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Abstract
" This paper describes some new techniques for stochastic modeling of three-
dimensional fracture networks. We use geostatistical simulation methods to repro-
duce features of the spatial structure of the rock such as the variation of fracture
density and fracture orientation in space. For an example of the method we use
mapped fracture data from the Fanay-Augeres nline, in Limousin. France. Two
different sections of a drift wall, S1 and S2, were mapped. The S1 section is wet.
and the S2 section is dry. For each case. the fractures are divided into five different
sets and each set is modeled separately. The fractures in each set are represented
as discs placed randomly in space. The diameter of each disc is chosen indepen-
denty from a fixed probability distribution determined from the trace length distri-
bution. For the location of discs a point process called the parent-daughter process
is used. This process gives a clumping or swarming of fractures not found in the
usual Poisson model. The orentation of the discs is characterized as a tluctuation
about the mean orentation for the set. This fluctuation has a spatial structure that
is simulated with geostatistics. Geostatistical simulations of the two fracture sys-
tems are under way.. The connectivities of the simulations will be assessed to see
if there is any correlation with the fact that the S1 section of drift is wet and the
S2 section is dry.

Introduction

Over the past few years. attemnpts have been made to model the hydroiogy of
fractured rock by collecting data on the individual fractures and synthesizing a model
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of the hvdraulically active fracture network. Numerical models that have been devel-
oped tor this purpose inciude our own (Long et al.. 1982: Long and Witherspoon.
1985) as well as those of Robinson (1984). Dershowitz (1984). Rouleau (1984).
Cacas et al. (1987). and others. These models have in some cases been applied to
the analysis of field data. for example Rouleau (1984), Cacas et al. (1987). and
Long and Billaux (1987). In Long and Biilaux, we explored some techniques for
using geostatistics to modei some of the spatial structrures commonly observed in
fracture systems. [n particular. we modeled the spatial variation of fracture density in
a two-dimensional case.

In this paper. we extend the techniques to the case of three-dimensional fractures
where we can also simuiate the variation of fracture density, and fracture orientation
in space. Data on the conductivity of individual fractures are extremely difficult o
obtain, and we did not have such data. Therefore we do not attempt to stochastically
generate this parameter. As data on the conductivity of individual fractures are so
rare, perhaps the best way to assign this parameter in the model is to use a backfit-
ting method such as that emploved by Cacas et al. (1987). We do not pursue this
procedure in this work. Instead. we concentrate on defining the network geometry in
space and examining its connectivity.

One of the major problems in stochastic. fracture modeling is the inability to
obtain appropriate data directly. An ideal situation for fracture network simulation
would be to have three-dimensional data for some large piece of the network. These
data would give the geometry and conductivity of each fracture. including any chan-
neling that may occur within the fractures. With this hypothetical information we
could generate simulations that would approximately match the three-dimensional
flow system. That is. if we knew all the geometry, we could model the flow.

This sort of ideal fracture data is not available. Lack of three-dimensional data
makes the problem we face in constructing a simulation much harder. Typically the
data we have from fractured rock provide a one-dimensional view through a three-
dimensional system, i.e., a borehole. At best, we may have a two-dimensional sam-
ple such as a drift wall mapping. ’

With '“perfect’’ two-dimensional data we would perhaps have a solvable prob-
lem. In this case we would still need to determine the three-dimensional shape of the
fractures and the nature of flow through those fractures. Unfortunately, even inter-
preting correct statistics from two-dimensional daaa is difficult due to biases in sam-
pling techniques.

The lack of three-dimensional data compounded with the less than “‘perfect’’
nafure of two-dimensional data creates the requirement that we make some rea-
sonable assumptions about the three-dimensional structure of the fracture network.
These assumptions are used to build our conceptual model for the fracture mesh. The
simulation is then based on the conceptual model.

The conceptual modef we use here represents fractures as thin discs in three-
dimensional space. The location of a disc is defined as the location of its center. The
placement of fracture centers is determined by a stochastic process called the parent-
daughter point process which is described below. Diameters of discs are assumed to
be independent random vanables. Orientation of fractures is taken to be a stationary
random field. We will base the parameters of this model on the analysis of drift wail
~ mapping data collected at the uranium mine of Fanay-Augeres, in Limousin. France.
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This paper gives the details of the conceptual model and the coastruction of
these simulations. In a future paper. we will present the actual numericai simulations
of fracture nerworks and an examination of the connectivity of these simulations.

Qur presentation is divided into the following parts:

L.
2.
3.
4,

5.

