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ABSTRACT OF THE THESIS 

 
Estrogen Receptor Alpha Dynamics and Function in Mammalian Cells 

 
By 

 
Ramon Roca Pinilla 

 
Master of Science in Biomedical Engineering 

 
 University of California, Irvine, 2015 

 
Professor Michelle A. Digman, Chair 

 
 
 

The role of estrogen receptors (ER) is highly dependent on their sub-cellular localization 

and concentration. Here, we propose an approach to detect molecular transport, diffusion and 

localization of the estrogen receptor  by measuring the time cross-correlation between pairs 

of locations and the average number of molecules by means of fluorescence fluctuations in 

mammalian cells. From this data we find that there is concentration dependence for the 

localization of the estrogen receptor and that 17--Estradiol (E2) reduces the apparent diffusion 

of the receptor. In addition, we use fluorescence lifetime imaging, a label-free, non-invasive 

imaging method to demonstrate changes in the glucose metabolic pathway in ER-positive 

breast cancer cells. We observe a higher free to bound NADH ratio in high glucose conditions, 

reflecting and increased glycolysis/oxidative phosphorylation ratio. Furthermore, E2 is able to 

potentiate metabolic adaptation and cell viability depending on the glucose availability. Taking 

advantage of a wide array of available biophysical analysis techniques may provide additional 

useful information for estrogen receptors and in breast cancer research.  
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Chapter 1  Introduction 

 

Estrogen and its receptors (ERs) play important roles in the development and 

maintenance of normal sexual and reproductive function, with a vast range of biological effects 

in the cardiovascular, musculoskeletal, immune, and central nervous system1. Moreover, they 

are also crucial in the genesis and malignant progression of breast cancer2. 

ERs are ligand-activated transcription factors that can bind 17--estradiol, the most 

potent estrogen produced in the body. The first ER was cloned in 1986 and was regarded as the 

only receptor until a second ER was reported in 1996. The two receptors, known today as ER 

and ER, show a high degree of similarity when their respective amino acid sequences are 

compared. The sequence homology is approximately 97% in the DNA-binding domain and 

approximately 56% in the ligand-binding domain, whereas at the N terminus the homology is 

only 24%1,3 (Fig.  2, Fig.  3) 

 

 

Fig.  2 Schematic representation of the domain structure of the estrogen receptors (ERs). 
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Transcriptional activation by ERis mediated by two distinct activation functions (AF):  

the constitutively active AF-1 in the N-terminal domain of the receptor and the ligand-

dependent4 AF-2, located in the C-terminal domain of the receptor protein. When compared, 

ER has a weaker AF-1 function, hence depending more on the ligand-dependent action of AF-2 

for its transcriptional activation function. The relative importance of the AF-1 and AF-2 

activation functions depends on cellular and promoter context4,5. 

 

 

Fig.  3. Illustrative representation of the estrogen receptor, its interaction with the DNA, ligands and ligand-
dependent adopted conformations

6
.  

1.1 Mechanism of Transcriptional Activation 

 

Estrogens are small, carbon-rich molecules built from cholesterol. Contrary to larger 

hormones, such as insulin and growth hormone, which are sensed by receptors on the cell 
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surface, estrogens can also pass directly into cells throughout the body into the nucleus, right at 

the site of action on DNA6. 

Like other steroid hormone receptors, ERs act as dimers, upon hormone binding, to 

regulate transcriptional activation. ER activated transcriptional control requires interaction with 

coregulator complexes, either coactivators or corepressors of the target gene expression. The 

consensus estrogen response element (ERE; GGTCAnnnTGACC) is required for some estrogen 

responsive genes, although most of the regulated genes do not contain this perfect palindromic 

consensus sequence. In addition, ERs can bind other transcription factors and activate them in 

order to trigger transcription indirectly. Selective action of ERs in vivo is probably a result of the 

complex interplay at a given time point between expression levels of each ER type, the relative 

affinity for a specific promoter, ligand and cofactor availability, and interaction with other 

transcription factors. A significant number of post-translation modifications, such as 

phosphorylation, SUMOylation, ubiquitination, acetylation or palmitoylation of ERs have also 

been described, affecting the receptor activity, stability and localization in sub-cellular 

compartments7.  
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Fig.  4  Schematic representation of the ERfunctions depending on the cellular compartment
1,7,8

. 

 

1.2 Functional Roles of ERs in Physiology and Disease 

 

Estrogens gives cells permission to grow when required. This is essential during puberty, 

but also necessary during adult life6. 

Estrogens and other selective estrogen-receptor modulators (SERMs), molecules that 

mimic the shape of estrogen and bind tightly to the estrogen receptor, such as Tamoxifen or 

Fulvestrant, exert effects on multiple organs. For example, Tamoxifen is larger than the 

hormone forcing ER into an inactive conformation and therefore blocking the signal to grow 

(Fig.  3).  
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It is generally believed that breast tumors depend, at least initially, on the stimulatory  

effects of estrogens for their development1,4,5,9. However many breast tumors eventually 

progress to an estrogen-independent growth phenotype. Tamoxifen and similar antiestrogens 

are currently in the first-line therapy for treatment of hormone-dependent breast cancers. 

Normal and cancer tissues display a variety of distinct profiles regarding the ER isoform and 

splice variants at both mRNA and protein levels.  This heterogeneity is suggested to result in 

variation in estrogen signaling, therefore affecting breast cancer risk, treatment responsiveness 

and survival. Currently, only the ERisoform is clinically measured for clinical decision-making 

and treatment9.  

It is important to note that ERs play an important role in other types of cancers and 

other diseases. Prostate cancer is the most frequently diagnosed malignancy and the second 

most common cause of death among men in the United States. In this case, both androgens 

and estrogens play an important role. Estrogens also exert a cardio-protective role by reducing 

circulating lipid levels and by enhancing NO production, necessary for endothelium-dependent 

peripheral vasodilatation. Moreover, estrogen and its receptors are known to be important in 

the regulation of bone metabolism. Estrogen deficiency beginning at menopause is a major 

pathogenic factor in the development of osteoporosis in post-menopausal women. Finally, 

estrogens and ERs are implicated in various disorders of the brain or in metabolic diseases, such 

as reduction of the adipose tissue by increasing lipolysis or protection against insulin 

resistance8,9.  However, little information exists on a role for estrogen receptor diffusion and 

how estradiol affects its transport and interactions, from a biophysical perspective.  
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Previous studies are based on single point fluorescence correlation spectroscopy (FCS) 

or fluorescence recovery after photobleaching (FRAP). FCS is a correlation analysis of temporal 

fluctuations on the fluorescence intensity that offers insight of diffusion behavior and absolute 

concentration of detected particles. FRAP is a technique capable of quantifying diffusion by 

focusing light onto a small region of a viewable area. The fluorophores in this region receive 

high intensity illumination which causes fluorophores to bleach. As Brownian motion proceeds, 

the non-bleached molecules will diffuse through the sample and replace the non-fluorescent 

probes in the bleached region. Therefore, transport can be quantified with bot these 

techniques10. However, FRAP is an invasive techniques and both these methods suffer in terms 

of spatial resolution11–13. Moreover, imaging techniques are needed not only to retrieve 

diffusion but also to quantify cellular localization and function of the estrogen receptor. Here, 

we introduce different fluorescence imaging-based techniques in order to address some of 

these questions in mammalian cells.  

  

1.3 Addressing unsolved biological questions by means of biophysical tools 

 

In this particular study, additional information regarding the ERis provided using a 

biophysical approach, in contrast to traditional biochemical studies. One specific aim of our 

research is to retrieve dynamics, localization and structural characteristics in mammalian cells. 

