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ABSTRACT 

CRYPTIC NEIGHBORS: CONNECTING MOVEMENT ECOLOGY AND 
POPULATION DYNAMICS FOR A LARGE CARNIVORE IN A HUMAN-

DOMINATED LANDSCAPE 

Anna C. Nisi 

Understanding how habitat impacts population dynamics is essential for wildlife 

conservation, especially in heterogeneous, human-dominated landscapes. In these 

areas, animals may alter their movement behavior to manage the risks and costs of 

living in fragmented areas, which may help wildlife coexist alongside people. These 

interrelated concepts – how habitat quality and animal space use influence individual 

fitness and population dynamics, and whether animal behavior may mediate these 

relationships – are of particular conservation importance for large carnivores, as 

conservation in human-dominated landscapes is essential for the continued 

persistence of many carnivore species. In my dissertation, I quantify the links 

between movement ecology, behavior, and population dynamics for pumas (Puma 

concolor) in the fragmented Santa Cruz Mountains of California. I explore the 

behavioral strategies employed by large carnivores in response to humans (Chapter 1) 

and investigate whether these strategies help them avoid the risk of being killed by 

people (Chapter 2). I also quantify how living in more developed areas influences 

puma survival and how that scales up to impact population dynamics and viability 

(Chapter 3). Finally, taking a broader view, I investigate the intersections between 

several environmental impacts driven by low-density exurban development, including 

wildlife habitat quality, household carbon emissions, and wildfire risk and 
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vulnerability (Chapter 4). This work illustrates that while carnivores exhibit complex 

behavioral strategies in human-dominated landscapes, their behavioral flexibility 

alone is insufficient for human-carnivore coexistence. Rather, land use strategies that 

minimize further development of wildland areas are necessary to support viable 

carnivore populations, and would confer multiple environmental benefits to people as 

well as wildlife.  
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INTRODUCTION 

 
 When we picture large carnivores, we tend to imagine them in remote areas, far 

away from much human influence. However, carnivores can and do live closely alongside us 

in more human-dominated landscapes, and indeed, their conservation in these areas is 

essential for the continued persistence of many carnivore populations and species (Chapron et 

al. 2014, Carter and Linnell 2016). Large carnivores require a lot of space and exist at low 

densities, which makes them particularly sensitive to habitat destruction and habitat 

fragmentation (Cardillo et al. 2004, Crooks et al. 2011, Ripple et al. 2014). However, these 

extensive spatial requirements also make essential their conservation in more human-

dominated areas – while undeveloped land, including protected areas, is centrally important 

to carnivore conservation, the spatial extent of these areas is generally insufficient to support 

most large carnivore species (Di Minin et al. 2016). This means that from a purely practical 

standpoint, carnivores must be able to coexist with humans in shared landscapes.  

Beyond being a practical necessity, carnivore presence in human-dominated 

landscapes can benefit both people and ecosystem health. Large carnivores are keystone 

predators in many ecosystems and can have cascading, ecosystem-wide effects through their 

regulation of prey and mesocarnivore species (Ripple et al. 2014). In addition to this 

regulatory role in their ecosystems, these effects may benefit humans as well. For example, 

carnivore suppression of deer, through both reduction of deer numbers alongside changes in 

deer behavior, is associated with reduced roadkill events, which are costly to and dangerous 

to humans as well as wildlife (Gilbert et al. 2017, Raynor et al. 2021). Additionally, large 

carnivore suppression of mesocarnivores may ripple through the rodent community and carry 

cascading benefits to zoonotic disease dynamics (Levi et al. 2012, Ripple et al. 2013). In sum, 

carnivore conservation in landscapes that they share with humans presents benefits to both. 
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However, living more closely alongside humans comes with direct and indirect costs, 

which are important to understand from a conservation perspective. Carnivores are killed by 

people at a rate higher than any non-human predator (Darimont et al. 2015), and direct 

anthropogenic mortality is a problem for many carnivore species outside of protected areas 

(e.g., Vickers et al. 2015). In turn, carnivores commonly exhibit fear responses to the 

perceived presence of humans (Smith et al. 2017, Suraci et al. 2019a), which can carry 

indirect behavioral and energetic costs (Smith et al. 2015, Wang et al. 2017, Nickel et al. 

2021). In some cases, these behaviors may facilitate human-carnivore coexistence (Carter and 

Linnell 2016, Suraci et al. 2019b), though this depends on carnivore behaviors reflecting 

important sources of anthropogenic risk.  

While research has described many costs that carnivores experience in human-

dominated landscapes, less is understood about the impacts of these costs on carnivore 

population dynamics. This is due in large part to the difficulty of characterizing relationships 

between habitat characteristics and population processes for such cryptic and low-density 

species (Dias 1996, Johnson 2007). However, understanding relationships between habitat 

characteristics and population vital rates is essential for robustly characterizing habitat quality 

(Van Horne 1983, Pulliam 2000, Mosser et al. 2009) and understanding potential impacts of 

future land use change.   

Broadly, my dissertation aims to understand how humans and carnivores can coexist 

in shared landscapes. I explore several key components of that puzzle: including 

characterizing carnivore behavioral responses to humans, assessing the impacts of living in 

these landscapes on individual fitness and population dynamics, and considering what 

humans can do to further carnivore conservation in these areas. I consider the puma (Puma 

concolor) population in the Santa Cruz Mountains of California as a model system. The Santa 
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Cruz Mountains is emblematic of a common, accelerating form of land use across the 

Western United States: low-level residential development in and alongside wildland areas. 

First, I use high-resolution spatial data and integrated Step Selection Analyses to 

characterize how carnivores balance multiple goals, including avoiding risk from humans, 

managing energetic constraints, and finding prey, in human-dominated landscapes (Chapter 

1). I look for commonalities across two species – pumas in the Santa Cruz Mountains and 

lions (Panthera leo) in the rangeland system of Laikipia County, Kenya – and describe how 

temporal scale is an important ecological and methodological consideration in habitat 

selection analyses. This analysis shows that carnivores exhibit complex, scale-dependent 

behavioral responses to human features, allowing them to avoid human cues in space and 

human activity in time, while managing energetic concerns.  

Next, I investigated to what degree puma fear responses to humans allow them to 

avoid the risk of anthropogenic mortality (Chapter 2). I model puma habitat selection 

alongside the risk of the leading source of human-caused mortality: retaliatory killings 

following livestock depredation. Here, I ask whether cues that pumas respond to reflect how 

actual risk from humans is distributed, finding a mismatch between cues and risk that leads 

pumas to select the riskiest areas during the riskiest times, and results in an ecological trap. 

I then consider how living in more fragmented areas impacts puma survival and 

population dynamics (Chapter 3). I used Cox proportional hazards models to relate puma 

survival to short- and long-term exposure to human development, finding that long-term 

exposure to human development reduced survival for female pumas. I then used matrix 

population modeling to calculate and map expected population growth rates across the study 

area and identify source-sink dynamics. Finally, I consider whether and how more easily 

accessible metrics – such as habitat selection – may be used as proxies for habitat quality as 
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defined by population dynamics. This work contributes a rare analysis of the impact of 

habitat characteristics on carnivore demography, which addresses the unexplored question of 

how exurban development influences population viability. 

Finally, I take a wider view encompassing other pressing environmental issues in 

California (Chapter 4). Alongside wildlife habitat, wildfire risk and per-capita carbon 

emissions are strongly driven by land use patterns. I quantify how each environmental impact 

varies across the spectrum of housing density, finding alignment between the three. This 

result suggests that urban infill, or further densification of urban areas, could be a win-win-

win strategy in terms of having low wildfire vulnerability, per-household emissions, and 

impact on wildlife habitat quality. 
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CHAPTER 1 

Temporal scale of habitat selection for large carnivores: balancing energetics, 

risk and finding prey 

Abstract  

1. When navigating heterogeneous landscapes, large carnivores must balance 

trade-offs between multiple goals, including minimizing energetic 

expenditure, maintaining access to hunting opportunities, and avoiding 

potential risk from humans. The relative importance of these goals in driving 

carnivore movement likely changes across temporal scales, but our 

understanding of these dynamics remains limited.  

2. Here we quantified how drivers of movement and habitat selection changed 

with temporal grain for two large carnivore species living in human-

dominated landscapes, providing insights into commonalities in carnivore 

movement strategies across regions.  

3. We used high-resolution GPS collar data and integrated step selection 

analyses to model movement and habitat selection for African lions (Panthera 

leo) in Laikipia, Kenya and pumas (Puma concolor) in the Santa Cruz 

Mountains of California across eight temporal grains, ranging from 5 minutes 

to 12 hours. Analyses considered landscape covariates that are related to 

energetics, resource acquisition, and anthropogenic risk.  

4. For both species, topographic slope, which strongly influences energetic 

expenditure, drove habitat selection and movement patterns over fine temporal 
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grains but was less important at longer temporal grains. In contrast, avoiding 

anthropogenic risk during the day, when risk was highest, was consistently 

important across grains, but the degree to which carnivores relaxed this 

avoidance at night was strongest for longer-term movements. Lions and 

pumas modified their movement behavior differently in response to 

anthropogenic features: lions sped up while near humans at fine temporal 

grains, while pumas slowed down in more developed areas at coarse temporal 

grains. Finally, pumas experienced a trade-off between energetically efficient 

movement and avoiding anthropogenic risk. 

5. Temporal grain is an important methodological consideration in habitat 

selection analyses, as drivers of both movement and habitat selection changed 

across temporal grain. Additionally, grain-dependent patterns can reflect 

meaningful behavioral processes, including how fitness-relevant goals 

influence behavior over different periods of time. In applying multi-scale 

analysis to fine-resolution data, we showed that two large carnivore species in 

very different human-dominated landscapes balanced competing energetic and 

safety demands in largely similar ways. These commonalities suggest general 

strategies of landscape use across large carnivore species. 

