂ A be a minimizing sequence. Then by
Lemma 4.2.8, there exists uj ∈ H1

0 (U) which is the unique solution to the PDE{
−div

(
αjDu

)
= f in U

u = 0 on ∂U,

for each j. Additionally, by Theorem 4.2.9, there exists α0 ∈ A such that, passing to a
subsequence if necessary,

αj
H
⇀ α0

and thus

(4.2.10) uj ⇀ u0 weakly in H1
0 (U),

where u0 ∈ H1
0 (U) is the solution to the PDE{

−div
(
α0Du0

)
= f in U

u0 = 0 on ∂U.

Since H1
0 (U) is compactly embedded in L2 (U) by the Rellich-Kondrachov Theorem, uj → u0

in L2 (U) and thus u0 is a feasible solution. Additionally, we can apply the direct method
once again (cf. Theorem 2.1.12) to show that

I
[
u0, α0

]
= M,

and thus (u0, α0) is an optimal state-control pair. �

4.2.2.1. Behavior of optimal solutions - a one dimensional example. We now explore the
behavior of optimal solutions to a special class one dimensional coe�cient control problems
under the assumption that the control does not hit the boundary of the admissible set over
some open interval. Here, we assume that the constraint is an ODE of the form:

(4.2.11)

{
− (α (x)ux)x = f in U = (0, L)

u (0) = C1, u (L) = C2,

where f ∈ C (0, 1) is a given and C1 and C2 are given real constants. The control α taken
from the admissible set A de�ned as

(4.2.12) A :=
{
α ∈ C1 (0, L) | α ≤ α (x) ≤ α for x ∈ (0, L)

}
,

where α and α are given real constants such that 0 < α ≤ α <∞.

Given such a constraint, we are speci�cally concerned with optimal control problems whose
reduced form is given by:

Problem 3. {
min
a∈Ã

I [α] ,

subject to uα ∈ Ff ,
where the objective functional I : A → R is given by

(4.2.13) I [α] =
1

2
‖uα − û‖2 (α ∈ A) ,
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such that û ∈ L2 (U) is the given target function and Ff is the set of feasible states de�ned
as

Ff :=
{
vα ∈ C2 (0, L) | vα is a solution to (4.2.11) for α ∈ A

}
.

Existence of feasible solutions

Given the set up above, we know from Section 4.2.2 that optimal solutions to the uncon-
strained problem exists. We now show that a feasible solution exists for each control α ∈ A.
We begin with the following lemma from standard ODE theory.

Lemma 4.2.11. Assume that we are given a �rst-order ODE of the form

(4.2.14) vx + fv = g,

such that f, g ∈ C (0, L). Then for any x0 ∈ [0, L] and any real constant K, (4.2.14) has a
solution v ∈ C1 (0, L) given by

(4.2.15) v (x) = exp (−F (x))

(∫ x

x0

exp (F (y)) g (y) dy +K

)
(x0 ≤ x ≤ L) ,

where

F (x) =

∫ x

x0

f (y) dy.

Proof. Assume that we are given such an ODE of the form (4.2.14), where F, g ∈
C (0, L). First note that since f is continuous, by the fundamental theorem of calculus we
can de�ne F : (0, L)→ R as

F (x) =

∫ x

x0

f (y) dy

for any �xed x0 ∈ [0, L]. Noting that

(4.2.16) Fx (x) = f (x) (x ∈ [0, L]) ,

di�erentiating both sides of (4.2.15) gives

vx = −Fxexp (−F )

(∫ x

x0

exp (F ) gdy +K

)
+ exp (−F ) exp (F ) g

= −fv + g

by (4.2.16) and (4.2.15). �

We now use the above lemma to show that (4.2.11) has a unique solution for each α ∈ A.

Theorem 4.2.12. Assume that we are given an ODE of the form (4.2.11).Then it has a
unique solution u ∈ C2 (0, L) given by

(4.2.17) u (x) =

∫ x

0

1

α (y)

(
Kα −

∫ y

0

f (z) dz

)
dy + C1 (x ∈ (0, L)) ,

where

Kα =

(∫ L

0

1

α (y)
dy

)−1(
(C2 − C1) +

∫ L

0

1

α (y)

(∫ y

0

f (z) dz

)
dy

)
.
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Proof. Assume the set up above. Expanding (4.2.11), we have

(4.2.18) f = − (αux)x = −αxux − αuxx,
where α ∈ A. Noting that α > 0 for any α ∈ A and letting v = ux, we can rewrite this
equation as the �rst-order ODE

(4.2.19) −vx −
αx
α
v =

f

α
(α ∈ A) .

By assumption, f is continuous and αx ∈ C (0, L) and thus we can apply Lemma 4.2.11.
Therefore �x α ∈ A and after setting x0 = 0, the solution to (4.2.19) is given by

(4.2.20) v (x) = −exp (−A)

(∫ x

0

exp (A) f̃dy +K

)
(x ∈ (0, L))

for any constant K, where

A (x) =

∫ x

0

αy (y)

α (y)
dy = logα (x)− logα (0) and f̃ (x) =

f (x)

α (x)

for any x ∈ (0, L). Noting that

exp (A (x)) =
α (x)

logα (0)
and exp (−A (x)) =

logα (0)

α (x)

for any x ∈ (0, L) and substituting these identities into (4.2.20), we have

v (x) = −exp (−A (x))

(∫ x

0

exp (A (y)) f̃ (y) dy +Kα

)
= − logα (0)

α (x)

(∫ x

0

(
α (y)

logα (0)

)(
f (y)

α (y)

)
dy +Kα

)
= − 1

α (x)

(∫ x

0

f (y) dy +Kα

)
,

for any x ∈ U, where Kα is any real constant for each choice of α ∈ A.

Recalling v = ux, after integrating both sides of the above equation, we have

(4.2.21) u (x) = −
∫ x

0

1

α (y)

(∫ y

0

f (z) dz +Kα

)
dy +K (x ∈ U) ,

where K is any real constant. We can determine the constants Kα and K using the boundary
conditions,

u (L) = C2 and u (0) = C1.

Then by (4.2.21), we have
K = u (0) = C1

and thus

−
∫ L

0

1

α (y)

(∫ y

0

f (z) dz +Kα

)
dy + C1 = C2.
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Rearranging terms, we have

C2 − C1 = −
∫ L

0

1

α (y)

(∫ y

0

f (z) dz

)
dy −Kα

∫ L

0

1

α (y)
dy.

Rearranging terms once more, we get

Kα =

(∫ L

0

1

α (y)
dy

)−1(
(C1 − C2)−

∫ L

0

1

α (y)

(∫ y

0

f (z) dz

)
dy

)
and thus u de�ned as (4.2.21) is the unique solution to (4.2.11). �

Remark. Given the fact that a unique state exists for each admissible control, there exists
a bijective control-to-state operator S : A → C2 (0, L) de�ned as

S (α) = uα (a ∈ A) .

Hence we can express any optimal control problem with an ODE constraint of the form
4.2.11 in reduced form given by Problem 3 without loss of generality. �

Behavior of the control

Using the concrete solution to ODE constraints above, we now examine the behavior of
a solution to an optimal control problem of the form of Problem 3 under the assumption
that that the control does not hit the boundary of the admissible set over some given open
interval. To facilitate the discussion, we slightly restate the optimal control problem under
consideration. Speci�cally, de�ne F : (0, L)→ R as

F (x) :=

∫ x

0

f (y) dy (x ∈ (0, L)) ,

where f ∈ C (0, L) is the given nonhomogeneous term and de�ne a : (0, L)→ R as

a (x) :=
1

α (x)
(x ∈ (0, L))

for each α ∈ A noting that α > 0 on (0, L). Additionally de�ne the set Ã as

Ã :=

{
a | a =

1

α
for each α ∈ A

}
and de�ne the constants a and a as

a =
1

α
and a =

1

α
,

where α and α are the given real bounds on the admissible set A. Here we note that Ã can
be expressed as

Ã =
{
a ∈ C1 (0, L) | a ≤ a (x) ≤ a for x ∈ (0, L)

}
,

such that 0 < a ≤ a <∞.