This is achieved by measuring protein transport and localization in a quantitative way using 

fluorescence fluctuation techniques14–16. In addition, drug-induced perturbations that affect 

protein transport and interaction can be evaluated. 
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Another aim of the research is to acquire metabolic information through fluorescence 

lifetime imaging (FLIM) analysis of live mammalian cells. FLIM can be a useful asset in order to 

asses a broad spectrum of different metabolic states17–19. However, the scope of the present 

research is focused on metabolic plasticity for breast cancer cells under different glucose 

availability. These variable substrate concentrations are representative of the in-vivo 

microenvironment that tumor cells may be exposed to. Finally, FLIM can also address the effect 

of E2 in order to potentiate breast cancer adaptation to different energetic constraints20. 

Capitalizing on non-invasive imaging techniques might provide additional means for diagnosis 

and consequently better treatments. All of the techniques are explained in the following 

chapters.   
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Chapter 2 Analysis techniques 

 

2.1  Single Plane Illumination Microscopy for fluorescence microscopy 

 

The ability to measure biomolecular dynamics is critical for unveiling fundamental 

physiological processes within live cells such as cell adhesion, signaling, movement, division or 

metabolism15.  

In that regard, we show that the combination of fluorescence fluctuation microscopy 

techniques (described in sections 2.2) together with single plane illumination (SPIM) data is a 

fast and more efficient way of unraveling rapid molecular transport and interactions in living 

cells. In SPIM, excitation and detection of fluorescent samples are decoupled by the use of two 

objective lenses arranged perpendicular to each other (Fig.  5). A thin sheet of light from the 

excitation objective limits fluorescence emanating from the focal plane, allowing for optical 

sectioning of live samples. Moreover, light exposure levels are very low, thus reducing 

cytotoxicity. Therefore, the custom made SPIM setup allows fluorophores in the nucleus of 

living cells to be selectively excited (Fig.  5). Finally, the technique employed does not require 

calibration of the Point Spread Function (PSF) (see 2.4). 15.  

For the quantification of protein dynamics, first, a stack of camera images recorded in 

the order of milliseconds is obtained. Then, these recorded acquisitions are correlated as 

explained in section 2.2 (Error! Reference source not found.). Hence, the diffusion vs. time plot 

is obtained14,15. 
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Fig.  5. Picture of the selective plane illumination microscope. The SPIM system is setup using a vertical 
breadboard secured onto an optical anti-vibration table. It is a home-build microscope by Dr. Nik Hedde at the 
laboratory of fluorescence dynamics (LFD), University of California Irvine (UCI).For exciting green fluorescence, a 
488-nm laser diode (488 nm, ISS, Champaign, IL, USA) is used. The green channel is imaged onto the chip of an 
sCMOS camera(Zyla 4.2, Andor, Belfast, North Ireland).The inset shows the two objective lenses dipping into the 
sample dish as described in materials and methods

15
. 

 

2.2  Fluorescence fluctuation techniques 

  

In living systems homeostasis is achieved by a complex landscape of precisely regulated 

interactions. These interactions control the localization of the molecular constituents within the 

cell at any given time point. Therefore, tracking fluorescent probes such as green fluorescent 

protein (GFP) within the cellular environment allows for the application of fluorescence 

fluctuation techniques. Fluorescence fluctuation microscopy includes a broad array of analytical 

tools that provide quantitative information of cellular structures, their organization and the 

intrinsic molecular dynamics. 

Fluctuating fluorescence signal that derives from adequately labeled reporters allow for non-

invasive measurements of diffusion coefficients, binding constants, concentrations, 

oligomerization and other parameter in live samples. These parameters can be obtained over 
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many microns in the sample, and can reveal the variation in response to certain treatments 

such as hormones (e.g. 17--Estradiol). 

Thus, within the constraints imposed by the required fluorescence labeling, fluctuation 

microscopy has the potential to add a dynamic molecular element to standard fluorescence 

imaging in vitro and in vivo.  

 

2.2.1 Spatio-temporal image correlation (STICs) and Pair Correlation Function (pCF) to study 

molecular diffusion 

 

Within the context mentioned in 2.1 and 2.2, spatio-temporal image correlation 

microscopy, a technique based on fluorescence fluctuations, allows us to calculate the actual 

molecular diffusion directly from imaging. First, fast imaging of the region of interest is 

performed from which a stack of images is obtained. Each image in the stack is separated by a 

certain time delay. Subsequently, the pair correlation function is retrieved at certain radial 

distances as a function of time, starting from the center of the region of interest (Fig.  6).  

The pair correlation function between the correlations at two points measures the time 

for a particle at a given point to appear at the second point11. A particle observed at time t= 0 at 

the origin will be found at a distance 𝑟𝑛 with a probability proportional to the pair correlation 

function at a given distance. Notably, only the same particles will produce an average positive 

correlation at a given time delay at two different points21. Traditionally the pair correlation is 

performed along a line of pixels but not using 2D intensity images. However, this technique can 
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be applied to our data because in the SPIM microscope frames are acquired very fast (2ms) and 

to increase the signal to noise (S/N) in all the points equidistant to the origin are averaged.  

The specific amount of time required to travel a distance is used to calculate a quantity 

proportional to the apparent diffusion coefficient for that particle. 

It is important to remark that this approach can resolve average molecular dynamic 

properties well below the limit imposed by diffraction (~142 nm). In silico tests to demonstrate 

this approach are performed, through several simulated 2-D diffusion conditions, and in live 

cells, through a succession of fluorescently-labeled benchmark molecules (both protein and 

lipids). Furthermore, this approach does not require extraction of the individual trajectories of 

each one of the molecules. 

Finally, it can be argued that this approach may represent a powerful tool in order to 

discover dynamic molecular properties that can be used to construct biophysical models to 

explain certain cell behaviors.  
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2.2.2 pCF mathematical background for diffusion of particles 

 

The fluorescence intensity at any given time and position 𝛿𝑟 from the origin is given 

by11: 

 

 𝐹(𝑡, 𝛿𝑟) = 𝑘𝑄∫ 𝑊(𝑟)𝐶(𝑟 + 𝛿𝑟, 𝑡)𝑑𝑟, ( 1 ) 

 

Where C(r,t) is the diffusion propagator, which can be interpreted as being proportional 

to the probability of finding a particle in position r and time t if the particle is at position 0 at 

time 𝑡 = 0.  

The mathematical description of C(r,t) is given by: 

 
 

𝐶(𝑟, 𝑡) =
1

(4𝜋𝐷𝑡)3/2
∙ exp (−

𝑟2

4𝐷𝑡
) ( 2 ) 

 

Fluorescence is assumed to be proportional to the concentration, the quantum yield Q, 

filter combination excitation-emission laser power and the position of the particle in the profile 

of illumination 𝑊(𝑟). The pCF for two points at a distance 𝛿𝑟 as a function of the time delay  𝜏 

is calculated by the following equation: 

 

 
𝐺(𝜏, 𝛿𝑟) =  

〈𝐹(𝑡, 0) ∙ 𝐹(𝑡 + 𝜏, 𝛿𝑟)〉

〈𝐹(𝑡, 0)〉〈𝐹(𝑡, 𝛿𝑟)〉
− 1 ( 3 ) 
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Fig.  6 The pair correlation function (pCF) approach (A) From a series of fluorescence images the spatiotemporal 
correlation is calculated. (B) At certain distances the pair correlation is retrieved as a function of time (green, red 
and purple lines) (C) Normalized pair correlation as a function of time. Each color represents a certain radial 
distance from the initial point 𝒓𝟎 , fixed by the pixel size (142 nm). (D) Diffusion as a function of time is obtained by 
the pCF approach. The time dependence of the diffusion coefficient reflects the nano-structural environment that 
conditions the protein movement. 

