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Amtna·----------------------------------------This paper desc:ribes some new techniques for stoc:hastic modeling of three-
dimensional fracture networks. We use geostatistical simulation methods to repro
duce fe:HUres of the spatial structure or the roc:k such as the variation of fracture 
densicy and fracture orientation in space. For an example of the method we use 
mapped fracture data from the Fanay-Augeres rrtine. in Limousin. France. Two 
different sections of a drift wall. S 1 and S2. were mapped. The S I section is wet. 
and the S2 section is dry. For each case. the fractures are divided into tive different 
setS and e3Ch set is modeled separately. The fractures in exh set are represented 
as discs placed randomly in space. The diameter of each disc: is chosen indepen
dendy from a tixed probabilicy distribution determined from the trace length distri
bution. For the loc:ation of discs a point proc:ess called the parent-daughter proc:ess 
is used. This proc:ess gives a clumping or swanning of fractures not found in the 
usual Poisson model. The orientation of the discs is characterized as a fluctuation 
about the me:m orientation for the set. This fluctuation has a spatial structure that 
is simulated with geostatistics. Geostatistic:U simulations of the two fracture sys
tems are under way .. The connec:tivities of the simulations will be assessed to see 
if there is any correlation with the fact that the S 1 section of drift is wet and the 
S2 section is dry . 

Introduction 

Over the past few years. attempts have been made to model the hydrology of 
fractured roc:k by collec:ting data on the individu:U fractures and synthesizing a model 
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of the hydraulicaUy active fracture network. Numerical models that have been devel
op.ed for this purpose include our own <Long et aJ.. 1982: Long and Witherspoon. 
1985) as well as those of Robinson ( 1984). Dershowitz I 1984). Rouleau ( 1984). 
Cacas et aJ. ( 1987). and others. These models have in some cases been applied to 
the analysis of field data. for example Rouleau (1984). Cacas et al. (1987). and 
Long and Billaux ( 1987). In Long and Billaux. we explored some techniques for 
using geostatistics to modei some of the spatial structures commonly observed in 
fracture systems. In panicular. we modeled the spatial variation of fracture density in 
a tw<Hiimensional case. 

In this pap.er. we extend the techniques to the case of three-dimensional fractures 
where we can also simulate the variation of fracture density. and fracture orientation 
in space. Data on the conductivity of individual fractures are extremely difficult to 
obtain, and we did not have such data. Therefore we do not attempt to stochastically 
generate this parameter. As data on the conductivity of individual fractures are so 
rare. perhaps the best way to assign this parameter in the model is to use a backtit
ting method such as that employed by Cacas et al. (1987). We do not pursue this 
procedure in this work. Instead. we concentrate on defining the network geometry in 
space and examining its connectivity. 

One of the major problems in stochastic fracture modeling is the inability to 
obtain appropriare data directly. An ideal situation for fracture network simulation 
would be to have three-dimensional data for some large piece of the networiC. These 
data would give the geometry and conductivity of each fracture. including any chan
neling that may occur within the fractures. With this hypothetical information we 
could generate simulations that would approximately match the three-dimensional 
tlow system. Tlw is. if we knew all the geometry. we could model the flow. 

This sort of ideal fracture data is not available. Lack of three-dimensional data 
makes the problem we face in constructing a simulation much harder. Typically the 
data we have from fractured rock provide a one-dimensional view through a three
dimensional system. i.e., a borehole. At best. we may have a two-dimensional sam
ple such as a drift wall mapping. 

With .. perfect" two-dimensional data we would perhaps have a solvable prob
lem. In this case we would still need to determine the three-dimensional shape of the 
fractures and the nature of tlow through those fractures. Unfortunately. even inter
preting correct statistics from tw<Hiimensional data is difficult due to biases in sam
pling techniques. 

The lack of three-dimensional data compounded with the less than "perfect" 
nanue of two-dimensional data c:n::ues the requirement that we make some rea
sonable asswnptions about the three-dimensional structure of the fracture network. 
These assumptions are used to build our conceptual model for the fracture mesh. The 
simulation is then based on the conceptual model. 

The conceptual. model we use here represents fractures as thin discs in three
dimensional space. The location of a disc is defined as the location of its center. The 
placement of fracture centers is determined by a stochastic process called the parent
daughter point process which is described below. Diameters of discs are assumed to 
be independent random variables. Orientation of fractures is taken to be a stationary 
random field. We will base the parameters of this model on the analysis of drift wall 
mapping data collected at the uraniwn mine of Fanay-Augeres. in Limousin. France. 
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This paper gives che details of the conceptual model and the construction of 
these simulations. In a future paper. we will present the ac:tuaJ numerical simulations 
of fracture networks and an examination of the connectivity of these simulations. 