Given this set up, we can express the ODE constraint as

(4.2.22)

{
− (a (x)ux)x = f in (0, L)

u (0) = C1, u (L) = C2,
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where a ∈ Ã. Then by Theorem 4.2.12, the solution this ODE for any a ∈ Ã is given by as

(4.2.23) ua (x) =

∫ x

0

a (y) (Ka − F (y)) dy + C1 (x ∈ (0, L)) ,

where

(4.2.24) Ka =

(∫ L

0

a (y) dy

)−1(
(C2 − C1) +

∫ L

0

a (y)F (y) dy

)
.

Additionally we note that for our analysis, we only need consider the behavior of control (and
thus the ODE constraint) over the sub-interval (A,B) ⊂ (0, L). To ensure is continuous, we
set the boundary conditions of the ODE constraint over this sub-interval as

CA := ua (A) and CB := ua (B) ,

where ua is the solution to 4.2.22 for a ∈ Ã. In particular, we note that if (A,B) = (0, L),
then the boundary conditions are simply

CA = C1 = uα (A) and CB = C2.

Therefore without loss of generality, we assume that the boundary conditions in the calcu-
lations below are given by

CA = uα (A) and CB = uα (B)

and we de�ne the real constant C4 as

C4 := CB − CA.

The next result shows that if the control does not hit the boundary of the admissible set
over an open interval, the computed state is equal to the target function pointwise over the
entire interval.

Theorem 4.2.13. Assume we are given a problem of the form of Problem 3 with an ODE
constraint of the form (4.2.22). Further assume that a0 ∈ Ã is a solution such that

(4.2.25) a < a0 (x) < a for x ∈ (A,B) ,

where 0 ≤ A < B ≤ L. Then we have

u0 (x) = û (x) (x ∈ (A,B)) ,

where u0 = ua
0
is the solution to the ODE with the coe�cient a0 and û is the given target

function.

Proof. Assume that a0 ∈ Ã is a solution to Problem 3 under the assumptions above and
u0 ∈ C2 (0, L) is the solution to the ODE constraint given by (4.2.23). Since the admissible
set A is closed, bounded, and convex, so is Ã and by (4.2.25), a0 ∈ int

(
Ã
)
. Hence any

β ∈ L2 (U) is a feasible direction (cf. (A.4.1)) and by (4.2.13), we have

0 =
〈
DI
[
a0
]
, β
〉

=
d

dτ
I
[
a0 + τβ

]
|τ=0

=
1

2

d

dτ

∫ B

A

∥∥∥ua0+τβ − û
∥∥∥2

dx |τ=0
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=

∫ B

A

(
ua

0+τβ − û
)〈

Dau
a0+τβ, β

〉
dx |τ=0,

=

∫ B

A

(
ua

0+τβ − û
)〈

Dau
a0+τβ, β

〉
dx(4.2.26)

using the chain rule for the Fréchet derivative (cf. (A.3.3)).

Computing 〈Dau
0, β〉 directly using (4.2.23), we have〈

Dau
0, β
〉

=
d

dτ
ua

0+τβ |τ=0

=
d

dτ

[∫ x

A

(
a0 + τβ

)
(Ka0+τβ − F ) dy + CA

]
|τ=0 (x ∈ U)

=

(
Ka0

∫ x

A

βdy −
∫ x

A

βFdy

)
+ 〈DKa0 , β〉

∫ x

A

a0dy.(4.2.27)

Substituting this into (4.2.26), we have

0 =

∫ B

A

(
u0 − û

) 〈
Du0, β

〉
dx

=

∫ B

A

(
u0 − û

) [
Ka0

∫ x

A

βdy −
∫ x

A

βFdy + 〈DKa0 , β〉
∫ x

A

a0dy

]
dx.(4.2.28)

Now this is true for any β ∈ L2 (U). Therefore, �x x0 ∈ U and chose positive constants εj
such that

lim
j→∞

εj = 0

and de�ne

βj (x) := µεj
(
x− x0

)
(x ∈ R)

for each j ∈ N, where

µεj (x) := ε−1µ

(
x

εj

)
(x ∈ R) .

Here µ is the standard molli�er, de�ned as

µ (x) :=

{
C exp

(
1

|x|2−1

)
if |x| < 1

0 if |x| ≥ 1,

where the real constant C is chosen such that∫
R
µ (x) dx = 1.

Then following Evans (cf. [27, p.713-714]), we know that for any ε > 0,

(a) µ, µε ∈ C∞ (R).

(b) spt (µε) ⊂ B (0, ε).

(c)
∫
R µε (x) dx = 1.
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Further, given any locally integrable function f : U → R, we know that for any ε > 0, the
function f ε, known as its molli�cation and de�ned as

(4.2.29) f ε (x) :=

∫
U

µε (y − x) f (y) dy =

∫
B(0,ε)

µε (x) f (y − x) dy (x ∈ Uε) ,

where
Uε := {x ∈ U | dist (x, ∂U) < ε} ,

has the following properties:

(a) f ε ∈ C∞ (Uε).

(b) f ε → f a.e. as ε→ 0.

(c) if f ∈ C (U), then f ε → f uniformly on compact subsets of U .

(d) if f ∈ Lploc (U), then f ε → f in Lploc (U) for 1 ≤ p <∞.

Moreover, by (4.2.29) we know

lim
ε→0

µε (x) = δ0 (x) a.e.,

where δ0 is the Dirac measure giving unit mass at 0 de�ned by

f (0) =

∫
U

f (y) dδ0 (y)

for any for any continuous function f : U → R.
Given this, we have

lim
j→∞

βj (x) = lim
ε→0

µε (x− x0) = δ0 (x− x0) = δx0 (x) ,

where δx0 is the Dirac measure giving unit mass at x0.

Then by property (c) above, we can pass the limit which results in the following identities:

(a) lim
j→∞

∫ x
A
βjdy =

{
0, x < x0

1, x0 ≥ x
=: H (x− x0) (i.e., the Heavyside function) .

(b) lim
j→∞

∫ B
A
βjdy = 1.

(c) lim
j→∞

∫ x
A
βjFdy =

{
0, x < x0

F (x0) , x0 ≥ x
= F (x0)H (x− x0) .

(d) lim
j→∞

∫ B
A
βjFdy = F (x0) .

Substituting these into (4.2.28) and passing the limit using property (c) above, we have

0 = lim
j→∞

∫ B

A

(
u0 − û

) [
Ka0

∫ x

A
βjdy −

∫ x

A
βjFdy + 〈DKa0 , βj〉

∫ x

A
a0dy

]
dx

=

∫ B

A

(
u0 − û

) [
(Ka0 − F (x0))H (x− x0) + lim

j→∞
〈DKa0 , βj〉

∫ x

A
a0dy

]
dx

= (Ka0 − F (x0))

∫ B

x0

(
u0 − û

)
dx+ lim

j→∞
〈DKa0 , βj〉

∫ B

A

(
u0 − û

)(∫ x

A
a0dy

)
dx.(4.2.30)
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Now for any βj, βj ∈ L2 (U) and thus is a feasible direction and we have

〈DKa0 , βj〉 =
d

dτ
Ka0+τβj |τ=0

=
d

dτ

[(∫ B

A

(
a0 + τβj

)
dy

)−1(
C4 +

∫ B

A

(
a0 + τβj

)
Fdy

)]
|τ=0

= −
(∫ B

A
a0dy

)−2 ∫ B

A
βjdy

(
C4 +

∫ B

A
a0Fdy

)
+

(∫ B

A
a0dy

)−1 ∫ B

A
βjFdy.

