Lawrence Berkeley National Laboratory

Recent Work

Title

BIBLIOGRAPHY FOR HINDERED INTERNAL ROTATION AND MICROWAVE SPECTROSCOPY

Permalink https://escholarship.org/uc/item/6q87r0m9

Author

Herschbach, D.R.

Publication Date 1962-10-01

UCRL-10404

University of California

Ernest O. Lawrence Radiation Laboratory

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BIBLIOGRAPHY FOR HINDERED INTERNAL ROTATION AND MICROWAVE SPECTROSCOPY

Berkeley, California

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UCRL-10404 UC-4 Chemistry TID-4500 (18th Ed.)

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory Berkeley, California

Contract No. W-7405-eng-48

BIBLIOGRAPHY FOR HINDERED INTERNAL ROTATION

AND MICROWAVE SPECTROSCOPY

D. R. Herschbach

October 1962

Printed in USA. Price 75 cents. Available from the Office of Technical Services U. S. Department of Commerce Washington 25, D.C.

BIBLIOGRAPHY FOR HINDERED INTERNAL ROTATION

AND MICROWAVE SPECTROSCOPY

D. R. Herschbach

Department of Chemistry and Lawrence Radiation Laboratory, University of California, Berkeley, California

This report has been prepared to supplement a review of microwave studies of internal rotation given in UCRL-10405. Several tables summarizing experimental results are provided, together with an extensive bibliography.

The molecules studied and molecular parameters derived from the spectra are listed in Table I. This is intended to include all microwave studies published up to September, 1962. In a few cases results obtained from thermodynamic measurements or infrared spectroscopy are included (as indicated by a superscript <u>c</u> or <u>d</u>), when these supplement the microwave data. Results derived from microwave intensity measurements rather than frequency measurements are also specifically indicated (by a superscript <u>e</u>). When several literature references are given, the one which is regarded as providing the best value of the barrier height is underlined, and the one which provides the best structural parameters is indicated by an asterisk. A more compact list of the barrier values is given in Tables II-IV. The barriers listed in Tables I and II for internal rotation of CH_3 and SiH_3 groups refer to a hindering potential of the form

$$V(\alpha) = \frac{1}{2}V_N(1-\cos N\alpha) + \frac{1}{2}V_{2N}(1-\cos 2N\alpha) + ...,$$
 (1)

where α is the angle of internal rotation about the symmetry axis of the group and the periodicity N=3, except for CH_3BF_2 and CH_3NO_2 for which N=6. The tabulated barrier heights are nominally values of $V_{\rm N}$, as only the leading term in (1) has been retained in analyzing the data. In a few cases, listed in Table III, an estimate of the V_{2N} coefficient has been obtained. However, since this introduces only a small correction to the barrier shape, the contribution of ${\rm V}^{}_{\rm 2N}$ and higher terms in (1) cannot be disentangled from other small perturbations (such as vibrational interactions) which are not included in the analysis. The values of V_{2N} in Table III thus only represent approximate upper limits. The uncertainty in the V_N values of Table II is usually about $\pm 5\%$. This arises mainly from the uncertainty in the structural parameters (especially the moment of inertia I $_{\alpha}$ of the CH $_3$ or SiH $_3$ groups) that enter the analysis. The structural uncertainties are in turn due primarily to the lack of a feasible way to correct for vibration-rotation perturbations. In Table IV are listed the few examples studied so far of barriers having less than threefold periodicity. The potential function assumed and probable uncertainty in the derived values of the coefficients is indicated for each case.

Table V lists several molecules for which the equilibrium configuration of the internal rotor group has been established.

Table VI collects examples for which the "angle of tilt" between the bond direction and the symmetry axis of an internal rotor group has been determined.

The remaining tables provide a convenient index to theoretical papers on internal rotation. Table VII consists of references which deal with energy level calculations and the analysis of microwave spectra, Table VIII lists the available tabulations of Mathieu eigenvalues and related functions, and Table IX gives references concerned with the origin of the potential barriers.

The bibliography includes and extends that provided by C. C. Lin and J. D. Swalen, Rev. Mod. Phys. 31, 841 (1959). The references are arranged by year and within each year alphabetically according to the name of the first author. If a paper is not directly concerned with microwave spectroscopy the reference number is underlined.

The author is greatly indebted to Miss Nancy Monroe for her aid in compiling the bibliography.

-3-

Formula	Compound	v ₃ a	Other Data ^a	References ^b
	Ç	-C Bonds		
CH ₃ CH ₃	ethane	2.9 ^{c,d}	I	<u>31</u> ,123,131 [*]
CH ₃ CH ₂ F	ethyl fluoride	3.31	I,ETS	64,80,132, 152 [*]
CH ₃ CHF ₂	l,l-difluoro- ethane	3.18	ETS	53, <u>80</u>
CH ₃ CF ₃	methyl fluoro- form	3.5 ^e	I,ETS	19, <u>29</u>
CH2FCF3	l,1,1,2-tetra- fluoroethane	4.2 ^d		133
CH ₃ CH ₂ Cl	ethyl chloride	3.69	I,ETS	55,74,115, 142,191*
CH ₃ CH ₂ Br	ethyl bromide	3.57	I,ETS	75,116,142
CH ₃ CH ₂ I	ethyl iodide	2.4 ^f		137a
CH ₃ CH ₂ CN	ethyl cyanide	3.05	ETS, EVS	105,141
CH ₃ CH ₂ CH ₃	propane	>2.7	I	162
CH ₃ CH ₂ SiH ₃	ethyl silane	2.65	I,ETS	198
c-CH ₃ CH ₂ CHO	<u>cis</u> -propion- aldehyde	2.7		193,195
CH ₃ CH ₂ CH ₂ F	propyl fluoride <u>trans</u> isomer gauche isomer	2.69 2.87	ETS EVS	184
(CH ₃) ₃ CH	isobutane	3.9 ^e	I,ETS,EVS	125,163*
(CH ₃) ₃ CF	t-butyl fluoride	4.3 ^e	ETS	125
сн _з сно	acetaldehyde	1.17	I	85, <u>98</u> *,132, <u>136</u>
CH ₃ COF	acetyl fluoride	1.04	I	146
CH3COCI	acetyl chloride	1.30	I	180
CH ₃ COBr	acetyl bromide	1.30	I	158
CH ₃ COCN	acetyl cyanide	1.27	. I	138,157
сн _з соон	acetic acid	0.48	I	114