 

Introduction 

Habitat selection, defined as disproportionate use of habitat features relative to 

their availability, provides a window into the drivers of animal decision-making by 
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reflecting how animals balance fitness-related goals as they move around a landscape 

(Rosenzweig, 1981, McLoughlin et al. 2006). Habitat selection has long been 

recognized as a scale-dependent process, and often, drivers of habitat selection 

change depending on the scale of analysis (Johnson 1980, Boyce 2006, Mayor et al. 

2009, McGarigal et al. 2016). Comparing habitat selection across spatiotemporal 

scales (i.e., longer-term over larger distances versus shorter-term over smaller 

distances) can reveal fitness-relevant trade-offs and hierarchical relationships between 

goals that would not be apparent if only a single scale were considered, which can 

have implications for conservation and management (Rettie and Messier 2000, 

Hebblewhite and Merrill 2009, Bastille-Rousseau et al. 2015). 

The concept of scale encompasses both grain (the spatial or temporal 

resolution of data; e.g., pixel size for spatial covariates or how frequently animal 

locations are sampled) and extent (size of study area in space and/or duration of study 

in time; Wheatley and Johnson, 2009, McGarigal et al., 2016). Much scale-dependent 

habitat selection research has focused either on the spatial grain of habitat covariates 

or on comparing selection across broad spatiotemporal scales (McGarigal et al. 2016), 

which can elucidate drivers of behaviors that operate over longer periods of time 

(e.g., days to weeks to months) including migration, dispersal, and territoriality 

(Hebblewhite and Merrill 2009, DeCesare et al. 2012, Bastille-Rousseau et al. 2015, 

Zeller et al. 2017). The relative importance of landscape features also likely varies 

over finer temporal grains (i.e., within a day), and broader cross-scale comparisons 

may overlook important drivers and tradeoffs of short-term habitat selection. For 
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example, short-term movement over the course of minutes may be driven by fine-

grain topographic variation that determines how much energy an animal must expend 

during each movement event (Nickel et al. 2021), while tracking mobile prey or 

avoiding temporally variable predation risk (Kohl et al. 2018) may drive movement 

decisions over the course of hours to days (Suraci et al. 2019b). Examining how 

selection changes across finer temporal grains may elucidate relationships and 

potential trade-offs between drivers of fine-scale movement and selection.  

If selection behavior changes across temporal grain, the resolutions at which 

researchers choose to sample animal movement (minutes to hours to days) may 

implicitly represent separate hypotheses about the scale at which habitat covariates 

are relevant to an animal and may obscure dynamics occurring at other grains (Wiens 

1989, Wheatley and Johnson 2009). Historically, habitat selection studies have been 

conducted at the temporal resolution at which GPS data were collected (usually 1-12 

hours between subsequent GPS locations; Bastille-Rousseau et al. 2018), often 

without explicit consideration of the implications of that choice. Advances in GPS 

collar technology now allow researchers to observe animal movement at a much 

higher resolution (Cagnacci et al. 2010), and thus to examine the drivers of animal 

movement and habitat selection at different temporal grains, ranging from short-term, 

fine-scale steps to movements over longer periods of time. If movement and/or 

habitat selection behaviors change with temporal grain, analyses conducted at a single 

temporal resolution may overlook grain-dependent patterns that can shed light on 

behavioral processes. 
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Large carnivore conservation in human-dominated environments is 

increasingly recognized as important to global conservation efforts (Carter and 

Linnell 2016), and understanding large carnivore spatial ecology in these systems can 

elucidate mechanisms that enable human-carnivore coexistence (Suraci et al. 2019b). 

Globally, large carnivores experience high rates of anthropogenic mortality (Ripple et 

al. 2014). As a result, large carnivores spatially avoid anthropogenic features 

(Wilmers et al. 2013, Abrahms et al. 2015) and exhibit temporal shifts in activity and 

habitat use to minimize the risk of encountering humans (Ordiz et al. 2011, Suraci et 

al. 2019b, Wilmers et al. 2021). In addition to avoiding anthropogenic risk, large 

carnivores must also balance the high energetic demands that come with carnivory, 

including substantial time spent in locomotion required to regularly hunt and kill 

large-bodied prey (Gorman et al. 1998). In some cases, avoiding anthropogenic risk 

and balancing high energetic demands may be in conflict with each other, for instance 

if areas of high resource quality (e.g., higher prey density) are also riskier. In such 

cases, animals are expected to exhibit temporal partitioning to avoid these areas 

during risky times (e.g., during the day, when humans are most active) but relax their 

avoidance during times of lower risk (Kronfeld-Schor and Dayan 2003). Carnivores 

may also face trade-offs between energetically efficient movement and risk avoidance 

if avoiding human features results in energetically sub-optimal movement strategies 

(e.g., moving through more rugged terrain; Nickel et al. 2021). Both energetic 

constraints and fear responses to humans are widespread across large carnivore 
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species in different environments, but how they inform movement and habitat 

selection over shorter temporal grains remains unknown. 

Here, we investigate scale-dependent drivers of short-term movement and 

habitat selection for populations of two large carnivore species, African lions 

(Panthera leo) and pumas (Puma concolor), living in two very different human-

dominated environments: the livestock-wildlife rangelands of Laikipia County, 

Kenya, and the urban-adjacent Santa Cruz Mountains of California. Both species 

demonstrate strong behavioral responses to anthropogenic features. In the rangeland 

system of Laikipia, African lions alternatively exhibit spatial and temporal avoidance 

of livestock herding, the primary human use of the landscape, but may trade off safety 

with prey availability due to the overlap of high-quality herding areas and high-

quality habitat for native large herbivores (Oriol-Cotterill et al. 2015a, 2015c, Suraci 

et al. 2019b). In the rugged Santa Cruz Mountains, low-level residential housing is 

the primary anthropogenic land use. Pumas exhibit strong fear responses to human 

presence and avoid housing (Wilmers et al. 2013, Smith et al. 2017). 

We used integrated step selection analysis (iSSA; Avgar et al. 2016) to 

compare lion and puma habitat selection and movement across 8 temporal grains, 

ranging from 5 minutes to 12 hours. In modeling movement and habitat selection 

jointly, this approach allowed us to ask how habitat features related to energetic 

expenditure and anthropogenic risk impacted both the selection and movement 

processes for lions and pumas. We also asked whether and how the influence of 

covariates on movement and habitat selection changed with temporal grain, which 
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could shed light on strategies that these species use to balance multiple goals in 

human-dominated landscapes. Applying this analysis to two species – lions and 

pumas – allowed us to explore and identify commonalities in how large carnivores 

manage trade-offs between energetics and risk via habitat selection across multiple 

scales. 

 

Materials and Methods 

Study systems and GPS collaring 

Laikipia County is located in northern Kenya. Our 1040 km2 study area was 

comprised of six commercial ranches consisting of semiarid Acacia savannah and 

open grasslands. These properties are managed for conservation as well as livestock 

production and support abundant native large herbivore populations, and use 

traditional livestock practices in which livestock are moved into bomas, or temporary 

livestock corrals, at night, and are let out to graze under the supervision of herders 

during the day (O’Brien et al. 2018). Bomas are the centers of human activity on the 

landscape, and humans present substantial risk to lions, with human-caused deaths 

accounting for 117 out of 133 mortalities for monitored lions between 1999-2016 (L. 

Frank, unpublished data). Bomas likely also represent areas of increased prey 

availability for African lions given that boma locations overlap with high-quality 

forage for native large herbivores. For further description of the study area, see Frank 

2011 and Oriol-Cotterill et al. 2015a. The Laikipia study system has an elevational 
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range from 1271-1931m and is largely flat with some escarpments. Slope ranges from 

0-34° with a median slope of 1.16°. 

The Santa Cruz Mountains are in the Central Coast region of California, and 

consist of a gradient of human residential development, including open space areas as 

well as exurban, suburban, and urban areas across the 2,800 km2 study area. Habitat 

types include mixed redwood (Sequoia sempervirens) forests, mixed oak (Quercus 

sp.) forests, and chaparral. Pumas in the Santa Cruz Mountains experience high rates 

of anthropogenic mortality, accounting for 17 of 32 deaths of collared adults and 

subadults between 2008 and 2020 (A.C. Nisi, unpublished data). For further 

description see Wilmers et al. 2013. The Santa Cruz Mountains is more 

topographically rugged than Laikipia, with an elevational range from 0-1333m, slope 

ranging between 0-48° and a median slope of 4.38°.  

Lions and pumas were captured and fitted with GPS collars set to record a 

GPS location every 5 minutes (Vectronics Aerospace GPS Plus or Vertex, Berlin, 

Germany; see Appendix 1.S1 for description of animal capture). Data were collected 

from 14 African lions (9 females, 5 males) and 20 pumas (10 females, 10 males) from 

23 Sep 2014 to 14 Feb 2016 and 15 May 2015 to 9 Oct 2018, respectively. All 

African lions were adults, and 17 of 20 pumas were adults, with the remainder being 

subadults (ranging from 17-20 months).  

 

Statistical analyses  
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We used integrated step selection analysis (iSSA) to quantify habitat 

selection. Step selection analyses (SSA) are a type of resource selection function 

(RSF; Johnson 1980) that define availability based on movement, with available 

points generated by simulating random steps from the movement path (Fortin et al. 

2005, Thurfjell et al. 2014). Integrated step selection analysis is a further extension of 

SSA, and allows for the movement and habitat selection processes, and how they are 

influenced by habitat covariates, to be modeled jointly (Avgar et al. 2016). The 

movement-driven definition of availability makes temporal grain an important 

consideration for SSAs, since available points represent locations where an animal 

could have visited over a certain interval of time (Thurfjell et al. 2014). Applying 

iSSA to movement data at different temporal grains can thus allow us to compare 

drivers of movement and selection across temporal grains. We considered 8 distinct 

temporal grains for this analysis: 5, 15, and 30 minutes, and 1, 2, 4, 8, and 12 hours. 