 

2.3 Binding Map 

 

A ubiquitous observation in cell biology us that the diffusive motion of macromolecules 

and organelles is anomalous. Therefore, descriptions based only on the conventional diffusion 

equation with diffusion constants measured in dilute solution fail to explain this particular 

behavior. Macromolecular crowding in the interior of the cells and in cellular membranes may 

be one of the possible explanations. One of the most common phenomenon that explains 

transport is a sub-linear, power law increase of the mean-square displacement (MSD). 

However, there are other types of manifestations such as time-dependent and strongly reduced 

diffusion coefficients, persistent correlations in time, non-Gaussian distributions of spatial 
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displacements, heterogeneous diffusion and the presence of a fraction of immobile particles22. 

There are several widely used theoretical models to describe transport in a heterogeneous 

environment. Notably, a particular emphasis is put in the spatiotemporal properties of the 

aforementioned transport in terms of how the different techniques explain transport. This can 

be done through two-point correlation (e.g. Pair Correlation Function (pCF)) functions or 

dynamic scaling behaviors, to mention some.  

These theoretical models are then applied to experimental techniques based on 

fluorescence fluctuations, such as fluorescence correlation spectroscopy (FCS) and fluorescence 

recovery after photobleaching (FRAP) as explained in 1.2  

In an effort to visualize dynamic observations in the nucleus of live cells in a topological 

fashion, the binding map technique was developed in our lab by Carmine Di Rienzo. The 

technique is still in a preliminary state and has not been published yet, but it consists of the 

following: for a stack of images, the technique retrieves the time delay between correlation 

functions (Fig.  7), at each pixel. Plotting the space vs. the time delay obtained at each pixel will 

give a linear curve with a certain slope (𝜃). If 𝜃 is >0 (𝜃𝐷), the particles are considered as 

“diffusive” a   ha  par icular pi el. On  he con rary, if  he slope is < 0 (𝜃𝐵), molecules are 

considered  o be “bound” a   ha  pi el. Hence, a map can be obtained that describes possible 

internal paths within a subcellular compartment for the molecule under study and regions of 

confinement along with the necessary obstacles and barriers for that to occur. 
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Fig.  7  Schematic representation of the theory behind the binding map technique. For each pixel a distance vs. 
delay time slope is obtained and plotted. If the slope for the obtained curve is > 0 (𝜽𝑫) (𝐛𝐥𝐮𝐞 𝐥𝐢𝐧𝐞), molecules are 
considered to be diffusing at that pixel. On the contrary, if the slope is < 0 (𝜽𝒃), molecules are considered to be 
bound at that pixel (orange line). However, bound molecules will diffuse eventually and the slope will be > 0 after a 
certain amount of delay time (thin red line). Thus, the intersection between the x-axis and the thin red line is 
approximately the binding time (white and blue arrow). The size of the PSF is approximately given by the distance 
between the blue and orange curves (thick red line).The binding map technique plots the corresponding slope 
𝜽𝑫𝒐𝒓 𝜽𝒃) at each pixel in a color map.  

 

2.4 Fluorescence Lifetime Imaging Microscopy  

 

The previous sections in this chapter discussed analysis techniques for the study of 

spatio-temporal dynamics of molecules inside living cells. These provide information about the 

local microenvironment within the nucleus for the ER receptor. To investigate alterations of 

metabolic changes upon stimulation with estrogen, it is necessary to use fluorescence lifetime 

imaging microscopy (FLIM) and measure the intrinsic autofluorescence signal derived from 
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nicotinamide adenine dinucleotide (NADH). Considering that different molecular species or 

different conformations of the same molecule have different lifetimes, the fluorescence decay 

can be measured using FLIM in the frequency domain, time-sampling approach, or time-

correlated single photon counting23.  

The phasor approach, used in this study,  has the potential of simplifying the analysis of 

FLIM images avoiding some of the problems of the exponential analysis and simultaneously 

providing a visual general view of the processes affecting the fluorescence that arises at each 

pixel17–19. The phasor method transforms the histogram of time delays at each pixel in a phasor 

diagram, which has the properties of a vector17. Moreover, the phasor plot is reciprocal. That 

means that each one of the points can be directly associated to the corresponding pixel of the 

image that generated it.  

This two-dimensional histogram consists of the plot for the sine-cosine transforms of 

the following equations: 

 

 𝑔𝑖,𝑗(𝜔) = ∫
0

∞
𝐼𝑖,𝑗 (𝑡) cos(𝜔𝑡) 𝑑𝑡/∫

0

∞
𝐼𝑖,𝑗 (𝑡)𝑑𝑡 ( 4 ) 

 
 𝑠𝑖,𝑗(𝜔) = ∫

0

∞
𝐼𝑖,𝑗 (𝑡) sin(𝜔𝑡) 𝑑𝑡/∫

0

∞
𝐼𝑖,𝑗 (𝑡)𝑑𝑡 ( 5 ) 

   

 
Where s and g are the coordinates in the phasor plot corresponding to a given 

fluorescent decay 𝐼(𝑡) and𝜔 is the laser repetition angular frequency or the angular frequency 

of light modulation. 𝑖 and 𝑗 indexes denote a specific pixel of an image. For data measure in 

frequency domain then: 
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 𝑔𝑖,𝑗(𝜔) = 𝑚𝑖,𝑗 cos (𝜙𝑖,𝑗 ) ( 6 ) 

 

 𝑠𝑖,𝑗(𝜔) =  𝑚𝑖,𝑗 sin (𝜙𝑖,𝑗 ) ( 7 ) 

 

Where 𝑚𝑖,𝑗  and 𝜙𝑖,𝑗  are the modulation and the phase of the emission with respect to 

the excitation, respectively.  

For a single exponential decay 𝐼(𝑡) = 𝐴 ∙ exp (−
𝑡

𝜏
) the coordinates of the phasor plot 

are given by:  

 
 

𝑔𝑖,𝑗(𝜔) =
1

1 + (𝜔𝜏)2
 ( 8 ) 

 

 𝑠𝑖,𝑗(𝜔) =
𝜔𝜏

1 + (𝜔𝜏)2
  ( 9 ) 

 

If in at a given pixel 𝑖, 𝑗 we have the contribution of several exponential ocmponents, the 

coordinates g and s of the phasor are given by: 

 

 
𝑔𝑖,𝑗(𝜔) = ∑

𝑓𝑘

1 + (𝜔𝜏𝑘)2

𝑘

 ( 10 
) 

 

 
𝑠𝑖,𝑗(𝜔) = ∑

𝑓𝑘𝜔𝜏𝑘

1 + (𝜔𝜏𝑘)2

𝑘

 ( 11 
) 
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Where 𝑓𝑘 is the intensity weighted fractional component with lifetime𝜏𝑘. According to 

the expressions for the coordinate of a phasor for a single exponential decay, 𝑠𝑖𝑗 
2 +

(𝑔𝑖𝑗 −
1

2
)

2

= 1/4, which implies that all single exponential components are represented within 

the limits of a semicircle of center (
1

2
, 0) and radius 

1

2
 in the phasor plot. Digman et al. named 

 his circle  he “universal circle”17. Short lifetimes (small phase angles) are close to the point 

(1,0), whereas long lifetimes are close to the (0,0) point.  