A description of the data.

Description of a conceptual model for the system.

Use of the data to determine the parameters required by the conceptual
model.

Descripdon of the techniques for numerical simuiation of the fracture
systems.

Conclusions.

Fanay-Augeres Data

Fanay-Augeres is a uranium mine owned by Cogema Co. and located in
Limousin, France in the granite massif of Saint-Sylvestre. Since 1980 this mine has
been used as a test facility to develop methods and tools for investigating mass and
heat transfer in granitic rocks (Barbreau et al., 1985:; Lassagne, 1983).

We focus on the data collected in a long section of a drift, about 3 m in
diameter at the 320-m level (Figure 1). In this drift fractures on the east wall have

XBL 384-10184

Figure |. Perspective view of experimental gallery and boreholes.
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been mapped over two sections, S1 and S2. totaling 180 m in length. S1 is 100 m in
length and S2 is 80 m. We construct two simulations. one using data from S! and
one using data from S2. For any fracrure trace which intersected a 2-m-high rectan-
gle. the visible trace length. number and location of visiblie endpoints. orientation.
and morphology were recorded. For 80% of the mapped fractures both endpoints
were visible.

Ten boreholes 50 m'long were drilled in three radial parterns (Figure 1).
Oriented core was obtained from these holes and the fractures logged. More than
220 steady-state permeability tests were performed in these holes between packers
spaced at various distances. [n summary. these data provided information about the
location, size. and characteristics of about 7000 fractures.

A usual step in fracture analysis is to divide fractures. into sets and model cach
set separately. We have followed this course as explained in Long and Billaux
(1987). Gros (1982) gives an analysis of the fracturing at Fanay-Augeres that identi-
fies seven major tectonic episodes from which he defined five major sets of fracrures
by their orientation. However, 60% of the fractures do not fall into any of the tec-
tonic classes. This classification is clearly not adequate for our purposes. Therefore.
we have broadened the definition of the sets so that 98% of the fractures mapped in
S1 (1059 out of 1076) and 95% of the fractures mapped in S2 (1115 out of 1177)
are included. The resultng classification. based on orienwation. is illustrated with a
lower hemisphere equal area stereonet in Figure 2. Figure 3 shows the fracture
traces from Sl and S2.

Qnentation of the
ol vertical Crnift wail

AL 3630738

Figure 2. Lower hemisphere Schmidt stereonet of fracture poles showing set boundaries.
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In summary. there are two data sets. one for S1 and one for S2. Each data set
consists of the location and truncation of trace endpoints, and for each trace. an
orientation and set classification.

Description of the Conceptual Model

The choice of a stochastic conceprual modei for a three-dimensional fracture sys-
tem involves specifying: ,

1. Individual characteristics of the fractures such as shape. size. orientation,

aperture, or transmissivity. .

2. The arrangement of the fractures in space, defined by the type of point pro-

cess their locations foilow and the way they truncate each other.

When dealing with three-dimensional fracture systems. many of these choices
must be made somewhat arbitrarily because we can only take one-dimensional or
two-dimensional samples from the three-dimensional system. However, once these
choices are made, we can derive some of the statistical relationships between the
parameters of the three-dimensional model we have chosen and the statistics that can
be measured in the field. Except in the simple Poisson case. these statistical relation-
ships do not give us a direct estimate of the parameters of the three-dimensional
model. but rather enable us to derive the statistical properties on the plane from a
guess at these parameters. So by trial and error we can match the observed statistics.
We typically find that there are many different choices for parameters of the three-
dimensional model that give the same two-dimensional statistics. We will call each of
these choices a parameter solution. Hence, in statistical terminology. our probiem is
ill-posed, i.e., the data do not determine a unique parameter solution.

Individual characteristics of the fractures

We model fractures as circular discs in space. The disc assumption is reasonable
in the absence of evidence on the actual shape of fractures. because it is the simplest
possible assumption.

The distribution of disc diameters is assumed to be lognormal. independent of all
other quantites in the model. Using this assumption it is possible to fit the field dis-
tribution of trace lengths with the distribution derived from lognormal distribution of
diameters. Here we find a simpie example of the limitations of two-dimensional data.
One can show that large changes in the diameter distribution will result in small
changes in the trace length distribution. Hence, any small change in the trace length
distribution will have 1 large effect on the estimated diameter distribution. This illus-
trates the ill-posed character of our problem. A nice summary of the problem of
esumating diameter distributions from trace lengths is given in the introduction in
O’Sullivan (1986).