=

(∫ B

A
a0dy

)−2 [∫ B

A
a0dy

∫ B

A
βjFdy −

(
C4

∫ B

A
βjdy +

∫ B

A
βjdy

∫ B

A
a0Fdy

)]
.

Using the identities above, we have

lim
j→∞

〈DKa0 , βj〉 = lim
j→∞

(∫ B

A
a0dy

)−2 [∫ B

A
a0dy

∫ B

A
βjFdy −

(
C4

∫ B

A
βjdy +

∫ B

A
βjdy

∫ B

A
a0Fdy

)]
=

(∫ B

A
a0dy

)−2 [
F (x0)

∫ B

A
a0dy −

(
C4 +

∫ B

A
a0Fdy

)]
=

(∫ B

A
a0dy

)−1
[
F (x0)−

(∫ B

A
a0dy

)−1(
C4 +

∫ B

A
a0Fdy

)]

=

(∫ B

A
a0dy

)−1

(F (x0)−Ka)

the last equality following from (4.2.24).

Substituting the above expression into (4.2.30), we have

0 = (Ka0 − F (x0))

∫ B

x0

(
u0 − û

)
dx+ lim

j→∞
〈DKa0 , βj〉

∫ B

A

(
u0 − û

)(∫ x

A
a0dy

)
dx

= (Ka0 − F (x0))

∫ B

x0

(
u0 − û

)
dx+

((∫ B

A
a0dy

)−1

(F (x0)−Ka0)

)∫ B

A

(
u0 − û

)(∫ x

A
a0dy

)
dx

= (Ka0 − F (x0))

[∫ B

x0

(
u0 − û

)
dx−

(∫ B

A
a0dy

)−1 ∫ B

A

(
u0 − û

)(∫ x

A
a0dy

)
dx

]
.

(4.2.31)

Now Ka0 is independent of x0 and since (4.2.31) is true for all x0 ∈ U , Ka0 − F (x0) cannot
be identically zero. Thus, we have

0 =

∫ B

x0

(
u0 − û

)
dx−

(∫ B

A

a0dy

)−1 ∫ B

A

(
u0 − û

)(∫ x

A

a0dy

)
dx.

Hence we can view the right-hand side of the above equation as a function of x0. Therefore
taking the derivative of both sides with respect to x0, we have

0 = û (x0)− u0 (x0) (for all x0 ∈ (A,B))

by the fundamental theorem of calculus and thus ua
0

= û pointwise on (A,B). �
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4.3. Characterization of optimal solutions

We now characterize solutions to optimal control problems of the form Problem G under the
assumption that the coe�cients of the di�erential operator are symmetric. As noted in the
previous section, H-convergence is a generalization of an earlier result by Spagnolo (known
G-convergence) precisely under the assumption of symmetric elliptic operators (cf. [4, sec.
1.3.2]). In this case, we de�ne the admissible set under G-convergence as follows:

Definition. For real constants a and b such that 0 < a ≤ b < ∞, de�ne the set of
admissible matrices under G-convergence as

Ga,b :=
{
A ∈ Sn | ξTAξ ≥ a |ξ|2 > 0 and(4.3.1)

and |Aξ| ≤ b |ξ| for all nonzero ξ ∈ Rn} ,

where Sn is the space of symmetric n× n matrices.

Importantly, we can establish an analogous existence result to that of Theorem thm: op
control H existence for coe�cient control problems of the form Problem G in which the
admissible set is de�ned as

A := L∞ (U,Ga,b) .

We label such problems as Problem H.

We also note that if A ∈ Ga,b, then

(4.3.2) a |ξ|2 ≤ ξTAξ ≤ b |ξ|2 ,

an inequality which we will use extensively in the sequel.

4.3.1. The state and co-state equations. Given a coe�cient control problem of the
form Problem H, the strong form of the state equation is given by

(4.3.3) Lαu = f,

where Lα is a uniformly elliptic operator of the form (4.0.1) such that one or more of its
coe�cients depend on the choice of control α ∈ A. Consequently, by (3.3.9) the weak form
of the state equation is given by

Bα [u, v] = (f, v)
(
for all v ∈ H1

0 (U)
)
,

where Bα is the bilinear form associated with the di�erential operator Lα for given control
α ∈ A.

Also by (3.3.9), the strong form of the co-state equation is

(Lα)∗ p = uα − û
for any choice of control α ∈ A, where uα ∈ H1

0 (U) and p ∈ H1
0 (U) and are the solutions to

the state and co-state equations associated with α, respectively. Since Lα is self-adjoint, it
follows that we can state the strong form of the co-state equation as

(4.3.4) Lαp = uα − û
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and thus state its weak form as

(4.3.5) Bα [p, v] = (uα − û, v)
(
v ∈ H1

0 (U)
)

for any choice of control α ∈ A.

4.3.2. A maximum principle for coe�cient control problems. Rather than stat-
ing a variation inequality similar to that presented in Section 3.3.3, we present the following
pointwise maximum principle governing optimal control problems of the form of Problem H.

Theorem 4.3.1 (Maximum principle). Assume that we are given a problem of the form
Problem H. Further, assume that u0 is a solution and that α0 and p0 are the corresponding
optimal control policy and co-state state, respectively. Then(

Dp0 (x)
)T
α0 (x)Du0 (x) = max

A∈Ga,b

{(
Dp0 (x)

)T
ADu0 (x)

}
(for a.e. x ∈ U) .

Remark. This is an analog of the Pontryagin Maximum Principle from standard optimal
control theory. �

Proof. Given such a problem of the form Problem H, assume that u0 is a solution and
α0 =

((
αij0
))
∈ A is the corresponding optimal control policy. Then by (4.3.4), the weak

form of the co-state state equation is given

(4.3.6) B [p, v] = −
∫
U

n∑
i,j=1

(
αij0 pxi

)
vxj =

∫
u

(
u0 − û

)
vdx

(
for any v ∈ H1

0 (U)
)
,

where p ∈ H1
0 (U). Since α0 ∈ A and u0 − û ∈ L2 (U) ,the co-state equation satis�es the

hypotheses of the Lax-Milgram Theorem and, thus, a unique co-state state p0 ∈ H1
0 (U) does

indeed exist.

For i, j = 1, . . . , n, de�ned the function α̃ij : [0, 1]→ L∞ (U) as

(4.3.7) α̃ij (τ) = τaij + (1− τ)αij0 (τ ∈ [0, 1])

for some ((aij)) ∈ Ga,b and note that

(4.3.8)
d

dτ

(
α̃ij (τ)

)
= aij − αij0 (τ ∈ [0, 1]) .

I claim that for any ((aij)) ∈ Ga,b, α̃ (τ) = ((α̃ij (τ))) ∈ A for all τ ∈ [0, 1]. Therefore, assume
that ((aij)) ∈ Ga,b. Then for any τ ∈ [0, 1] and ξ ∈ Rn, we have

n∑
i,j

α̃ij (τ) (x) ξiξj = τ
n∑
i,j

aijξiξj + (1− τ)
n∑
i,j

αij0 (x) ξiξj (a.e. x ∈ U) .

