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RESEARCH ARTICLE
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Abstract Legacy nitrogen (N) sources originating from an-
thropogenic N inputs (NANI) may be a major cause of in-
creasing riverine N exports in many regions, despite a signif-
icant decline in NANI. However, little quantitative knowledge
exists concerning the lag effect of NANI on riverine N export.
As a result, the N leaching lag effect is not well represented in
most current watershed models. This study developed a
lagged variable model (LVM) to address temporally dynamic
export of watershed NANI to rivers. Employing a Koyck
transformation approach used in economic analyses, the
LVM expresses the indefinite number of lag terms from pre-
vious years’ NANI with a lag term that incorporates the pre-
vious year’s riverine N flux, enabling us to inversely calibrate
model parameters from measurable variables using Bayesian
statistics. Applying the LVM to the upper Jiaojiang watershed
in eastern China for 1980–2010 indicated that ~97 % of riv-
erine export of annual NANI occurred in the current year and

succeeding 10 years (~11 years lag time) and ~72 % of annual
riverine N flux was derived from previous years’ NANI.
Existing NANI over the 1993–2010 period would have re-
quired a 22 % reduction to attain the target TN level (1.0 mg
N L−1), guiding watershed N source controls considering the
lag effect. The LVM was developed with parsimony of model
structure and parameters (only four parameters in this study);
thus, it is easy to develop and apply in other watersheds. The
LVM provides a simple and effective tool for quantifying the
lag effect of anthropogenic N input on riverine export in sup-
port of efficient development and evaluation of watershed N
control strategies.

Keywords Watershed . Lag time . Legacy nutrients .

Water quality model . Nitrogen saturation . Eutrophication

Introduction

Anthropogenic activities have substantially increased nitrogen
(N) availability in many terrestrial ecosystems to an extent that
exceeds the ability to assimilate N, often resulting in large
increases in riverine N fluxes to coastal waters (Bouraoui
and Grizzetti 2014; Du et al. 2014). Various management ef-
forts have been implemented to control excessive N in riverine
ecosystems, as it degrades aquatic ecosystem health, decreases
water quality for several beneficial uses, and causes eutrophi-
cation and hypoxia in downstream freshwater and coastal wa-
ters (Sun et al. 2013; Li et al. 2014). Despite a significant
decline in anthropogenic N inputs with the implementation
of the Clean Water Act (1972) in the USA and the Nitrate
Directive (1991) in Europe, riverine N concentrations contin-
ue to increase in many areas, such as the Mississippi River,
Chesapeake Bay, North Sea, and Baltic Sea (Worrall et al.
2009; Dubrovsky and Hamilton 2010; Bouraoui and Grizzetti
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2014). Nitrogen leaching from legacy sources has been recog-
nized as a primary reason for these limited results, due to the
long lag time (ranging from years to decades) elapsed between
watershed N inputs and riverine export (Sebilo et al. 2013;
Sanford and Pope 2013; Tesoriero et al. 2013). Exceedance
of water quality targets has prompted regulatory agencies to
reevaluate nutrient management standards, measures, and
guidelines (Sharpley et al. 2013). This requires quantitative
information concerning the lag effect for anthropogenic N
inputs on changes in riverine N export to optimize pollution
control expenditures, strategies, and schedules, as well as to
set appropriate expectations for the public (Sanford and Pope
2013; Bouraoui and Grizzetti 2014).

Various lumped watershed models (e.g., export coefficient
models, SPARROW, and PolFlow) and mechanistic models
(e.g., AGNPS, HSPF, and SWAT) (DeWit et al. 2003; Moriasi
et al. 2007; Li et al. 2014; Du et al. 2014), as well as N
budgeting approaches such as net anthropogenic nitrogen in-
puts (NANI) (Han et al. 2011; Hong et al. 2012; Howarth et al.
2012), are available for quantifying the impact of anthropo-
genic N inputs on riverine N fluxes. However, the calibration
procedures for these models contain considerable uncertainty
since measured riverine N fluxes are a mixture of N and water
sources with different ages and the lag time is often larger than
the temporal extent of available calibration data (Meals et al.
2010; Bouraoui and Grizzetti 2014). Due to the complexities
of understanding transit time and biogeochemical mecha-
nisms for N passing through the soil profile, vadose zone,
and groundwater to the river network (Meals et al. 2010;
Hamilton 2012; Sebilo et al. 2013), the N leaching lag effect
is not well addressed and formulated in most current water-
shedmechanistic models (Meals et al. 2010; Sanford and Pope
2013; Bouraoui and Grizzetti 2014). For example, values for
groundwater residence time in the SWAT model range from 0
to 500 days, which is much lower than estimated residence
times (years to decades) derived from stable isotope tracers
(mainly 18O and 3H) (Iqbal 2002; Phillips and Lindsey 2003;
Tesoriero et al. 2013). Similarly, the HSPF model does not
consider such long residence times for groundwater (Sanford
and Pope 2013).

While lumped watershed models and the NANI budgeting
approach are not able to assess the fine temporal resolutions
(daily, monthly, and seasonal) available from mechanistic
models, they are widely applied to quantify the relationship
between anthropogenic activities and riverine N exports due
to their simple structure and limited data requirements (Shen
and Zhao 2010; Howarth et al. 2012; Bouraoui and Grizzetti
2014). Lumped models and the NANI budgeting approach
generally assume that the N status of soils, aquifers, and bio-
mass is at steady state (at least over a multi-year period). Thus,
they are commonly applied to predict riverine N flux using a
multi-year average temporal resolution to avoid the uncertain-
ty derived from the N leaching lag effect (De Wit et al. 2003;

Howarth et al. 2006; Swaney et al. 2012). However, a major
challenge remains in determining the appropriate length of the
multi-year period that should be used to estimate N source
inputs to satisfy the steady-state assumption. Furthermore,
lumped models and the NANI budgeting approach cannot
explicitly address the lag effect of N leaching to rivers.