Orientation is assumed to be a stationary random function independent of ail
other quantities in the model. Because we have a different modei for each set and
fractures within 2 set have similar orientations. the probability model for orientation
is a relatively simple one and other parameters are automatically correlated with
orientation. On the other hand. it is difficult to find spatial relationships between
fractures of different sets with this model.
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Point processes and placement of fractures

Our approach to choosing a point process for locating fracture centers is to
examine semivariograms of the three-dimensional point processes projected onto the
two-dimensional piane. We will call these variograms the trace density semivario-
grams. We choose the theoretical three-dimensional point process that has a trace
density semivariogram closest to the trace density semivariogram from the data. This
analysis is discussed below.

A point process is defined as a random phenomenon. each realization of which
is a set of various points dispersed in space, with no infinite accumulation in any
bounded subset. The two-dimensional sample we work with is a realization of frac-
ture traces as shown in Figure 3 for S1 and S2. Placing points at the centers of
traces creates the two-dimensional point process which is the projection of the origi-
nal three-dimensional process we wish to determine.

For any point process N. we define the random variable N(B) as the number of
points inside a set B. To examine the structure of point processes in two dimensions
we use the following definitions. Let X denote a point in two-space, R*. B will
denote a small subset of R?, for example a square, centered on the point X. N will
denote a point process which is a two-dimensional projection of a three-dimensional
point process. We define the semivariogram, y(X.y), of N (B3) via

- = 1 s
¥(x.y)= 3 E(N(B7) — NB7»).

For the point processes we consider, y(X .y ) is a function of only the difference.

X — y . This is the standard property of second-order stationarity. For a discussion

of the geostatistical terminology concerning semivariograms see. for example.

Journei and Huijbregts (1978). This terminology is used freely in the following.
Below, several candidate point processes and their trace density semivariograms

are described. For 2 general overview of point processes the interested reader should

consult Ripley (1981) or Stoyan et al. (1987).

The Poisson process

The simplest and most widely used point process for placement of fractures is
the Poisson process. The projection of a Poisson process into two-dimensionai space
is again a Poisson process. If a point process N is Poisson with density A. then N(B)
is a Poisson random variable with rate AA where A = area (B). This implies that
E(N(B7)) = VartN(B7)). Also for a Poisson process. N(B,) and B(B.) are indepen-
dent random vaniables when B, and B, are disjoint. This impiies the semivariogram
of N(B7) is a pure nugget when | X — ¥ | is large enough so that By and By are
disjoint. '

The regionalized Poisson process

This is 2 Poisson process with a density varying in space. The density is a
stationary random function. which, if Gaussian. can be characterized by its semivari-
ogram and constant mean. [n this case the semivariogram of N(B7) now has a struc-
ture, but locally, when the random density has a small variance. N(B3) is
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approximately equal to its mean as in the pure Poisson process. Such point processes
are also known as doubly stochastic Poisson processes. Doubly stochastic processes
are very general and theoreticaily include the parent-daughter processes. However. in
our case the density can have a large variance and is best characterized using the
processes described below.

The parent-daughter process _

Starting from a Poisson process. a cioud of points (or daughters) is placed
around each point (cailed a parent or seed) of the Poisson process. The number of
points in each cloud is a Poisson random variable, each point being placed in reia-
tion to the seed independently of the other points according to a specified probability
distribution. This process enables us to model the fact that fractures often occur in
swarms. In this case, the semivariogram of N(By) still shows a pure nugger, but the
variance of N(B7) is greater than its mean.

The regionalized parent-daughter process

This is a parent-daughter process generated by parents from a regionalized
Poisson process. For this process. the semivariogram of N(By7) has a structure, and
locally the variance of N(B<7) is greater than its mean.

Choice of a point process

The choice of the point process for our model is based on the trace density
semivariograms derived from the dat. Figure 4 shows the trace density semivario-
grams from S1. In all cases we take the support, B. to be a2 2-m X 5-m rectangle.

The experimental semivariograms of N show two different behaviors, depending
on the set. One is a true nugget effect. and the other is a semivariogram with steps.
which is indicative of nested structures. The step semivariograms are the most fre-
quent, and these are incompatible with a simple Poisson point process. For all cases.
the ratio of the variance of N to its mean is generally between 4 and 5. For a simple
Poisson process the ratio should be one. The regionalized Poisson process could rep-
resent the fracture centers but the underlying random rate would have to tluctuate in
a way that would be difficult to describe.