Because step lengths (distance between subsequent GPS locations) increase with 

temporal grain, the temporal resolution of GPS data used in habitat selection analyses 

is inherently linked to the spatial extent of analysis (Fig. 1.S1 and 1.S2).  

We subsampled 5-minute GPS tracks for lions and pumas to construct datasets 

at each temporal grain. For example, the 15-minute dataset was obtained by selecting 

every third 5-minute GPS location, and so on. Next, we excluded all non-movement 

points, which for both species we defined as used points that were < 20m from the 

previous point for each dataset (Dickie et al. 2020). The 20m cutoff corresponds to 

the average GPS error for pumas in the Santa Cruz Mountains and agrees with 
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empirically determined step length cut-offs between stationary and moving behaviors 

for African lions in Laikipia (Suraci et al. 2019b). 

For each dataset, we generated 20 available points for each used point by 

generating random step lengths and turning angles and projecting from the previous 

location. Step lengths were drawn from exponential (lions) and gamma (pumas) 

distributions fitted to the empirical data (Avgar et al. 2016). The choice of 

distribution was motivated by AIC and q-q plots. For both species, turning angles 

were drawn from Von Mises distributions fitted to the empirical data. 

 

Habitat and movement covariates 

 For both African lions and pumas, models included anthropogenic features 

(distance to bomas for lions and housing density for pumas), topographic slope, and 

percent cover, all of which have been shown to be important for large carnivore 

movement (Suraci et al. 2019b, Nickel et al. 2021).  

For African lions, boma locations were monitored for the duration of the study 

on the properties to which we had access. To account for the fact that African lions 

may have been responding to bomas on unmonitored neighboring properties, 

locations that were <1km from the study area boundary or >5km away from the 

nearest active boma were excluded (as in Suraci, Frank, et al., 2019). Distance to 

boma was log-transformed to account for the stronger response at short distances 

relative to longer distances (Suraci et al. 2019b). 
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For pumas, housing density was calculated by manually digitizing locations of 

houses from high-resolution satellite imagery, and fitting an Epanechnikov kernel 

with a radius of 150m around each housing point, which is the most informative 

spatial grain for puma movement (Wilmers et al. 2013). Housing density was cube-

root-transformed to ameliorate its long right tail and make its coefficient more 

interpretable after covariate standardization.  

Landscape topography is expected to strongly influence energetic expenditure 

during movement (Shepard et al. 2013); therefore, we included topographic slope for 

both species. We also included percent vegetative cover (Appendix 1.S2), which may 

provide hunting opportunities as well as offer more safety in areas close to people for 

both species. Topographic slope, percent cover, and housing density were rasterized 

at 30m resolution.  

 To allow the joint inference on habitat selection and movement, we included 

movement covariates in all models: step length for lions and the natural log of step 

length for pumas, as recommended for step lengths drawn from exponential and 

gamma distributions, respectively (Avgar et al. 2016). We also included directional 

persistence: cos(θt - θt-1), where θt is the angle from the x-axis of the step ending at 

the used or available point and θt-1 is the angle of the prior step. Values range from -1 

to 1, with values closer to 1 representing straighter movements.  

All covariates were standardized (centered by mean and scaled by standard 

deviation) within each dataset to facilitate coefficient interpretation (Schielzeth 2010). 
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We used Pearson’s correlation to test for collinearity between all pairs of covariates. 

No two pairs of covariates had an |r| >0.17 for African lions or >0.36 for pumas. 

 

Model fitting and interpretation 

Coefficients were estimated via conditional logistic regression, fit with the 

clogit function from the survival package (Therneau 2015). We used generalized 

estimating equations (GEE) to account calculate robust standard errors to account for 

temporal autocorrelation (Appendix 1.S3; Prima et al. 2017).  

 Model specification reflected a priori hypotheses about how carnivores 

balance avoiding risk from humans with energetic constraints and differed slightly 

between species according to study area characteristics. Model selection was 

conducted in three stages for each species. We predicted that both species may avoid 

human features more strongly during the day than at night, so we first tested for diel 

changes in the response to anthropogenic covariate by evaluating the support 

(quasilikelihood information criterion; QIC) of models that included (or not) a time-

of-day interaction with the anthropogenic covariate alongside topographic slope, 

cover, and movement covariates for each temporal grain. Models with ΔQIC <2 were 

considered to have support (Pan 2001). Next, we tested for interactions between 

habitat covariates by evaluating the respective support of candidate models differing 

in their covariate interaction structure. For both species, we predicted that proximity 

to human features may lead animals to relax their avoidance of slope in order to avoid 

risk from humans (Nickel et al. 2021), so we considered models that had an 
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interaction between slope and bomas or housing density. We also hypothesized that 

lions may avoid bomas less strongly where there was higher vegetation cover that 

could allow them to move undetected (Suraci et al. 2019b); hence, we considered an 

interaction between boma and cover. Cover exhibited very low variation in the Santa 

Cruz Mountains (Fig. 1.S1) so we did not consider this interaction for pumas. For 

pumas, we also tested for a quadratic response to slope, hypothesizing that pumas 

may select for intermediate slopes that may allow them to reduce risk from people 

while avoiding high energetic costs of traversing very steep slopes. Because Laikipia 

is much flatter than the Santa Cruz Mountains, we did not include this interaction for 

lions. Finally, we considered whether habitat covariates mediated movement through 

models that included interactions between slope, cover, and anthropogenic covariate 

with step length and directional persistence, hypothesizing that movement strategies 

may vary across risky to safe and rugged to flat areas. For example, animals may 

either speed up or slow down when near human risk to minimize exposure or increase 

crypsis (Suraci et al. 2019a), and slower, more tortuous movement in rugged terrain 

likely would reflect how animals mediate movement behavior to manage energetic 

constraints (Nickel et al. 2021). We selected a single model structure for each species 

to interpret across grains. When best-supported model structure differed between 

grains, we chose the structure that received consistent support across grains 

(Appendix 1.S4, Tables 1.S1-1.S3). To interpret the effects of habitat covariates on 

selection across temporal grains, we calculated the relative selection strength (RSS) 

across the range of each focal habitat covariate relative to the same reference location 
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across grains (Appendix 1.S5; Avgar et al. 2017). To assess whether there were 

differences in habitat selection between males and females, we re-fit the top model 

separately for individuals from each sex. While all African lions were adults, there 

were 3 pumas that were <2 years old (all between 17-20 months) and that thus could 

be pre-dispersal- and dispersal-age (Logan and Sweanor 2001a). To ensure that puma 

results were not biased by age class, we re-fit the top model to data excluding the 3 

individuals <2 years old and compared results with the model fit to all pumas.  

 While grain-dependent responses may reflect meaningful behavioral processes 

(Wheatley and Johnson 2009), it is also possible that grain-dependent selection 

patterns could emerge purely as a function of changing availability domain (i.e., 

changes in the relative availability or distribution of different habitat types with 

changing temporal grain size) either through a functional response or patterns of 

spatial variation in covariates (Beyer et al. 2010). We compared covariate 

distributions (medians and upper and lower quartiles) at each temporal grain. If 

covariate availability was relatively constant across grains, a functional response was 

unlikely to have produced grain-dependent patterns. To assess how patterns of 

covariate variation changed with temporal grain, we calculated the within-strata 

variance (i.e., within groups of matched used and available locations), calculated as 

the mean variance of each matched-case stratum, and the overall (across-strata) 

variance at each temporal grain. Covariates that exhibited higher spatial 

autocorrelation would have particularly low within-strata variance at short grains 
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relative to long grains, and may thus impact fine-grain selection less strongly than 

longer-grain selection.  

We tested for spatial autocorrelation in model residuals using Moran’s I 

correlograms (random subsets of 10,000 locations; 250m increments; 1000 

bootstrapping iterations to estimate p-values) as implemented in the ncf package 

(Bjornstad 2020). Only one distance bin exhibited significant levels of spatial 

autocorrelation in residuals: 0-250m for lions at the 8-hr temporal grain (see Fig. 

1.S3). 

 

Results 

For African lions, topographic slope influenced habitat selection at shorter 

temporal grains but became unimportant at longer temporal grains (Fig. 1.1A, Table 

1.1). At the shortest grains (5-15 minutes), African lions exhibited significant 

avoidance of steeper slopes, but selection for slope was not significant at longer 

grains (≥ 1 hour). These results appear to be driven by females, with males exhibiting 

continued avoidance of steeper slopes at longer grains (Fig. 1.S4). Bomas influenced 

lion habitat selection differently between day and night. During the daytime, lions 

avoided locations closer to bomas across all temporal grains (Fig 1.1B). During the 

nighttime, lions relaxed this avoidance, and this relaxation was more pronounced for 

longer temporal grains, with lions switching to select locations closer to bomas at 

grains >4 hours (Fig. 1.1C). Responses to bomas were similar between females and 

males (Fig. 1.S4). 
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 Pumas exhibited grain-dependent selection for slope that was mediated by 

housing density (Fig. 1.2). For short-grain movement (e.g., 5 minutes), pumas 

avoided steep slopes in areas without houses (0 houses/km2, Fig 1.2A), but relaxed 

this avoidance in areas of higher housing density (28 houses/km2, Fig 1.2B). For 

longer-grain movement (e.g., 12 hours), pumas selected shallower slopes in areas 

with less development but selected intermediate slopes when housing density was 

higher. Males avoided steeper slopes more strongly than females, but grain-dependent 

patterns of response to slope were similar between sexes (Fig. 1.S5). Similar to lions, 

pumas showed diel differences in their response to anthropogenic features. During the 

day, pumas avoided housing strongly across temporal grains (Fig. 1.2C). At night, 

pumas relaxed their avoidance of housing and even exhibited selection for areas of 

higher housing density at longer temporal grains (Fig. 1.2D). Responses to housing 

density were similar between females and males (Fig. 1.S6). Excluding the 3 pumas 

<2 years old did not influence our results (Fig. 1.S7 and 1.S8). 