Overall, current watershed models do not effectively rep-
resent the lag effect of anthropogenic N inputs on riverine
export, resulting in a paucity of quantitative knowledge
concerning such a lag effect at the watershed scale. This study
developed a lagged variable model (LVM) for determining
temporally dynamic exports of watershed NANI by rivers
and to quantify the contribution of NANI from any previous
year (i.e., legacy N sources) to annual riverine TN export. We
introduced a Koyck transformation approach from the eco-
nomic literature to deal with models having an indefinite num-
ber of lag terms (Ravines et al. 2006). This approach is able to
transform the indefinite number of lag terms from previous
years’ NANI in the LVM into a lag term incorporating the
previous 1 year’s riverine TN flux, enabling us to inversely
calibrate the unknown parameters in the LVM from measur-
able variables using Bayesian statistics. The efficacy of the
model was demonstrated for a 31-year water quality record
(1980–2010) for TN fluxes from the upper Jiaojiang water-
shed in eastern China. Furthermore, the maximum allowable
NANI and the required NANI reduction for attaining a target
riverine TN concentration (such as 1.0 mg N L−1) were in-
versely estimated by the calibrated LVM. The model results
will informwater resource research andmanagement efforts to
improve watershed N modeling and N control strategies.

Materials and methods

Watershed description

The upper Jiaojiang watershed is located in the highly devel-
oped Taizhou region of Zhejiang Province, China (Fig. 1).
The sampling location for this study was 55 km upstream of
Taizhou Estuary. The river drains a total area of 2474 km2 and
has an average annual water depth of 5.42 m and discharge of
72.9 m3 s−1 at the sampling location. There is no river regula-
tion, such as dams and transboundary water withdrawal facil-
ities. The climate is subtropical monsoon having an average
annual temperature of 17.4 °C and average annual precipita-
tion of 1400 mm. Rainfall mainly occurs in May–September
with a typhoon season in July–September. Agricultural land
(including paddy field, garden plot, and dry land) averaged
~12 % of total watershed area in 1980–2010 (Table 1), with
developed land (including rural and urban residential lands,
roads, and mining and industry lands), forest, and barren land
(including surface waters, wetlands, rock, and natural reserva-
tion land) contributing ~3, ~67, and ~18 %, respectively. The
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economic role of agriculture has been increasingly replaced by
industry since the 1990s, resulting in a remarkable reduction
(~40 %) in chemical N fertilizer application since 2000. Ag-
ricultural land area irrigated and drained with cement channels
and pipes increased by ~2-fold since 2000 (Electronic
supplementary material A).

Evaluation of change in agricultural soil available
nitrogen

Extensive soil samples (1 composite sample/15 ha for plain
regions and one composite sample per 25 ha for hilly regions)
were collected from the top 20-cm layer of agricultural lands
(paddy field, dry land, and garden plot) in the watershed by

the local Agriculture Bureau in 1984 and 2009. Available N
was measured in the upper 20-cm layer at the same location
(n=195) in both years and used to evaluate changes between
1984 and 2009 (Electronic supplementary material B).

Riverine TN flux estimate

River water samples were collected once every 4 to 8 weeks
during the 1980–2010 study period (n=250 sampling times)
(Fig. 1). Data for river TN and nitrate concentrations, daily
discharge, and daily precipitation were obtained from the local
Environment Protection Bureau, Hydrology Bureau, and
Weather Bureau, respectively. Daily river discharge records
in 1980–2010 were divided into high (0–30 %), medium

Table 1 Characteristics of land-
use distribution, population,
domestic animal, and
hydroclimate for the upper
Jiaojiang watershed over the
1980–2010 period

Periods 1980s 1990s 2000s

Agricultural land 11 % 11 % 13 %

Developed land 2 % 3 % 3 %

Forest 68 % 68 % 67 %

Barren land 18 % 18 % 17 %

Annual area planted to crops (km2) 636.6 600.9 469.5

Precipitation (m year−1) 1.37 1.42 1.42

River water discharge (m3 s−1) 72.2 77.5 70.7

Population density (capita km−2) 248 266 288

Animal density (capita km−2) 107 80 99

Drained agricultural land area percentage 19 % 18 % 29 %

The number of each type of animal is converted into the number of pigs according to their nitrogen excretion rates
as shown in Table D4 in the Electronic supplementary material. All values are the average for each time period

Fig. 1 Location of upper Jiaojiang watershed in China and Zhejiang Province and the river hydrology and water quality sampling site
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(30–70 %), and low flow (70–100 %) regimes using the du-
ration curve method (Chen et al. 2012). To estimate annual TN
flux based on the discrete TN concentration monitoring data,
the LOADEST model (Sun et al. 2013) was applied for
predicting daily TN concentration and flux, resulting in high
R2 (R2=0.73 for concentration and R2=0.90 for flux, n=250,
p<0.001) and low average relative error (±5 % for concentra-
tion and ±3% for flux) between measured and modeled values
(Electronic supplementary material C).

NANI estimation and uncertainty analysis

NANI was estimated as the sum of four major components:
atmospheric N deposition, commercial fertilizer N applica-
tion, agricultural N fixation, and net food, feed, and seed N
input (Han et al. 2011, 2014; Hong et al. 2012; Howarth et al.
2012). The net food and feed N input were calculated as the
sum of human and livestock N consumption minus the sum of
livestock and crop N production (Electronic supplementary
material D).

To gain insight into the uncertainty of NANI estimation, an
uncertainty analysis was performed using Monte Carlo simu-
lation (Electronic supplementary material D). In performing
the Monte Carlo simulation, we assumed that all the model
parameters in the NANI estimation followed a normal distri-
bution with a coefficient of variation of 30 % for each of the
parameters (Yan et al. 2011; Ti and Yan 2013; Chen et al.
2014). A total of 10,000 Monte Carlo simulations were per-
formed to obtain the mean and 95 % confidence interval for
annual NANI values.

Development of the lagged variable model for riverine TN
export

The model developed in this study was inspired by previous
watershed statistical models (De wit et al. 2003; Li et al. 2014;
Bouraoui and Grizzetti 2014), where the riverine N flux was
modeled using a non-linear regression equation based on N
sources and watershed attributes at a multi-year average reso-
lution. NANI were used instead of various N sources (i.e.,
fertilizer, animal waste, domestic sewage, and atmospheric
deposition) as model input to avoid the introduction of new
uncertainty with estimates of N flows among human, animal,
and vegetation biomass within the watershed. Furthermore,
the model was developed at a yearly resolution rather than at
a daily/monthly/seasonal resolution, since watershed data
concerning N sources and sinks are usually only available
for annual time steps.