 

2.4.1 Two component resolution 

 

For the resolution of the fractional contribution of two phasor components Eq. 12 is 

solved graphically in the phasor plot. In this particular case, the phasors are along a segment 

where the extremes of the segment correspond to the phasor of the two isolated components 

(Fig.  8). Generally, the position of the isolated components is known or can be obtained 

empirically. When combined, the fractional contribution of each component is displayed on the 

screen and will determine the position along the mentioned segment. 
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Fig.  8 Schematic representation for the FLIM-Phasor approach. (A) Jablonsky diagram that illustrates the 
electronic states of a molecules and the transitions between them. A fluorophore which is excited by a photon will 
drop to the ground state with a certain probability based on the decay rates, through a number of different decay 
pathways. The fluorescence emitted will decay as a function of time. (B) Lifetime decay after excitation of a 
fluorophore in the time domain after pulse excitation (C) The exponential lifetime decay can be processed 
mathematically to obtain the coordinates of the phasor plot. (D) The mixture of two components lay along the line 
that connects pure molecular species with lifetime t1 and t2, respectively in the phasor plot. 
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2.5 Number and Brightness 

 

Classically, the ER is considered to mediate genomic as well as nongenomic responses 

under the presence of estradiol. In case of genomic responses, the ER acts as a ligand-

dependent transcription factor that regulates gene expression in tissues. In contrast, non-

genomic effects are generally though to start at the plasma membrane. This leads to rapid 

activation of cytoplasmic signal transduction pathways7,24. This suggests that the ER role is 

highly dependent on subcellular localization. However, the subcellular localization and roles for 

this receptor is still object of controversy to date24. 

Here, we suggest an image-based technique, named number and brightness (N&B), 

which allows for the detection of the subcellular localization of molecules such as the estrogen 

receptor. This technique is based on the measurement of the average number of molecules and 

brightness in each pixel in fluorescence microscopy images. The average brightness of a particle 

(e.g. a transcription factor labeled with an adequate fluorescent reporter, such as GFP) can be 

acquired from the ratio of the variance to the average intensity collected at each pixel. 

Moreover, the average number of fluctuating particles can be obtained by dividing the average 

intensity by the brightness at a given pixel25.  

This analysis can be used in a broad spectrum of concentrations and in live cells. In the 

particular case of live cells, the intensity at any given pixel may be due to bright but immobile 

structures, dim fast diffusing particles and to autofluorescence or scattering.  
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Furthermore, the variance of the detector noise is also added to the variance of the 

components mentioned above giving the total variance at each pixel, if all of the sources of 

variance are independent.  

The fluctuation of particles in the volume of observation is proportional to the square of 

the particles brightness while the variance of the other components such as detector shot noise 

is proportional to the intensity of these components. Thus, only the fluctuations of the mobile 

particles (e.g. Transcription factor diffusion inside the nucleus) will have a ratio of the variance 

to the intensity higher than 1. In addition, changes in the fluorescence due to an intensity 

increase of the illumination power allows for the distinction of the different possible 

contributions. It is important to note, that in this particular study only the average number of 

ER-GFP particles in three different subcellular compartments (nucleus, cytoplasm and 

membrane) was assessed. However, the precise oligomerization state was not assessed 

(Brightness part of the technique). Finally, N&B is a powerful tool for unveiling particle 

localization and concentration in live cells in order to help understand protein function and 

signaling as a function of the concentration dependent localization of proteins. 
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Chapter 3  Materials and Methods 

 

SPIM imaging and data processing. Fluorescence images were acquired with a custom-

built SPIM setup running Micro-Manager (available at www.micro-manager.org). STICS 

correlation and pCF analysis were performed with custom Matlab (MathWorks, Natick, 

Massachusetts, USA) scripts. Data was visualized with SimFCS, Matlab and Origin (OriginLab, 

Northampton, USA).  

N&B imaging and data processing. Fluorescence images were acquired with a 

commercial Olympus Fluoview 1000 (FV1000) laser scanning microscope. Instrumental PSF was 

calibrated using subdiffraction-sized fluorescent beads and found to be at ~270 nm for 488-nm 

excitation wavelength. Images were obtained by illumination of the sample with a 488-nm 

laser, using a 60x (N.A. 1.20) water immersion objective to collect fluorescence. Each image 

consists of the average intensity of 10 frames using a Kalman filter. The data consists of 

intensity images that are analyzed with custom made MatLab code. 

FLIM image and data processing. Lifetime measurements were carried out with a Zeiss 

710 microscope coupled to a Ti:sapphire laser system(Spectra-Physics Mai Tai). A 40 x (0.8 N.A) 

water immersion objective was used. The excitation wavelength was 740 nm with an average 

power of ~5 mW. Fluorescence intensity images of NADH were acquired by exciting the cells at 

740 nm and placing a 460/80 nm emission filter in front of the detector. Fluorescence lifetime 

images were acquire with an ISS A320 FastFLIM system26. For image acquisition the following 

setting were used: 256 x 256 pixels images and a laser scan speed of 25 s/pixel. A dichroic 

filter (690 nm) was used to separate the fluorescence signal from the laser light signal. 

http://www.micro-manager.org/
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Fluorescence is detected by a photomultiplier (H&422P-40 of Hamamatsu) and a 610 nm short-

pass filter is placed in front of the detector. A 495 long-pass filter separates the blue and the 

green fluorescence. NADH fluorescence was collected through a 460/480 nm filter. FLIM data is 

acquired and processed by the SimFCS software developed at the Laboratory of Fluorescence 

Dynamics. FLIM calibration of the system is performed by measuring the known lifetime of 

coumarin, with a single exponential of 2.5 ns. FLIM data is collected for over 50 integrated 

frames. Typically the acquisition time was of the order of few minutes. The laser power was the 

same for all fields of view. 

Data analysis (pCF). Simulations, data acquisition and calculation of the pCF were 

obtained with custom MatLab code. Simulations can be found in the annexes. The pCF at a 

given distance in pixels is displayed in an image in pseudocolors in which each colored line 

represents a certain amount of traveled distance. The x-coordinate is the time and the y-

coordinate corresponds to the normalized correlation (Fig.  6C).  

Cell sample preparation (SPIM and Laser Scanning Microscopy for N&B).Strips of 2mm 

x 17 mm were cut from 30 x 24 mm No 1.5 coverslips (Fisher Scientific, Waltham, MA, USA) 

with a diamond tipped pen. Several of these strips were placed in a 35 mm cell culture dish and 

coated with of fibronectin (Sigma-Aldrich) prior to plating and transfecting the cells. For 

fluorescence imaging, single strips were transferred to the imaging dish (Fig.  9). filled with 

phosphate-buffered saline (PBS).  

For the laser scanning microscopy and FLIM, cells were grown in a 35 mm bottom glass cell 

culture dish, previously coated with 5-g/cm2 fibronectin . 
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FLIM data analysis.  Every pixel of the FLIM image is transformed in one pixel in the 2D 

histogram of the phasor plot through a fast Fourier transform for the fluorescence intensity18. 

The coordinates g and s (x and y axis of the phasor histogram, respectively) are the real and 

imaginary part of the FFT. The analysis of the phasor distribution is performed by cluster 

identification of free and bound NADH. Because of the linearity of the phasor coordinates, 

mixtures of two components (free and bound NADH) in the focal volume will distribute along 

the line that connects each component of the two pure components. By using a circular cursor 

the pixels with the lifetime of interest can be analyzed.  

Cell culture. Chinese hamster ovary(CHO-K1) cells stably expressing enhanced green 

fluorescent protein (EGFP) were cultured in humidified, 5% CO2 atmosphere at 37oC in 

Dulbecco’s Modified Eagle Medium (DMEM)/Nu rien  Mi  ure F-12(Life Technologies, Rockville, 

MD) supplemented with 10%fetal bovine serum (FBS), and 0.5 mg/mL geneticin (G418) to 

maintain selection of transfected cells. Non-transfected CHO-K1 cells were cultured in 

DMEM/Nutrient Mixture F-12 supplemented with 10% FBS and, 1% (v/v) 

penicillin/streptomycin. 