Habitat covariates significantly influenced movement behavior for both lions 

and pumas. Distance to boma and slope mediated lion movement (Fig. 1.3, Table 

1.S2). At the 5-minute through 4-hour temporal grains, there was a significant 

negative interaction between slope and step length, indicating that lions selected 

shorter steps and moved more slowly in areas with steeper slopes (Fig. 1.3). 

Additionally, at the 5-minute through 4-hour temporal grains, there were significant 

interactions between distance to boma and step length, with lions moving faster in 
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areas closer to bomas. Habitat covariates did not strongly impact directional 

persistence for lions.  

For pumas, there were significant interactions between step length and slope 

at short temporal grains (5 minutes through 2 hours), indicating that at these grains 

pumas moved slower where slope was steeper (Fig. 1.3, Table 1.S3). In contrast, 

housing density did not significantly influence puma movement at short grains, but 

did mediate step length at longer grains, where pumas selected shorter steps in areas 

of higher housing density. In addition, pumas selected more tortuous movement with 

increasing cover and slope at short temporal grains, and with increasing housing 

density at longer temporal grains, although the interactions between habitat covariates 

and directional persistence were of lower magnitude than for step length. Grain-

dependent patterns were largely consistent across sexes in how covariates influenced 

movement for both species (Fig. 1.S9 and 1.S10).  

The distributions of slope, cover, and anthropogenic covariates in available 

locations were similar across grains (Fig. 1.S1). For each covariate, variance within 

matched-case groups was less than overall variance and increased with temporal 

grain. This pattern was most pronounced for distance to boma (Fig. 1.S2).  

 

Discussion 

Like most large carnivore species in human-dominated environments, African 

lions and pumas must balance high energetic demands alongside risk of 

anthropogenic mortality. Through a multi-scale approach to habitat selection 
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integrating both the movement and selection processes, we showed that the relative 

importance of these goals in driving large carnivore movement varied with temporal 

grain. While lions and pumas strongly avoided anthropogenic risk during the daytime 

at all temporal grains, landscape features related to energetic expenditure most 

strongly drove selection and movement over short temporal grains and tolerance of 

anthropogenic risk during the nighttime was more apparent at longer grains.  

Both African lions and pumas avoided steeper slopes during movement at 

short temporal grains. Topographic slope is a strong determinant of energetic 

expenditure for large carnivores and most terrestrial species (Shepard et al. 2013, 

Nickel et al. 2021), and the strong influence of slope at fine temporal grains indicates 

that energetic constraints may be stronger drivers of short-term rather than long-term 

selection. Similarly, both lions and pumas took shorter steps, indicating slower 

movement, when slopes were steeper at short temporal grains, but slope did not 

mediate step length at longer grains. Animals may choose slower speeds to help 

mitigate the energetic costs of demanding terrain (Shepard et al. 2013, Wilson et al. 

2015, Halsey 2016), and here, slowing down when traversing steeper slopes likely 

reflects the trade-off between energetic expenditure and time. Interestingly, the 

Laikipia region is much flatter overall compared to the Santa Cruz Mountains, so the 

fact that this fine-scale avoidance of steep slopes was still seen across both systems 

suggests that locomotion-driven energetic concerns are an important drivers of 

carnivore movement even in flatter environments. For both lions and pumas, males 

avoided steeper slopes more strongly than females, and male lions exhibited 
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avoidance of steeper slopes even across longer temporal grains. Males of both species 

engage in territorial patrol and generally range farther than females, which are 

associated with heightened importance of energetic constraints during locomotion 

(i.e., avoidance of steep slopes), and, therefore, likely drive the observed sex-specific 

patterns (Benhamou et al. 2014, Johansson et al. 2018, Nickel et al. 2021). 

Pumas also exhibited a grain-dependent pattern in how they responded to 

slope in areas of higher risk from humans. Pumas avoided areas of steeper slopes 

across all temporal grains when housing density was low, but when risk from humans 

was higher, pumas did not respond to slope at fine grains and selected areas of 

intermediate slopes over longer-term movement. These results indicate that 

carnivores prioritized avoiding risk from humans over energetic constraints when 

faced with a trade-off between the two, consistent with previous findings (Nickel et 

al. 2021). Additionally, previous puma habitat selection studies have found both 

avoidance (Wilmers et al. 2013, Zeller et al. 2017) and selection of steeper slopes 

(Benson et al. 2016b, Blecha et al. 2018). Our study demonstrates that puma response 

to slope is dependent both on temporal grain and exposure to risk from humans, so 

differential results may arise from the temporal grain of analysis and level of human 

presence on the landscape.  

 Both African lions and pumas also demonstrated temporally-sensitive risk 

avoidance, avoiding human features during the daytime and relaxing this avoidance at 

night. In human-dominated systems, many species have been shown to temporally 

shift their activity patterns to minimize overlap with humans (Oriol-Cotterill et al. 
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2015a, Gaynor et al. 2018, Suraci et al. 2019b). In Laikipia and in the Santa Cruz 

Mountains, human activity around anthropogenic features is highest during the 

daytime, so daytime avoidance of these features likely functions to minimize the risk 

of encountering people. For both species, daytime avoidance of areas with more 

human influence was strong across temporal grains, underscoring that avoiding 

anthropogenic risk is crucial to large carnivores traversing human-dominated 

landscapes. Additionally, this suggests that patterns of daytime avoidance over longer 

periods of time resulted from the scaling-up of finer-grained responses to 

anthropogenic features (Boyce et al. 2017, Prokopenko et al. 2017). Notably, this 

pattern holds for lion responses to bomas as well as puma responses to housing, 

despite the fact that bomas and houses are distributed markedly differently – bomas 

are rare landscape features and overall boma density is very low in Laikipia, while 

housing development covers a wide range of densities across the Santa Cruz 

Mountains. Large carnivore avoidance of risk from humans may lead to broader 

ecological effects through changes in carnivore impacts on prey behavior, affecting 

space use by species across multiple trophic levels (Suraci et al. 2019a) with potential 

effects on primary producers (Yovovich et al. 2021).   

While daytime avoidance was strong across temporal grains, the relaxation of 

this avoidance during the nighttime was stronger at longer temporal grains for both 

felids. When risky areas overlap with resource availability, animals are expected to 

use these areas for foraging during times of lower risk (Kronfeld-Schor and Dayan 

2003). In Laikipia, bomas are located in areas of high-quality livestock forage and 
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thus likely overlapped substantially with habitat preferred by native large ungulates, 

and additionally may present a source of food themselves, in the form of domestic 

livestock – though previous studies have shown that wild prey account for the 

majority of lion kills even close to bomas (Suraci et al. 2019b). A previous study 

demonstrated that African lion selection for habitat near bomas was driven by feeding 

behavior, suggesting that African lions balance costs and benefits from these risky but 

high-value areas by using them during less risky times (Suraci et al. 2019b). Thus, 

nighttime selection for bomas may have been driven by hunting opportunities and 

resource acquisition, and these goals may be stronger drivers of longer-term rather 

than short-term movements. 

Pumas also exhibited nighttime selection for housing density at longer 

temporal grains, but the mechanism is less clear. Deer detection on camera traps is 

higher in more human-dominated areas, which could indicate higher deer abundance 

(Smith et al. 2016). This could result either from deer responses to human subsidies 

(e.g., landscaping and lawn irrigation) or if deer were using more developed areas as 

“human shields” (Hebblewhite et al. 2005, Berger 2007). However, other studies have 

shown that pumas avoided housing density when killing deer and deer kill sites were 

disproportionately located in wildlands relative to more developed areas (Wilmers et 

al. 2013, Nickel et al. 2021), which is contrary to what would be expected if 

nighttime selection for housing density was driven by pumas hunting deer in those 

areas. Several smaller mesocarnivore prey species are almost certainly more abundant 

nearer to people, but make up a much smaller percentage of puma diets (Smith et al. 
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2016). Thus, while it’s possible that prey availability may drive nighttime selection, 

more investigation is needed to resolve this issue. Alternatively, it is possible that 

nighttime selection for housing density was in part a function of the strong avoidance 

that pumas exhibited during the day. In this fragmented landscape, pumas may need 

to move through more developed areas as they traverse their home ranges and choose 

to do this during relatively safer nighttime hours to allow for stronger daytime 

avoidance.  

Interestingly, both how anthropogenic features mediated movement as well as 

the grain-dependent patterns of these responses differed between lions and pumas. At 

short temporal grains, lions moved faster in areas closer to bomas, while pumas 

moved more slowly in areas of higher housing density over longer temporal grains. 

These different strategies may be due to the relative abundance of these features on 

the landscape – since bomas are fairly rare, it is possible that the optimal choice is to 

quickly move past them when they are encountered (Dickie et al. 2020), whereas 

pumas must slow down and move more tortuously to navigate carefully around areas 

of higher housing density that cover wide swaths of the Santa Cruz study area. A 

meta-analysis synthesizing human impacts on animal movement also documented 

mixed responses (Doherty et al. 2021), and future work looking at movement 

responses to anthropogenic features for other large carnivores in human-dominated 

landscapes could elucidate whether variations in speed responses are related to the 

density or distribution of risky features on the landscape. Additionally, the role of 

sociality may influence carnivore movement strategies around risky features – 



	 27	

solitary pumas may be able to effectively avoid detection around humans by moving 

slowly, but group living may preclude cryptic movement near human-dominated 

areas for social species like African lions. In this case, moving quickly through such 

areas may be a more effective strategy for lions to minimize the risk of detection and 

encounter. How animal sociality influences movement is an emerging research topic 

(Westley et al. 2018) and investigating these responses across other solitary and 

social carnivores may elucidate whether there are consistent patterns in how sociality 

mediates movement strategies around risky features. However, one commonality 

between species is that habitat covariates modified step length more strongly than 

directional persistence, indicating that these species modify their speeds to a greater 

degree than their tortuosity in relation to energetics and risk avoidance. Increased 

tortuosity in movement can present substantial energetic costs (Wilson et al. 2013), so 

an interesting future direction would be to explore the energetic costs of modifying 

speed versus tortuosity in response to risky features. While some broad-scale 

movement patterns have been identified across taxa, including generally reduced 

movement in more human-dominated areas and increased nocturnality (Gaynor et al. 