NANI has been widely recognized as an effective predictor
of riverine N fluxes and their relationship is commonly de-
scribed using an exponential function due to the effects of
progressive N saturation in landscapes (McIsaac et al. 2001;
Han et al. 2009; Hong et al. 2012; Chen et al. 2014). In

addition, fractional export of NANI by rivers is strongly relat-
ed as a power function to various watershed attributes, includ-
ing hydroclimate (e.g., water yield, precipitation, and temper-
ature) (McIsaac et al. 2001; Dewit et al. 2003; Han et al. 2009;
Howarth et al. 2012; Li et al. 2014), land use (Groffman et al.
2004; Han et al. 2009), and agricultural management (e.g.,
drainage systems, fertilizer application, and tillage) (Sobota
et al. 2009; Kopáček et al. 2013; Chen et al. 2014). Current
models are generally established using a multi-year average
temporal resolution to reduce the uncertainty derived from the
N leaching lag effect (Howarth et al. 2006; Hong et al. 2012;
Swaney et al. 2012; Li et al. 2014). However, annual riverine
TN export originates from both the current year’s NANI and
legacy N sources derived from previous years’ NANI that are
transiently stored in the watershed (e.g., soils and aquifers)
(Meals et al. 2010; Hong et al. 2012; Tesoriero et al. 2013;
Bouraoui and Grizzetti 2014; Chen et al. 2014). Therefore, we
developed the following lagged variable model (LVM) for
annual riverine TN flux at the watershed outlet (Ft, kg
N ha−1 year−1) that incorporates both NANI from the current
year and from any previous year (lag terms) based on the
observed relationships between NANI and riverine N flux in
previous studies (McIsaac et al. 2001; Han et al. 2009;
Swaney et al. 2012; Chen et al. 2014):

Ft ¼ a∏
m

j¼1
θ
b j

t; jexp β0NANIt þ β0

Xn
i¼1

ρt−iNANIt−ið Þ
" #

ð1Þ

where subscript t denotes the tth year, NANIt−i denotes NANI
in the previous ith year, and θt,j denotes the normalized value
of the jth explanatory variable that influences fractional export
of NANI to rivers in the ith year. Unknown parameters a and
bj denote the response magnitude of N export efficiency to
changes in explanatory variables (e.g., meteorology, hydrolo-
gy, and land use). Unknown parameter β0 represents the ex-
port fraction coefficient for the current year’s NANIt and his-
torical (legacy) NANIt−i to the river, which is independent of
watershed temporal attributes and reflects the influence of
inherent watershed geological and geomorphologic character-
istics. Unknown parameter ρt−i denotes the residual coeffi-
cient of historical NANIt−i. Expressing Eq. (1) in a linear form
after a logarithmic transformation yields:

ln Ftð Þ ¼ ln að Þ þ
Xm
j¼1

bjln θt; j
� �� �þ β0NANIt

þ β0

Xn
i¼1

ρt−iNANIt−ið Þ ð2Þ

Due to year-to-year N removals via riverine export, deni-
trification, biomass uptake/storage, and wood product export
(Van Breemen et al. 2002), the remaining NANI from the
previous years in the watershed (e.g., soils, aquifers, and
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sediments) decreases over time. Therefore, the historical
NANIt− i residual coefficient ρt− i was assumed as a power
decay function of relevant years and explanatory variables:

ρt−i ¼ λ

Xn
i¼1

∏
n

k¼1
Rt‐i;k

 !
ð3Þ

where λ is the decay coefficient for historical NANIt−i and
denotes the response magnitude of decay to changes in ex-
planatory variables, Rt−i, k denotes the normalized value of the
kth explanatory variable that influences N removal through
riverine export, denitrification, and forest biomass uptake/
storage/export. Based on Eq. (3), Eq. (2) can be further
expressed as:

ln Ftð Þ ¼ ln að Þ þ
Xm
j¼1

bjln θt; j
� �� �þ β0 NANIt þ λ

∏
n

k¼1
Rt−1;k

NANIt−1 þ…þ λ
∏
n

k¼1
Rt−1;k þ…þ ∏

n

k¼1
Rt−i;kNANIt−i

0
BB@

1
CCA ð4Þ

Equation (4) has an indefinite number of lag terms
from previous years’ NANI; thus, it cannot be solved
directly. A Koyck transformation approach that is com-
monly applied in economic analyses (Ravines et al.

2006) was adopted to express the indefinite number of
lag terms from any previous year’s NANI in Eq. (4) with
a lag term. Based on Eq. (4), riverine TN flux in the t−
1th year (Ft−1) can be estimated as:

ln Ft−1ð Þ ¼ ln að Þ þ
Xm
j¼1

bjln θt‐1; j
� �� �þ β0 NANIt−1 þ λ

∏
n

k¼1
Rt−2;k

NANIt−2 þ…þ λ
∏
n

k¼1
Rt−2;k þ…þ ∏

n

k¼1
Rt−i;kNANIt−i

0
BB@

1
CCA ð5Þ

Multiplying λ
∏
n

k¼1
R
t−1;k

to both sides and subtracting Eq. (5)
from Eq. (4) yields:

ln Ftð Þ ¼ ln að Þ þ
Xm
j¼1

bjln θt; j
� �� �þ β0NANIt

þ λ
∏
n

k¼1
Rt−1;k

ln Ft−1ð Þ−ln að Þ−
Xm
j¼1

h
bjln θt−1; j

� �" #
ð6Þ

The resulting Eq. (6) based on the Koyck transformation
involves a finite number of variables (NANIt, θt, j, θt−1,j, Rt−1,
k, and Ft−1) and parameters (a, bj, β0, and λ) that can be
calibrated. Most importantly, this model addresses the poten-
tial contribution from any previous years’ NANI through in-
corporating one lag term and overcomes the difficulty raised
from determining how many previous years of NANI should
be considered in modeling riverine N export.