[n a relatively simple way, the regionalized parent-daughter process can explain
both the structured aspect of all of the semivariograms for N, and the high ratio of
the variance of N to its mean. The nested aspect of the semivariograms will then be
due to the presence of the clouds (or swarms) of fractures, the shorter range in the
semivariogram being related to the size of these clouds. and the longer range being
indicative of the structure of the parents. This model was chosen.

Parameter Inference: Fitting the Vodel

As mentioned in the introduction. the biggest problem in fitting the model to the
daaa is using two-dimensional information to draw inferences about three-dimensionai
quantities. Statistical toois developed for this purpose are described in this section.
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Figure 4. Trace density semivariograms foe five sets in S1.
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The modeling is done set by set so we will have each of the parameter values for
each set in S1 and S2. The quantities we need to find are :

¢ Parameters that describe the stochastic process of fracture orientation.

* Average and standard deviation of the lognormal diameter distribution.

¢ Parameters that describe the parent-daughter process of fracture locations in

space.

When we have specified all of these quantities we have determined a parameter
solution and fitted the model to the data. In this section we discuss the determination
of each of these model parameters. We begin by describing the censoring of data
from small traces to compensate for measuring biases.

Censoring of small trace length data

We wish to. compare our simulation of the S1 section of the drift with the S2
section. Accordingly. we want to eliminate any differences in the way data were
recorded in the sections. Recall Figure 3 is a plot of all the fracture traces recorded
in S1 and S2. The traces in these two cases look similar. However, one difference
between Sl and S2 is a higher fraction of smailer fractures appearing in S2. Because
these data were collected by several groups of workers we suspect that this differ-
ence is the result of biases in the recording of data from small traces. Also, because
fractures occur down to microscopic scales one must define a cutoff length below
which no fracture traces are considered. When we censor ail data from traces with
lengths below 0.3 m from each of S1 and S2 we find similar histograms for the
remaining trace lengths. Hence, this censoring seems to equalize these measurement
biases. We therefore use only these censored data realizing that we have an under-
estimation of the density of traces in our sampling plane. After censoring there is a
towal of 1008 fracrures for ail § sets in S1 and 769 fractures tor all 5 sets in S2.

Parameters for orientation distribution

We model the orientation as a random field in three-dimensional space. Specifi-
cally, the idea is to find an average orientation for each set and model the deviation
from the average as a random field with spatial structure.

To carry out the orientation modeling and simulation one must first characterize
the mean orientation of a fracture set. The mean orientation for a particular set is
taken to be the unit vector parallei to the sum of the poles in that set. There is some
difficuity with this definition because of the ambiguity in the definition of a pole: if
X is a poie for a particular fracture so is — X . So we must calculate the average in
a slighdy different way. A meaningful average is obtained in three steps:

1. Choose a trial reference vector.

2. Define the pole of a fracture to be the unit vector orthogonal to the fracture
which has an angie less than 90° with the reference vector. The reference
vector is kept if the maximum angle between any two poles defined this way
is less than some cutotf, for exampie, 90°. If the maximum is greater than
the cutoff, we try another reference vector.

3. Once we have found a reference vector and used it to define the poles we

-10-
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sum those poles and normalize the sum. This is the pole of the mean
orientation.

To continue the modeling and simulation of orientation we next have to describe
the deviations of the poles in a fracture set from the mean orientation of that set. To
do this the mean orientation p (Tables 1a and 1b) is calculated for each set and the
frame of reference is rotated so that p is on the z axis. The rotation matrix we use
appears in Mardia (1972) and corresponds to a rotation first about the y-axis then
about the Z-axis. A scatter plot of the x and y coordinates of the rotated poles
represents the distribution of the orientations about the mean. This is shown for the
S1 data in Figure S.

Finally. to simulate the orientation. we simulate values of x and y. A brief
description of the procedure for geostatistical simulation is given in the Appendix.
As described in the Appendix. the first step in simulation is to transform x and y
into Gaussian variables. Such a transformation is called anamorphosis. After anamor-
phosis, x and y are essentially uncorrelated as shown in Tables 2a and 2b. Hence.
for purposes of simulation x and y can be taken to be independent.

The next step in the simulation of x and y is the characterization of their semi-
variograms. Example semivariograms are shown for Sl in Figure 6. One can see
that the nugget effect in all of them is fairly large. Some of this nugget effect is due
to measurement errors, which were evaluated by Massoud and Chiles (1985). The
rest of the nugget is simulated by a white noise. The structured part is simulated on
a regular grid following techniques outlined in the Appendix. The relevant
parameters for S1 and S2 are given in Tables la and 1b. The structured parts of x
and y for a given fracture are then found by choosing the values at the simulated
grid point closest to the fracture center.