2018, Tucker et al. 2018), variability in these patterns is still apparent across species 

and systems (Doherty et al. 2021) – quantifying the mechanisms behind patterns in 

movement and selection responses across species will be an exciting area of future 

research.   

Alongside behavioral mechanisms, changes in characteristics of the 

availability domain may produce scale-dependent patterns in habitat selection (Beyer 
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et al. 2010, Laforge et al. 2016). First, selection may be related to the mean 

availability of habitat features – known as a functional response (Mysterud and Ims 

1998), which can arise via behavioral processes or through statistical or sampling 

artifacts (Beyer et al. 2010, Laforge et al. 2016, Holbrook et al. 2019). Given the 

distributions of covariate values were consistent across grains (Fig. 1.S1) and since 

we calculated selection strength relative to the same reference location across grains 

(in Fig. 1.1 and 1.2), these grain-dependent patterns are unlikely to have emerged 

primarily from functional responses. Second, a covariate that varies over large 

distances may exhibit minimal variation at the matched-case level over short temporal 

grains, hence having a reduced impact on selection at short relative to longer temporal 

grains. Distance to boma exhibited this pattern (Fig. 1.S2), and while lions responded 

more strongly to bomas at longer temporal grains at night, during the day they 

exhibited equivalently strong avoidance across temporal grains. Furthermore, all 

covariates exhibited increased within-strata variation with increasing temporal grain 

to some degree (Fig. 1.S2), so if spatial autocorrelation in covariates was solely 

responsible for grain-dependent habitat selection patterns, we would expect to see 

stronger responses to all covariates with increasing temporal grain. Since this is not 

what we observed, we do not believe that this mechanism alone drove our results.  

These two potential explanations for grain-dependent patterns – scale-

dependent behavioral strategies and patterns of covariate variation – are not mutually 

exclusive, and both likely influence how habitat selection and movement change with 

the temporal grain of analysis. In our case, examining selection and movement across 
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grains (1) revealed dynamics that would not have been apparent had only one 

temporal grain been considered (e.g., avoidance of steeps slopes at fine grains, and 

nighttime selection for anthropogenic features at longer temporal grains), and (2) 

suggested changes in the shape of the responses with temporal grain (e.g., slope for 

pumas). Selecting a single temporal grain (e.g., 5-minutes or 4-hours), as is typically 

done in habitat selection studies, would have resulted in qualitatively different 

conclusions about how lions and pumas responded to these features.  

By considering how habitat covariates impacted movement and selection 

across temporal grains, our study sheds light on how large carnivores balance 

multiple, sometimes conflicting goals when traversing human-dominated landscapes, 

providing novel insight on large carnivore behavioral ecology. Temporal grain is an 

important consideration in habitat selection studies, with energetic constraints driving 

carnivore movement over the short-term, while diel partitioning of risk and resource 

acquisition influenced selection more strongly at longer temporal grains. Our results 

also suggest that avoiding anthropogenic risk may supersede energetic concerns for 

large carnivores in human-dominated landscapes. Since results were consistent across 

two very different human-dominated landscapes (a pastoral rangeland system and a 

fragmented, urban-adjacent system) and for two very different species (the large, 

social African lion and smaller, solitary puma), these patterns may represent 

commonalities in large carnivore movement ecology across a variety of risky areas 

and landscapes of anthropogenic fear.  
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Figure 1.1. Relative selection strength of slope and distance to boma by lions across 

temporal grains. Selection strength was calculated relative to the same reference 

location across temporal grains, which had focal covariates (slope in panel A, 

distance to boma in panels B-C) set to their median values of 4-hour available 

locations (Appendix 1.S5). Non-focal covariates (distance to boma in panel A, slope 

in panels B-C, and cover in all panels) were set to their median values of 4-hour 

available locations, and movement covariates were set to their mean values for each 

temporal grain. Distance to boma is shown on the log scale. 
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Figure 1.2. Relative selection strength of slope and housing density by pumas across 

temporal grains. Housing density was set at 0 and 28 houses/km2 in panels A and B, 

respectively (lower and upper quartiles of 4-hour available locations). Selection 

strength was calculated relative to the same reference location across temporal grains, 

which had focal covariates (slope in A-B, housing density in C-D) set to their median 

values of 4-hour available locations (Appendix 1.S5). Slope in panels C-D and cover 

in all panels were set to their median values of 4-hour available locations, and 

movement covariates were set to their mean values for each temporal grain. Housing 

density is shown on the cube-root scale. 
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Figure 1.3. Effects of habitat covariates on lion and puma movement. For each 

species, the strength of interaction is the coefficient of the interaction between habitat 

and movement covariates multiplied by the same unit change in each habitat covariate 

(the standard deviation at the 4-hour dataset for each species). Temporal grain is 

square-root-transformed for readability. 
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Table 1.1. Coefficient estimates for lion iSSA. Robust standard errors are in 

parentheses and * and ** denote p-values <0.05 and <0.01 respectively. ∆QIC values 

are shown relative to best-supported model within each temporal grain (Table 1.S2).  

	
  5 min 15 min 30 min 1 hr 2 hr 4 hr 8 hr 12 hr 

Boma 0.292** 
(0.099) 

0.265** 
(0.069) 

0.261** 
(0.061) 

0.301** 
(0.057) 

0.290** 
(0.054) 

0.336** 
(0.060) 

0.293** 
(0.059) 

0.337** 
(0.075) 

Boma*Night 
-0.269** 
(0.105) 

-0.229** 
(0.075) 

-0.222** 
(0.067) 

-0.261** 
(0.064) 

-0.249** 
(0.063) 

-0.379** 
(0.072) 

-0.393** 
(0.085) 

-0.393** 
(0.095) 

Boma*Slope 0.032 
(0.016) 

0.059 
(0.019) 

0.078 
(0.022) 

0.065 
(0.026) 

0.086 
(0.030) 

0.056 
(0.035) 

0.094 
(0.044) 

0.161 
(0.058) 

Slope -0.050** 
(0.015) 

-0.086** 
(0.018) 

-0.088** 
(0.021) 

-0.057 
(0.024) 

-0.043 
(0.028) 

-0.012 
(0.034) 

0.047 
(0.041) 

0.023 
(0.051) 

Cover 
-0.001 
(0.009) 

0.018 
(0.011) 

0.032 
(0.014) 

0.030 
(0.017) 

0.051 
(0.021) 

0.078 
(0.026) 

0.046 
(0.033) 

0.057 
(0.040) 

DP 0.125** 
(0.008) 

0.068* 
(0.010) 

0.030 
(0.012) 

0.011 
(0.015) 

-0.016 
(0.018) 

-0.021 
(0.024) 

0.034 
(0.032) 

0.035 
(0.038) 

SL -0.117** 
(0.007) 

-0.111** 
(0.011) 

-0.078 
(0.013) 

-0.040 
(0.016) 

-0.006 
(0.019) 

-0.004 
(0.025) 

0.048 
(0.031) 

0.105 
(0.035) 

Boma*DP 
-0.026* 
(0.007) 

-0.020 
(0.010) 

-0.001 
(0.012) 

-0.012 
(0.016) 

0.011 
(0.019) 

0.046* 
(0.025) 

-0.028 
(0.034) 

-0.054 
(0.041) 

Boma*SL -0.029* 
(0.006) 

-0.055** 
(0.009) 

-0.074** 
(0.012) 

-0.084** 
(0.014) 

-0.104** 
(0.018) 

-0.094** 
(0.023) 

-0.070 
(0.030) 

-0.052 
(0.036) 

Slope*DP -0.003 
(0.006) 

-0.001 
(0.010) 

-0.008 
(0.012) 

-0.025 
(0.015) 

0.029 
(0.019) 

-0.032 
(0.023) 

0.001 
(0.029) 

-0.032 
(0.035) 

Slope*SL 
-0.165** 
(0.009) 

-0.192** 
(0.014) 

-0.216** 
(0.018) 

-0.198** 
(0.022) 

-0.196** 
(0.027) 

-0.248** 
(0.035) 

-0.115 
(0.038) 

-0.090 
(0.042) 

DP*SL 0.437** 
(0.010) 

0.426** 
(0.013) 

0.321** 
(0.014) 

0.223** 
(0.016) 

0.115** 
(0.018) 

0.003 
(0.022) 

-0.072* 
(0.030) 

-0.060 
(0.034) 

∆QIC 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.17 
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Table 1.2. Coefficient estimates for puma iSSA. Robust standard errors are in 

parentheses and * and ** denote p-values <0.05 and <0.01 respectively. ∆QIC values 

are shown relative to best-supported model within each temporal grain (Table 1.S3).  