Table I. Microwave studies of internal rotation.

Formula	Compound	v ₃ a	Other Data ^a	References ^b
(CH ₃) ₂ CO	acetone	0.76	I	149
CH3COC2H5	<u>cis</u> -butanone	0.50	I	200
CH ₃ CH=CH ₂	propylene	1.98	I	107,121,175
t-CH ₃ CH=CHF	<u>trans</u> 1-fluoro- propene	2.15		111
c-CH ₃ CH=CHF	<u>cis</u> l-fluoro- propene	1.06		182
CH3CF=CH2	2-fluoro- propene	2.44	ETS	147
t-CH ₃ CH=CHCN	<u>trans</u> -crotono- nitrile	>2.1		161
CH ₃ CH=C=O	methyl ketene	1.20		181
CH ₃ CH=C=CH ₂	methyl allene	1.59		108
(CH ₃) ₂ C=CH ₂	isobutylene	2.21	I	173
CH3CH-CH2	propylene oxide	2.56	ETS	112,122
с-СН ₃ СН-СНСН ₃	<u>cis</u> 2,3-epoxy- butane	1.61		179
CH ₃ C≡CCH ₂ Cl	l-chloro- butyne-2	<0.050		141
CH ₃ C≡CCF ₃	l-trifluoro- butyne-2	<0.3	I	37, <u>65</u> ,90
				1

4

Other C-IV Bonds

CH3SIH3	methyl silane	1.66	I,ETS,NR	23,47, <u>99</u> * 136
CH ₃ SiH ₂ F	methyl fluoro- silane	1.56	I	128,156
CH ₃ SiHF ₂	methyl difluoro- silane	1.26	I	131,156
CH3SIF3	methyl tri- fluorosilane	1.2 ^b	I,ETS,EVS	24,29, <u>32</u>

Formula	Compound	v ^a 3	Other Data ^a	References ^b
(CH3)2S1H2	dimethyl silane	1.67	I, ETS	145,177
(CH ₃) ₃ S1H	trimethyl silane	1.8 ^e	I, ETS	165
SiH ₃ C ₂ H ₅	ethyl silane	1.98	I, ETS	198
SiH3CH2C1	chloromethyl silane	2.55	I,ETS	192
S1H3CH2=CH2	vinyl silane	1.50	I, ETS	176
CH ₃ GeH ₃	methyl germane	1.24	I, ETS	118, <u>139</u> *
CH ₃ SnH ₃	methyl stannane	0.65	I, ETS, NR	167
	C-	-V Bonds		
CH ₃ NH ₂	methyl amine	1.98	I, ETS, NR	16,35,40,4 44,48,51,5 68,81,102, 106*,110
(CH ₃) ₂ NH	dimethyl amine	3.4 ^d	,	183,197
$(CH_3)_2N$	trimethyl amine	4.4^{e}	ETS	124,183
CH ₃ PH ₂	methyl phosphine	1.96		172
(CH ₃) ₂ PH	dimethyl phosphine	2.20		200
(CH ₃) ₃ P	trimethyl phosphine	2.6 ^e	ETS	125
CH ₃ AsF ₂	methyl di- fluoroarsine	1.33		189
(CH ₃) ₃ As	trimethyl arsine	1.5- 2.5 ^e		142a
		а. Ра		· ·
	C-V ~~~	I Bonds		
сн _з он	methyl alcohol	1.07	I,ETS,NR	15,16,17,20 27, <u>39</u> ,70,73 73*,87,94, 113
CH ₃ OC1	methyl hypo- chlorite	>3		201
сн _з оосн	methyl formate	1.19	I	132a

Ł

υ

		· · · · ·		
Formula	Compound	v ₃ a	Other Data ^a	References ^b
CH ₃ ONO ₂	methyl nitrate	2.32	ETS, EVS	168
(CH ₃)20	dimethyl ether	2.72		137
t-CH3OC2H5	ethyl methyl ether	2.53	I, ETS	199
сн _з ѕн	methyl mercaptan	1.27	I, ETS, NR	60,63,69, 103, <u>160</u>
(CH ₃) ₂ S	dimethyl sulfide	2.10	I,ETS	166, <u>178</u> *, 190
	Sixfo	ld Barrie	ers	
		V ₆		
•		(cal/mole	e)	
CH ₃ BF ₂	methyl boron difluoride	13.77		109
CH ₃ NO ₂	nitromethane	6.03	I	58,89
Molecules w	ith one- or twofold h	parriers a	are listed in T	able IV.