Since ((aij)) ∈ Ga,b, clearly α̃ (τ) is symmetric for all τ. Further, we have
n∑
i,j

α̃ij (τ) ξiξj ≥ τa |ξ|2 + (1− τ) a |ξ|2
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and thus
n∑
i,j

α̃ij (τ) ξiξj ≥ a |ξ|2 > 0.

By a similar calculation, we have
|α̃ (τ) ξ| ≤ b |ξ|

and thus α̃ (τ) ∈ Ga,b for all τ ∈ [0, 1] as claimed.

Given this, we can use the Lax-Milgram Theorem to de�ne an injection uA : [0, 1]→ H1
0 (U)

for any A = ((aij)) ∈ Ga,b such that for each τ ∈ [0, 1], uA (τ) ∈ H1
0 (U) is the unique solution

to the PDE

(4.3.9)


−

n∑
i,j=1

(
α̃ij (τ)uα̃ (τ)xi

)
xj

= f in U

uA = 0 on ∂U.

In particular, when τ = 0, we have

f = −
n∑

i,j=1

(
α̃ij (0)uA (0)xi

)
xj

=
n∑

i,j=1

(
αij0 u

A (0)xi
)
xj

and thus

(4.3.10) uA (0) = u0 for all A ∈ Ga,b.

Taking the derivative of both sides (4.3.9) with respect to τ , we have the following PDE

(4.3.11)

−
n∑

i,j=1

(
α̃ij (τ)

(
uA (τ)

)′
xi

)
xj

=
n∑

i,j=1

((
α̃ij (τ)

)′
uA (τ)xi

)
xj

in U

ũ = 0 on ∂U

for any τ ∈ [0, 1], where ′ = d/dt.

Now de�ne the function i : [0, 1]→ R as

i (τ ;A) =
∥∥uA (τ)− û

∥∥2
=

1

2

∫
U

(
uA (τ)− û

)2
dx.

Taking the derivative of both sides with respect to τ , we have

i′ (τ ;A) =

∫
U

(
uA (τ)− û

) (
uA (τ)

)′
dx (τ ∈ [0, 1]) .

By (4.3.10), i has a minimum at τ = 0 for any A = ((aij)) ∈ Ga,b. Hence we have

(4.3.12) 0 ≤ i′ (0;A) =

∫
U

(
u0 − û

)
ũdx,

where
ũ =

(
uA (0)

)′
.
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Since (4.3.12) holds for any A ∈ Ga,b, by the weak form of co-state equation (4.3.5) we have

0 ≤
∫
U

(
u0 − û

)
ũdx = B

[
p0, ũ

]
=

∫
U

n∑
i,j=1

(
αij0 p

0
xi

)
ũxjdx.

Additionally, by the weak form of (4.3.11) we have∫
U

n∑
i,j=1

(
αij0 ũxi

)
vxjdx = −

∫
U

n∑
i,j=1

((
aij − αij0

)
u0
xi

)
vxjdx for any v ∈ H1

0 (U) .

Setting v = p0 and combining these two equations, we have

0 ≤
∫
U

n∑
i,j=1

(
αij0 p

0
xi

)
ũxjdx = −

∫
U

n∑
i,j=1

((
aij − αij0

)
u0
xi

)
pxjdx.

Rearranging terms and noting that A and α0 are symmetric, we have

(4.3.13)
∫
U

n∑
i,j=1

pxia
iju0

xj
dx ≤

∫
U

n∑
i,j=1

pxiα
ij
0 u

0
xj
dx

for any A = ((aij)) ∈ Ga,b. Now select a particular ((aij)) ∈ Ga,b and for a given E ⊂ U ,
de�ne α̂ijE for i, j = 1, . . . , n as

α̂ijE =

{
aij on E
αij0 on U \ E.

Clearly, α̂E :=
((
âijE
))
∈ Ga,b on E. Hence by (4.3.13), we have∫

E

n∑
i,j=1

p0
xi
aiju0

xj
dx ≤

∫
E

n∑
i,j=1

p0
xi
αij0 u

0
xj
dx

and thus
1

µ (E)

∫
E

n∑
i,j=1

p0
xi
aiju0

xj
dx ≤ 1

µ (E)

∫
E

n∑
i,j=1

p0
xi
αij0 u

0
xj
dx,

where µ ( · ) is the Lebesgue measure.

Since U is open and bounded, we can set E = B (x, r) for r small enough such that

B (x, r) ⊂ U,

where B (x, r) is the ball of radius r centered at x. By Lebesque's Di�erentiate Theorem,
taking the limit as r → 0, we have

n∑
i,j=1

p0
xi

(x) aiju0
xj

(x) ≤
n∑

i,j=1

p0
xi

(x)αij0 (x)u0
xj

(x)

for almost every x ∈ U and every A = ((aij)) ∈ Ga,b. �
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4.3.3. Deriving an optimal control policy given an optimal state and co-state.

We now derive an optimal control policy given an optimal state and co-state using the point-
wise properties of the maximum principle derived immediately above to transform optimal
control problem into a �nite dimensional optimization problem. Speci�cally, we recognize
that given an optimal state-control pair (u0, p0) and setting

x = Dp0 (z) and y = Du0 (z)

at any �xed point z ∈ U , this maximum principle is equivalent to the following optimization
problem:

Problem 1. Given x, y ∈ Rn, �nd a matrix A0 ∈ Ga,b such that

xTA0y = max
A∈Ga,b

{
xTAy

}
.

Consequently, given u0 (z) and p0 (z) at each point z ∈ U , we use solutions to this optimiza-
tion problem to determine an optimal control policy of our optimal control problem simply
by setting α0 (z) := A0 at each z ∈ U . This is captured in the following results.

Theorem 4.3.2. For given x, y ∈ Rn, assume that A0 ∈ Ga,b is a solution to Problem 1.
Then

xTA0y =
b + a

2
(x · y) +

b− a

2
|x| |y| .

Proof. Assume that A0 is a solution to Problem 1. If x = 0 or y = 0, the proof is
trivial. Therefore, select x, y ∈ Rn such that |x| = |y| = 1. A simple calculation shows that

max
A∈Ga,b

{
xTAy

}
= max

A∈Ga,b

{
(x+ y)T A (x+ y)− (x− y)T A (x− y)

4

}
.(4.3.14)

Additionally, for any A ∈ A, we have
a |x+ y|2 ≤ (x+ y)T A (x+ y) ≤ b |(x+ y)|2

and
a |x− y|2 ≤ (x− y)T A (x− y) ≤ b |(x− y)|2

by (4.3.2).

Hence we have

max
A∈A

{
(x+ y)T A (x+ y)− (x+ y)T A (x+ y)

4

}
=

1

4

(
b |(x+ y)|2 − a |(x− y)|2

)
.
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Substituting this into (4.3.14) and recalling that |x| = |y| = 1, we have

max
A∈Ga,b

{
xTAy

}
= max

A∈Ga,b

{
(x+ y)T A (x+ y)− (x+ y)T A (x+ y)

4

}

=
1

4

(
b |(x+ y)|2 − a |(x− y)|2

)
=

1

4

(
b
(
|x|2 + 2 (x · y) + |y|2

)
− a

(
|x|2 − 2 (x · y) + |y|2

))
=

1

2
(b (1 + (x · y))− a (1− (x · y)))

=
b + a

2
(x · y) +

b− a

2

and since A0 is assumed to be an optimal solution, we have

(4.3.15) xTA0y =
b + a

2
(x · y) +

b− a

2
.