Our presentation is divided into the following pans: 
I. A description of the data. 
2. Description of a conc:eptuaJ model for the system. 
3. Use of the data to determine the parameters required by the conceptual 

model. 
4. Description of the techniques for numerical simulation of the fracture 

systems. 
S. Conc:lusions. 

Fanay-Augeres Data 

Fanay-Augeres is a uranium mine owned by Cogema Co. and located in 
Limousin. France in the granite massif of Saint-Sylvestre. Since 1980 this mine has 
been used as a test facility to develop methods and tools for investigating mass and 
heat transfer in granitic: rocks (Barbreau et al., 1985: I..a.ssagne. 1983). 

We focus on the data collected in a long section of a drift. about 3 m in 
diameter at the 320-m level (Figure 1). In this drift fractures on the east wall have 

Figure I. Penpectfn view of e"perimenta& gallery and boreholes. 
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been mapped over two sections. 51 and S2. totaling 180 m in length. S1 is 100 m in 
length and S2 is 80 m. We construct two simulations. one using data from S 1 and 
~.me using data from S2. For any fr:lcture tr:1ce which intersected a 2-m-high rectan· 
gle. the visible trace length. number and location of visible endpoints. orientation. 
and morphology were recorded. For 80% of the mapped fractures both endpoints 
were visible. 

Ten boreholes 50 m long were drilled in three radial patterns (Figure 1 ). 
Oriented core was obtained from these holes and the fractures logged. ~ore than 
2:!0 steady-state permeability tests were performed in these holes between packers 
spaced at various distances. In summary. these data provided information about the 
location. size. and characteristics of about 7000 fractures. 

A usual step in fracture analysis is to divide fractures into sets and model each 
set separately. We have followed this course as explained in Long and Billaux 
(1987). Gros (1982) gives an analysis of the fracturing at Fanay-Augeres that identi
fies seven major tectonic episodes from which he detined five major sets of fractures 
by their orientation. However. 60% of the fractures do not fall into any of the tec
tonic classes. This classification is clearly not adequate for our purposes. Therefore. 
we have broadened the definition of the sets so that 98% of the fractures mapped in 
S I ( 1059 out of 1076) and 95% of the fractures mapped in S2 (! 115 out of 1177) 
are included. The resulting classification. based on orientation. is illustrated with a 
lower hemisphere equal area stereonet in Figure 2. Figure 3 shows the fracture 
tr:1ces from S 1 and 52. 

Oro~tatoon of 111~ 

o• I V~riiCOI Droll >Nail 

Figure 1. Lower hemisphere Schmidt stereonet of fr:ac:ture poles showin~ set boundaries. 
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In summary. then: are two data sets. one for S 1 and one for S2. Each data set 
consists of the loc:ltion and truncation of trace endpoints, and for each trace. an 
orientation and set classification. 

Description of the Conceptual ~lodel 

The choice of a stochastic conceptual model for a three-dimensional fracture sys
tem involves specifying: 

1. Individual characteristics of the fracrures such as shape. size. orientation. 
aperture. or transmissivity. 

2. The arrangement of the fractures in space, defined by the type of point pro
cess their locations follow and the way they truncate each other. 

When dealing with three-dimensional fracture systems. many of these choices 
must be made somewhat arbitrarily because we can only take one-dimensional or 
two-dimensional samples from the three-dimensional system. However. once these 
choices are made. we can derive some of the statistical relationships between the 
parameters of the three-dimensional model we have chosen and the statistics that can 
be measured in the field. Except in the simple Poisson case. these statistical relation
ships do not give us a direct estimate of the parameters of the three-dimensional 
model. but rather enable us to derive the statistical properties on the plane from a 
guess ;u these parameters. So by trial and error we can nwc:h the observed swistics. 
We typically find that there are many different choices for parameters of the three
dimensional model that give the same two-dimensional statistics. We will call each of 
these choices a paramete,. solution. Hence. in statisticai terminology. our problem is 
ill-posed. i.e .• the data do not determine a unique parameter solution. 

Individual characteristics of the f'rac:tures 
We model fractUres as circular discs in space. The disc assumption is reasonable 

in the absence of evidence on the actual shape of fraCtures. because it is the simplest 
possible assumption. 

The distribution of disc diameters is assumed to be lognormal. independent of all 
other quantities in the modeL Using this assumption it is possible to fit the field dis
tribution of trace lengths with the distribution derived from lognormal distribution of 
diameters. Here we find a simple example of the limitations of two-dimensional data. 
One c:m show that large changes in the diameter distribution will result in small 
changes in the trace length distribution. Hence. any small change in the trace length 
distribution will have a large effect on the estimated diameter distribution. This illus~ 
traces the ill-posed character of our problem. A nice summary of the problem of 
estimating diameter distributions from trace lengths is given in the introduction in 
O'Sullivan (1986). 