^aValues of barrier heights are given in kcal/mole; to convert to cm⁻¹ units, multiply by 0.3498. An I indicates that two or more isotopic species have been studied; ETS or EVS that the rotational spectra of excited torsional or vibrational states have been analyzed; NR that the parameters for a "nonrigid" model have been evaluated (see Table VII, under "interaction of vibrationinternal rotation-overall rotation"). Other tables collect references to information about corrections to the barrier shape (Table III) and equilibrium configurations (Tables V and VI).

^bSee the bibliography. When several references are given, the one which gives the best value of the barrier height is underlined, and the one which gives the best structural parameters is indicated by an asterisk. ^cFrom thermodynamic measurements.

d_{From infrared spectroscopy.}

e_{From microwave intensity measurements.}

^fThe reported value is probably quite inaccurate.

Table	II.	Barrier	heights	(kcal/	′mole)).
-------	-----	---------	---------	--------	----------------	----

<u></u>		<u>C-C</u> B	onds		
CH ₃ CH ₃	2.9 ^a	СНЗСНО	1.17	CH ₃ CH=CH ₂	1.98
CH ₃ CH ₂ F	3.31	CH ₃ COF	1.04	t-CH ₃ CH=CHF	2.15
CH ₃ CHF ₂	3.18	CH ₃ COC1	1.30	t-CH3CH=CHCl	2.17
CH ₃ CF ₃	3.5 ^b	CH ₃ COBr	l.30	c-CH ₃ CH=CHF	1.06
CH ₃ CH ₂ C1	3,56	CH ₃ COCN	1.27	CH ₃ CF=CH ₂	2.44
CH ₃ CH ₂ Br	3.57	сн _з соон	0.48	t-CH ₃ CH=CHCN	>2.1
CH ₃ CH ₂ CN	3.05	(CH ₃) ₂ CO	0.76	CH ₃ CH=C=O	1.20
CH ₃ CH ₂ CH ₃	>2.7	CH ₃ COC ₂ H ₅	0.50	CH ₃ CH=C=CH ₂	1.59
CH3CH2SiH3	2,65			(CH ₃) ₂ C=CH ₂	2.21
с-СН ₃ СН ₂ СНО	2.7			CH3CH-CH2	2.56
t-CH ₃ CH ₂ CH ₂ F	2.69			с-сн _з сн-снсн _з	1.61
g^{-CH}_{3}	z ob				-0.050
$(CH_3)_3$ CH	3,5 4 z ^b				<0.030
	±. 0				
<u>Other C-IV E</u>	Bonds	<u>C-V</u> Bon	ds	C-VI Bond	<u>S</u>
CH ₃ SiH ₃	1.66	CH ₃ NH ₂	1.98	СНЗОН	1.07
CH3SIH2F	1.56	(CH ₃) ₂ NH	3.4 ^a	CH3OC1	>3
CH ₃ SiHF ₂	1.26	(CH ₃) ₃ N	4.4 ^b	СН ₃ ООСН	1.19
CH ₃ SiF ₃	1.2 ^b	CH ₃ PH ₂	1.96	CH ₃ ONO ₂	2.32
(CH ₃) ₂ SiH ₂	1.67	(СН ₃) ₂ РН	2.20	(CH ₃) ₂ 0	2.72
(CH ₃) ₃ SiH	1.8 ^b	(CH ₃) ₃ P	2.6 ^b	t-CH3OC2H5	2.53
SiH ₃ C ₂ H ₅	1.98	CH ₃ AsF ₂	1.33	CH ₃ SH	1.27
SiH3CH2C1	2,55	(CH ₃) ₃ As	2 ^b	(CH ₃) ₂ S	2.10
SiH_CH_=CH_				0 1	
	1.50		• 0.33	Dennet and the 1/	. 7)
CH ₃ GeH ₃	1.50 1.24	<u> </u>	ixfold	Barriers (cal/m	ole)
CH ₃ GeH ₃ CH ₃ SnH ₃	1.50 1.24 0.65	<u>, 1</u>	ixfold CH	Barriers (cal/m 3 ^{BF} 2 13.77	ole)
CH ₃ GeH ₃ CH ₃ SnH ₃	1.50 1.24 0.65	<u>5</u>	ixfold CH CH	Barriers (cal/m 3 ^{BF} 2 13.77 3 ^{NO} 2 6.03	ole)

^aFrom thermodynamic data or infrared spectra.

^bFrom microwave intensity measurements.

Table III. Corrections to barrier shape (kcal/mole).^a

Molecule	V ₃	v ₆	V ₆ /V ₃	Ref.
сн ₃ сн ₂ сі	3.69±0.30 3.69±0.10	0±0.003	~0%	196a 191
сн ₃ сн=сн ₂	2.03±0.30 1.98±0.17	-0.045±0.003	-2.3%	196a 107
CH ₃ CF=CH ₂	2.34±0.10 2.46±0.05	0.011±0.003 <0.050	0.6% <2.5	196a 147
сн ₃ сн-сн ₂	2.58±0.23 2.56±0.72	-0.026±0.003 <0.030	-1.0% <1%	196a 122

^aThe indicated uncertainties refer to the spectral analysis, and do not include an allowance for the idealizations of the molecular model used in interpreting the spectra.

Formula	Compound	Reference
СН ₃ СН ₂ СН ₂ F	n-propyl fluoride	184
	$V(\alpha) = \Sigma_n \frac{1}{2} V_n (1 - \cos n\alpha)$	
		$V_1 = 3.22 \pm 2.02$ $V_2 = -3.05 \pm 1.72$ $V_3 = 6.48 \pm 2.15$ $V_4 = -1.25 \pm 1.17$
	4.2±1.5 0.47±0.31	4 10021011
0°	60° 120° 180°	
Trans	Gauche Cis	
H CH3	$H \xrightarrow{CH_3} F \xrightarrow{H} CH_4$	S F H H

| H

I

F

Twofold and onefold barriers (kcal/mole). Table IV.