To calibrate the unknown parameters a, bj, β0, and λ in the
LVM based on Eq. (6), a Bayesian approach coupled with the
Markov Chain Monte Carlo algorithm and a Gibbs sampler
was adopted using WinBUGS 1.4 (Chen et al. 2012). This
methodology has been widely and successfully applied for
calibrating the lagged variable model parameters in economic
analyses (Ravines et al. 2006). A detailed description of the

Bayesian calibration approach for relevant water quality mod-
el parameters is available in Shen and Zhao (2010) and Chen
et al. (2012). According to parameter values from previous
relevant studies (McIsaac et al. 2001; Howarth et al. 2006;
Han et al. 2009; Chen et al. 2014), the prior distribution of
the four unknown parameters was assumed to follow a normal
distribution, i.e., a, 5.0±5.0; bj, 1.0±1.0; β0, 0.018±0.018;
and λ, 0.5±0.5. The WinBUGS code for Bayesian calibration
is available in Electronic supplementary material E. To obtain
the best-fit posterior model for parameters a, bj, β0, and λ, two
Markov chains were initiated at different arbitrary initial
values as well as being independent of each other using
WinBUGS 1.4. The generated posterior distributions of
parameters were all based on 10,000 MCMC interactions
(Chen et al. 2012) until the model successfully converged
according to a visual inspection of the marginal trace plots
and Monte Carlo errors <10 % of standard deviation
(Chen et al. 2012). After model convergence, a total of
1000 samples for each unknown quantity were randomly
taken from the following iterations to reduce autocorrela-
tion (Shen and Zhao 2010). The agreement for annual TN
fluxes between those estimated by LOADEST and those
modeled by Eq. (6) was evaluated using correlation (R2)
and Nash–Sutcliffe coefficient metrics (Moriasi et al.
2007; Du et al. 2014).
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To determine the major watershed temporal attributes as
the most efficient explanatory variables for θt, j and Rt−1, k in
Eq. (6), firstly, only water yield (W, m year−1) was adopted in
both θt, j and Rt−1, k for calibrating unknown parameters a, bj,
β0, and λ using Bayesian statistics. Then a correlation analysis
was adopted to determine the autocorrelations among the po-
tential explanatory variables. For the upper Jiaojiang water-
shed, there were significant correlations among temperature
(T, °C), drained agricultural land area percentage (DA), and
developed land area percentage (D; i.e., r=0.55 for T vs DA,
r=0.84 for T vsD, and r=0.92 for DAvsD, p<0.01), while no
significant correlations were found between W and each of
these factors. However, there was a close relationship between
Wand precipitation (r=0.99, p<0.01). To avoid the influence
of overlap among introduced explanatory variables, the fol-
lowing combinations of independent explanatory variables
were further adopted in θt, j and Rt−1, k, i.e., θt, j, W and DA,
W and D, and W and 1/T; Rt−1, k, W×DA, W×D, and W×T,
resulting in eight alternative formats for the model (Electronic
supplementary material F). Finally, the best set of explanatory
variables for Eq. (6) was determined according to model
agreement among the alternative model formats. All individ-
ual explanatory variables and their products used for calibra-
tion were reduced to the same scale using the maximum scal-
ing method (Chen et al. 2012), i.e., Xt, i/Xm, i, where Xt, i is the
value of the ith explanatory variable or the product of several
variables in tth year and Xm, i is the maximum of the ith ex-
planatory variable or product of several variables among the
31 years.

Based on the calibrated posterior parameters, export of
NANI by rivers in the current year (FNANI t , kg
N ha−1 year−1) and in the succeeding years (FNANIt+1, kg
N ha−1 year−1) can be estimated according to Eq. (1) as fol-
lows:

FNANIt ¼ a∏
m

j¼1
θ
b j

t; jexp β0NANItð Þ−a∏
m

j¼1
θ
b j

t; j Current yearð Þ

ð7Þ

FNANItþ1 ¼ a∏
m

j¼1
θ
b j

tþ1; jexp β0λ
∏
n

k¼1
Rt;k

NANIt

0
BB@

1
CCA−a∏

m

j¼1
θ
b j

tþ1; j

Succeeding yearsð Þ

ð8Þ

Estimation of required NANI reduction

To demonstrate the application of the lagged variable model
for water quality management, the maximum allowable NANI
and required NANI reduction were determined using the
coupled posterior a, bj, β0, and λ values. The maximum al-
lowable NANI (NANIt, m, kg N−ha−1−year−1), which is the
allowable anthropogenic N amount that can be input to the
watershed and still meet the desired water quality target (i.e.,
TN=1.0 mg N L−1 in this study, which is designated by the
local environment protection agency) at the river outlet in the
tth year, can be inversely estimated from Eq. (6):

NANIt;m ¼ ln Ft;m

� �
−ln að Þ−

Xm
j¼1

bjln θt; j
� �� �

−λ
∏
n

k¼1
Rt−1;k

ln Ft−1;m
� �

−ln að Þ−
Xm
j¼1

bjln θt−1; j
� �� �( )

β0

ð9Þ

where Ft, m and Ft−1, m are the maximum allowable riverine
TN flux in the tth and t−1th years, respectively, which were
calculated by dividing the product of target TN concentration
and river discharge by watershed area. Required NANI reduc-
tion was then estimated as the difference between NANIt, m
and existing NANIt.

Results

Riverine TN export in relation to NANI, hydroclimate,
and land use

Over the 1980–2010 study period, although there were no
significant temporal trends in either precipitation or water

yield (p>0.05; Fig. 2a), estimated riverine TN flux increased
by 91% from an average 8.5 kg N ha−1 year−1 in the 1980s, to
10.1 kg N ha−1 year−1 in the 1990s, and to 13.0 kg
N ha−1 year−1 in the 2000s (Fig. 2b). Annual mean TN con-
centration steadily increased by 120 % from 1980 (0.94 mg
N L−1) to 2010 (2.10 mg N L−1). Since 1993, annual mean TN
concentration has exceeded the regulatory TN concentration
target of 1.0 mg N L−1 that is set by the local environmental
protection agency. Estimated NANI increased from 38.0 kg
N ha−1 year−1 in 1980 to 76.9 kg N ha−1 year−1 in 1999
followed by a decline from 77.6 kg N ha−1 year−1 in 2000 to
67.3 kg N ha−1 year−1 in 2010 (Fig. 2c). Since 2000, NANI
showed a decreasing trend due to decreased chemical N fer-
tilizer application and agricultural biological N fixation from
decreased crop cultivation area (~44 %).
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Annual riverine TN flux was positively correlated with
NANI, and their relationship was best fit with an exponen-
tial function (Table 2). Exponential relationships were also
found between TN exports and net food, feed and seed
input, and between TN export and atmospheric deposition,
while no significant relationships were found between TN
export and other individual inputs. Compared with NANI,
water yield (45 vs 26 %), precipitation (57 vs 26 %),
drained agricultural land area (32 vs 26 %), and developed
land (47 vs 26 %), explained a larger fraction of variability
for annual riverine TN export, which were best described
by power functions. These analyses support the exponen-
tial and power functions adopted in developing the lagged
variable model Eq. (1).