Orienwion is assumed to be a stationary random function independent of all 
other quantities in the model. Because we have a different model for each set and 
fractUres within a set have similar orientations. the probability model for orientation 
is a relatively simple one and other parameters are automatically correlated with 
orientation. On the other hand. it is difficult to find spatial relationships between 
fractUres of different sets with this model. 
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Point processes and placement of fractures 
Our approach to choosing a point process tor locating fracture centers is to 

examine semivariogr:uns of the three-dimensional point processes projected onto the 
two-dimensional plane. We will call these variograms the trace densiry semivario
grams. We choose the theoretical three-dimensional point process that has a trace 
density semivariogram closest to the trace density semivariogram from the data. This 
analysis is discussed below. 

A point process is derined as a random phenomenon. each realization of which 
is a set of various points dispersed in space. with no infinite accumulation in any 
bounded subset. The two-dimensional sample we work with is a realization of frac· 
ture traces as shown in Figure 3 for Sl and S2. Placing points at the centers of 
traces creates the two-dimensional point process which is the projection of the origi
nal three-dimensional process we wish to determine. 

For any point process ~. we define the random variable N(B) as the number of 
points inside a sec B. To examine the structure of point processes in two dimensions 
we use the foUowing definitions. Let x denote a point in two-space. R:!. B7 will 
denote a small subset of R2, for example a square, centered on the point x. ~ will 
denote a point process which is a two-dimensional projection of a three-dimensional 
point process. We define the semivariogram, "f( x. y ), of~ (B7) via 

- - l E (N B ' "f( x • y ) = 2 ( (B 'i') - N( Y' ))· ). 

For the point processes we consider. "'(( x . y) is a function of only the difference. 
x - y . This is the standard property of second-order stationarity. For a discussion 
of the geost.atistic:ll terminology concerning semivariogr:uns see. for example. 
Joumel and Huijbregts ( 1978). This terminology is used freely in the foUowing. 

Below. several c:mdidate point processes and their trace density semivariograms 
are described. For a genera! overview of point processes the interested reader should 
consult Ripley (1981) or Stoy:m et al. (1987). 

The Poisson process 
The simplest and most widely used point process for placement of fractures is 

the Poisson process. The projection of a Poisson process into two-dimensional space 
is again a Poisson process. If a point process ~ is Poisson with density A. then :'11!8) 
is a Poisson random variable with rate AA where A = are:~ (B). This implies that 
E(N(B7 )) = Var1N!B7)). Also for a Poisson process. ~(81 ) and 8(8~ are indepen
dent random variables when 8 1 and ~ are disjoint. This implies the semivariogram 
of ~(B7) is a pure nugget when I x - y I is large enough so that 87 and By are 
disjoint. 

The regionalized Poisson process 
This is a Poisson process with a density varying in space. The density is a 

stationary random function. which. if Gaussian. c:m be characterized by its semivari
ogram and constant mean. In this case the semivariogram of N(87) now has a struc· 
ture, but locally. when the random density has a small variance. N(B 7) is 
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approximately equal to its mean as in the pure Poisson process. Such point processes 
are also known as doubly stochastic Poisson processes. Doubly stochastic: processes 
are very general and theoretically include the parent-daughter processes. However. in 
our case the density can have a large variance and is best characterized using the 
processes described below. 

The parent-daughter process 
Starting from a Poisson process. a cloud of points (or daughters) is placed 

around each point (called a parent or seed) of the Poisson process. The number of 
points in each cloud is a Poisson random variable. eac::h point being placed in rela
tion to the seed independently of the other points according to a specified probability 
distribution. This process enables us to model the fact that fractures often occur in 
swarms. In this case, the semivariogram of N(Bi) still shows a pure nugget, but the 
variance of N(B-;) is greater than its mean. 

The regionalized parent-daughter process 
This is a parent-daughter process generated by parents from a regionalized 

Poisson process. For this process. the semivariogram of :"J(Bl') has a structure, and 
locally the variance of N(B-;) is grearer than its mean. 

Choice of a point process 
The choice of the point process for our model is based on the trace density 

semivariogr:uns derived from the daca. Figure 4 shows the trace density semivario
grams from Sl. In all cases we take the support. B. to be a 2-m x 5-m rectangle. 

The experimental semivariograms of N show two different behaviors. depending 
on the set. One is a true nugget effect. and the other is a semivariogram with steps. 
which is indicative of nested struCtures. The srep semivariograms are the most fre
quent. and these are incompatible with a simple Poisson point process. For all cases. 
the ratio of the variance of N to its mean is generally between 4 and S. For a simple 
Poisson process the ratio should be one. The regionalized Poisson process could rep
resent the fracture centers but the underlying random rate would have to tluc:tuate in 
a way that would be difficult to describe. 