 $C_{6}H_{5}OH$ phenol 159 $V(\alpha) = \frac{1}{2}V_{2}(1-\cos 2\alpha)$ $V_{2} = 3.15\pm0.3$

 $\alpha = 0^{\circ}$, 180° for planar configuration

Formula	Compound	Reference
NH2NH2	hydrazine	185
	$V(\alpha) = \frac{1}{2}V_2(1+\cos 2\alpha)$	
	$V_2 = 3.15 \pm 0.15$	
	$V_2 = V_{cis} = V_{trans}$ assumed	
	$\alpha \approx 90^{\circ}$ at potential minimum	
H- F	H H H H H H H H H H	
C	$ls(\alpha=0^{\circ})$ Trans($\alpha=180$	°)
NF2 ^{NF} 2	tetrafluorohydrazine	143
	V ₂ > 3	
	$\alpha \approx 65^{\circ}$ at potential minimum	
^H 2 ^O 2	hydrogen peroxide	50,86,
*	$\sqrt{V(\alpha)} = V_0 + \frac{1}{2}V_1 \cos \alpha + \frac{1}{2}V_2 \cos 2\alpha$	V = 1.22
		$v_0 = 2.86$
3.73		$v_2^{-2.15}$
¥ 0°	<u> </u>	
Cis	тара Тара	
НН	$\alpha = 109.5^{\circ}$ at potential minimum	
Щ	$\langle \alpha \rangle$ = average dihedral	
\bigcirc	angle (0)	
. 11.7 VARDANINA	- 110.0 H	

Compound	Compound Configuration	
	<u>C-C Bonds</u>	
Сн ₃ сн ₂ ғ	Staggered	152
CH ₃ CH ₂ C1	Staggered	74
CH ₃ CH ₂ CH ₃	Both methyl groups staggered with respect to methylene group	162
(сн ₃) ₃ сн	Each methyl group staggered with respect to methine group	163
сн _з сно	Methyl group eclipses O and staggers H	98
сн _з соғ	Methyl group eclipses O and staggers F	146
снзсост	Methyl group eclipses O and staggers Cl	180
сн _з соси	Methyl group eclipses O and staggers CN	138
CH ₃ CH=CH ₂	Methyl group eclipses double bond and staggers methine H	121
(CH3)2C=CH2	Both methyl groups eclipse double bond	173
	Other C-IV Bonds	
CH3SIH3	Staggered	99
CH3SIH2F	Staggered	128
CH3S1HF2	Staggered	156
(CH3)3SIH	Each methyl group staggered with respect to siline group	165

`.

Table V. Equilibrium configurations.

.

Compound	Configuration	References
SiH ₃ CH=CH ₂	Silyl group staggered with respect to methine group	176
СН _З GеН ₃	Staggered	139
	C-VI Bonds	
сн _з оосн	Methyl group staggered with respect to formyl group	132a
с ₆ н ₅ он	Planar	159
(CH ₃) ₂ S	Both methyl groups staggered with respect to the adjacent CS bond	178
	Other Bonds	
NH2 ^{NH} 2	Dihedral angle = 90°	185
NF2 ^{NF} 2	Dihedral angle = 65°	143
H ₂ O ₂	Dihedral angle = 120°	189a
	Rotational Isomers	
CH ₃ CH ₂ CH ₂ F	Gauche configuration of CH _z and F slightly more stable than trans	184
CH3CH2CH2CN	Gauche configuration of CH ₃ and CN slightly more stable than trans	196
CH ₂ FCH=CH ₂	Cis configuration of F and C=CH ₂ group slightly more stable than trans	196 .

,

Table VI.	Angles	of	tilt.
-----------	--------	----	-------

Molecule	Bond	θ^{a}	Reference
(CH3)2SIH2	C-Si	0°	177
CH ₃ NH ₂	C-N	3°	106
CH ₃ OH	C-0	5°	94
(CH ₃) ₂ 0	C-0	5°	137
CH3SH	C-S	2.5°	160
(CH ₃) ₂ S	C-S	2.5°	178

•<u>;</u> •

i ·

 $\gamma_{1,2}$

 ${}^{a}\theta$ is the angle between the symmetry axis of the methyl group and the bond about which internal rotation occurs. The uncertainty in the experimental values is about ± 0.5 to $\pm 1^{\circ}$. Table VII. Papers treating mechanics of internal rotation.

	and a star political				
Partition	functions	for	internal	rotation	

5,9,14,20,22,59,84,92,120

Energy levels including coupling of internal and over-all rotation

Two coaxial symmetric tops: 2,3a,6,36a

Symmetric top attached to asymmetric frame:

5,9,26,39,63,76,78,81,87,88,89,93, 97,98,103,107,112,122,136

Two symmetric tops attached to asymmetric frame:

5,9,136,137,145,149,164,169,177,179,188,190

Two asymmetric tops:

8,10,14,20,38,50,86,153,185

Interaction of vibration with internal and overall rotation

47,61,62,83,87,94,101,102,106,110,113,140,196b

Reviews

7,12,126,144

References	Period in x	Range in v	Range in s
33 ^b ,c	π,2π	0(1)8 9(1)14	0(1)100 0(2)100
56 ^d	π , 2π	0 (1) 15	100-∞
82 [°]	3π	0(1)5	2(1)30(2)52(4)100
84	4π	0(1)9	1(1)40
95,96 ^{e,f}	π, 3π	0(1)7	2(2)12(4)100
129	π , 3π	0(1)4	100(15)205
136 ^{e,f}	π, 3π	0(1)2	8(4)100
171,199 ^e	π, 2π, 3π 4π, 5π, 6π	0 (1) 16	0(2)100(4)200

Table VIII. Tabulations of Mathieu eigenvalues and integrals.^a

^aFor notation see, for example, reference 136.