For fluorescence imaging of Estrogen Receptor Alpha (ER-GFP (pEGFP-C1-ER alpha, Addgene), 

cells were  ransfec ed using Lipofec amine 2000 according  o  he manufac urer’s ins ruc ions 

(Life Technologies). 

Generally, 1 g of plasmid (diluted with PBS) was incubated with 5 l of Lipofectamine for 30 

min and added to the cell dish containing fully supplemented media. The cells were maintained 

in a humidified, 5% CO2 atmosphere at 37oC and used within 48h. Activation of ER-GFP was 
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induced by incubating the cells with medium containing 1 M 17--Estradiol (Sigma-Aldrich) for 

10 min. 

For Lifetime Imaging of ER-positive breast cancer cells, MCF-7 cells were cultured in humidified, 

5% CO3 atmosphere at 37oC in DMEM-F12 without phenol red, containing 10% charcoal 

stripped FBS and 1% (v/v) penicillin/streptomycin and the standard tissue culture glucose 

concen ra ion (450 mg/dl) for “high-glucose” or (100 mg/dl) for “low glucose” for 1 day. Bo h 

glucose concentrations are physiological and representative of the in vivo differential glucose 

concentrations in human serum. 

 
Fig.  9 Schematic of the SPIM setup sample mounting. For cell imaging, a two millimiter wide mounting post is 
glued to the bottom of a 60 mm tissue culture dish and hold the cells grown on 2mm x 17mm coverslips. 
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Chapter 4  Results 

 

4.1 From fast imaging to protein dynamics 

 

In this section, the apparent diffusion for the ER and the GFP is measured by the pCF 

approach applied to a stack of images obtained through SPIM (section 2). The ligand-specific 

mobility for these two proteins is observed in the nuclei of living CHO-K1 cells. This is done in 

order to quantitatively find the mobility as a function of time. Furthermore, it can evaluate how 

estradiol regulates protein transport and interactions. Fig.  10 Illustrates the analysis method 

described in section 2.2 in a schematic way. For the stack of images resulting from the fast 

imaging via single plane illumination microscopy (SPIM)(Fig.  10 A), the pCF at certain radial 

distance is calculated (Fig.  10 B). If particles diffuse, the width of the correlation increases in 

time and space. 

The correlation as a function of the time at a certain radial distances (𝑟𝑛) from the initial 

point can be retrieved (Fig.  10C). Hence, whenever a correlation peak appears the distance 

from the initial point is known and also the time. Thus, the apparent diffusion over time is 

retrieved (Fig.  10D) 
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Fig.  10 pCF analysis of the stack of images of live CHO-K1 cell nuclei. (A) From a series of fluorescence images the 
spatiotemporal correlation is calculated. (B) The data (here, simulated data) are represented in a carpet of pair 
correlation functions (dark blue= low correlation in space and time, red=high correlation). (C) Normalized pCF as a 
function of time. Each color represents a certain radial distance from the initial point, fixed by the pixel size (142 
nm). (D) The plot of apparent diffusion coefficient as a function of time can be retrieved from the carpet of pCFs. 
The time dependence of the diffusion coefficient reflects the nano-structural environment that conditions protein 
movement

16
. 
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4.2 ER diffusion detection inside Live Cell Nuclei 

 

Fig. 11. pCF analysis in live cell nuclei. (A)For each cell a region of interest (ROI) is selected for the analysis. (B) As 
in Fig.  10B, the pCF is calculated at increasing radial distances obtaining the pCF carpet. (C) At every alternate 
radial distance (𝑟1, 𝑟3 … 𝑟𝑛+1)   from the center of the ROI the correlation is plotted as a function of delay 
logarithmic time. Each peak can be isolated and analyzed separately to obtain time and distance. (D) Once time 

and distance are obtained the apparent diffusion (𝐷[
𝜇𝑚2

𝑠
]) is calculated and plotted as a function of time.  

 

ER was chosen as a paradigmatic nuclear transcription factor activated by estrogen. 

Particularly, a GFP-tagged construct of the ER was used for transient transfection of live 

Chinese hamster ovary (CHO-K1) cells. For the analysis a region of between ~200- 500 m2 was 

selected for the analysis (Fig. 11A). The analysis was done over 10,000 frames for each single 

cell nuclei with a time delay between frames of 2ms (500 frames per second (fps)).  
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The total acquisition time (~20 s) is long enough to accurately remove the immobile 

fraction. From the time dependent diffusion coefficient plot 𝐷(𝑡) (Fig. 11A, B) and the mean 

diffusion value (Fig.  13), it can be concluded that the diffusion of the ER is higher after the 

addition of 100 nm 17--estradiol. Moreover, at short delay times the diffusion for the ER is 

higher after the addition of the hormone, but lowers at higher times compared to the 

unstimulated receptor (Fig. 11A, B). 

However, this is not the case for the GFP alone. Either with or without estrogen 

stimulation the mean diffusion value is not statistically different (Fig.  13). Remarkably, there is 

a peak increase for the GFP (control) diffusion after stimulation at longer time delay scales (~1-

3 seconds).  

The data of the mobility for the GFP and ER-GFG in Fig. 11 was fitted by a simple model 

for diffusion in porous media consisting of randomly distributed obstacles. The apparent 

diffusion coefficient is described in the model by the following equation16: 
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Fig. 12. Time dependence of the diffusion coefficients. Time dependent diffusion coefficients measured in CHO-K1 

cells nuclei (A) ER-GFP time-dependent apparent diffusion coefficient 𝑫(𝒕) (n=26 cells). (B) ER - GFP activated 

with 100 nM of 17--Estradiol time-dependent apparent diffusion coefficient 𝑫(𝒕) (n=28cells). (C) GFP alone 
(control) time-dependent apparent diffusion coefficient 𝑫(𝒕) (n=22 cells). (D) GFP alone time-dependent apparent 

diffusion coefficient 𝑫(𝒕) after the addition of 100 nM 17--Estradiol (n=23 cells). Continuous lines represent the 
fitted model given by equation ( 13 ) 
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𝐷(𝑡) = (𝐷0 − 𝐷∞) ∙ exp (−4

√𝐷0𝑡

√𝜋𝜆
 ) + 𝐷∞  ( 13 ) 

 
This relation contains the following fit parameters: The diffusion for particles at short 

time/length scale 𝐷0 that describes the mobility without obstacles. The correlation length 𝜆 

measures the typical distance between obstacles. 𝜆 is inversely proportional to the surface-to-

volume ratio 𝑆/𝑉 that the protein encounters during transport. Thus, the importance of the 

𝑆/𝑉 value which characterizes the target search process of the particle, such as finding a 

binding site in the DNA by a transcription factor. 𝐷∞ is the diffusion coefficient for large 

time/length scales, in other words, where the MSD grows linearly over time. It is important to 

note that not all the data points fit properly in this model for this particular study.  

 

Fig.  13. Mean diffusion values. Estrogen is able to increase the diffusion of the ERtagged with GFP in the 

nucleus and that of GFP alone. The difference is only statistically significant for the ER *, P < 0.05. 
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4.3 Retrieving the nuclear topology from binding the map technique. 

 

To expand the information acquired in the previous section, we used the binding map 

technique (section 2.3). The binding map gives qualitative information of the apparent diffusion 

of fluorescently labeled proteins. This information is linked to each pixel of an image (Fig.  13.) 

Therefore, the protein mobility suggests structural features and functional features such as 

“binding ho spo s”, barriers or chroma in  ha  regula e movemen . The environmen   ha  a 

pro ein or par icle “sees” during i s diffusion wi hin a cellular compartment such as the nucleus 

is plotted (Fig.  14).  