Finally, the orientation of a given fracture is taken as the mean for the set pius a
component of white noise plus the structured component from the geostatistical
simulation.

Determination of the disc diameter distribution

The trace length data are used to find the diameter distribution. As we have
mentioned before the determination of the diameter distribution from trace lengths is
an ill-posed problem. One reason for this is that the sampling area is finite so that
many traces are truncated by the boundaries of this area. Hence. information about
the upper tails of the trace length distribution and diameter distribution is not avail-
able. A second reason is that the process of finding the diameter distribution from
the trace length distribution is sensitive to any biases or noise in the data. This has
the effect that 2 smail change in the trace length distribution causes a large change in
the resulting diameter distribution.

A functional relationship between the distribution of fracture trace lengths and
the distribution of fracture diameters not accounting for truncation effects was devel-
oped by Warburton (1980), and is given by

g(D)

VD“'['

dD

f(1) = /D T
1

-11-
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Table la. Mean orientations and parameters of reduced orientation variograms for Sl.

Mean orientation x variogram”™ | y variogram™”
| Set 90' ¢ | nugget sill ra:lge nugget | sill m:‘ge
1 289 9.6 1.0 1.5 40 0.78 1.3 10
2 274 4.2 1.0 1.25 40 1.0 1.0 -
3 79 46.2 1.0 1.0 - 1.0 1.0 -
4 351 87.1 0.7 1.12 50 0.75 1.5 50
5 263 88.0 0.8 1.0 50 0.8 1.25 40

*These are standard spherical coordinates with positive x-axis pointing north and positive
y-axis pointing west.

Tabie 1b. Vean orientations and parameters of reduced orientation variograms for S2.

Mean orientation X variogmm" y variogram™"
Set 6: ¢ nugget | sill (m;ge nugget | sill m;ge
1 231 45 75 1.2 13 1.0 1.0 -
2 250 45.7 75 1.25 40 0.9 1.3 18
3. 66 449 1.0 1.9 50 09 0.9 -
4 1 88.8 0.95 1.20 30 1.10 1.10 -
b 276 81.8 ' 0.3 0.8 - 1.10 1.50 50

*These are standard spherical coordinates with positive x-axis pointing
north and positive y-axis pointing west.

-12-
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Figure 5. Scatter plot of rotated orientations before anamorphosis for five sets in Si.
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Table 2a. Correlation coefficients for x and v components of the
orientation data after anamorphosis, S1.

Set | Correlation coefficient
1 -.136
2 0.092
3 0.283
4 0.141
5 <0.128

Table 2b. Correlation coefficients for x and y components of the
orientation data after anamorphesis, S2.

Sct | Correlaton coetficient
1 0.194
3 0,068
3 -0.126
4 0.196
s 20.038

where
D = diameter of a given fracture.
g(D) = pdf (probability density function) of fracture diameters,
f(I) = pdf of fracture traces,

ol
u

mean of D = [ D g(D) dD.
0

-14-
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Figure 6. Semivariograms of orientation after anamorphosis for five sets in S1.
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So. given a particular probability density function for fracture diameters. g(D).
we can evaluate the integral to obtain the density of trace lengths f(1). One can then
compare the computed density of trace lengths to that obtained from the fieid data.
By trial and error. one can find a reasonable, but not necessarily unique distribution
for fracture diameters. This process ignores truncation effects.

To include the effects of truncation. we use a Monte Carlo procedure that simu-
lates traces in the drift. First. we assume a lognormal distribution for fracture
diameters with a given standard deviation and mean. Next a number of discs with
this diameter distribution are placed in space with orientations chosen at random
from measured orientations in the drift. We calcuilate the intersections of these frac-
tures with a rectangle representing the drift wall. The resulting traces are analyzed to
ger a trace length distribution including truncation percentages and separate distribu-
tions for traces where one or two endpoints appear. These distributions are compared
to those from the data. This process ig repeated for a range of values of mean and
standard deviation of diameters until a good martch is found between actual trace
lengths and simulated trace lengths.

Calculation of the trace density semivariogram from the data

To complete the model firting we need to find the parameters of the parent-
daughter point process which describes the location of fracture centers. We have said
that these parameters are found by matching plane deasity semivariograms. Figure 4
shows the trace density semivariograms calculated from the S1 data. A similar com-
putation was done for S2. We describe how these semivariograms were calculated.