^bA close tabulation is given for low s values.

^CEigenfunctions are also tabulated.

^dTabulated in terms of a parameter t=0(0.002)0.1, where $s=1/t^2$.

^ePerturbation coefficients and matrix elements required for the treatment of coupling of internal and over-all rotation are tabulated.

^fRelations are given which enable results to be derived for barriers of any periodicity. Table IX. Papers treating origin of potential barriers.

Quantum mechanical approximations

Numerical results: 1,4,135,155

Semi-empirical or qualitative: 119,127,130,154a

Steric repulsion

11,13,28,36,41,42,49,66,67,77,104,150,186

Electrostatic interaction

8,21,25,30,45,154

Reviews

31,117,151

1932

<u>1</u>. H. Eyring, J. Am. Chem. Soc. <u>54</u>, 3191.

2. H. H. Nielsen, Phys. Rev. 40, 445.

<u>1935</u>

3. E. B. Wilson, Jr., J. Chem. Phys 3, 276.

1937

3a. J. B. Howard, J. Chem. Phys. 5, 442, 451.

1939

4. Gorin, Walter, and Eyring, J. Am. Chem. Soc. <u>61</u>, 1876.

1940

5. B. L. Crawford, J. Chem. Phys. 8, 273.

6. J. S. Koehler and D. M. Dennison, Phys. Rev. 57, 1006.

7. E. B. Wilson, Jr., Chem. Revs. 27, 17.

1941

<u>8</u>. D. Price, J. Chem. Phys. <u>9</u>, 807.

1942

<u>9</u>. K. S. Pitzer and W. D. Gwinn, J. Chem. Phys. <u>10</u>, 428. <u>10</u>. D. Price, J. Chem. Phys. <u>10</u>, 80.

1944

11. Aston, Isserow, Szasz, and Kennedy, J. Chem. Phys. 12, 336.

1945

<u>12</u>. G. Herzberg, <u>Infrared and Raman Spectra</u> (D. Van Nostrand Company, Inc., Princeton, New Jersey.

1946

- 13. French and Rasmussen, J. Chem. Phys. 14, 389.
- 14. K. S. Pitzer, J. Chem. Phys. 14, 239.

1947

15. B. P. Dailey, Phys. Rev. 72, 84.

16. W. D. Herschberger and J. Turkevich, Phys. Rev. 71, 554.

1948

- 17. D. K. Coles, Phys. Rev. 74, 1194.
- 18. Lasettre and Dean, J. Chem. Phys. 16, 151.

1949

- 19. Dailey, Shulman, and Minden, Phys. Rev. 75, 1319A.
- 20. J. E. Kilpatrick and K. S. Pitzer, J. Chem. Phys. 17, 1064.
- 21. Lasettre and Dean, J. Chem. Phys. 17, 317.

1950

22. J. O. Halford, J. Chem. Phys. 18, 444.

- 23. D. R. Lide, Jr. and D. K. Coles, Phys. Rev. 80, 911.
- 24. Minden, Mays, and Dailey, Phys. Rev. 78, 347A.

1951

25. Au Chin Tang, J. Chinese Chem. Soc. 18, 1.

- 26. D. G. Burkhard and D. M. Dennison, Phys. Rev. 84, 408.
- 27. Hughes, Good, and Coles, Phys. Rev. <u>84</u>, 418.

28. Luft, Discussions Faraday Soc. 10, 117.

29. H. Minden and B. P. Dailey, Phys. Rev. <u>82</u>, 338A.

30. Oosterhoff, Discussions Faraday Soc. 10, 79.

31. K. S. Pitzer, Discussions Faraday Soc. 10, 66.

- 32. J. Sheridan and W. Gordy, J. Chem. Phys. 19, 965.
- 33. <u>Tables Relating to Mathieu Functions</u> (Columbia University Press, New York, 1951).

1952

34. B. P. Dailey, Ann. N. Y. Acad. Sci. <u>55</u>, 915.

35. D. R. Lide, Jr., J. Chem. Phys. 20, 1812.

36. J. Van Dranen, J. Chem. Phys. 20, 1982.

36a. H. T. Minden, J. Chem. Phys. 20, 1964.

1953

37. Bak, Hansen, and Anderson, J. Chem. Phys. 21, 1612.

38. D. G. Burkhard, J. Chem. Phys. 21, 1541.

39. E. V. Ivash and D. M. Dennison, J. Chem. Phys. 21, 1804.

40. D. R. Lide, Jr., J. Chem. Phys. 21, 571.

- 41. Luft, J. Chem. Phys. 21, 179.
- 42. Luft, Trans. Faraday Soc. 49, 118.
- 43. K. Shimoda and T. Nishikawa, J. Phys. Soc. Japan 8, 133.
- 44. K. Shimoda and T. Nishikawa, J. Phys. Soc. Japan 8, 425.