In a relatively simple way, the regionalized parent-daughter process can explain 
both the strUCtured aspect of all of the semivariograms for N. and the high ratio of 
the variance of N to its mean. The nested aspect of the semivariograms will then be 
due to the presence of the clouds (or swarms) of fractures. the shorter range in the 
semivariogram being related co the size of these clouds. and the longer range being 
indicative of the structure of the parents. This model was chosen. 

Parameter Inference: Fitting the Model 

As mentioned in the introduction. the biggest problem in titting the model to the 
data is using two-dimensional infonnation to draw inferences about three-dimensional 
quantities. Statistical tools developed for this purpose are described in this section. 
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The modeling is done set by set so we will have each of the parameter values for 
e:1ch set in S 1 and S2. The quantities we need to find are 

• Par:uneters that describe the stochastic process of fracture orientation. 
• Average and standard deviation of the lognormal diameter distribution. 
• Parameters that describe the parent-daughter process of fracture locations in 

space. 
When we have specified all of these quantities we have determined a parameter 

solution and fitted the model to the data. In this .section we discuss the determination 
of each of these model parameters. We begin by describing the censoring of data 
from small traces to compensate for measuring biases. 

Censoring o( small trace length data 
We wish to compare our simulation of the Sl section of the drift with the S2 

section. Accordingly. we want to eliminate any differences in the way data were 
recorded in the sections. Recall Figure 3 is a plot of all the fracture traces recorded 
in Sl and 52. The traces in these cwo cases look similar. However. one difference 
between S I and S2 is a higher fraction of smaller fractures appearing in S2. Because 
these data were collected by several groups of workers we suspect that this differ
ence is the result of biases in the recording of data from small traces. Also. because 
fractures occur down to microscopic scales one must define a cutoff length below 
which no fracture traces are considered. When we censor all data from traces with 
lengths below 0.3 m from each of S 1 and SZ we find similar histograms for the 
remaining trace lengths. Hence. this censoring seems to equalize these measurement 
biases. We therefore use only these censored data realizing that we have an under
estimation of the density of traces in our sampling plane. After censoring there is a 
total of 1008 fractures for all 5 sets in S 1 and 769 fractures for all 5 sets in 52. 

Parameters (or orientation distribution 
We model the orientation as a random field in three-dimensional space. Speciti

cally. the idea is to find an average orientation for each set and model the deviation 
from the average as a random field with spatial structure. 

To carry out the orientation modeling and simulation one must flrst characterize 
the mean orientation of a fracture set. The mean orientation for a particular set is 
taken to be the unit vector parallel to the sum of the poles in that set. There is some 
difficulty with this definition because of the ambiguity in the detinition of a pole: if 
x is a pole for a panicular fracture so is - x . So we must calculate the average in 
a slightly different way. A meaningful average is obtained in three seeps: 

1. Choose a trial reference vector. 
2. Defme the pole of a fracture to be the unit vector orthogonal to the fracture 

which has an angle less than 90 o with the reference vector. The reference 
vector is kept if the maximum angle between any two poles detined this way 
is less than some cutoff. for example. 90 o. If the maximum is greater than 
the cutoff. we try another reference vector. 

3. Once we have found a reference vector and used it to define the poles we 
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sum those poles and normalize the sum. This is the pole of the mean 
orientation. 

To continue the modeling and simulation of orientation we next have to describe 
the deviations of the poles in a fracture set from the mean orientation of that set. To 
do this the mean orientation p (Tables la and lbl is calculated for each set and the 
frame of reference is rotated so that p is on the z axis. The rotation matrix we use 
appears in Mardia ( 1972) and corresponds to a rotation first about the y-axis then 
about the t-axis. A scatter plot of me :< and y coordinates of the rotated poles 
represents the distribution of the orientations about the mean. This is shown for the 
Sl data in FigureS. 

Finally. to simulate the orientation. we simulate values of x and y. A brief 
description of the procedure for geostatistical simulation is g-iven in the Appendix. 
As de~ribed in the Appendix. the first step in simulation is to transform ."< and y 
into Gaussian variables. Such a transformation is called anamorphosis. After anamor
phosis. :< and y are essentially uncorrelated as shown in Tables 2a and 2b. Hence. 
for purposes of simulation x and y can be taken to be independent. 