The drift mappings are in rectangles measuring 00 m X 2mand 80 m x 2 m
respectively (Figure 3). Length is in the x direction and width in the y direction.
Hence,.0m s x s 100 mor80mand 0 m s y s 2 m. To calculate the
experimental trace density semivariogram we count the number of traces in a win-
dow that measures 5 m X 2 m and is centered at the point X, then multiply this
number by an ‘‘orientation correction factor’* that adjusts for the fact that the frac-
tures are not perpendicular to the sampling plane. Let E5 denote the resuiting num-
ber of traces adjusted for orientation in the window centered at X. We slide the win-
dow centered on X = (X.y), across the length of the drift, fixing y = | and letting
x range from 2.5 m t0 97.5 m (or 77.5 m for S2) using increments of size | m.
v(h) is estimated via

11 .
7 = = = ' (E¢. - Eo)?
h {(Z.®):]|2 - @1 =h}

where ny, is the number of window pairs with centers that are a distance h apart.
Typically, experimental semivariograms have smal.l sampling variations for h less
than haif the drift length.

To describe the orientation correction factor. let § be the angle between a frac-
ture pole and the sampling plane measured in degrees. We always take 0° < 6 < 90°.
If a fracture with angle 9 is placed randomly in space the probability that the fracture
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intersects the sampling plane is proportional to cosf. Hestir et al. (1987) use this
resuit to show that the orientation correction factor for a particular window is

1
cos(4) ’

where cos(89) is the average of the cos(9)’s for all fracrures in the window.

Theoretical trace density semivariogram for the parent-daughter model

We now describe how to find the parameters for the parent-daughter model.
These parameters define the distributions of the density of parents and of the number
of daughters per parent, and the dispersion of the daughters around the parents. In
the Appendix, we derive the theoretical two-dimensional trace density semivariogram
resuits from a given parameterization of the three-dimensional parent-daughter
model. This enables us to establish the relationship between the parameters of the
parent-daughter model and the experimental semivariogram. These formulas were
originally worked out in Deverly (1986) for a model of nugget deposits. In our deri-
vation for discs, the trace density semivariogram is calculated by conditioning on a
fixed realization of parents (i.e., assume there is a fixed realization of parents) and
then removing the conditioning. The end resuits along with some notation are shown
below.

Let x be a point in three-dimensional space. R* and A,(x) be the stationary ran-
dom process for the parent rate. We assume that (\, is a Gaussian process with
covariance structure defined by a spherical semivariogram with a given range and
sill. Also let '

A, = E(Ap(x)). the average of A,
C.\p (h) = E(Ap(x + h)Ay(x)), this is the non-centered covariance of A,.
Ap = rate of daughters, i.c.. the number of daughters is taken to be

Poisson with rate A\p.
probability distribution function for. the location of a daughter rela-
tive to the parent. In our model we always assume the displacements
(x.y.z) = x, are independent, identically distributed, mean 0.
. Gaussian random variables.

B.B be windows in the sampling plane.

Q(B) = the number of traces in B.

¥(B.x) = probability that a daughter from a parent at x intersects B.

The parameters that specify the mode} are

® The average, range. and sill of the parent rate \,,

® The rate, Ap, of the Poisson number of daughters around each parent, and

¢ The standard deviation of the Gaussian dispersion of daughters about the

parents.
[n terms of these parameters we find. as shown in the Appendix:

F(x)

E(QB) = To | ¥(B.xidx = Tho area(BD (0
R’ '

-17-
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E(Q(BYQ(B)) = Ap? j ] ¥(B.x) ¥(B.y)C, (x - y)dxdy )
R’ R

+ Tho' | ¥B¥B.xdx
RJ

+ T ] ¥(BNB.x)dx .

R’

Numerical modeling: Generation of the fracture mesh
Once the parameter solution is available, the following steps are taken to create
a realization of the fracture system.

L.

8.

A simulation of A, is made in a three-dimensional region. We assume that .\,
is a Gaussian random field with average large enough in comparison to its
standard deviation so that negative values for rate occur with low probability.
Negative values are set at zero. The covariance structure is specified by a
spherical semivariogram having a range and sill given in the parameter
solution.

. Parents are simulated on small subregions. AV,, centered at points x, with

constant volume Ax. To simulate the parents in AV,, we first find the value
of Ap(x) (if Ap(x) < 0 we set Ay(x) = 0).