The binding map not only retrieves topological and dynamic information about proteins, 

but also resolves this information at a nano-scale, below the diffraction limit (<140nm). It is 

straightforward to conclude that there are regions of confinement for the ER and that there 

are some regions of “preferred diffusion” for  he ERand some others regions where the 

transcription factor is more bound to the nuclear structures. 
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Fig.  14 Binding Map.(A) The left panel is the average intensity map of the ER-eGFP protein in the nucleus. A stack 
of images is obtained (10,000 frames) with a delay between images of 2ms. On the left panel, another CHO-K1 cell 

transfected with ER- GFP plus 100 nM E2. The heat panel on the right shows the average intensity for each cell. 
(B) For each pi el  he “diffusive s a e” is measured and plotted in a color scale, according to the method explained 
in section 2.3. The higher the diffuse slope (𝜽𝑫 ) the warmer the color. The higher the absolute value of the 
binding slope (𝜽𝑩) the cooler the color. Notably, not all regions show diffusion or binding suggesting barriers or 
“binding and diffusion ho spo s” 
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4.4 ER concentration-dependent localization 

 

ER is a key regulator of cell homeostasis and fate. It is a highly localized protein that 

can be found in different cellular regions (e.g. Nucleus, cytoplasm, mitochondria). It is well 

documented that depending on this subcellular localization a range of different functions are 

carried out (e.g from fast-signaling to gene transcription). Remarkably, the ERis frequently 

overexpressed in the early stages of breast cancer2. 

Mammalian cells are highly compartmentalized and generally, most proteins show a 

localization pattern in the cell. Generally, this localization is due to the specific function of the 

particular protein. Thus, the same protein can carry out different functions depending on its 

localization. The N&B method, as explained in detail in section 2.5, helps us retrieve the 

average number of molecules in an image. 
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CHO- stand the 

distribution of the transcription factor (

 

Fig.  15). Each analyzed cell was analyzed in 3 different regions: Nuclear, cytoplasmic and 

membrane region (~1m) by manually selecting the regions with custom-made MatLab code 

(Fig.  16). For each of these regions, the average, the median and the maximum 

ERconcentration was quantified. All these quantities are then normalized by the average 

ERconcentration (i.e. a maximum ER concentration of 10 A.U. in the nucleus indicates that 

the brightest pixel in the nucleus has a fluorescence intensity that is 10 times higher than the 

average cell fluorescence). 
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Fig.  15. ERin CHO-K1 cells.  Fluorescence intensity images of cells expressing ER-GFPobtained with laser 

scanning microscopyDepending on the expression levels/concentration of the protein its subcellular location 

changes. ERis mostly located in the nucleus in the top left panel whereas in top right panel it can be detected in 
the cytoplasmic region too. Intensity is in arbitrary units (A.U.)  
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Fig.  16. ER  subcellular localization as a function of concentration. (A) Schematically, three regions for each cell 

were analyzed separately in order to obtain concentrations for the ER. Nucleus (blue), cytoplasm (red) and 

membrane (green) (B) Fractional concentration of ER in each of the three subcellular compartments analyzed as 

a function of total ERconcentration without E2 stimulation (left, n= 83 cells) or with 1nM of E2 (right, n=104 
cells) 

Traditionally the distribution for the ERis believed to be as follows: ~85% of the total 

amount is located in the nucleus, 10% between cytoplasm and mitochondria and 5 % at the 

plasma membrane7. However, it is safe to argue that at low receptor concentrations (~10nM) 

the aforementioned percentages change (Fig.  16, top). Notably, at higher ERconcentrations 

(~1m) most of the receptor (~90% of the total amount) is localized inside the nucleus (Fig.  

16B, bottom). 
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Fig.  17 ERconcentration in different subcellular compartments. Two different ERconcentration ranges are 

studied:(A) ER concentrations that are <10 nM (n= 300 cells). (B) ER concentrations that are >100 nM. *, 
P<0.05.**, P<10

-6
. .+, P<0.05. Normalization is done by dividing by the average concentration in the cell (n=296 

cells). 
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Different estradiol concentrations were tested in order to assess if they affected 

ERlocalization. Moreover, different concentrations of the estradiol could have different 

effects depending on the overall concentration of ER. At low receptor concentrations, the 

localization is mainly cytoplasmic and in the cellular membrane (Fig.  17A). After activation with 

1nM of E2, the pool in the membrane is reduced whereas the nuclear pool increases. This could 

suggest transport between these two compartments due to hormonal activation (Fig.  17A). On 

the other hand, at receptor concentrations higher than 100 nM, the receptor is mostly localized 

in the nucleus. Furthermore, after hormonal activation the cytoplasmic pool diminishes and the 

nuclear increases even more. This suggests that at high receptor concentrations the transport 

could be between the cytoplasm and the nucleus, in contrast to the results found at lower 

receptor concentrations (<10 nM ER/cell)(Fig.  17 A, B). 

Finally, there is a relationship between the receptor concentration and the 

concentration of hormone needed to trigger the change in localization for the ER. At lower 

receptor concentrations (~10 nM), close to the described physiological range (~1-5 nM), the 

necessary amount of E2 to increase the ERnuclear population is 10 times higher (~1nM) (Fig.  

18A). On the other hand, at higher ERconcentrations (>100 nM), 10 times less hormone is 

needed for increased nuclear ERlevelcompared to other subcellular compartments (i.e. 

Membrane and cytoplasm)(Fig.  18B). 
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Fig.  18 Effect of different hormone concentrations in terms of activation and subcellular localization. CHO-K1 

cells transiently transfected with ER-GFP. Three conditions are tested: Absence of hormone (control), 0.1 nM E2 

and 1 nM E2. (A) ER concentrations <10 nM. (B) ERconcentrations >100 nm. Three conditions are tested: 
Absence of hormone (control), 0.1 nM E2 and 1 nM E2. *, P<0.05. 
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4.5 In vivo single-cell detection of metabolic pathways in breast cancer cells 

 

In cancer biology, it is generally accepted that cancer cells use glucose as a substrate in 

order to perform aerobic glycolysis over oxidative phosphorylation. However, cancer cells have 

the capacity to adapt to variable glucose concentrations that arise in in-vivo tumors. 

Furthermore, it has been reported that the estrogen receptors play a role in modulating these 

metabolic adaptations. Specifically, MCF-7 cells (ER-positive, breast cancer) switch between 

metabolic pathways as a function of the glucose availability and E2 presence20.  

Here we present an imaging based analysis method that allows for the measurement of 

the fluorescence decay from different molecular species within the cell. Fluorescence lifetime 

imaging microscopy (FLIM), together with the phasor approach, allows for a simple analysis for 

the fluorescence decay occurring at each pixel of an image, as thoroughly explained in section 

2.417. 

This is a sensitive, non-invasive approach to detect the free and bound ratios of reduced 

nicotinamide adenine dinucleotide (NADH). This is indicative of the glycolysis/oxidative 

phosphorylation ratio of cells19. In vivo imaging of NADH autofluorescence by excitation at 

740nm within MCF-7 cells was performed. 4 conditions were tested: High glucose (~450mg/dl), 

low glucose (~100 mg/dl), addition of 1nM E2, no hormonal stimulation (control) (Fig.  19).  
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Fig.  19. Metabolic plasticity in MCF-7 breast cancer cell lines. In vivo intensity images of MCF-7 cells after 
excitation at 740 nm by a femtosecond laser and FLIM color maps for the relative presence of free and bound 
NADH. Purple color a decreasing free/bound NADH ratio, whereas cyan color indicates a high free/bound NADH 
ratio.(A) Cells were cultured at high glucose (~450 mg/dl) and no estrogen stimulation (n=59 cells). (B) Cells were 
cultured at high glucose and 1nm E2 (n=50 cells). (C) Cells cultured at low glucose (100 mg/dl) without estrogen 
addition (n=45 cells). (D) Cell were cultured at low glucose and 1nm E2 (n=53 cells). (E) Phasor approach for the 
analysis of FLIM images, performed both at the pixel level and cell level. Single pixels are painted in the FLIM map 
according to the color of the Violet and Cyan cursors that corresponds to different ratios of free and bound NADH. 
Pixels within the lifetime coordinates (𝒈, 𝒔) of each cursor are painted in the FLIM map according to the color of 
the respective cursor. 