The lagged variable model calibration

When only annual water yield was considered as the
explanatory variable for θt, j and Rt−1, k in Eq. (6), the
Bayesian calibrated parameters a, bj, β0, and λ had small
Monte Carlo errors (<5 % of standard deviation; an es-
timate of the difference between the mean of the sampled
values and the true posterior mean) (Table F1 of
Electronic supplementary material F). During the 10,
000 iterations, the trace plots for the four parameters
successfully converged after 4000 iterations, and the pos-
terior samples of the model parameters were kept for
further inference (Fig. F1 of Electronic supplementary
material F). The calibrated posterior parameters yielded
high agreement between modeled riverine TN fluxes
using Eq. (6) and LOADEST estimated values (Fig. 3)
with a high R2 value (0.90), high Nash–Sutcliffe coeffi-
cient (0.90), and low relative errors (<5 %). Further con-
sideration of drained agricultural land area, developed
land area, and temperature as explanatory variables for
θt, j and Rt−1, k decreased the model’s predictive capabil-
ity, as indicated by lower R2 values (0.53–0.88) and
Nash–Sutcliffe coefficients (0.52–0.88) than the model
only considering water yield (Table F1 of Electronic

Table 2 Results of regression
analysis between year-to-year
riverine TN flux (y, kg
N ha−1 year−1) and various
independent parameters (x) in
1980–2010 (n=31)

Independents Regression equations R2

NANI (kg N ha−1 year−1) y=4.424e0.0136x 0.26**

Atmospheric deposition (kg N ha−1 year−1) y=3.076e0.0459x 0.44**

Net food, feed, and seed input (kg N ha−1 year−1) y=7.964e0.06x 0.40**

Precipitation (m year−1) y=5.763x1.755 0.57**

Water yield (m year−1) y=11.149x0.815 0.45**

Drained agricultural land (%) y=28.577x0.660 0.32**

Developed land (%) y=1499.9x1.382 0.47**

**p<0.01, significant level
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supplementary material F). Therefore, this study used
water yield (W) as the optimal explanatory variable
resulting in Eq. (1) being explicitly expressed as:

Ft ¼ 2:653W 0:684
t exp 0:0075NANIt þ 0:0075

Xn
i¼1

0:600

Xn
i¼1

Wt−i

NANIt−i

0
BBB@

1
CCCA

2
6664

3
7775

ð10Þ

Dynamic export of annual NANI by river over years

From Eq. (7) and the calibrated parameters shown in Eq. (10),
estimated mean riverine export of annual NANI from the cur-
rent year was 1.11 kg N ha−1 year−1 on average (range, 0.50–
1.73 kg N ha−1 year−1; Fig. 4a), which represented only 1.7 %
(range, 1.2–2.6 %) of the corresponding year’s NANI. From
Eq. (8), estimated mean export in the succeeding 1–30 years
ranged from 0.002 to 3.5 %/year (i.e., 2.2–17.5 % for cumu-
lative export), with 95% of export occurring in the succeeding
10 years (Fig. 4a). Total cumulative export over the study
period was 269.0 kg N ha−1, which represented 14 % of total
NANI. Over the 1980–2000 period, cumulative riverine ex-
port of annual NANI in the current and succeeding 10–
30 years ranged from 4.42 to 13.9 kg N ha−1 year−1 and dem-
onstrated a significant upward trend (R2=0.82, p<0.01;
Fig. 4b). Correspondingly, the cumulative riverine export

fraction of NANI varied from 10.3 to 17.6 %, which also
exhibited a significant increasing trend with time (R2=0.85,
p<0.01; Fig. 4b). The decreasing trends observed for cumu-
lative export flux and fraction over the 2001–2010 period
(Fig. 4b) result from their estimates using progressively fewer
years (1–10 years) of future years’ export data; thus, NANI
from 2001–2010 will continue to export a considerable flux to
the river in the 2011–2020 period. If we assume that annual
water yield (0.57 m year−1) and NANI (69.9 kg N ha−1 year−1)
in 2011–2020 remain at their average values for 2000–2010
(Fig. 2), the model predicted that annual riverine TN flux will
increase ~1.2 % each year between 2011 and 2020.

Riverine TN source apportionment

The natural background N export was determined by setting
NANIt and NANIt−i simultaneously to zero in Eq. (10) (i.e.,
2.653W0.684; W is maximum scaled annual water yield) (Han
et al. 2009). Over the 1980–2010 period, estimated mean
background riverine TN export was 1.84 kg N ha−1 year−1

on average (range, 1.20–2.65 kg N ha−1 year−1) and contrib-
uted 18.0 % (range, 10.9–23.9 %) of the observed annual
riverine TN export. As estimated by Eq. (7), current year’s
NANI only contributed 1.11 kg N ha−1 year−1 (range, 0.50–
1.73 kg N ha−1 year−1) and 10.3 % (range, 7.2–13.3 %) of the
annual riverine TN flux (Fig. 5a). Previous years’ NANI (leg-
acy N sources) contributed 7.88 kg N ha−1 year−1 (range,
3.68–16.1 kg N ha−1 year−1) and 71.7 % (range, 64.2–
81.1 %) of the annual riverine TN flux (Fig. 5a). Of annual
riverine TN flux, 67.6 % was from the previous 10 years’
NANI on average (Fig. 5b). As expected, the contribution of
previous years’ NANI decreased with increasing time due to
removal via denitrification, biomass uptake/storage/export
and riverine export, decreasing from 11.5 % for the previous
1st year to 2.1 % for the previous 10th year (Fig. 5b).
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Required NANI reduction to meet water quality targets

From Eq. (9), estimated mean maximum allowable NANI to
meet the water quality standard of TN=1.0 mg N L−1 ranged
from 29.8 to 85.7 kg N ha−1 year−1 with an average of 56.0 kg
N ha−1 year−1 for the upper Jiaojiang watershed over the
1980–2010 period (Fig. 6). The maximum allowable NANI
increased with increasing water yield (R2=0.72, p<0.01)
resulting in larger and smaller values during high and low
runoff years, respectively. When comparing the maximum
allowable NANI with the existing NANI, the resulting NANI
reductions ranged from −26.8 to 39.3 kgN ha−1 year−1 (Fig. 6)
and exhibited an increasing trend over the 1980–2010 study
period (R2=0.47, p<0.01). Negative values denote an allow-
able increase of NANI to the watershed that would still allow
attainment of the TN target, which mainly occurred prior to
1992, consistent with the observed lower river TN concentra-
tion for the 1980–1992 period (<1 mg N L−1; Fig. 2b). In
contrast, for the 1993–2010 period, existing NANI would
need to be reduced by 1 % (wetter years) to 57 % (drier years)
to attain the target riverine TN level.