The next step in the simulation of x and y is the characterization of their semi
variograms. Example semivariograms are shown for S 1 in Figure 6. One can see 
that the nugget effect in all of them is fairly large. Some of this nugget effect is due 
to measurement errors. which were evaluated by Massoud and ChiU:s ( 1985). The 
rest of the nugget is simulated by a white noise. The strUCtUred part is simulated on 
a regular grid following techniques oudined in the Appendix. The relevant 
parameters for Sl and 52 are given in Tables la and lb. The structured parts of."< 
and y for a given fracture are then found by choosing the values at the simulated 
grid point closest to the fracture center. 

Finally. the orientation of a given fracture is taken as the mean for the set plus a 
component of white noise plus the structured component from the geostatistical 
simulation. 

Determination or tbe disc diameter distribution 
The trace length data are used to find the diameter distribution. As we have 

mentioned before the detennination of the diameter distribution from trace lengths is 
an ill-posed problem. One reason for this is that the sampling area is finite so that 
many traces are trunated by the boundaries of this area. Hence. information about 
the upper tails of the tr:u:e length distribution and diameter distribution is not avail
able. A second re350n is that the process of finding the diameter distribution from 
the trace length distribution is sensitive to any biases or noise in the data. This has 
the effect that a small change in the tr:u:e length distribution causes a large change in 
the resulting diameter distribution. 

A functional relationship between the distribution of fracrure trace lengths and 
the distribution of fracture diameters not accounting for truncation effects wa5 devel
oped by Warburton (1980). and is given by 

.,. 
f(l) =- liD j g(Dl dO. 

I 'Jif)l - 1! 
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Table Ia. ~eaa orientations and parameters of reduced orientation variograms for Sl • 

Me:m orientation x variogr:un 
.. 

y variogram 
.. 

Set a· I ~ nugget sill 

I 
range nugget 

I 
sill r.~nge 

0 I 
0 m m 

1 289 I 9.6 1.0 1..5 40 0.15 1.3 10 

2 274 44.2 1.0 1.25 40 1.0 1.0 I . 

3 79 46.2 1.0 1.0 . 1.0 1.0 . 

4 351 87.1 0.75 l.l:Z 50 0.75 1.5 50 

5 263 88.0 0.8 1.0 50 0.8 1.25 40 

"'These are standard spherical c:oordinarcs wirh positive x·uis pointing north and positive 
y·uis pointing wesc. 

Table lb. ~lean orientations and parameters of reduced orientation variograms for S2. 

Me:m orienQtion x v:uiogr:un - y variogram 

Set a· ~ nuuct sill r.~nge nuuet .. .. m 

1 231 I 4.5 I .1S 1.2 I 13 1.0 I 
2 250 I 45.1 .1S 1.25 I -'0 0.9 I 
3 66 I 44.9 1.0 I 1.9 I so 0.9 I 
4 I I 88.8 I 0.9S 1.20 30 1.10 

s I 276 81.8 I 0.8 0.8 I . 1.10 I 
"'These are standard spheric::U coordinates wirh positive ~-axis pointing 
north and positive y-axis pointing west. 
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Figure 5. Sc:auer plot of rowed orientations before anamorphosis ror nve sets in Sl. 
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where 
D 2 

g(O) 2 

f(l) 2 
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Table 2a. Correlation coefficients for :.: and y components of the 
orientation dara after anamorphosis. Sl. 

Set Correiation coefficient 

1 ·.136 

2 0.092 

3 0.283 

4 ..0.141 

s ..0.128 

Table 2b. Corretation coefficients for :.: and y components of the 
orienration dara after anamorphosis. S2. 

Set I Correlation coefficient 

1 0.194 

2 ..0.068 

3 ..0.126 

4 0.196 

s ..0.038 

diameter of a given fracture. 
pdf (probability density function) of fmcrure diameters. 
pdf of fracture traces. .. 
mean of D • f D g(O) dO. 

0 
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Figure 6. Semivariograms of orientation after anamorphosis ror five sets in Sl. 
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So. given a parti~ular probability density function for fracture diameters. g( 0). 

we can evaluate che integral to obtain the density of trace lengths f(l). One can chen 
compare the computed density of trace lengths to chat obtained from che field data. 
By trial and ~rror. one can find a reasonable. but not necessarily unique distribution 
for fracture diameters. This process ignores truncation effects. 

To include che effectS of truncation. we use a Monte Carlo procedure that simu
lates traces in che drift. First. we assume a lognormal distribution for fracture 
diameters with a given standard deviation and mean. Next a number of discs wich 
this diameter distribution are placed in space with orientations chosen at random 
from measured orientations in che drift. We calculate che intersections of chese frac
tures with a rectangle representing che drift wall. The resulting traces are analyzed to 
get a trace length distribution inc:luding truncation percentages and separate distribu
tions for traces where one or two endpointS appear. These distributions are compared 
to chose from the data. This process is repeated for a range of values of mean and 
standard deviation of diameters until a good match is found between actual trace 
lengths and simulated crace lengths. 