Now assume that |x| , |y| 6= 1 and both are non-zero. It follows that

xT

|x|
A0y

T

|y|
=

b + a

2

(x · y)

|x| |y|
+

b− a

2

and hence
xTA0y =

b− a

2
|x| |y|+ b + a

2
(x · y)

for any x, y ∈ Rn. �

The next results follows immediately from the above result and Theorem 4.3.1.

Theorem 4.3.3. Assume that we are given an optimal control problem of the form Problem
H. If (u0, p0) is an optimal state / co-state pair, then corresponding optimal control policy
α0 satis�es the following equation:(

Dp0 (x)
)T
α0 (x)Du0 (x) =

(
b + a

2

)
Dp0 (x) ·Du0 (x)

+

(
b− a

2

) ∣∣Dp0 (x)
∣∣ ∣∣Du0 (x)

∣∣
for a.e. x ∈ U.

4.3.4. Deriving the optimal state and co-state state given an optimal control

policy. We now derive the optimal state and co-state state given an optimal control policy
for a problems of the form Problem H. We again consider an optimization problem of the
form Problem 1 and some preliminary results from matrix algebra.

Lemma 4.3.4. Assume that M ∈Mn and de�ne the matrix N as

(4.3.16) N := P TMP

where P ∈ Mn is orthogonal. Then M ∈ Ga,b if and only if N ∈ Ga,b. Consequently, Ga,b is
closed under orthogonal rotations.
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Proof. Assume P ∈ Mn is orthogonal. We begin by showing that if M ∈ Ga,b, then
N ∈ Ga,b,where N is de�ned at (4.3.16). Since M ∈ Ga,b, we have

(4.3.17) NT =
(
P TMP

)T
= (MP )T P = P TMP = N.

and thus N ∈ Sn.

By assumption, P is orthogonal and thus it is an isometry on Rn. Hence |Px| = |x| for all
x ∈ Rn and for any x ∈ Rn, there exists a unique y ∈ Rn such that

y = Px and x = P Ty.

Consequently, since M ∈ Ga,b by assumption we have

(4.3.18) a |ξ|2 = a |Pξ|2 ≤ (Pξ)T M (Pξ)

for any ξ ∈ Rn. However, by (4.3.17) we have

(Pξ)T M (Pξ) = ξT
(
P TMP

)
ξ = ξTNξ

and thus
a |ξ|2 ≤ ξTNξ.

Additionally, we have
|Mη| ≤ b |η|

for any η ∈ Rn. Setting η = Pξ, we have

|Mη| ≤ b |η| = b |Pξ| = b |ξ| .

We also have
|Mη| =

∣∣(PNP T
)
Pξ
∣∣ = |P (Nξ)| = |Nξ|

and therefore
|Nξ| ≤ b |ξ| .

Since this is true for any ξ ∈ Rn, then N ∈ Ga,b. The converse follows from a similar
calculation. �

Lemma 4.3.5 (Spectral decomposition). Assume that M ∈ Sn. Then

(4.3.19) M = OΛOT ,

where Λ is the diagonal matrix of the eigenvalues of B and O is the matrix whose columns
are the eigenvectors of M .

Proof. See Harville [39, pp. 537-539]. �

For a given x, y ∈ Rn, we de�ne the matrix Bx,y that will be used extensively in subsequent
analysis.
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Definition. For a given x, y ∈ Rn, de�ne the matrix Bx,y ∈Mn as

(4.3.20) Bx,y := (x⊗ y) + (y ⊗ x) ,

where �⊗� is the tensor product de�ned as

s⊗ t =

 s1t1 · · · s1tn
... . . . . . .

snt1 · · · sntn

 (s, t ∈ Rn) .

We note that under this de�nition, Bx,y = ((bij)) ∈ Sn since

bij = xiyj + yixj (for i, j = 1, . . . , n) .

We also note that since B ∈ Sn, by Lemma 4.3.5 there exists matrices D and O (also
dependent on the choice of x and y) such that

Bx,y = ODOT ,

where D is the diagonal matrix of the eigenvalues of Bx,y and O is the matrix whose columns
are its corresponding eigenvectors. This justi�es the following de�nition.

Definition. Let Bx,y the matrix de�ned at (4.3.20) for a given x, y ∈ Rn. De�ne the matrix
Dx,y as

(4.3.21) Dx,y :=

 λ1 0
. . .

0 λn

 ,

where {λ1, . . . , λn} are the (possibly non-unique) eigenvalues of Bx,y and de�ne

Ox,y := (z1 | · · · | zn)

such that its columns z1, . . . , zn are the corresponding eigenvectors.

Notation. In the sequel, we often drop the subscript from the matrices B,D, and O if the
meaning is clear from the context in which they are used. �

Definition. Fix x, y ∈ Rn. Given a matrix A ∈ Ga,b, we de�ne the matrix Ã as

Ã = OTAO,

where O is the matrix of the eigenvectors of the matrix Bx,y.

We now restate Problem 1 in terms of the matrix Bx,y and its spectral decomposition

Bx,y = ODOT .

Lemma 4.3.6. Fix x, y ∈ Rn and assume that we are given an optimization problem of the
form Problem 1. Then we have

max
A∈Ga,b

{
xTAy

}
= max

A∈Ga,b

{
1

2
tr (ADx,y)

}
.

Additionally, A0 ∈ argmax
A∈Ga,b

(
xTAy

)
if and only if Ã0 = OTA0O ∈ argmax

A∈Ga,b

(
1

2
tr (ADx,y)

)
.

57



4.3. CHARACTERIZATION OF OPTIMAL SOLUTIONS

Proof. Fix x, y ∈ Rn. Then for any A = ((aij)) ∈ Ga,b , we have

xTAy = yTAx

and

(4.3.22) Ã = OTAO ∈ Ga,b

by Lemma 4.3.4 and

By the de�nition of Bx,y, we have

xTAy =
1

2

(
n∑

i,j=1

aijxiyj +
n∑

i,j=1

aijyixj

)

=
1

2

(
n∑

i,j=1

aij (xiyj + yixj)

)

=
1

2

(
n∑

i,j=1

aijbij

)

=
1

2
tr (AB)

=
1

2
tr
(
A
(
ODOT

))
=

1

2
tr
(
OTAOD

)
=

1

2
tr
(
ÃD
)
,(4.3.23)

where �tr� is the trace of a square matrix. Consequently, by (4.3.22), we have

(4.3.24) max
A∈Ga,b

{
xTAy

}
= max

A∈Ga,b

{
1

2
tr (ADx,y)

}
.

Moreover, since (4.3.23) is true for any A ∈ Ga,b, it is true for any A0 ∈ argmax
A∈Ga,b

(
xTAy

)
.

Hence we have
1

2
tr
(
Ã0D

)
= xTA0y = max

A∈Ga,b

{
xTAy

}
= max

A∈Ga,b

{
1

2
tr
(
ÃD
)}

and thus Ã0 ∈ argmax
A∈Ga,b

(
1

2
tr
(
ÃD
))

. The converse follows from the same calculation. �

Given this result, we now consider optimization problems of the following form:

Problem 2. Given x, y ∈ Rn, �nd a matrix A0 ∈ Ga,b such that

tr
(
A0Dx,y

)
= max

A∈Ga,b
{tr (ADx,y)} .
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In other words, we can identify solutions to Problem 1 provided that we can identify the
eigenvalues and eigenvectors of the matrix Bx,y for a given x, y ∈ Rn. The next result, in
fact, allows us to explicitly compute them directly.