1954

45. Au Chin Tang, Sci. Sinica 3, 279.

- 46. D. H. Baird and G. R. Bird, Rev. Sci. Instr. 25, 319.
- 47. D. Kivelson, J. Chem. Phys. <u>22</u>, 1733.
- 48. D. R. Lide, Jr., J. Chem. Phys. 22, 1613.
- <u>49</u>. Luft, J. Chem. Phys. 22, 155, 1814.

50. J. T. Massey and D. R. Bianco, J. Chem. Phys. <u>22</u>, 442.
51. Shimoda, Nishikawa, and Itoh, J. Phys. Soc. Japan <u>9</u>, 974.
52. Shimoda, Nishikawa, and Itoh, J. Chem. Phys. <u>22</u>, 1456.
53. N. Solimene and B. P. Dailey, J. Chem. Phys. <u>22</u>, 2042.
54. Tannenbaum, Johnson, Myers, and Gwinn, J. Chem. Phys. <u>22</u>, 949.
55. R. S. Wagner and B. P. Dailey, J. Chem. Phys. <u>22</u>, 1459.
<u>1955</u>
56. G. Blanch and I. Rhodes, Wash. Acad. Sci. <u>45</u>, 166.

- 57. D. G. Burkhard and J. C. Irvin, J. Chem. Phys. 23, 1355.
- 58. W. D. Gwinn, Faraday Soc. Disc. 19, 43.
- 59. Ivash, Li, and Pitzer, J. Chem. Phys. 23, 1814.
- 60. R. W. Kilb, J. Chem. Phys. 23, 1736.
- 61. D. Kivelson, J. Chem. Phys. 23, 2230.
- 62. D. Kivelson, J. Chem. Phys. 23, 2236.
- 63. T. Kojima and T. Nishikawa, J. Phys. Soc. Japan <u>10</u>, 240.
- 64. J. Kraitchman and B. P. Dailey, J. Chem. Phys. 23, 184.
- 65. D. R. Lide, Jr. and D. Kivelson, J. Chem. Phys. 23, 2191.
- 66. Luft, Z. Elektrochem. 59, 46.
- 67. E. A. Mason and M. M. Kreevoy, J. Am. Chem. Soc. <u>77</u>, 5808.
 68. Nishikawa, Itoh, and Shimoda, J. Chem. Phys. <u>23</u>, 1735.
- 69. N. Solimene and B. P. Dailey, J. Chem. Phys. 23, 124.
- 70. J. D. Swalen, J. Chem. Phys. 23, 1739.
- C. H. Townes and A. L. Schawlow, <u>Microwave Spectroscopy</u> (McGraw-Hill Book Company, Inc., New York, 1955).
 Venkateswarlu, Edwards, and Gordy, J. Chem. Phys. <u>23</u>, 1195.
 P. Venkateswarlu and W. Gordy, J. Chem. Phys. <u>23</u>, 1200.
 R. S. Wagner and B. P. Dailey, J. Chem. Phys. 23, 1355.

75.	Wagner, Solimene, and Dailey, J. Chem. Phys. 23, 599.
76.	Wilson, Lin, and Lide, J. Chem. Phys. 23, 136.
	<u>1956</u>
77.	B. Bak, J. Chem. Phys. <u>24</u> , 918.
78.	D. G. Burkhard, Trans. Faraday Soc. 52, 1.
<u>79</u> .	T. Das, J. Chem. Phys. <u>25</u> , 896.
80.	D. R. Herschbach, J. Chem. Phys. 25, 358.
81.	T. Itoh, J. Phys. Soc. Japan <u>11</u> , 264.
<u>82</u> .	R. W. Kilb, "Tables of Mathieu Eigenvalues and Eigenfunctions Mathieu for Special Boundary Conditions," Department of Chemistry, Harvard University.
83.	D. Kivelson, J. Chem. Phys. <u>26</u> , 215.
<u>84</u> .	J. C. M. Li and K. S. Pitzer, J. Phys. Chem. 60, 466.
85.	C. C. Lin and R. W. Kilb, J. Chem. Phys. 24, 631.
86.	J. T. Massey and R. W. Hart, J. Chem. Phys. 23, 942.
87.	T. Nishikawa, J. Phys. Soc. Japan <u>11</u> , 781.
88.	J. D. Swalen, J. Chem. Phys. <u>24</u> , 1072.
89°.	Tannenbaum, Myers, and Gwinn, J. Chem. Phys. 25, 42.
	<u>1957</u>

- 90. Bak, Christensen, Hansen-Nygaard, and Tannenbaum, J. Chem. Phys. <u>26</u>, 241.
- <u>91</u>. T. Das, J. Chem. Phys. <u>27</u>, 763.
- <u>92</u>. J. O. Halford, J. Chem. Phys. <u>26</u>, 851.
- 93. K. T. Hecht and D. M. Dennison, J. Chem. Phys. 26, 31.
- 94. K. T. Hecht and D. M. Dennison, J. Chem. Phys. 26, 48.
- 95. D. R. Herschbach, "Tables for the Internal Rotation Problem," Department of Chemistry, Harvard University.
- 96. D. R. Herschbach, J. Chem. Phys. 27, 975.

- D. R. Herschbach, J. Chem. Phys. <u>27</u>, 1420.
 Kilb, Lin, and Wilson, J. Chem. Phys. <u>26</u>, 1695.
 R. W. Kilb and L. Pierce, J. Chem. Phys. <u>27</u>, 108.
 D. Kivelson, J. Chem. Phys. <u>27</u>, 980.
 D. Kivelson and D. R. Lide, Jr., J. Chem. Phys. <u>27</u>, 353.
- 103. T. Kojima and T. Nishikawa, J. Phys. Soc. Japan 12, 680.
- 103. T. Kojima and T. Nishikawa, J. Phys. Soc. Japan <u>12</u>, 680.
- <u>104</u>. M. M. Kreevoy and E. A. Mason, J. Am. Chem. Soc. <u>79</u>, 4851.
- 105. R. G. Lerner and B. P. Dailey, J. Chem. Phys. 26, 678.
- 106. D. R. Lide, Jr., J. Chem. Phys. <u>27</u>, 343.