CaJculation of the trace density semivariogram from the data 
To complete che model fitting we need to find che parameters of che parent

daughter point process which describes che location of fracture centers. We have said 
that these parameters are found by matching plane density semivariograms. Figure ~ 
shows che trace density semivariograms calculated from the S 1 data. A similar com
putation was done for S2. We describe how these semivariograms were calculated. 

The drift mappings are in rectangles measuring 100 m x 2. m and 80 m x 2 m 
respectively CFigure 3). Length is in che x direction and width in che y direction. 
·Hence. 0 m s x s 100 m or 80 m and 0 m s y s 2 m. To calculate che 
experimentai trace density semivariogr:un we count che number of traces in a win
dow chat measures S m x 2 m and is centered at che point i. then multiply chis 
number by an "orientation correction factor" that adjustS for the fact that che frac
tures are not perpendicular to che sampling plane. Let E' denote the resulting num
ber of traces adjusted for orientation in che window centered at i. We slide che win
dow centered on i =- (x.y), across che length of che drift. fixing y = 1 and letting 
x range from 2 . .5 m to 97.5 m (or n.s m for 52) using incrementS of size 1 m. 
-y(h) is estimated via 

~ (Ey. - E..v): l 
{IY ... l:IY -'i •hi 

where n11 is che number of window pairs with centers chat are a distance h apart. 
Typically. experimental semivariograms have small sampling variations for h less 
chan half che drift length. 

To describe che orientation correction factor. let 8 be the angle between a frac
ture pole and che sampling plane measured in degrees. We always cake oa s 8 < 90°. 
[f a fracture with angle 8 is placed randomly in space che probability chat the fracture 
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intersects the sampling plane is proportional to cos8. Hestir et al. ( 1987) use this 
result to show that the orientation correction factor for a particular window is 

where cos( 8) is the average of the cos( 8) • s for all fractures in the window. 

TheoreticaJ trace density semivariogram for the parent-daughter model 
We now describe how to find the parameters for the parent-daughter model. 

These parameters define the distributions of the density of parents and of the number 
of daughters per parent. and the dispersion of the daughters around the parents. In 
the Appendix, we derive the theoretical two-dimensional trace density semivariogram 
results from a given parameterization of the three-dimensional parent-daughter 
mode!. This enables us to establish the relationship between the parameters of the 
parent-daughter model and the experimental semivariogram. These formulas were 
originally worked out in Deverly ( 1986) for a model of nugget deposits. In our deri
vation for discs, the trace density semivariogram is calculated by conditioning on a 
fixed realization of parents (i.e .• assume there is a fixed realization of parents) and 
then removing the conditioning. The end results along with some notation are shown 
below. 

Let :c be a point in three-dimensional space. R3 and Ap(x) be the stationary ran
dom process for the parent rate. We assume that ·~ is a Gaussian process with 
covariance structure defined by a spherical semivariogram with a given range and 
silL Also let 

~ = E(Ap(X)). the average of A11• 

c.-., (h) = E(A11(x + h>A11(:c)). this is the non-centered covariance of ;\11 • 

~0 = rate of daughters. i.e .• the number of daughters is talcen to be 
Poisson with rate ~0 • 

F(x) =- probability distribution function for: the location of a daughter rela
tive to the parent. In our model we always assume the displacements 
(x.y.z) • x. are independent. identically distributed. mean 0. 
Gaussian random variables . . 

B. 8 be windows in the sampling plane. 
Q(B) = the number of traces in B. 

't(B.:c) = probability that a daughter from a parent at :c intersects 8. 
The parameters that specify the model are 

• The average. range. and sill of the parent r:lte .\p. 
• The rate, ~0• of the Poisson number of daughters around each parent. and 
• The standard deviation of the Gaussian dispersion of daughters about the 

parents. 
In terms of these parameters we find. as shown in the Appendix: 

ECQ(B)) = ~0 f 't(B,:c)dx = ~0 are:l(8)0 
RJ 

- 17-
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E(Q(8)Q(I3)) = :\0 ! f f 't(B.x) 't(B.y)C.\p (X - y)d"'(dy 
RJ RJ 

+ ~D! f ~(8.X)V{8.x)d"'( 
RJ 

+ A',.\0 f 't(B n B ,x)dx . 
RJ 

Numerical modeling: Generation o( the fracture mesh 
Once the parameter solution is available. the following steps are taken to create 

a reali.z:uion of the fracture system. 
1. A simulation of A, is made in a three~imensional region. We assume that .\p 

is a Gaussian random field with average large enough in comparison to its 
standard deviation so that neptive values for rare occur with low probability. 
Negative values are set at zero. The covariance structure is specified by a 
spherical semivariogram having a range and sill given in the parameter 
solution. 