Two-photon fluorescence intensity for NADH distribution within the cell highlights the 

morphology of single cells with relatively dim nuclei and bright mitochondria (Fig.  19A, B, C, D). 

The analysis of the FLIM images is performed by a fast Fourier transform (FFT) of the FLIM raw 

data by creating a 2D histogram (phasor plot) of the NADH FLIM image where every pixel of the 

FLIM image is transformed into a pixel in the phasor plot19 (Fig.  19E, Fig.  20). 
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Fig.  20 Illustrative representation for the mathematical transformation of fluorescence decay raw data. By using 
a fast Fourier transform (FFT)

17
, the measure lifetime decay is represented in a 2D phasor plot with g and s 

coordinates corresponding to the real and imaginary part of the FFT. The phasor coordinates are linear. Thus, 
mixtures of two components such as free and bound NADH in the focal volume under study will lay along the pure 
molecular species

18
 

 

It is observed that at high glucose, without E2 addition, the cells and at low glucose, plus 

1nM E2, present a higher amount of bound NADH, which is associated with a higher amount of 

oxidative phosphorylation (Fig.  19 A, D). On the contrary, cells cultured at either high glucose 

levels and estradiol or low glucose without estradiol show a higher amount of free NADH. 

Generally, this is characteristic fingerprint of glycolysis18,19. 
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Chapter 5  Discussion 

5.1 pCF  and Binding Map 

 

In this study we proposed an image-correlation analysis method for the in vivo study of 

protein dynamics inside the nuclei.  This method has the same mathematical basis of the pair 

correlation function (pCF)27,28. However, the temporal resolution in the present study is brought 

down to the millisecond (ms) range. By doing that, we are able to capture not only slow but 

also fast diffusive dynamics as well. Furthermore, the analysis of the complete space-time 

correlation function, the temporal evolution of the diffusive behavior for proteins inside the 

nucleus can be monitored. However, it is important to note that this approach does no track 

every particle separately. Instead, the population behavior inside the ROI is probed as an 

average. In the case of pure diffusion of the proteins, the correlation is broadened in space and 

time (Fig.  21A). If proteins are bound the correlation is narrow in space (Fig.  21B). Finally, for a 

mixture of binding and diffusion the correlation is also a mixture (Fig.  21C). By studying the 

correlation at periodically fixed radial distances over time the diffusion as a function of time 

plot is obtained. Compared to other methods such as fluorescence correlation spectroscopy 

(FCS), the Diffusion vs. time plot can be easily reconstructed on a wide array of spatial and 

temporal scales29–31. Moreover, the description obtained is quantitative and describes the 

temporal evolution of the diffusion from the average molecular positions with a submicron 

accuracy. 

By using a GFP tagged version of the ERthe regulation of protein diffusion by nuclei structures  
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was tracked. Remarkably, we obtain values for the mean diffusion of the ER-GFP and GFP 

alone. By fitting to a model we are also able to obtain the diffusion values for short time scales 

(~80 m2/s) for both proteins. Moreover, the diffusion of the particle at long time scales is also 

retrieved in the nucleus of live CHO-K1 cells (~5m2/s for the ER and ~20 m2/s for GFP 

alone). This is in good agreement with previous reported measurments15,16,10. The lower 

diffusion coefficient for the ERcould be arguably due to the binding of the protein to its 

specific DNA target sites and/or because the receptor dimerizes (this is further increased by the 

addition of hormone1,114,16), increasing the particle size and making the movement around a 

meshwork of obstacles more difficult. However, the brightness of the particles was not 

measured.  

Therefore, this approach not only retrieves information in a scale-dependent manner, 

but also provides structural information on the nanometer scale. Diffusion barriers were 

observed through both the pCF and the binding map inside the nucleus. Hence, this method 

extends the available repertoire of analysis techniques to study changes in molecular transport.  

It can be anticipated that the size-dependent difference between particles (monomer 

vs. dimer) can have a large impact on the target search mechanism, which results in cellular 

functions later on. Finally, the unveiled information regarding diffusion and binding with the 

pCF and the binding map might have a functional link between the chromatin architecture, 

protein transport and gene transcription. This can be relevant to the clinical impact of the 

ER,in breast cancer, in addition to the already established modes of action. SPIM microscopy 

allows for plane optical sectioning. This together with a suitable analysis to retrieve internal 



46 
 

cellular organization that governs mobility, binding and other interaction of proteins in live cells 

can provide a new insight into the interaction between function and structure.  

Ultimately, these interactions can help us to better understand the pathology of certain 

diseases such as breast cancer.  

 

Fig.  21 Simulated correlation functions. (A) Correlation function for pure diffusion of particles according to 
equation . (B) Correlation function for pure binding of particles. (C) Correlation function for a mixture of diffusion 
and binding. 
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5.2 N&B 

 

A particular protein function not only depends on its dynamics in terms of apparent 

diffusion, but also on its micro-environment. It can be anticipated that in different cellular 

compartments, a protein may have a different set of interactions with other proteins, 

substrates, obstacles, barriers, cytoskeleton and so on.  

The N&B analysis provides further insight in that regard by measuring the apparent 

brightness and number of molecules in every pixel of an image, as already discussed previously.  

While in the previous section the spatiotemporal fluctuations can be measured for particles, 

the N&B analysis exploits fluorescence amplitude fluctuations to provide information regarding 

particle localization, brightness and number32. Notably, the results suggest that the required 

amount of hormone is dependent on the amount of available receptor (Fig.  18 ). Moreover, 

depending on the concentration ER, after activation the increase in the nuclear pool might 

come from different cellular pools other than the nucleus itself. Thus, at low receptor 

concentrations, after activation with E2 the membrane pool is reduced in order to increase the 

nuclear pool, whereas at high receptor concentration the cytoplasmic pool is the one that 

mobilizes into the nucleus. Finally, it is evident from the results (Fig.  18) that the distribution 

for cellular receptors within different cellular regions might be very different from what is 

classically thought to be, as the levels of expression vary. 
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5.3 FLIM 
 

Previous studies have shown breast cancer cell metabolic plasticity by traditional 

biochemical analysis20,33.Moreover, estrogen receptors potentiates this adaptation in the 

presence of E220.In this study we provide a single cell resolution, label free technique that is 

able to distinguish between free NADH and NADH bound to proteins in vivo and in vitro19. It can 

be argued that these two different populations are characteristic features of glycolysis and 

oxidative phosphorylation, respectively. The implementation of FLIM overcomes some of the 

problems of other traditional techniques required to perform these studies, allowing detection 

of metabolic states of MCF-7 cells just by imaging.  

Notably, the results oppose the original Warburg hypothesis that suggests that cancer 

cells have dysfunctional mitochondria, being unable to undergo oxidative phosphorylation. This 

is in good agreement with previous studies20,34,35 . Furthermore, due to the complexity of tumor 

biology, different areas within a tumor may have differential oxygenation levels and glucose 

concentrations20,36. Due to varying conditions cells may adapt to the conditions imposed by the 

specific environment, by altering the metabolic pathways in order to proliferate efficiently. 

However, not only the particular glucose availability but also other cell signaling factors, such as 

E2/ER presence, like in this particular study, may promote these changes to enhance survival of 

neoplasic tissue. 