97.

98.

99.

101.

102.

- 107. D. R. Lide, Jr. and D. E. Mann, J. Chem. Phys 27, 868.
- 108. D. R. Lide, Jr. and D. E. Mann, J. Chem. Phys. <u>27</u>, 874.
- 109. R. E. Naylor, Jr. and E. B. Wilson, Jr., J. Chem. Phys. <u>26</u>, 1057.
- 110. T. Nishikawa, J. Phys. Soc. Japan 12, 668.
- 111. S. Siegal, J. Chem. Phys. <u>27</u>, 989.
- 112. J. D. Swalen and D. R. Herschbach, J. Chem. Phys. 27, 100.
- 113. P. R. Swan and M. W. P. Strandberg, J. Mol. Spectroscopy <u>1</u>, 33.
- 114. W. J. Tabor, J. Chem. Phys. <u>27</u>, 974.
- 115. R. S. Wagner and B. P. Dailey, J. Chem. Phys. 26, 1588.
- 116. Wagner, Dailey and Solimene, J. Chem. Phys. <u>26</u>, 1593.
- 117. E. B. Wilson, Jr., Proc. Natl. Acad. Sci. U.S. 43, 816.

1958

- 118. A. I. Barchukov and A. M. Prokhorov, Optika i Septroskopia $\underline{4}$, 799.
- <u>119</u>. Eyring, Stewart, and Smith, Proc. Natl. Acad. Sci. U.S. <u>44</u>, 259.
- 120. S. Golden, J. Phys. Chem. 62, 74.

122. D. R. Herschbach and J. D. Swalen, J. Chem. Phys. <u>29</u>, 761.
<u>123</u>. D. R. Lide, Jr., J. Chem. Phys. <u>29</u>, 1426.
124. D. R. Lide, Jr. and D. E. Mann, J. Chem. Phys. <u>28</u>, 572.
125. D. R. Lide, Jr. and D. E. Mann, J. Chem. Phys. <u>29</u>, 914.
126. C. C. Lin, Amer. J. Phys. <u>26</u>, 319.

127. L. Pauling, Proc. Natl. Acad. Sci. U.S. 44, 211.

128. L. Pierce, J. Chem. Phys. 29, 383.

121.

129. E. O. Stejskal and H. S. Gutowsky, J. Chem. Phys. 28, 388.

130. G. H. Stewart and H. Eyring, J. Chem. Ed. 35, 550.

131. J. D. Swalen and B. P. Stoicheff, J. Chem. Phys. 28, 671.

132. P. H. Verdier and E. B. Wilson, Jr., J. Chem. Phys. 29 340.

1959

131a. H. C. Allen and E. K. Plyler, J. Chem. Phys. 31, 1062.

132a. R. F. Curl, Jr., J. Chem. Phys. 30, 1529.

133. A. Danti and J. L. Wood, J. Chem. Phys. 30, 582.

134. A. A. Evett, J. Chem. Phys. 31, 1419.

135. G. M. Harris and F. E. Harris, J. Chem. Phys. 31, 1450.

136. D. R. Herschbach, J. Chem. Phys. 31, 91.

137. P. H. Kasai and R. J. Myers, J. Chem. Phys. 30, 1096.

137a. T. Kasuya and T. Oka, J. Phys. Soc. Japan 14, 980.

138. L. C. Krisher and E. B. Wilson, Jr., J. Chem. Phys. 31, 882.

139. V. W. Laurie, J. Chem. Phys. 30, 1210.

140. V. W. Laurie, J. Chem. Phys. <u>31</u>, 1500.

141. V. W. Laurie and D. R. Lide, J. Chem. Phys. 31, 939.

D. R. Herschbach and L. C. Krisher, J. Chem. Phys. 28, 728.

- 142. D. R. Lide, Jr., J. Chem. Phys. 30, 37.
- 142a. D. R. Lide, Jr., Spectrochim. Acta 15, 473
- 143. D. R. Lide and D. E. Mann, J. Chem. Phys. <u>31</u>, 1129.
- 144. C. C. Lin and J. D. Swalen, Rev. Mod. Phys. 31, 841.
- 145. L. Pierce, J. Chem. Phys. <u>31</u>, 547.
- 146. L. Pierce and L. C. Krisher, J. Chem. Phys. <u>31</u>, 875.
- 147. L. Pierce and J. M. O'Reilly, J. Mol. Spectroscopy 3, 536.
- 149. J. D. Swalen and C. C. Costain, J. Chem. Phys. <u>31</u>, 1562.
- 150. W. Weltner, J. Chem. Phys. 31, 264.
- 151. E. B. Wilson, Jr., "The Problem of Barriers to Internal Rotation in Molecules," Advances in Chemical Physics 2, 367 (Interscience Publishers, Inc., New York, 1959).