Discussion

Efficiency of the lagged variable model

The lagged variable model (LVM) that only considered water
yield as the explanatory variable for θt, j and Rt−1, k provided
the best performance for the upper Jiaojiang River watershed
(Table F1 of Electronic supplementary material F). Small
Monte Carlo errors (Table F1 of Electronic supplementary
material F, <5 % of standard deviations) and well-mixed pos-
terior samples after the 4000th iteration for parameters a, bj,
β0, and λ (Fig. F1 of Supporting Information F) indicate that
the Bayesian model converged well and the posterior param-
eters were robust and unique (Shen and Zhao 2010; Chen et al.
2012). The strong agreement observed between the LVM
modeled and LOADEST estimated riverine TN fluxes (R2

and Nash–Sutcliffe coefficient=0.90; Fig. 3) suggest that the
calibrated results are highly consistent, especially considering

the complexities of N delivery across watershed landscapes to
rivers. These calibrated results equal or exceed those obtained
with other watershed N simulations using mechanistic models
such as SWAT, AGNPS, and HSPF and lumped watershed
models such as the export coefficient model, SPARROW
and PolFlow model, as well as statistical models developed
between NANI and riverine TN flux (Nash–Sutcliffe coeffi-
cient varied between 0.65 and 0.90 (>0.65 is considered very
good as reviewed by Moriasi et al (2007)) and R2 varied be-
tween 0.70 and 0.96 (McIsaac et al. 2001; De wit et al. 2003;
Li et al. 2014; Han et al. 2009; Chen et al. 2014). Although
this LVM lacks the ability to predict seasonal/monthly/daily
riverine N export (it is difficult to evaluate watershed N bud-
gets at finer temporal resolutions) compared with mechanistic
models, it has the advantage of simplicity and importantly can
quantify the contribution of legacy N sources (the lag effect of
NANI) to riverine N exports. Other potential watershed attri-
bute variables (e.g., temperature, developed land area, and
drained agricultural land area), which can also influence riv-
erine N export through increasing denitrification and wood
product export and non-harvested biomass uptake/storage
and decreasing N retention capacity (Groffman et al. 2004;
Han et al. 2009; Sobota et al. 2009; Howarth et al. 2012; Chen
et al. 2012; Kopáček et al. 2013), had no significant impact on
the LVMefficiency in the upper Jiaojiang watershed (Table F1
of Electronic supplementarymaterial F). This suggests that the
influence of these N removal/storage pathways on riverine N
export might be stable and has been averaged and incorporat-
ed by fitting coefficients a, bj, β0, and λ for the studied water-
shed. Furthermore, the calibrated posterior export fraction co-
efficient β0 that reflects the influence of inherent watershed
geological and geomorphologic characteristics was generally
steady among the alternative formats of the LVM containing
various explanatory variables (Table F1 of Electronic
supplementary material F). These findings further support
the robustness of the developed LVM.

From the calibrated LVM, estimated average natural back-
ground export of 1.84 kg N ha−1 year−1 (range, 1.20–2.65 kg
N ha−1 year−1) is comparable with estimated results from pre-
vious studies (i.e., 0.7–2.8 kg N ha−1 year−1) (Han et al. 2009;
Howarth et al. 2012). Estimated cumulative export fraction of
total NANI by the river over the study period was ~14 %
(Fig. 4), which falls within the range of previous estimates
(10–40 %) for export fractions of multi-year averaged NANI
(Han et al. 2009; Howarth et al. 2012; Swaney et al. 2012).
The 86 % imbalance between riverine export and NANI is
believed to primarily result from denitrification, wood product
export and forest biomass uptake/storage, as well as storage in
soil, vadose zone, and groundwater (Van Breemen et al.
2002). Field studies conducted in surrounding regions esti-
mated that soil storage and leaching to groundwater could
account for ~20 % of the applied chemical and manure N
(Yan et al. 2011; Ti and Yan 2013). This is consistent with
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the 105 kg N ha−1 of net available N accumulation (accounted
for ~6 % of cumulative NANI over the 1984–2009 period)
observed in upper 20-cm layer of agricultural soils between
1984 and 2009 (Fig. 7b) and the 2.7-fold increase of flow-
adjusted nitrate concentration (nitrate represented 55 % of
measured TN in 1980–2010 on average) from 1980 to 2010
during the baseflow period (70–100 % flow duration interval,
when discharge is mainly supplied by groundwater inputs,
Fig. 7a) in the studied watershed. Considering the large per-
centage of woodland (~67 %) and the high atmospheric N
deposition rate (Fig. 2c) in the upper Jiaojiang watershed,
wood product export, and forest biomass storage may account
for a considerable proportion of the N imbalance. Assuming
that ~15 % of NANI (or 33 % of atmospheric N deposition)
was exported by wood products and forest biomass storage as
observed in eastern China (Sheng et al. 2014), denitrification
would by difference account for the fate of ~51 % of NANI in
the upper Jiaojiang watershed. This denitrification percentage
is similar to the sum of agricultural land denitrification (i.e.,
36–4 % of total N applied) (Yan et al. 2011; Ti and Yan 2013)
and in-stream denitrification (i.e., 10–35 % of total N input to
rivers) (Yan et al. 2011; Chen et al. 2012) in the surrounding
region. These comparisons further verify the efficacy of the
calibrated LVM.