	
  5 min 15 min 30 min 1 hr 2 hr 4 hr 8 hr 12 hr 

HD 
-0.424** 
(0.022) 

-0.481** 
(0.025) 

-0.499** 
(0.028) 

-0.534** 
(0.033) 

-0.583** 
(0.036) 

-0.657** 
(0.040) 

-0.537** 
(0.043) 

-0.675** 
(0.055) 

HD*Night 
0.339** 
(0.026) 

0.420** 
(0.029) 

0.453** 
(0.033) 

0.505** 
(0.038) 

0.646** 
(0.043) 

0.834** 
(0.050) 

0.927** 
(0.063) 

1.088** 
(0.073) 

HD*Slope 
0.091** 
(0.004) 

0.116** 
(0.006) 

0.137** 
(0.008) 

0.153** 
(0.011) 

0.189** 
(0.014) 

0.200** 
(0.019) 

0.263** 
(0.025) 

0.258** 
(0.029) 

Slope 
-0.106** 
(0.004) 

-0.078* 
(0.007) 

-0.056 
(0.009) 

-0.038 
(0.012) 

-0.009 
(0.015) 

0.031 
(0.020) 

0.082 
(0.026) 

0.096* 
(0.031) 

Slope2 
-0.004 
(0.003) 

-0.012 
(0.004) 

-0.022 
(0.006) 

-0.020 
(0.008) 

-0.041 
(0.010) 

-0.065* 
(0.014) 

-0.090** 
(0.019) 

-0.089* 
(0.022) 

Cover 
0.166** 
(0.005) 

0.173** 
(0.008) 

0.189** 
(0.010) 

0.191** 
(0.013) 

0.200** 
(0.016) 

0.220** 
(0.021) 

0.248** 
(0.028) 

0.238** 
(0.032) 

DP 
0.039 

(0.003) 
0.064** 
(0.005) 

0.062** 
(0.007) 

0.053* 
(0.009) 

0.026 
(0.012) 

0.005 
(0.015) 

0.005 
(0.020) 

0.005 
(0.024) 

ln(SL) 
-0.100** 
(0.003) 

-0.118* 
(0.005) 

-0.105* 
(0.007) 

-0.071 
(0.009) 

-0.014 
(0.012) 

-0.003 
(0.015) 

-0.010 
(0.021) 

0.005 
(0.025) 

HD*DP 
-0.004 
(0.003) 

-0.009 
(0.005) 

-0.024 
(0.007) 

-0.027 
(0.010) 

-0.045** 
(0.012) 

-0.045 
(0.017) 

-0.093** 
(0.023) 

-0.101* 
(0.028) 

HD*ln(SL) 
0.010 

(0.003) 
0.014 

(0.005) 
0.017 

(0.007) 
0.008 

(0.010) 
-0.016 
(0.013) 

-0.063* 
(0.018) 

-0.123** 
(0.025) 

-0.150** 
(0.030) 

Slope*DP 
-0.053** 
(0.003) 

-0.018 
(0.006) 

-0.020* 
(0.007) 

0.013 
(0.010) 

0.003 
(0.013) 

0.026 
(0.016) 

-0.009 
(0.022) 

0.040 
(0.027) 

Slope*ln(SL) 
-0.111** 
(0.003) 

-0.120** 
(0.006) 

-0.119** 
(0.008) 

-0.123** 
(0.010) 

-0.108** 
(0.013) 

-0.085** 
(0.017) 

-0.055 
(0.023) 

-0.056 
(0.027) 

Cover*DP 
-0.095** 
(0.004) 

-0.058** 
(0.006) 

-0.029* 
(0.008) 

-0.022* 
(0.010) 

0.004 
(0.013) 

0.030 
(0.017) 

0.044 
(0.023) 

-0.012 
(0.028) 

Cover*ln(SL) 
-0.003 
(0.003) 

-0.016 
(0.006) 

-0.022 
(0.008) 

-0.013 
(0.010) 

0.001 
(0.013) 

0.038 
(0.018) 

0.059* 
(0.024) 

0.097** 
(0.028) 

DP*ln(SL) 
0.528** 
(0.003) 

0.568** 
(0.005) 

0.546** 
(0.007) 

0.485** 
(0.009) 

0.387** 
(0.011) 

0.268** 
(0.014) 

0.169** 
(0.019) 

0.285** 
(0.023) 

∆QIC 0.00 0.00 1.26 7.21 11.20 0.00 0.38 1.85 
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Appendix 1.S1 – Animal capture and collaring 

 African lions and pumas were captured and collared under Animal Use 

Protocols No. 191 from UC Berkeley (issued to L. G. Frank) and WilmC1402 from 

UC Santa Cruz (issued to C. C. Wilmers). African lions were captured by using baits 

and audio calls, and free darting from a vehicle. Ketamine and medetomidine were 

used to anesthetize lions and were reversed with atipamezole ~1 hour after darting. 

Pumas were captured using trained hounds or box traps and were anaesthetized with 

Telazol. Both African lions and pumas were fitted with GPS collars set to record a 

GPS location every 5 minutes (Vectronics Aerospace GPS Plus or Vertex, Berlin, 

Germany). High-resolution (5-minute) spatial data were collected for an average of 

55 days (range: 5-135) for 14 African lions and 60.1 days (range: 13-114) for 20 

pumas.  

 

Appendix 1.S2 – Calculating percent cover 

Vegetative cover has been identified as an important landscape feature for 

movement and hunting behaviors for several large carnivore species (Boydston et al. 

2003, Ordiz et al. 2011), so we included percent vegetative cover as predictors for 

both African lion and puma analyses. We calculated percent cover for both species by 

first assigning cover or no cover indicators to vegetative data from both study 

systems. For Laikipia, we used the habitat layer from the Centre for Training and 

Integrated Research in ASAL Development for Laikipia1, and for the Santa Cruz 

	
1 www.cetrad.org 
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Mountains, we used California GAP Data2. For both data sources, we sorted habitat 

categories into two classes, cover and no cover, and then we conducted a focal 

analyses to calculate the percent cover was taken over a 90m moving window using 

the raster package (Hijmans 2019).  

For lions, cover classes (0 or 1) were assigned to raster cells based on the 

classifications of low, medium, and high concealment described in (Suraci et al. 

2019b). Medium and high concealment were considered cover (1), with low 

concealment considered no cover (0).  

For pumas, cover classes (0 or 1) were assigned to raster grid cells with the 

following classifications considered “cover”: Forest and woodland systems (CN 

Level 1); Developed (CN Level 2, within Human Use Land); Chaparral, Deciduous 

dominated savanna and glade, and Conifer dominated savanna (CN Level 2, within 

Shrubland, steppe and savanna systems; all Floodplain and riparian (CN Level 1, 

within Riparian and wetland systems) except for Inter-Mountain Basins Greasewood 

Flat and North American Warm Desert Wash (CN Level 3); and Harvested Forest - 

Northwestern Conifer Regeneration (CN Level 3), Recently burned forest (CN Level 

3), , (CN Level 3), Recently burned forest > Introduced Upland Vegetation - Treed 

(CN Level 3), Introduced Riparian and Wetland Vegetation (CN Level 3). 

	

Appendix 1.S3 – Generalized Estimating Equations 

	
2 https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap 



	 37	

In step selection analyses, non-independence in the data can arise from the 

high temporal resolution of GPS data (i.e., temporal autocorrelation) and/or variation 

in habitat selection behavior across individuals (Prima et al. 2017). Generalized 

estimating equations (GEE) can account for both of these potential sources of non-

independence through specifying clusters of data, in which data are potentially 

correlated within clusters but independent across clusters (Prima et al. 2017). Bias is 

minimized when there are ≥20 independent clusters (Prima et al. 2017). To account 

for variation between individuals, separate clusters can be created for each individual. 

However, if no substantial variation in behavior is observed across individuals, then 

data from the same individual can be separated into multiple clusters via destructive 

sampling, where some amount of data is removed between subsequent clusters from 

the same individual to ensure that those clusters are temporally independent. Pumas 

tend to exhibit individual variability in selection of housing density, so destructive 

sampling would have been inappropriate, and each puma was treated as a separate 

cluster (N = 20 clusters). For African lions, individual variability in response to 

bomas was minimal so for all but one individual we created two clusters of data 

separated by at least 3 days (N=27 clusters total), which was identified in a previous 

analysis to be the amount of time after which temporal autocorrelation is negligible 

(Fortin et al. 2005, Suraci et al. 2019b).   

 

Appendix 1.S4 – Model selection  
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For both African lions and pumas, models that contained day/night interaction 

with the anthropogenic covariate were best-supported across all temporal grains, with 

models without interactions scoring >2 ΔQIC. For lions, there was support for models 

containing interactions between slope and distance to boma (Table 1.S1), and 

interactions between slope and distance to boma with movement terms (Table 1.S2). 

While the interaction between distance to boma and slope received support across 

temporal grains (Table 1.S1), this interaction was not significant at any grain (Table 

1.1).  For pumas, models containing a quadratic slope term and interactions between 

slope and housing density were best-supported, and interactions between slope, 

housing density, and cover with movement terms also received support across 

temporal grains (Table 1.S3). 

 

Appendix 1.S5 – Relative selection strength 

Relative selection strength (RSS) was calculated to visualize how slope and 

anthropogenic covariates impacted habitat selection at each temporal grain. RSS is 

calculated as the ratio of the relative probability of use of point x2 to the relative 

probability of use of point x1: RSS(x2, x1) = w(x2)/w(x1) (Avgar et al. 2017). Each 

panel in Figures 1.1 and 1.2 show how the natural log of RSS varies across the range 

of a particular focal covariate for point x2 (e.g., slope for Fig. 1.1A). In each panel, 

non-focal habitat covariates for both x2 and x1 were held constant, generally at their 

median value (or upper and lower quartiles for housing density in Fig. 1.2A-B), 

measured for 4-hour available locations. The value of the focal covariate at location 
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x1 was also set to its median for 4-hour available locations. The 4-hour dataset was 

chosen to select constant covariate values, as it was an intermediate grain considered 

and one frequently used in habitat selection analyses. Movement covariates were set 

at their means for each temporal grain. 