2. Parents are simulated on small subregions • .:1 V ,;• centered at points x. with 
constant volume l1x. To simulate the parents in .l. V ,. we first find the value 
of •\p(x) (if •\p(X) < 0 we set .~(X) 2 0). 

3. Next, we pick the number of parents in J. V, according to a Poisson .process 
of rate •\p(X)~-c. 

4. Each parent in .l. V :c is placed at random in .l. V :c according to a uniform 
distribution. 

5. For each parent we pick a number of daughters according to a Poisson distri· 
bution with rate >.0 • 

6. · Next, the random locations of fractures (daughters) are determined. This is 
done by choosing displacements from the parent in the x. y. and z directions 
independently according to a Gaussian disaibution with mean 0 and variance 
specified by the parameter solution. 

7. The orientation is determined in three steps. Start with the mean for the ;et. 
Add the structured part from the orientation simulation described above. 
Finally, add a random component as determined by the nugget of the orient:J.
tion semivariogr:un. 

8. The frac:ture diameter is chosen from its global distribution. 
To check the simulations. we c:m take a sample of gene~ed fractures and c::Llcu

late the sample average for diameter and orientation to make sure they fall within 
reasonable limits. We c:m also record the number of fractures generated in the 
generation volume V. and check to see that this falls in a reasonable range. To do 
this note that 
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E(F(V)) = ~0volume(V) 

and 

Var(F(V)) = ~0volume(V) + >..0~ Ap J ~2 (V.x).dx 
RJ 

+ Ao! f f (C.\p(x - y) - Ap~] i'(V.x) ~(V.y) dxdy . 
RJ RJ 

where F(V) denotes the number of fractures occurring in volume V. Equations ( 1) 
and (2) can be used to verify these expressions with it(V .x) replacing ~(B.x). 

Connectivity Study 

We can also make .a study of the connectivity in our mesh simulations. Observa
tions at Fanay show that the section of the drift C3lled S 1 is wet and the section 
labeled 52 is dry. We expect that our connectivity studies will reflect this difference. 

A measure of connectivity is defined as follows. The first step is to place an 
anificial fracture somewhere in the center of our simulation: this is our staning point 
which we call the level 0 fr:lcture. Level 1 fractures are defined to be all fractures 
that intersect the level 0 fracture. In general. level k fractures are defined to be all 
fractures that intersect a level k-1 fr:lcture and have not been previously assigned to 
a level. The recorded number of fractures in eru:h level is our measure of connec
tivity. We call these the level sizes. 

One way to view this measure of connectivity is as a simple summary of the 
number of paths through which water can flow if injected into the level 0 fracture. 
Some work needs to be done to examine growth and the variability of the level sizes 
in the simulations. 

A practical limitation of this idea is that the number of fractures that can be 
examined to find level sizes is limited by computing facilities. Also. of course. this 
is a method that is suited to examination of simulations and not to ··real life" t'rac
ture meshes. Its relevance is therefore dependent on the relevance of the simulation. 

C onc:lusion 

We have described some techniques for the simulation of a fracture network 
based on data from a real fracture system. The simulation reproduces the spatial 
variability of fracture density and orientation. To accomplish this. we have developed 
a stochastic: model that incorporates this spatial variation. We have also described 
how the model can be fit to the data and have introduced a measure of connectivity 
for fracture mesh simulations. · 
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APPENDL~ 

GeostatistfcaJ Simulation Procedure 

To de54:ribe the process of geostatisticaJ simulation we first define a few terms. Let XC i l be 

a random field in n-dimcnsionaJ space. n • I. :!. 3. We have "f( ft) • 1/2 ECX( i + fi)- XI()):. 

It is assumed ctw ")'( fi ) • 'Y( I fi I) • "f(h), where h a I fi I. ctw is. 'Y is isotropic. Generalizations 

to anisotropic 'Y can be made but are not discussed here. 

Now assume X is observed at pointS i; . i; ..... ~. We can estimarc 1( h ) with 

)(h) = -::; - !_ ( X(t;) - X(t;) ) I I { - - z} 
.. n" l<i::i;i: li'r')l•h} 

where "" is tbe number of pointS t; , 'i; ..... ~ that w distance h apart (within a certain 

tolerance). Also. we can see if X is a Gaussian process by examining the histogr:un of the 

observed values X((.) • X(tv , ...• X(~. 

If X is a Gaussian process with scmivariogram 'Y. then the simulation of X is a straightforward 

procedure using either the turning bands method I Joumel and Huijbregrs. 1978) or the random spheres 

method /Alfaro. 1980). We use the random sphere method in our work. 