It should be pointed out that the function types used in the
LVM, which were supported by the observed relationships
between riverine TN flux and each of the relevant influencing
factors in this study (Table 2), might be directly applicable to
other watersheds with similar characteristics but may require
optimization for application in other watersheds. The devel-
oped LVM is subject to the uncertainty derived from the as-
sumption that new NANI and legacy N sources experience the
same hydrological pathway to rivers. With increasing time,
more legacy N might be distributed into subsurface soils, va-
dose zone, and groundwater, while newly added NANI might
be retained in the surface soils and sediments, resulting in a

potential difference in hydrological drivers influencing new
NANI vs legacy N export to rivers. To improve the efficiency
and universality of the model in the future, it may be possible
to separate runoff components (e.g., surface runoff, subsurface
flow, and groundwater recharge indices or baseflow) as ex-
planatory variables θt, j, considering the differences in transit
times among groundwater (decades), surface runoff (days to
months), and soil water (months to years) (De wit et al. 2003;
Sanford and Pope 2013; Tesoriero et al. 2013). The LVM
assumes annual NANI removal via riverine export, denitrifi-
cation, biomass uptake/storage, and wood product export as a
power decay function with time, which might be inefficient in
matching the complexities of N transport and transformation
processes. It may be possible to refine these functions to better
reflect their response to changes in watershed attribute vari-
ables. The legacy N originates primarily from non-point
sources (Meals et al. 2010); thus the model could be further
refined through distinguishing point source vs non-point
source model inputs. Due to the limited information available
in previous studies, the prior distribution for the three un-
known coefficients a, bj, β0, and λ was assumed to follow
normal distributions for Bayesian calibration, which might
not fully reflect the reality and therefore require more quanti-
tative knowledge for future improvement. It is not possible to
verify modeled results by direct observations due to the un-
availability of reliable and efficient approaches for measuring
N delivery processes across various landscapes to rivers, as
well as the lag time at the watershed scale. Measurements of
18O, 15N, and 3H isotopes (Sanford and Pope 2013; Tesoriero
et al. 2013), which can be used to address the riverine N
sources and the ages of groundwater and surface water, are
required to verify the modeled results in the future. Extensive
information from the literature and direct measurements for
the examined watershed, including changes of soil and
groundwater N levels, denitrification and forest N uptake ef-
ficiencies, can also contribute to indirectly verify various com-
ponents of the model results.

Cause of the lag effect on riverine N export

The LVM determined a considerable lag effect of NANI on
changes in riverine TN flux (Fig. 4a), which is responsible for
the contrasting trend between decreasing NANI and increas-
ing riverine TN export in the 2000s in the upper Jiaojiang
River watershed (Fig. 2b, c). Long transit times for N passing
through the progressively N-saturated landscapes to the river
are expected to be a major cause of the temporal lag effect of
NANI on riverine export. Annual riverine TN flux was expo-
nentially correlated with NANI, atmospheric deposition, and
net food, feed and seed input (Table 1), suggesting that small
changes in N input may lead to relatively large changes in
riverine N flux, as the biological N assimilation capacity of
the watershed becomes progressively more N saturated
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(McIsaac et al. 2001; Howarth et al. 2006; Worrall et al. 2009;
Swaney et al. 2012). In temperate forest ecosystems, a thresh-
old value of ~10.7 kg N ha−1 year−1 has been suggested for N
saturation, above which significantly higher N export fluxes to
rivers were observed (Howarth et al. 2012; Swaney et al.
2012). Similarly, riverine N exports in forest ecosystems in-
creased dramatically and non-linearly as atmospheric deposi-
tion exceeded 10 kgN ha−1 year−1 in forests of southern China
(Fang et al. 2009). Observed NANI (38.0–77.6 kg
N ha−1 year−1) and atmospheric N deposition (17.5–31.3 kg
N ha−1 year−1) over the 1980–2010 period in the upper
Jiaojiang watershed (Fig. 2c) far exceed these thresholds, sug-
gesting progressive N saturation of the terrestrial and aquatic
systems. Due to progressive N saturation, a considerable pro-
portion of annual NANI and historical N cannot be retained in
the watershed and passes through the soil and groundwater to
rivers over long transit times, resulting in the increasing river-
ine TN export even following a 13% decrease of NANI in the
2000s (Fig. 2b).

In the upper Jiaojiang watershed, the LVM estimated 2.2–
17.5 % of annual NANI was exported by the river in the
succeeding 1–30 years (Fig. 4a). This result is consistent with
a long-term field study using a 15N tracer that showed 8–12 %
of the applied 15N fertilizer was exported to the hydrosphere in
the succeeding 30-year period (Sebilo et al. 2013). The ma-
jority (~95 %) of riverine export of annual NANI occurred in
the succeeding 10 years (Fig. 4a), implying at least an 11-year
lag time of NANI (current year plus succeeding 10 years) to
riverine export. This estimated N leaching lag time is support-
ed by trends in annual mean TN concentration/flux (Fig. 2b)
and flow-adjusted nitrate concentrations during the low flow
regime (Fig. 7a). Between 1980 and 1989, despite a 50 %
increase of NANI (Fig. 2c), riverine TN concentration/flux
and baseflow nitrate concentrations did not increase. Begin-
ning in the early 1990s (~11-year lag), both of these riverine N
species experienced increasing concentrations. These in-
creases of TN concentration/flux and nitrate concentrations
continued through 2010, in spite of the 13 % decline in NANI
that was observed from 2000 to 2010. These temporal riverine
N dynamics support the decadal length lag effect between
NANI and riverine N export. Comparable results were ob-
served in the Mississippi River watershed, where current-
year NANI was estimated to influence riverine nitrate fluxes
for 2–9 years (McIsaac et al. 2001). The lag time of N leaching
to rivers is dependent on hydrological and biogeochemical
processes in the watershed (Hamilton 2012). Stable isotopic
tracers (mainly 3H) have shown that delivery times for surface
runoff, soil water/shallow groundwater, and groundwater to
river systems are on the order of months, years, and decades,
respectively (Iqbal 2002; Phillips and Lindsey 2003; Sanford
and Pope 2013; Tesoriero et al. 2013). Incorporation of N into
soil organic matter and subsequent release of this N for poten-
tial leaching to the hydrosphere is also estimated to require

several years to decades (Mulvaney et al. 2001; Sebilo et al.
2013). Estimated magnitudes of lag time by the LVM
(~11 years) and by the statistical model developed for the
Mississippi River watershed (~9 years; McIsaac et al. 2001)
are an average of all processes delaying N delivery from the
watershed to the river outlet.