1960

- 152. B. Bak, S. Detoni, L. Hansen-Nygaard, J. T. Nielsen and J. Rastrup-Andersen, Spectrochim. Acta <u>16</u>, 376.
- 153. D. G. Burkhard, J. Opt. Soc. Am. 50, 1214.
- 154. W. L. Clinton, J. Chem. Phys. 33, 632.
- 154a. H. G. Hecht, D. M. Grant, and H. Eyring, Mol. Phys. 3, 577.
- 155. M. Karplus, J. Chem. Phys. <u>33</u>, 316.
- 156. L. C. Krisher and L. Pierce, J. Chem. Phys. 32, 1619.
- 157. L. C. Krisher, J. Chem. Phys. 33, 304.
- 158. L. C. Krisher, J. Chem. Phys. <u>33</u>, 1237.
- 159. T. Kojima, J. Phys. Soc. Japan 15, 284.
- 160. T. Kojima, J. Phys. Soc. Japan 15, 1284.
- 161. V. W. Laurie, J. Chem. Phys. 32, 1588.
- 162. D. R. Lide, Jr., J. Chem. Phys. 33, 1514.
- 163. D. R. Lide, Jr., J. Chem. Phys. 33, 1519.
- 163a. J. T. Massey, C. I. Beard, and C. H. Jen, J. Mol. Spectroscopy 5, 405.

- 164. R. J. Myers and E. B. Wilson, J. Chem. Phys. 33, 186.
- 165. L. Pierce and D. H. Petersen, J. Chem. Phys. 33, 907.
- 166. H. D. Rudolph, H. Dreizler, and W. Maier, Z. Naturforschg. <u>15a</u>, 742.

1961

- 167. P. Cahill and S. Butcher, J. Chem. Phys. 35, 2255.
- 168. W. B. Dixon and E. B. Wilson, Jr., J. Chem. Phys. 35, 191.
- 169. H. Dreizler, Z. Naturforschg. 16a, 1354.
- 170. W. G. Fateley and F. A. Miller, Spectrochim. Acta 17, 857.
- 171. M. Hayashi and L. Pierce, J. Chem. Phys. 35, 1148.
- 172. T. Kojima, E. L. Breig, and C. C. Lin, J. Chem. Phys. 35, 2139.
- 173. V. W. Laurie, J. Chem. Phys. 34, 1516.
- 174. W. F. Libby, J. Chem. Phys. 35, 1527.
- 175. D. R. Lide, Jr., and D. Christensen, J. Chem. Phys. 35, 1374.
- 176. J. M. O'Reilly and L. Pierce, J. Chem. Phys. 34, 1176.
- 177. L. Pierce, J. Chem. Phys. 34, 498.
- 178. L. Pierce and M. Hayashi, J. Chem. Phys. <u>35</u>, 479.
- 179 M. L. Sage, J. Chem. Phys. 35, 142.
- 180. K. M. Sinnott, J. Chem. Phys. 34, 851.

1962

- 181. B. Bak, D. Christensen, J. Christensen, L. Hansen-Nygaard, and J. Rastrup-Andersen, Spectrochim. Acta <u>18</u>, 1421.
- 182. R. A. Beaudet and E. B. Wilson, Jr., J. Chem. Phys. 37, 1133.
- 183. W. G. Fateley and F. A. Miller, Spectrochim. Acta 18, 977.

184. E. Hirota, J. Chem. Phys. 37, 283.

185. T. Kasuya, Sci. Papers Inst. Phys. and Chem. Research (Tokyo, Japan) <u>56</u>, 1.

186.	V.	Magnasco,	Nuovo	Cimento	24,	425.

- 187. W. Maier, Pure and App. Chem. 4, 157.
- 188. K. D. Möller and H. G. Andresen, J. Chem. Phys. <u>37</u>, 1800.
- 189. L. J. Nugent and C. D. Cornwell, J. Chem. Phys. 37, 523.
- 189a. R. L. Redington, W. B. Olsen, and P. C. Cross, J. Chem. Phys. 36, 1311.
- 190. H. D. Rudolph, Z. Naturforschg. 17a, 288.
- 191. R. H. Schwendeman and G. D. Jacobs, J. Chem. Phys. <u>36</u>, 1245.
- 192. R. H. Schwendeman and G. D. Jacobs, J. Chem. Phys. 36, 1251.
- 193. E. B. Wilson, Jr., Pure and App. Chem. 4, 1.

Papers in press, abstracts of recent talks, and private communications:

- 194. R. A. Beaudet, J. Chem. Phys. (in press).
- 195. S. Butcher, Paper C9, Symposium on Molecular Structure and Spectroscopy, Columbus, Ohio, June, 1961.
- 196a. W. G. Fateley and F. A. Miller, Paper C408, International Symposium on Molecular Structure and Spectroscopy, Tokyo, Japan, September, 1962.
- 196. E. Hirota, J. Chem. Phys. (in press); Paper F6, Symposium on Molecular Structure and Spectroscopy, Columbus, Ohio, June, 1962; Paper C402, International Symposium on Molecular Structure and Spectroscopy, Tokyo, Japan, September, 1962.
- 196b. B. Kirtman, J. Chem. Phys. (in press).
- 197. V. W. Laurie, Private Communication.
- 198. D. H. Petersen and L. Pierce, Paper N10, Symposium on Molecular Structure and Spectroscopy, Columbus, Ohio, June, 1960.
- 199. L. Pierce and M. Hayashi, Paper FlO, Symposium on Molecular Structure and Spectroscopy, Columbus, Ohio, June, 1962, and private communication.
- 200. 'L. Pierce and C. R. Nelson, Private Communication.
- 201. J. Rigden, Paper C3, Symposium on Molecular Structure and Spectroscopy, Columbus, Ohio, June, 1961; and private communication.

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