If X is not a Gaussian process we: lirst transform it into one. This is done by using a 

transfonn:uion f. c:Uled an anamorphosis (or graphic:U transformation). Specific:l!ly, f is a one 

to one function constructed so th:u the histogr:un of f(X(l;)) • f(X(tv) •...• f(X{~)) has a 

G.1ussian shape. It is then JSSumed that f(X) is a Gaussian process. Det:Uls of the construe· 

tion off can be found in Joumel and Huijbregu (1978. pp. 478). 

Once the anamorphosis f. is found the next step is to simulate the transformed process 

f(X). This is done as described above by estim:uing the semivariogr:un of f(X) using 
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I'( X(~)) • f'(X(tv) ....• J(X(~) and employing the r:mdom sphe~ method. Finally, the 

resulting simulation of f(X) is tr:msfonncd by r 1 yielding the simulation of X. 

Calculation ot the Theoretical Trace Density Semivariovam for the Parent-daughter 

Model 

Bel.ow we use notation given in the section on parameter inference. Divide space into 

small disjoint setS 4 V k ~red u xt wilh volume ~· Let P~c denote the number of parentS 

occutrtng in 4 V~c. Let Q~c(B) denote the number of daughters appearing in B from parentS 

oc:curring. in ~Vk. To condition on A, we suppose A, is a fixed function on a3• 

A, : a3 
- a•. ( a• "" the set of non-negative rea! numbers). EA, will denote expectation 

given a fixed Ap. Also note lhu when A, is fixed. P~c is a Poisson random variable wilh rate 

We do a second conditioning by assuming lhu P11 is fixed for eac:h k. in other words. lhe 

ensemble of parent points is fixed. EA,.Q will denote expectation given a fixed A, and fixed 

ensemble. Q. Now, for fixed A, and 0 the following staremems hold: 

and 

1) ~(B) is a Poisson random variable wilh r:ue P~o'f'(B.x.,). hence 

EA,.Q( ~(B) ) ,. PaA.o'f'(B.x.,). 

F'utally. notice th3t 

Q(B) ""l: O!c<B> 
a 

Q(B)Q(B),. ,t Q~c(B)Q;(B) + ,t Q11(8)Q11(B) 

-~ k 
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:-.row. conditioning on 1\p and a yields 

E~(Q(B)) • k P~r.l.o'l'(B.x.J 
k 

For calc:ulalion of E~( Q(B)Q(B) ) fim recall the fact t1w if N1, N: and N3 are independent 

Poisson random variables with r.ucs A.1, A.z, and A.3 then 

This implies t1w 

which gives 

and 

• k A,JPkPj'l'(B.x.J'l'(B.X;) 
u; 

+ k P~l.cS'f'(B.X0'l'(B.x.J + k P~r.l.o 'l'(Bi"'S.x.J 
• k 

Next we remove the conditioning on the ensemble 0. 

EA,( Q(B)Q(B) ) • EA,( E~( Q(B)Q(B) ) ) 

• k ~(X0Ap(xj)'l'(B.x.J'l'(B.xj)t:U"~ . ., 
+ 1: ( (Ap(xt&).:U.J1 + Ap(xlt)~ )l.J'l'(B.xlt)'l'(B.x0 

k 

+! Ap(xt&)~t&l.o'i'(Bi"'B.x") 
k 

L.lstly, we remove the conditioning on ~ 

E( Q(B)) • E( EA,( Q(B) ) ) •! A~~tl.o'l'(B.x0 
k 
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E( Q(B)Q(B) ) • E( EAy( Q(B)Q(B) ) ) "" 

• ! :\6'1'(B.x0'1'(B.xi)Cf'.y( xi - Xtc ).ix~ 
~c., 

+ DoA, 'I'(B.xi!)'I'(B.x0 
k 

+ !t.:U02( bounded term ) 
k 

Now. letting .:Utc - 0 gives the rault 

E( Q(B)) • A;-0 f'+'(B.x)dx,. X~an:3(8)i5 
aJ 

+ ¥6 J 'i'(B.x)'I'(B.x)dx 
aJ 

+ ¥o f 'i'(Bf"'' B.x>dx 
aJ 

Interdist:anc:e Statistic 

(1) 

(2) 

Using conditioning methods as those employed 3bove one C3R derive some interdistanc:e 

statistics. One result in this direction shows th3l for S equ~ to the sum of interdistances 

between 311 possible p:li~ of tr:1c:e cente~ in 3 panic:ular window 

where 

X ,. (ll.y.Z) 

i = (t.y.1) 

the s:unpling window is detined in the :<·direction by 3 < :< < b. a= stJnd3rd deviation of the 
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