 Thus, the RSS can be interpreted as the relative selection for a location with a 

particular value of the focal covariate relative to a location with the median value of 

that covariate at the 4-grain, with all other covariates held constant and assuming 

mean movement behavior for that temporal grain. Since the reference location (x1) 

was identical across temporal grains, this allows for cross-grain comparisons of RSS 

curves.   
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Figure 1.S1. Distributions of habitat and movement covariates across temporal grains. 

Point estimate shows the median value, with bars denoting upper and lower quartiles. 

Temporal grain is square-root-transformed for readability.  
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Figure 1.S2. Variance in habitat covariates within and across matched-case strata for 

all temporal grains. Temporal grain is square-root-transformed for readability.  
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Figure 1.S3. Spline correlograms of Moran’s I across distance for model residuals. 

Points denote Moran’s I calculated in 250m bins. Black points denote p < 0.05 (i.e., 

significant spatial autocorrelation) and white points denote p > 0.05.   
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Figure 1.S4. Sex-specific relative selection strength of slope and distance to boma for 

lions across temporal grains. Selection strength was calculated relative to the same 

reference location across temporal grains as in Figure 1.1.  
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Figure 1.S5. Sex-specific relative selection strength of slope by pumas across 

temporal grains. Selection strength was calculated relative to the same reference 

location across temporal grains as in Figure 1.2.  
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Figure 1.S6. Sex-specific relative selection strength of housing density by pumas 

across temporal grains. Selection strength was calculated relative to the same 

reference location across temporal grains as in Figure 1.2.  

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

ln
(re

la
tiv

e 
se

le
ct

io
n 

st
re

ng
th

)
−1

.5
−1

.0
−0

.5
0.

0
0.

5
1.

0

0 10 100

ln
(re

la
tiv

e 
se

le
ct

io
n 

st
re

ng
th

)

Housing density (buildings/km2) Housing density (buildings/km2)
0 10 100

Females

Day
Night

Males

Temporal grain
5 min
15 min
30 min
1 hr
2 hr
4 hr
8 hr
12 hr



	 46	

 

Figure 1.S7. Relative selection strength of slope and housing density for 17 pumas >2 

years old across temporal grains. Selection strength was calculated relative to the 

same reference location across temporal grains as in Fig. 1.2.  
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Figure 1.S8. Effects of habitat covariates on puma movement for 17 pumas >2 years 

old. The strength of interaction is the coefficient of the interaction between habitat 

and movement covariates multiplied by the same unit change in each habitat covariate 

as in Figure 1.3.  

−0
.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

A) Step length
N

A

1

12

1

4

1

2
1 2 4 8 12

Temporal grain (hr)

St
re

ng
th

 o
f i

nt
er

ac
tio

n 
(β

)

B) Directional persistence

1

12

1

4

1

2
1 2 4 8 12

Temporal grain (hr)

HD
Slope
Cover



	 48	

 

Figure 1.S9. Sex-specific effects of habitat covariates on lion movement. The strength 

of interaction is the coefficient of the interaction between habitat and movement 

covariates multiplied by the same unit change in each habitat covariate as in Figure 

1.3.  
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Figure 1.S10. Sex-specific effects of habitat covariates on puma movement. The 

strength of interaction is the coefficient of the interaction between habitat and 

movement covariates multiplied by the same unit change in each habitat covariate as 

in Figure 1.3.  
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Table 1.S1. Model selection for models with interactions between boma and slope 

and boma and cover for lions, with no interactions between habitat and movement 

covariates. All models also contain an interaction between boma and night.  

 
Temporal grain Model ∆QIC 

5 min Boma * Slope 0.00 
15 min Boma * Slope 0.00 
30 min Boma * Slope 0.00 

1 hr 
Boma * Slope 0.00 

Boma * Slope + Boma * Cover 0.42 

2 hr 
Boma * Slope 0.00 

Boma * Slope + Boma * Cover 0.86 

4 hr 
Boma * Slope 0.31 

Boma * Slope + Boma * Cover 0.00 
8 hr Boma * Slope 0.00 

12 hr Boma * Slope 0.00 
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Table 1.S2. Model selection for models with interactions between habitat covariates 

(boma, slope, cover) and movement covariates (step length, directional persistence) 

for lions. Models also contain an interaction between boma and slope and boma and 

night.  

Temporal grain Model ∆QIC 

5 min (Boma + Slope)*movement 0.00 
15 min (Boma + Slope)*movement 0.00 

30 min 
(Boma + Slope)*movement 0.20 

(Boma + Slope + Cover)*movement 0.00 
1 hr (Boma + Slope)*movement 0.00 

2 hr 
(Boma + Slope)*movement 0.00 

(Boma + Slope + Cover)*movement 1.73 
4 hr (Boma + Slope)*movement 0.00 
8 hr (Boma + Slope)*movement 0.00 

12 hr 
No movement interactions 0.00 
(Boma + Slope)*movement 0.17 
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Table	1.S3.	Model selection for models with interactions between habitat covariates 

(housing density, slope, cover) and movement covariates (log(step length), directional 

persistence) for pumas. Models also contain an interaction between housing density 

and slope and a quadratic slope term.  

Temporal grain Model ∆QIC 

5 min (HD + Slope + Cover)*movement 0.00 
15 min (HD + Slope + Cover)*movement 0.00 

30 min (HD + Slope)*movement 0.00 
(HD + Slope + Cover)*movement 1.26 

1 hr (HD + Slope)*movement 0.00 
2 hr (HD + Slope)*movement 0.00 

4 hr 
(HD + Slope)*movement 1.38 

(HD + Slope + Cover)*movement 0.00 

8 hr 
(HD + Cover)*movement 0.00 

(HD + Slope + Cover)*movement 0.38 

12 hr 
(HD + Cover)*movement 0.00 

(HD + Slope + Cover)*movement 1.85 
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CHAPTER 2 
	

Unreliable human cues create an ecological trap for a large carnivore in a 

human-dominated landscape 

 

Abstract 

Animals’ fear of people is widespread across taxa and can mitigate the risk of human-

induced mortality, facilitating coexistence in human-dominated landscapes. However, 

humans can be unpredictable predators and anthropogenic cues that animals perceive 

may not be reliable indicators of the risk of being killed. In turn, unreliable habitat 

cues may produce ecological traps. Here, we evaluated whether behavioral responses 

to human cues reflect the actual risk of human-caused mortality for a large carnivore, 

the puma (Puma concolor) in the fragmented Santa Cruz Mountains, CA. Retaliatory 

killings following livestock depredation were the leading cause of death for this 

population, and we modeled habitat selection and retaliatory killing risk to evaluate 

whether puma avoidance of human cues reflected their risk of being killed by people.  

We documented a mismatch between human cues, fear responses, and actual risk. 

Rather than scaling directly with housing density, retaliatory killings occurred at 

intermediate levels of human development and at night. While pumas avoided these 

areas during the day, they selected for these high-risk areas at night, resulting in an 

ecological trap impacting 17% of the study area. We also investigated and found no 

evidence for the alternative hypothesis that state-dependent foraging drove 

depredations of livestock and subsequent killings of pumas. These results suggest that 
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fear responses, when decoupled from actual risk, could lead animals into an 

ecological trap. Because behavioral responses to humans are widespread, our findings 

suggest a novel mechanism by which ecological traps may impact a variety of species 

and systems. 

 

Introduction 

A central assumption of ecology is that animals select habitat in 

heterogeneous landscapes to maximize fitness (Fretwell and Lucas 1969, 

Rosenzweig, 1981). However, the value of a given location in terms of its influence 

on fitness may be impossible to assess directly, so animals often use habitat features 

as proxies for habitat quality (Robertson and Hutto 2006). Whether behaviors are 

adaptive depends in large part on how well the cues to which animals respond reflect 

habitat quality (Fretwell and Lucas 1969, Robertson and Hutto 2006). Rapid 

environmental change can disrupt relationships between cues and habitat quality, 

leading animals to exhibit maladaptive habitat selection, especially in human-

dominated environments (Delibes et al. 2001, Sih 2013). In these cases, animals may 

select (or fail to avoid) low-quality areas – a phenomenon known as an ecological 

trap (Robertson and Hutto 2006, Robertson et al. 2013, Hale and Swearer 2016). 

Understanding when and where ecological traps occur is essential for conservation 

efforts, as traps can magnify source-sink dynamics and threaten population viability 

(Battin 2004). The mismatch between cues and habitat quality that drives ecological 

traps has been widely documented following human disturbance or alteration to the 
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landscape (Robertson et al. 2013). However, human disturbance may not be the only 

mechanism that can produce ecological traps.  

Many species exhibit fear responses to humans by avoiding anthropogenic 

features in space and time, similar to the ways in which prey respond to predators 

(Frid and Dill 2002, Smith et al. 2017, Gaynor et al. 2018, Suraci et al. 2019b). In 

some cases, these responses may facilitate coexistence or population persistence in 

human-dominated environments by allowing animals to avoid anthropogenic 

mortality (Carter and Linnell 2016). However, the cues used by animals to perceive 

risk may not correspond perfectly to the actual risk of being killed by people (Smith 

et al. 2021). Despite widespread research interest in and conservation importance of 

both ecological traps and the ecology of fear, little is known about the intersection of 

these two concepts. If anthropogenic cues and risk do not align, then behavioral 

responses that should function to mitigate risk from humans may be ineffective and 

may actually contribute to ecological traps.  

Anthropogenic mortality is a key threat to many large carnivore populations 

(Ripple et al. 2014) with deaths from humans far outstripping mortality from any 

other predator (Darimont et al. 2015), and adult survival is generally the key 

determinant of individual fitness and population growth for longer-lived species like 

large carnivores (Heppell et al. 2000, Beckmann and Lackey 2008). As such, strong 

behavioral responses to humans – predicted as an adaptation to high levels of 

mortality (Houston et al. 1993, Brown 1999) – are often apparent in habitat selection 

patterns by large carnivores. Many large carnivore species exhibit both spatial and 
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temporal avoidance of anthropogenic landscape features, such as buildings, roads, 

and other infrastructure (Wilmers et al. 2013, Abrahms et al. 2015, Milleret et al. 