Lemma 4.3.7. Select x, y ∈ Rn such that x 6= y and x, y 6= 0. Then the eigenvalues
{λ1, . . . λn} of Bx,y are given by

(4.3.25)


λ1 = x · y + |x| |y| ≥ 0

λ2 = x · y − |x| |y| ≤ 0

λi = 0 for i = 3, . . . , n

and its corresponding eigenvectors {z1, . . . zn} are given by

(4.3.26)


z1 =

s

|s|
z2 =

t

|t|
where

s =
x

|x|
+

y

|y|
and t =

x

|x|
− y

|y|
and

{z3, . . . , zn} is an orthonormal basis of (span {x, y})⊥ .

Proof. Select x, y ∈ Rn such that x 6= y and x, y 6= 0 and assume that B is a matrix of
the form of (4.3.20). Further, z1 and z2 as

z1 =
s

|s|
and z2 =

t

|t|
,

where
s =

x

|x|
+

y

|y|
and t =

x

|x|
− y

|y|
.

We �rst note that for any w ∈ Rn, by the de�nition we have

(Bw) i =
n∑
j=1

bijwj

=
n∑
j=1

(xiyj + yixj)wj

= xi

n∑
j=1

yjwj + yi

n∑
j=1

xjwj

= (w · y)xi + (w · x) yi

and thus

(4.3.27) Bw = (w · y)x+ (w · x) y (w ∈ Rn) .

Therefore, setting w = z1 we have

Bz1 = (z1 · y)x+ (z1 · x) y
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=

(
s

|s|
· y
)
x+

(
s

|s|
· x
)
y

=
1

|s|

[((
x

|x|
+

y

|y|

)
· y
)
x+

((
x

|x|
+

y

|y|

)
· x
)
y

]
=

1

|s|

[(
x · y
|x|

+ |y|
)
x+

(
|x|+ y · x

|y|

)
y

]
=

1

|s|

[(
(x · y)x

|x|
+ |y|x

)
+

(
|x| y +

(y · x)

|y|
y

)]
=

1

|s|

[(
|y|x+ |x| y + (x · y)

(
x

|x|
+

y

|y|

))]
=

1

|s|

[(
|y| |x|

(
x

|x|
+

y

|y|

)
+ (x · y)

(
x

|x|
+

y

|y|

))]
= (|y| |x|+ (x · y))

s

|s|
.

Consequently, we have
Bz1 = (x · y + |x| |y|) z1

and thus z1 is an eigenvector of B and its corresponding eigenvalue λ1 is given by

λ1 = x · y + |x| |y| .

A similar calculation shows that

Bz2 = (x · y − |x| |y|) z2

and thus z2 is also an eigenvector of B and its corresponding eigenvalue λ2 is given by

λ2 = x · y − |x| |y| .

As nonzero eigenvectors, |z1| = |z2| = 1. Moreover, since λ1 6= λ2, then z1 · z2 = 0.
Additionally, by (4.3.27), we have

ker (B) = (span {x, y})⊥

and thus λ3 = · · · = λn = 0 and {z3, . . . , zn} is an orthonormal basis of (span {x, y})⊥. �

We now de�ne a class of matrices that we subsequently show are solutions optimization
problems of the form 4.3.4.

Definition. We de�ne A as the set of all matrices M = ((mij)) ∈Mn such that

mij :=


b for i, j = 1

a for i, j = 2

cij for all other i, j = 1, . . . , n,

where a ≤ cij ≤ b for i, j = 1, . . . , n.

The next results show that every matrix A ∈ A is, in fact, a solution to optimization problems
of the form Problem 2.
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Lemma 4.3.8. Fix x, y ∈ Rn and let A be the set de�ned above. Then

A = argmax
A∈Ga,b

(tr (ADx,y)) .

Proof. Fix x, y ∈ Rn and let A ∈ Ga,b. By (4.3.25), we have

tr (AD) =
n∑
i=1

aijDii

= a11λ1 + a22λ2

= bλ1 + aλ2,

where {
λ1 = x · y + |x| |y|
λ2 = x · y − |x| |y| .

Hence we have
tr (AD) = (b + a) (x · y) + (b− a) |x| |y|

and thus by Lemma 4.3.2, we have

tr (ADx,y) = max
A∈Ga,b

{tr (ADx,y)} .

The converse follows from the same calculation. �

Theorem 4.3.9. Assume that α0 ∈ L∞ (U,Ga,b) is a solution to a given optimal control
problem of the form Problem H. Then the corresponding optimal state u0 ∈ H1

0 (U) and
co-state state p0 ∈ H1

0 (U) satisfy the following PDE

(4.3.28)


−β14u0 − β2div

(
|Du0|
|Dp0|

(Dp0)

)
= f

−β24p0 − β2div

(
|Dp0|
|Du0|

(Du0)

)
= u0 − û,

in U

where

β1 =
b + a

2
and β2 =

b− a

2

assuming Du0, Dp0 6= 0 in U .

Remark. It is an open question to understand (4.3.28) if Du0 = 0 and/or Dp0 = 0 at some
points in U . �

Proof. Assume the setup above. Since α0 is assumed to be an optimal solution, by the
maximum principle Theorem 4.3.1, we have

max
A∈Ga,b

{(
Dp0 (w)

)T
ADu0 (w)

}
=
(
Dp0 (w)

)T
α0 (w)Du0 (w) ,

for any w ∈ U , where u0 and p0 are the unknown state and co-state, respectively. Fixing
w ∈ U and setting

(4.3.29) x = Dp0 (w) , y = Du0 (w) , A = α (w) , and A0 = α0 (w) ,
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we see that the optimization problem above can be written as

max
A∈Ga,b

{
xTAy

}
.

Now de�ne the matrix Ã0 by

(4.3.30) A0 := OÃ0OT .

Then by Lemma 4.3.8,
Ã0 ∈ argmax

A∈Ga,b
(tr (ADx,y)) ,

Therefore, multiplying both sides of (4.3.30) by z1, we have

Az1 = OÃ0OT z1.

Additionally, by the de�nition of O, we have

Oei = zi ⇒ OT zi = ei,

for i = 1, . . . , n, where ei is the ith unit vector. Substituting this into the above expression,
we have

A0z1 = OÃ0OT z1

= OÃ0e1

= bOe1

= bz1

By (4.3.26), we have
z1 =

x

|x|
+

y

|y|
and thus

A0

(
x

|x|
+

y

|y|

)
= b

(
x

|x|
+

y

|y|

)
.

A similar calculation using z2 shows that

A0

(
x

|x|
− y

|y|

)
= a

(
x

|x|
− y

|y|

)
.

Then by (4.3.29), we have

α0 (w)

(
Du0 (w)

|Du0 (w)|
+

Dp0 (w)

|Dp0 (w)|

)
= b

(
Du0 (w)

|Du0 (w)|
+

Dp0 (w)

|Dp0 (w)|

)
and

α0 (w)

(
Du0 (w)

|Du0 (w)|
− Dp0 (w)

|Dp0 (w)|

)
= a

(
Du0 (w)

|Du0 (w)|
− Dp0 (w)

|Dp0 (w)|

)
for any w ∈ U.
Summing these two identities, we have

2α0 (w)
Du0 (w)

|Du0 (w)|
= (b + a)

Du0 (w)

|Du0 (w)|
+ (b− a)

Dp0 (w)

|Dp0 (w)|
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and thus

α0 (w)Du0 (w) = β1Du
0 (w) + β2

|Du0 (w)|
|Dp0 (w)|

Dp0 (w) ,

where
β1 =

b + a

2
and β2 =

b− a

2
.

A similar calculation shows

α0 (w)Dp0 (w) = β1Dp
0 (w) + β2

|Dp0 (w)|
|Du0 (w)|

Du0 (w) .