Next, we pick the number of parents in 4V, according to a Poisson process
of rate A,(x)Ax.

Each parent in AV, is placed at random in 4V, according to a uniform
distribution.

For each parent we pick a number of daughters according to a Poisson distri-
bution with rate \g.

" Next, the random locations of fractures (daughters) are determined. This is

done by choosing displacements from the parent in the x, y. and z directions
independendy according to a Gaussian distribution with mean 0 and vanance
specified by the parameter soiution.

. The orientation is determined in three steps. Start with the mean for the set.

Add the structured part from the orientation simuiation described above.
Finally, add a random component as determined by the nugget of the orienta-
tion semivariogram.

The fracture diameter is chosen from its global distribution.

To check the simulations. we can take a sample of generated fractures and calcu-
late the sample average for diameter and orientation to make sure they fall within
reasonable limits. We can also record the number of fractures generated in the
generation volume V. and check to see that this falls in a reasonable range. To do
this note that
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E(F(V)) = JApvolume(V)
and

Var(F(V)) = T\pvolume(V) + \p* T, [ ¥ (V,x).dx
. RJ

+ N\p? [ j [c_\P(x -y - x;] ‘P.(V.x) ¥(V.y) dxdy .
R R

where F(V) denotes the number of fractures occurring in volume V. Equations (1)
and (2) can be used to verify these expressions with ¥(V .x) replacing ¥(B.x).

Connectivity Study

We can also make a study of the connectivity in our mesh simulations. Observa-
tions at Fanay show that the section of the drift called S1 is wet and the section
labeled S2 is dry. We expect that our connectivity studies will reflect this difference.

A measure of connectivity is defined as follows. The first step is to place an
artificial fracture somewhere in the center of our simulation; this is our starting point
which we call the ievel 0 fracture. Level | fractures are defined to be all fractures
that intersect the level O fracture. In general. level k fractures are defined to be all
fractures that intersect a level k-1 fracture and have not been previously assigned to
a level. The recorded number of fractures in each level is our measure of connec-
tivity. We call these the level sizes.

One way to view this measure of connectivity is as a simple summary of the
number of paths through which water can flow if injected into the level O fracture.
Some work needs to be done to examine growth and the variability of the level sizes
in the simulations.

A practical limitation of this idea is that the number of fractures that can be
examined to find level sizes is limited by computing facilities. Also. of course. this
is a method that is suited to examination of simulations and not to "“real life’" frac-
ture meshes. [ts relevance is therefore dependent on the relevance of the simulation.

Conclusion

We have described some techniques for the simulation of a fracture network
based on data from a reai fracture system. The simulation reproduces the spatial
variability of fracture density and orientation. To accomplish this, we have developed
a stochastic model that incorporates this spatial variation. We have also described
how the model can be fit to the data and have introduced a measure of connectivity
for fracture mesh simulations.
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APPENDIX

Geostatistical Simulation Procedure

To describe the process of geostatistical simulation we first define a few terms. Let X(1) be
a random field in n-dimensional space. n= 1, 2. 3. We have v(h) = /2 E(X(T + h) = X( D)=
It is assumed that y(h) = y(|h|) = y(h), whereh = | h|, that is. y is isotropic. Generalizations

10 anisotropic vy can be made but are not discussed here.

Now assume X is observed at points Ty . (3 . . . . . b We can estimate ¥ h ) with
wm=i L (XD - X@ »?
~« 0y (@I’):h“-ql-h)

where n, is the number of points T; , T3 ... .. T tha are distance h apart (within a cenain
tolerance). Also. we can see if X is a Gaussian process by examining the histogram of the
observed values X(T;) . X('t.z) e X

If X is a Gaussian process with semivariogram v, then the simulation of X is a straightforward
procedure using cither the tumning bands method (Journei and Huijbregts. 1978) or the random spheres
method (Alfaro. 1980). We use the random sphere method in our work.

If X is not a Gaussian process we first transform it into one. This is done by using a
transformatdion f, called an anamorphosis (or graphical transformation). Specifically, { is a one
t0 one function constructed so that the histogram of f(X(1)) . AX{) .. ... AX(L)) has a
Gaussian shape. It is then assumed that f(X) is a Gaussian process. Details of the construc-
tion of f can be found in Journel and Huijbregts (1978, pp. 478).