Finally, the findings suggest that FLIM can be a useful tool in order to quickly and 

reliably asses metabolic states and metabolic plasticity. Understanding cancer cell adaptations 
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to different environmental conditions can lead to novel clinical and therapeutic approaches in 

order to better suppress tumor progression.  
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Chapter 6  Conclusions and future directions 

 

6.1 Conclusions 

 

The combination of different biophysical techniques such as the pCF, the binding map, 

N&B and FLIM can help us retrieve valuable information about proteins. The scale-dependent 

mobility of nuclear factors such as the ER obtained by STICS sheds light on the intracellular 

architecture and the binding properties of these proteins. Moreover, by using N&B the 

localization of the protein can be known together with the state of oligomerization of the 

protein (Note that brightness was not measured in this study). Finally, functional information 

can be retrieved directly by applying FLIM and the phasor approach. It can be anticipated that 

the integration of these analysis techniques might complement the reported information about 

transcriptions factors, specifically in disease-related deregulation. Thus, a biophysical arsenal of 

analytical tools is ready to be tested in dedicated experiments that are beyond the scope of the 

present study. Hopefully, the synthesis of these techniques, together with other types of 

approaches, can identify the basic principles that rule in disease in order to better tackle it. 
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6.2 Future directions 

 

For the pCF analysis longer length/ time scales should be studied. This is because as 

proteins diffuse, diffusion barriers are found in both the nucleus and the cytosol, changing the 

behavior of the apparent diffusion. Some controls might be needed such as performing the 

analysis for suitably tagged non-mobile proteins (i.e. Histones), perturbing the chromatin 

structure as a con rol in order  o  es   he chroma in role as a “barrier” for protein diffusion. 

Furthermore, the model used to fit the data in Eq. ( 13 ) does fit all the points in all the 

experimental conditions. Hence, developing a proper model can unveil additional and more 

suitable information map intracellular structure. In addition, the binding map is a technique still 

in an early development stage. It is highly computational demanding so improvements can be 

made on the code to generate maps faster, among others. 

Regarding the N&B analysis, further testing in other cell lines, different proteins of interest 

and higher range of particle concentrations is needed. The localization as a function of 

concentration might be cell type dependent too. Moreover, studying oligomerization through 

the brightness part of the technique will reveal the localization and the number of molecules 

that aggregate under certain conditions, in live cells. 

Finally, for the FLIM analysis quantitative results are needed for this particular study 

together with the analysis of other ER-positivecell lines under a broader range of 

conditions. 
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Appendix A: Simulations and N&B mathematical background 

Simulations 

In MatLab R14, using the Optimization and Image Processing Toolboxes, the following 

simulations were performed. The same spatio-temporal sampling conditions of real acquisitions 

with the microscope were imposed. Briefly, all populations are set to have the same total 

number of particles (density of 10 particles/m2), with equal quantum yield and randomly 

seeded in a squared matrix  of 64x64 pixels (0.1 m/pixel). All the simulated acquisitions are 

6x103 frames long, with a time step of 10ms/frame; the beam radius is set to 300 nm. Free 

diffusion and transient confinement (continuum network) were simulated as previously 

described by others (S3, S4). Each x and y coordinate was changed separately by adding a 

random number drawn from a normal distribution with a mean of zero, and a standard 

deviation   defined as: 

 

 
𝜎 = √(2𝐷Δ𝑡) 

(

4) 

 

Where D is the diffusion coefficient, and Δ𝑡 is the sampling time between sequential 

images. In the transient confinement simulation, barriers were simulated as infinitely thin lines 

 ha  par icles can cross wi h a probabili y “P”, independen  of  ime. In de ail,  he physical 

process of crossing the barrier is simplified as follows: when a particle reaches the barrier a 

random number (rand) is generated between 0 and 1 and compared to P: if rand<P the barrier 

is crossed otherwise the molecule remains at its previous position (S3). The recovered particle-
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position matrix was then convolved with a Gaussian filter to simulate the diffraction-limited 

acquisition and discretized to a 16 bit integer to simulate a 16 bit A/D converter. Circular 

boundary conditions for both particle movement and convolution were applied. The 

contribution of background and counting noises was introduced following the approach 

described by Kolin et al. (S5). The spatial extension of particles was simulated convolving the 

particle position with a Gaussian function having a standard deviation equal to the particle size. 

Averaging of multiple repetitions of the simulations was used to account for longer exposure 

times. 

 

Number and Brightness: Mathematical characterization of intensity fluctuations 

 

The N&B approach is based in the determination of the first and second moments of the 

intensity distribution in order to acquire the data at each pixel of an image. In a time series of K-

values representing counts ki obtained during the integration time t , the first and second 

moments of the distribution of counts are described as follows: 

 

 
〈𝑘〉 =

∑ 𝑘𝑖𝑖

𝐾
, 

 

( 14 ) 

 
𝜎2 =

∑ (𝑘𝑖 − 〈𝑘〉)2
𝑖

𝐾
 ( 15 ) 
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Where 〈𝑘〉 is the average and  𝜎2 is the variance. By acquiring consecutive images in a 

microscope, these quantities are easily evaluated for any given set of intensity values at each 

pixel. It is important to note that the integration time at a pixel and the repetition time of the 

measurement are conceptually different. For instance, images obtained by raster-scan confocal 

microscopy (as in the case of the present study), each pixel is sampled for a short period of time 

(in the order of microseconds for the general case), while the same pixel is resampled when the 

next frame is acquired. Moreover, the pixel dwell time has to be short enough so intensity 

fluctuations are not averaged out but long enough to capture particle fluctuations.  

 

Fig.  22. N&B mathematical background. At pixels k (A) and j(B) the average intensity is the same but the standard 
deviation is much larger at pixel k in comparison. This is due to few bright particles fluctuating at pixel k whereas at 
pixel j there are a large number of dimmer particles. (C) and (D) show schematically the histogram of counts 
corresponding to the situations in (A) and (B). 

Assuming the variance of the intensity measurement is due to the combination of two 

terms (e.g. the variance due to the count of the occupation number (𝜎𝑛
2) and the variance due 

to the count statistics or shot noise (𝜎𝑑
2) of the detector. 

These are defined by the following equations: 
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 𝜎𝑛
2 =  ϵ 2𝑛, ( 16 ) 

 

 𝜎𝑑
2 = 𝜖𝑛 ( 17 ) 

 

 〈𝑘〉 = 𝜖𝑛 ( 18 ) 

Eq. 16. States that the variance due to number fluctuations depends on the square of 

the particle brightness. Eq. 17 states that the detector variance is equal to the intensity and Eq. 

18 states that the average intensity is the product of the molecular brightness times the 

average number of particles.  

 

Therefore, the brightness (B) for each pixel as the ratio of the variance to the average 

intensity and N (apparent number of particles) as the ratio of the total intensity to B are defined 

by the following equations: 

 

 
𝐵 =

𝜎2

〈𝑘〉
=

𝜎𝑛
2

〈𝑘〉
+

𝜎𝑑
2

〈𝑘〉
=

𝜖2𝑛

𝜖𝑛
+

𝜖𝑛

𝜖𝑛
= 𝜖 + 1 ( 19 ) 

 

 

 
𝑁 =

〈𝑘〉2

𝜎2
=

𝜖𝑛

𝜖 + 1
 ( 20 ) 
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The value B is related to the brightness of 𝜖 particles, and it is independent of the 

number of particles. N is directly proportional to the number of particles 𝑛. It is easy to extract 

𝑛 and 𝜖 from the above equations: 

 

 
𝑛 =

(〈𝑘〉 − 𝑘0)2

𝜎2 − 〈𝑘〉
 ( 21 ) 

 

 
𝜖 =

𝜎2 − 〈𝑘〉

〈𝑘〉 − 𝑘0
 ( 22 ) 

 