Since this is true for all w ∈ U , we have
α0Du0 = β1Du

0 + β2
|Du0|
|Dp0|

Dp0

α0Dp0 = β1Dp
0 + β2

|Dp0|
|Du0|

Du0.
in U(4.3.31)

Now recall that the state and co-state equations for Problem H are given by

−αDu = f in U

and
−αDp = u0 − û in U,

respectively. Consequently, if α0 =
((
αij0
))

is an optimal control policy, then by (4.3.31) u0

and p0 satisfy the follow coupled-system PDE
−β14u0 − β2div

(
|Du0|
|Dp0|

(Dp0)

)
= f

−β14p0 − β2div

(
|Dp0|
|Du0|

(Du0)

)
= u0 − û,

in U

where
u0 = p0 = 0 on ∂U.

�

Remark. It remains a very interesting open problem to study directly the coupled system
of PDE above. �
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APPENDIX A

DIFFERENTIATION IN FUNCTION SPACES

In the body of this thesis, we employ a number of extensions of di�erentiation to in�nite-
dimensional functional spaces which we formally de�ned in this appendix. In developing this
material, I generally rely on Luenberger [61] and Ekeland [24].

For this appendix, assume that X and Y are real Banach spaces and that U ⊆ X is open
and nonempty unless otherwise noted. Further, assume that

f : V → Y

is a given.

A.1. The directional derivative and the �rst variation

Recall that in �nite dimensions, the directional derivative of a function f at a point x in an
open set U ⊂ Rn in the direction of a nonzero point y in Rn is de�ned as

∂f

∂y
(x) := lim

τ↓0

f (x+ τy)− f (x)

τ

provided it exists, where τ ∈ R is small enough such that x+ τy ∈ U .

We extend this de�nition to functions de�ned on a general Banach space in the natural way.

Definition. Let u ∈ U and v ∈ X. If the limit

(A.1.1) δf (u) (v) := lim
τ↓0

f (u+ τv)− f (u)

τ

exists, we call the limit the (one-sided) directional derivative of f at u in the direction
v. If the limit exists for all v ∈ X, we call δf (u) the the �rst variation of f at u.

We can compute the directional derivative using ordinary calculus as follows. Assume that
for a �xed u ∈ U and v ∈ X, de�ne the function i : R→ Y as

i (τ ;u, v) := f (u+ τv)

where τ ∈ R is small enough such that u+ τv ∈ U . Ignoring the parameters u and v for the
moment, consider the following expression

i (τ)− i (0) = f (u+ τy)− f (u) ≈ τδf (u) (v) .

Dividing the above expression by τ > 0 and taking the limit as τ ↓ 0, we have

lim
τ↓0

i (τ)− i (0)

τ
= lim

τ↓0

f (u+ τv)− f (u)

τ
= δf (u) (v) .
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Clearly, the left-hand side is simply the ordinary derivative of i evaluated at zero while the
right-hand side is the directional derivative of f at u in the direction v assuming that the
limits exist. In other words, we have

i′ (0;u, v) = δf (u) (v) .(A.1.2)

This fact will be used throughout this thesis.

A.2. The Gâteaux derivative

Definition. Suppose that the �rst variation of f exists at a given point u ∈ U and assume
Gf (u) : U → Y is a bounded linear operator dependent on u such that

Gf (u) (v) = δf (u) (v)

exists for all for all v ∈ X. Then we say that f is said to be Gâteaux di�erentiable at
u. Additionally, we say the operator Gf (u) is the Gâteaux derivative of f at u and
Gf (u) (v) is said to be the Gâteaux derivative of f at u in the direction v. If f is
Gâteaux di�erentiable at every u ∈ U , we say that f is Gâteaux di�erentiable in U .

Notation. If the Gâteaux derivative exists, then Gf (u) ∈ L (X, Y ). Consequently we will
generally use the standard notation for linear operators and express Gâteaux derivative of f
at u acting on v ∈ X as

Gf (u) v := Gf (u) (v) .

If f is real-valued, then Gf (u) ∈ L (X,R) and thus it is an element of X∗. Consequently,
we often write the Gâteaux derivative of f at u acting on v ∈ X as the dual pairing

(A.2.1) Gf (u) v = 〈Gf (u) , v〉X∗,X .

�

Definition (Partial derivatives). Let X, Y and Z be real Banach spaces and assume U ⊂ X
and V ⊂ Y are open and nonempty and assume we are given a function f : U × V→ Z.
Further, for any �xed v ∈ Y , de�ne g (v) : U → Z as

g (v) (u) := f (u, v) (u ∈ U) .

Similarly, for any �xed u ∈ U , de�ne h (u) : V → Z as

h (u) (v) := f (u, v) (v ∈ V ) .

Then for (u, v) ∈ U × V , we say that g and h are the partial Gâteaux derivatives of f
at u and v provided they exist and denoted them as

Guf (u, v) := Gg (v) and Gvf (u, v) := Gh (u) .

Further, we say that Gf (u, v) is the Gâteaux gradient of f at (u, v), where

Gf (u, v) (w1, w2) = Guf (u, v)w1 +Gvf (u, v)w2,

for any (w1, w2) ∈ X × Y .
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Remark. Under this de�nition, Guf (u, v) ∈ L (X,Z) and Gvf (u, v) ∈ L (Y, Z) for
(u, v) ∈ U × V . �

A.3. The Fréchet derivative

We now consider the analog of the gradient for functions of functions.

Definition. Suppose we are given a function f : U → Y . If there exists a bounded linear
operator Df (u) : X → Y and a mapping r ( · ;u) : X → Y (referred to as the remainder)
for a �xed u ∈ U such that

(A.3.1) f (u+ v)− f (u) = Df (u) (v) + r (v;u)

for all v ∈ X, where u + v ∈ U and ‖v‖X > 0 and r ( · ;u) : X → Y satis�es the following
condition

‖r (v;u)‖Y
‖v‖X

→ 0 as ‖v‖X → 0.

Then f is said to Fréchet di�erentiable at u. Additionally, the operator Df (u) is said to
be the Fréchet derivative of f at u and Df (u) (v) is said to be the Fréchet derivative
of f at u in the direction v. If f is Fréchet di�erentiable at every u ∈ U , we say that f
is Fréchet di�erentiable in U .

Remark. If it exists, Df (u) ∈ L (X, Y ) by de�nition. �

We now show that if the Fréchet derivative exists, it is equal to the Gâteaux derivative which
we can readily compute via A.1.2.

Lemma A.3.1. Let u ∈ U and assume that v ∈ X such that u + v ∈ U and ‖v‖X > 0. If f
is Fréchet di�erentiable at u, then

lim
‖v‖X→0

‖f (u+ v)− f (v)−Df (u) v‖Y
‖v‖X

= 0.

Theorem A.3.2. Assume u ∈ U . If f is Fréchet di�erentiable at u, then it also Gâteaux
di�erentiable at u and the operators are the same.

Proof. Assume u ∈ U and �x v ∈ X such that ‖v‖X > 0. By assumption f is Fréchet
di�erentiable at u. Therefore select τ > 0 small enough such that u+ τv ∈ V . By the above
lemma, we have

lim
‖τv‖X→0

‖f (u+ τv)− f (u)−Df (u) (τv)‖Y
‖τv‖X

= 0 ⇒ lim
τ→0

‖f (u+ τv)− f (u)−Df (u) (τv)‖Y
τ

= 0.

Further, by the linearity of the Fréchet derivative, we have

0 = lim
τ↓0

f (u+ τv)− f (u)−Df (u) (τv)

τ
= lim

τ↓0

f (u+ τv)− f (u)

τ
−Df (u) v.