Influence of lag effect for watershed nitrogen modeling

Due to the lag effect of N leaching to the river, observed
annual riverine TN flux in the upper Jiaojiang River was
mainly derived from legacyN sources, i.e., the previous years’
NANI (~71.7 %, Fig. 5a). This result is consistent with results
observed in field and watershed scale studies where 25–80 %
of annual N loss originated frommineralization of soil organic
matter (Kopáček et al. 2013; Chen et al. 2014) and nitrate
exported from groundwater or baseflow accounted for 30–
40 % of riverine nitrate flux (Iqbal 2002; Lindsey et al.
2003; Sanford and Pope 2013). Similarly, the significant in-
crease of nitrate concentration observed from 1980 to 2009 in
the studied watershed during the low flow regime (Fig. 7a)
and the net available N accumulation observed in upper 20-cm
layer of agricultural soils between 1984 and 2009 (Fig. 7b)
imply an increasing contribution of legacy N from soil and
groundwater to the river N flux. These results stress the need
to consider the lag effect in watershed models to better under-
stand and simulate N delivery lag times often observed be-
tween N applications to landscapes and riverine export
(McIsaac et al. 2001; Meals et al. 2010; Bouraoui and
Grizzetti 2014). The greatest contribution (~95 %) to annual
riverine TN flux originated from the current year plus previous
10 years’ NANI (Fig. 5b), suggesting that the 11-year weight-
ed moving average (Fig. 4a) would be appropriate for N
source inputs to lumped models in this watershed. For water-
shed mechanistic models, an appropriate model calibration
should contain at least an 11-year record of continuous mon-
itoring data to demonstrate riverine N flux changes in re-
sponse to changes in watershed N inputs. These findings are
consistent with Howden et al. (2011), who suggested that a
monitoring period of ≥12 years is required to fully determine
the response of river N fluxes to watershed management
measures.

Implications for N pollution control

The developed lagged variable model provides a quantitative
method that is sensitive to lag times for controlling aquatic N
pollution with a focus on N source reductions without chang-
ing current land use at the watershed scale. Estimated annual
maximum allowable NANI increased with increasing water
yield (R2=0.72, p<0.01), which results primarily from in-
creasing dilution capacity with increasing river discharge
(Chen et al. 2012). To attain the target river TN level
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(1.0 mg N L−1), existing NANI over the 1993–2010 period
would have required a 22 % reduction to reduce the TN flux
by 26 % on average (Fig. 3). This finding is consistent with
modeling results for the Mississippi River watershed where a
14.2 % reduction in NANI was predicted to lead to a 33 %
reduction in annual riverine nitrate flux (McIsaac et al. 2001).
This results from the exponential response in riverine export
(Table 1) to lowering the degree of N saturation in the water-
shed (Howarth et al. 2012; Swaney et al. 2012).

Due to the lag effect, such a predicted disproportionate
reduction in riverine TN flux from cutting NANI results from
successive NANI reductions over several years ( i.e., cumula-
tive effect of previous years’ NANI reduction). Export of an-
nual NANI by the river is limited in the current year but will
contribute to riverine N fluxes for the succeeding 10 years
(Fig. 4a), implying that the effect of NANI reduction can be
expected to take at least one decade to fully reach its cumula-
tive effect in terms of riverine TN export. This result is con-
sistent with observed results in other studies, where the reduc-
tion in riverine N load following cuts to N inputs required at
least one decade to several decades to be fully realized (Sebilo
et al. 2013; Sanford and Pope 2013; Bouraoui and Grizzetti
2014). These findings emphasize that increasing trends for
riverine N fluxes in N saturated landscapes of the world result
from both current and legacy activities over the past decades
(Tesoriero et al. 2013). It is thus important to consider such
time delay when developing and evaluating aquatic N pollu-
tion mitigation or restoration measures. Required NANI re-
duction was negatively correlated with water yield or river
water discharge in 1993–2010 (R2=0.55, p<0.01), suggesting
that NANI reductions would have a more pronounced effect in
years with higher water yields due to a higher export fraction.

Considering high chemical N fertilizer application rates to
agricultural lands in the upper Jiaojiang watershed (~263 kg
N ha−1 year−1, Fig. 2c), the required reduction in NANI can be
most efficiently achieved by reducing nitrogen fertilizer appli-
cation rates, since N fertilizer-use efficiency is generally very
low (~36 %) in this study watershed as well as in surrounding
areas (30–40%, Yan et al. 2011; Ti and Yan 2013). Additional
nitrogen fertilizer reductions could be achieved by more effi-
cient recycling of animal and domestic wastes for land appli-
cation. Considering the increasing net food/feed/seed N input
(Fig. 2c), domestic sewage should be increasingly treated by
sewage treatment plants to avoid direct inputs of N into rivers.
While atmospheric N deposition was also high in this water-
shed over the 2000–2010 period (~30 kg N ha−1 year−1,
Fig. 2c), its reductions are not easily achieved by local man-
agement efforts. Furthermore, given the high contribution of
legacy N sources to the riverine TN flux (Fig. 5), alternative
measures for intercepting surplus N leaching from landscapes
to rivers, including wetlands, riparian buffers, and ecological
ditches, would be beneficial for obtaining a more rapid re-
sponse in riverine TN export reduction (Chen et al. 2012).

Conclusion

This study developed a lagged variable model to quantify the
temporally dynamic export of watershed NANI by rivers over
time. Themodel can determine the contribution of NANI from
the current year and any previous year (i.e., legacy N sources),
as well as natural background sources, to annual riverine TN
export. The identified lag time elapsed between watershed N
inputs and riverine export offers important knowledge for de-
termining how many years of monitoring data are required for
calibrating watershed mechanist models and lumped models.
Using this model, it is further possible to estimate the maxi-
mum allowable NANI and required NANI reduction neces-
sary for attaining a river TN target level, which provides a
quantitative method for guiding watershed N source controls
without changing current land use. The model was developed
with parsimony of model structure and parameters (only four
parameters in this study); thus, it is easy to develop and apply
in other watersheds. Application to the upper Jiaojiang water-
shed demonstrates the efficacy of the model for use by water
resource researchers and managers as a simple and effective
tool for quantifying the lag effect of watershed N leaching to
rivers. In the future, the modeling approach might be im-
proved by adopting various runoff components (surface runoff
vs groundwater) as separate explanatory variables, specifying
net N inputs for different sources (point vs non-point sources)
as model inputs, and individually parameterizing N fates (e.g.,
denitrification, biomass uptake, and wood export). This study
demonstrates the need to consider the lag effect as an improve-
ment to current watershed models and for developing and
assessing N pollution control measures.
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