Once the anamorphosis f. is found Lthe next step is to simulate the transformed process

f(X). This is done as described above by cstimating the semivariogram of f(X) using
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X)) . KXT) .. ... fX({@) and cmploying the random spheres method. Finally, the

resulting simulation of f(X) is transformed by ™ yiclding the simulation of X.

Calculation of the Theoretical Trace Density Semivariogram for the Parent-daughter
Model

Below we use notaton given in the section on parameter inference. Divide space into
small disjoint sets AV, cexzxered at x, with volume Ax,. Let P, denote the number of parents
occurting in AV,. Let Qu(B) denote the number of daughters appearing in B from parents
occurringyin AVy. To condition on A, we suppose A; is a fixed function on R?,

A, : R’ = R”, ( R"= the set of non-negative real numbers). Ea, will denote expectation
given a fixed A, Also note that when A, is fixed, P, is a Poisson random variable with rate
Ap(x)ax,.

We do a second conditioning by assuming that P, is fixed for each k. in other words. the
ensemble of parent points is fixed. Eqq will denote expectation given a ﬁxéd A, and fixed
ensemble, Q. Now, for fixed A, and Q the following statements hold:

1) Q(B) is a Poisson random variable with rate PAp¥(B.xy). hence

Ea_a( Qu(B) ) = PAp¥(B.xy.

2) For k#j, Q,(B) and Q(B) are independent
3) Qu(By) and Q(B4) are independent for any k and j when B; and B, are disjoint.

4) Ep(X) = EA(Exo( X)) and E(X) = E(E,( X)).
Finally, notice that

QB) = T QB
'3

QB) = T Q(B)
X

and

QBIQB) = T Qu(BIQ;(B) + T Qu(BIQ(B) .
kmy M

.22
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Now, conditioning on A, and Q yields

En,a(QB) = T PAo¥(Baxy) .

For calculation of Ex_o( Q(B)Q(B) ) first recall the fact that if Ny, N3 and Nj are independent

Poisson random variables with rates A, A,, and A5 then
E((N| +N-9(N2+Ng))=(l| +l2)(l1+1.3)+k2 .
This implies that
Eaol Qu(BYQ(B) ) = PAAS¥(B.x) ¥(B.xy) + Pdo¥(BB.xy)
which gives |
Ex,a(QBIQ(B)) = EA,,Q<E Q(BIQi(B) ) + Eq q z QuB)Q(B) )
a ¥ AJPP¥(B.xp)¥(B.x)
emj
+ 3 PAS¥(B.x)¥(Bxy + T PAW(BAB.x,) .
x k
Next we remove the conditioning on the ensemble Q,

Ep((Q(B) ) = E5 ( (BA a((Q(B))) = ‘:,', Ap(x)AxAp'¥(B.Xy)

and
Ea,( QBIQ(B) ) = Eo ( Ex o Q(BXQ(B)))
= T AZAL(XIAL(X)W(B.x)W(B.x)AX,Ax;
k»
* T ((Ap(x0Ax)? + A(x0Ax, AZH(B.x¥(B.x0)
x

+ 3 Ap(x)AxyAp ¥(BrB.x,) .
1 3

Lasuy, we remove the conditioning on A,

E(Q(B)) = E( Eo( Q(B))) = T A 3xAp'¥(B.xy)
. ]

and
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E( Q(B)Q(B) ) = E( E5 ( QB)Q(®B))) =

=¥ lé‘i‘(B.xk)‘{’(é.x,)CA’( X; = Xy JAXLAX;
kmy

+ SApA, ¥(B.xy) ¥(B.xy)
k

+ T (Axp)?( bounded term )
k

+ TAAXA¥(BAB.xy .
k

Now, letting Ax, — O gives the result

E(Q(B)) = A)p [W(B.x)dx = Rphparea(B)D )
RS

ECQBIQB) ) =23 [ [¥Bx) ¥(B.y)Co(x - y)dxdy @
/IR

+ KA [ wBx)w(B.x)dx

Rr?

*K,lolf"*‘(Bﬁ Bx)dx .

Interdistance Statistic

Using conditioning methods as those employed above one can derive some interdistance
statistics. One result in this direction shows that for S equal to the sum of interdistances

between all possible pairs of trace centers in a particular window

E(S) = ~ApAd [ ¥HB.onxdx + .%.xg [ [ ctx - DHEDWB.X)¥(B.2dxds .
- R} R} RJ

where
x = (X.y.2)
L =(92) .

the sampling window is defined in the x-direction by 2 < x < b, 0 = standard deviation of the

-2 .



LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

.

- T
s i,

A