Hence it follows that

Df (u) v = lim
τ↓0

f (u+ τv)− f (u)

τ
= Gf (u) v.
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A.3. THE FRÉCHET DERIVATIVE

This is holds for all v ∈ X such that ‖v‖X > 0, f is Gâteaux di�erentiable and the two
operators are the same. �

Remark. If f is real-valued and it is Fréchet di�erentiable at u ∈ U , then Df (u) ∈ X∗ and
thus

(A.3.2) Df (u) v = 〈Df (u) , v〉X∗,X (v ∈ X) .

�

Remark. Since Fréchet derivative is equal to the Gâteaux derivative, by A.1.2 we have the
following identity

Df (u) v = i′ (0;u, v) ,

where i : R→ Y such that
i (τ ;u, v) := f (u+ τv) .

Hence, we can compute the Fréchet derivative at u in the direction v as

(A.3.3) Df (u) v =
d

dτ
f (u+ τv) |τ=0 .

We use both (A.3.2) and (A.3.3)to express the Fréchet derivative extensively in the main
body of the thesis. �

Theorem A.3.3 (Chain rule). Let X, Y , and Z be real Banach spaces. Assume U ⊂ X and
V ⊂ Y are open and that f : U → V ⊂ Y and g : V → Z are Fréchet di�erentiable at u ∈ U
and f (u) ∈ V , respectively. Then the composite mapping h : U → Z de�ned as

h ( · ) := g ◦ f ( · ) = g (f ( · ))
is Fréchet di�erentiable at u and is given by

Dh (u) = Dg (f (u))Df (u) .

Proof. Assume that f : U → V ⊂ Y and g : V → Z are Fréchet di�erentiable at u ∈ U
and f (u) ∈ V , respectively. Further, de�ne h : U → Z as

h ( · ) := g (f ( · )) .

We begin by showing that h is Fréchet di�erentiable at u. Hence we need to show that for
any v ∈ X such that u+ v ∈ U and ‖v‖X > 0, we have

‖r (v;u)‖Y
‖v‖X

→ 0 as ‖v‖X → 0

or equivalently
‖h (u+ v)− h (u)−Dh (u) (v)‖ = o (‖v‖) .

Therefore select v ∈ X such that u+ v ∈ U and ‖v‖X > 0 and de�ne w, z ∈ V as

w := f(u) and z := f (u+ v)− f (u) .

Then by assumption

h (u+ v)− h (u) = g (f (u+ v))− g (f (u)) = g (w + z)− g (w) .
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Since g is assumed to be Fréchet di�erentiable at f (u) = w, using the de�nition of the
Fréchet derivative, we have

(A.3.4) o (‖z‖) = ‖g (w + z)− g (w)−Dg (w) z‖ = ‖h (u+ v)− h (u)−Dg (w) z‖ .

On the other hand, f is also assumed to be Fréchet di�erentiable at u and thus by , we have

‖z −Df (u) v‖ = o (‖v‖) .

Substituting these two expressions into A.3.4, we get

‖h (u+ v)− h (u)−Dg (w)Df (u) v‖ = o (‖z‖) + o (‖v‖) .

Now consider the right-hand side of the above expression. By assumption, f is Fréchet
di�erentiable at u and thus Df (u) ∈ L (X, Y ) and it is continuous at u. Hence

O (‖v‖) = ‖f (u+ v)− f (u)‖ = ‖z‖ .

Consequently, the right-hand side is simply o (v) and h is Fréchet di�erentiable at u. Further,
by the de�nition of the Fréchet derivative, we have

Dh (u) v = Dg (w)Df (u) v.

Since v is arbitrary, we deduce the following operator identity,

Dh (u) = Dg (f (u))Df (u) .

�

Definition (Partial derivatives). Let X, Y and Z be real Banach spaces and assume U ⊂ X
and V ⊂ Y are open and nonempty and assume we are given a function f : U × V→ Z.
Additionally �x v ∈ V and de�ne g (v) : U → Z as

g (v) (u) := f (u, v) (u ∈ U) .

Similarly, �x u ∈ U and de�ne h (u) : V → Z as

h (u) (v) := f (u, v) (v ∈ V ) .

Then for (u, v) ∈ U × V , we say that g and h are the partial Fréchet derivatives of f at
u and v and denoted them as

Duf (u, v) := Dg (v) ∈ L (X,Z) and Dvf (u, v) := Dh (u) ∈ L (Y, Z)

provided they exist. Further, we say that Df (u, v) is the Fréchet gradient of f at (u, v),
where

(A.3.5) Df (u, v) (w1, w2) = Duf (u, v)w1 +Dvf (u, v)w2,

for any (w1, w2) ∈ X × Y .

A.4. Di�erentiation on convex sets

Above, we de�ned several forms di�erentiation where we restricted the domain of the function
in question to open sets. We now consider di�erentiation on convex sets.
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Definition. For a given u ∈ U , we say that for v ∈ X, the direction v − u is feasible if
there exists a real, positive sequence {τj}j∈N ↓ 0 such that

(A.4.1) u+ τj (v − u) ∈ U (for all j) .

Further, we denote the set of all feasible directions from u as

Du = {v ∈ X | v is a feasible direction from u} .
Theorem A.4.1. Assume that U is nonempty, closed, bounded, convex subset of a real
Banach space X, then every direction in X is feasible.

Proof. Assume that U ⊂ X is nonempty, closed, bounded, and convex and �x u ∈ U .
Then by the de�nition of convexity, for any v ∈ U

τjv + (1− τj)u = u+ τj (v − u) ∈ U
for any real constant τj ∈ [0, 1]. Therefore taking a sequence of such τj such that {τj}j∈N ↓ 0,
we see that v − u is feasible. �

Definition. Let u ∈ U, where U ⊆ X is a convex. Given a function f : U → Y , if a
bounded linear operator GU (u) : Du → Y exists such that

(A.4.2) GUf (u) (v − u) = lim
τ↓0

f (u+ τ (v − u))− f (u)

τ

exists for all v ∈ U , we say that f is Gâteaux di�erentiable at u and we call the operator
GU (u) the Gâteaux derivative of f at u with respect to the convex set U . Similarly,
if there a function r ( · ;u) : X → Y satisfying

(A.4.3) f (u+ v)− f (u) = GUf (u) (v − u) + r (v;u)

for all v ∈ U such that
‖r (v;u)‖Y
‖v‖X

→ 0 as ‖v‖X → 0,

we say that f is Fréchet di�erentiable at u and we call the operator GUf (u), which
denote DUf (u), as is the Fréchet derivative of f at u with respect to the convex set
U .

Importantly, we see from the de�nition that if a function f is Gâteaux or Fréchet di�eren-
tiable, then it agrees with the that derivative on a convex set.

Theorem A.4.2. Assume u0 is a minimizer of a real-valued function f : U → R, where
U ∈ X is convex. If DUf (u0) exists, then the following inequality holds〈

DUf
(
u0
)
, u− u0

〉
≥ 0 (u ∈ U) .

Proof. Since u0 is a minimizer, then for any τ ∈ [0, 1] ,we have

f
(
u0 + τ

(
u− u0

))
− f

(
u0
)
≥ 0 (u ∈ U) .

Taking a sequence of such τ such that {τj}j∈N ↓ 0, we have

DUf
(
u0
) (
u− u0

)
= lim

τ↓0

f (u0 + τ (u− u0))− f (u0)

τ
≥ 0.
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�

Given this result, we will not di�erential a derivative on a convex set from a derivative on
an open set in the body of the thesis.
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