2018, Suraci et al. 2019b). These fear responses are widespread across large carnivore 

species and, when effective, they can contribute to human-carnivore coexistence 

(Carter and Linnell 2016, Suraci et al. 2019b). However, whether anthropogenic cues 

reflect the risk of being killed by people and the degree to which fear responses 

mitigate anthropogenic mortality remains unknown, and likely depend on 

characteristics of both cue and mortality source. If cues and risk do not align, these 

responses could result in maladaptive habitat selection.  

The puma (Puma concolor) population in the fragmented Santa Cruz 

Mountains (SCM) of California presents an opportunity to explore the relationship 

between fear responses and ecological traps. In this population, anthropogenic 

killings are the leading source of mortality and pumas exhibit strong fear responses to 

human risk cues (Wilmers et al. 2013, Smith et al. 2017, Suraci et al. 2019a). As with 

many large carnivore populations (Inskip and Zimmermann 2009, Ripple et al. 2014), 

retaliatory killing following carnivore consumption of livestock is a common source 

of mortality for pumas in the SCM. Most retaliatory killings occur after pumas kill 

domestic livestock, primarily goats held in small numbers on rural, residential 

properties, rather than commercial livestock operations. While pumas avoid human 

infrastructure and other cues of immediate human presence, they readily use areas 

with lower levels of exurban development (Wilmers et al. 2013, Smith et al. 2017), 

where they may come into contact with livestock. Indeed, sparsely developed exurban 
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areas may present few of the cues that pumas associate with anthropogenic risk, 

particularly at night when human activity is low, yet these areas may be occupied by 

the subset of humans most likely to come into conflict with pumas – livestock 

owners. Alternatively, large carnivores may kill livestock despite accurately 

perceiving risk from humans according to state-dependent foraging theory, which 

predicts that animals in depleted energetic states accept higher risk when foraging 

(Mangel and Clark 1986, McNamara and Houston 1987).  

Here, we evaluate whether the behavioral responses of pumas to human cues 

mitigate or exacerbate the risk of being killed by humans in the SCM. We 

hypothesized that formerly adaptive behavioral responses to risk from humans can 

become decoupled from actual risk, resulting in maladaptive habitat selection and an 

ecological trap.  We predicted that mortality of pumas associated with human-wildlife 

conflict mostly occurs in areas of lower housing density where cues used by pumas to 

perceive risk are low. Accordingly, we predicted that pumas spatially avoid areas of 

higher housing density where cues are present (but risk is low) and select areas of 

lower housing density where cues are scarce (but risk is higher). We also tested the 

alternative hypothesis that state-dependent foraging drives puma consumption of 

livestock and subsequent retaliatory killings. This alternative hypothesis would 

predict that pumas involved in depredation of livestock would be in a depleted 

energetic state with respect to hunger. By examining these two behavioral phenomena 

– the ecology of fear and ecological traps – synergistically, our work advances 

understanding of human-wildlife relationships in human-dominated landscapes and 
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ways in which both human and animal behavior contribute to human-carnivore 

coexistence. 

 

Methods 

Study System  

Our 2800 km2 study area was located in the Santa Cruz Mountains (SCM) of 

California’s Central Coast, just south of the cities of San Francisco and San Jose and 

north of the city of Santa Cruz. The SCM were a mosaic of open space preserves, 

large state and county parks, privately held undeveloped properties which contain 

large swaths of relatively undisturbed native forests, and various levels of exurban 

and rural residential development interspersed throughout. This created a 

heterogeneous environment ranging from urban, suburban and exurban areas to large 

tracts of intact, undeveloped habitat.  

 In the SCM, most livestock that are depredated by pumas are held in small 

numbers (e.g., <5 goats) on small, residential properties. During the time of this 

study, people were only permitted to kill pumas on their own property and following 

loss of livestock to pumas. As such, locations of retaliatory killings were driven by 

puma, rather than human, behavior. Typically, pumas kill a domestic animal and then 

are shot when they return the next night to feed on the carcass. There is not legal 

hunting of pumas in this system and humans do not bait pumas, use hounds, or 

otherwise track pumas in any capacity – they simply shoot the puma if and when it 

returns following livestock depredation.  
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Puma capture  

We captured adult and subadult pumas using trained hounds or box traps and 

anaesthetized them with Telazol, in accordance with Animal Use Protocol 

WilmC1402 issued by UC Santa Cruz to C. C. Wilmers. We fit pumas with GPS 

collars set to record a GPS location at least every 4 hours, and those that recorded 

with higher frequencies were subset to 4-hour locations for all analyses. We used 

GPS Plus and GPS Vertex collars produced by Vectronics Aerospace (Vectronics 

Aerospace GPS Plus, Berlin, Germany) as well as one collar produced by Lotek 

(Lotek, Seattle, USA). 

 

Quantifying an ecological trap  

Three criteria must be met to demonstrate an ecological trap: there must be 

(A) a difference in a measure or component of fitness across habitats, (B) preference 

for one habitat over another or equal preference across habitats, and (C) the fitness 

outcome must be less in the preferred or equally preferred habitat relative to other 

habitat types (Robertson and Hutto 2006, Robertson et al. 2013). We first (A) 

quantified survival as a component of fitness as well as the magnitude of retaliatory 

killing relative to other sources of mortality and assessed how retaliatory killing risk 

varied across the gradient of housing density in the SCM. Next we (B) modeled puma 

habitat selection to (C) examine whether pumas selected or avoid high-risk areas. 

Given the inherent difficulty of quantifying lifetime reproductive success for a free-
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roaming large carnivore, we based our estimates of fitness on puma survival, a critical 

component of fitness and population dynamics for pumas, which has been used as a 

proxy for fitness in other large carnivore studies (e.g., Nielsen et al. 2006, Benson et 

al. 2015). As pumas reproduce several times throughout their life, longevity should be 

highly correlated with lifetime reproductive output (Pianka 1970, Beckmann and 

Lackey 2008). Indeed, life table studies for other large carnivores have shown that 

survival, rather than reproduction, determines individual fitness and even in cases 

where there is a trade-off between reproduction and survival, increased reproductive 

output does not make up for reduced adult survival in terms of population growth 

(Beckmann and Lackey 2008, Johnson et al. 2020). Adult survival is also the most 

elastic vital rate for many puma populations, highlighting its importance for 

population dynamics (Robinson et al. 2014, Benson et al. 2016a). Finally, while 

increased reproduction in high mortality risk areas could compensate for a decline in 

survivorship, our previous work has shown that females select against these high risk 

areas when raising young (Wilmers et al. 2013, Yovovich et al. 2020). 

 

Rate of retaliatory killings 

We focused on the most frequent source of mortality for pumas in our area, 

retaliatory killings, which we defined as legally permitted or unpermitted, confirmed 

retaliatory deaths following livestock consumption. We first characterized overall and 

cause-specific mortality rates for pumas in the SCM to evaluate the importance of 

retaliatory killings as a source of mortality relative to other causes of death for adult 
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and subadult pumas in our study system. Using time-to-event data for collared pumas 

and censoring pumas whose collars dropped prior to their mortality on the date of 

their last GPS location, we estimated overall mortality rates using the Kaplan-Meier 

procedure with an annual recurrent timescale using the survival package in R version 

3.6.0 (Fieberg and DelGuidice 2009, Therneau 2015).  We also estimated the rate of 

retaliatory killing to identify the prevalence of this cause of death using the non-

parametric cumulative incidence function (Heisey and Patterson 2006).  

 

Puma habitat selection  

Pumas in this system have been shown to exhibit strong fear responses to the 

perceived presence of people, including spatial and temporal avoidance of housing 

and altered movement and feeding behavior in more developed areas (Wilmers et al. 

2013, Smith et al. 2015, 2017, Suraci et al. 2019a).  Thus, we considered housing 

density as a risk cue that pumas perceived and responded to and quantified how both 

puma habitat selection and retaliatory killing risk varied across the gradient of 

housing density.  

To describe puma risk perception, we quantified habitat selection in relation to 

housing density using step selection functions (SSFs). SSFs are movement-based 

resource selection analyses in which availability is defined locally by simulated steps 

(Fortin et al. 2005). The SSF approach thus reflects the process of animal decision-

making at fine spatial and temporal scales relevant to movement through complex 

landscapes. The relative probability of use during movement [wmvt(x)] takes the 
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exponential form, wmvt(x) = exp(βx), where x is a vector of covariates associated with 

each point and covariate effects (β) are estimated using conditional logistic 

regression. We generated 20 available points for each used point (at time t) by 

drawing random step lengths and turning angles and projecting from the previous 

point. Step distances were drawn from empirical distributions of pumas of the same 

sex as the focal individual, excluding that individual’s data to avoid circularity (Fortin 

et al. 2005). Turning angles were drawn from a [0, 2π] uniform distribution (Forester 

et al. 2009).  

We estimated covariate effects using conditional logistic regression using the 

clogit function from the survival package (Therneau 2015), and included covariates 

that were previously identified as being important drivers of habitat selection in this 

study system (Wilmers et al. 2013). We calculated housing density using 

Epanechnikov kernels with 500m radiuses to reflect large-scale gradients in housing 

density across the study area and to correspond to the scale chosen for the retaliatory 

killing site analysis. Housing density data was cube root transformed to improve 

normality. We also incorporated topographic and landscape covariates, including 

topographic slope, topographic position index (indicating whether a point is on a 

valley/ridge or mid-slope), distance to nearest perennial river or stream (National 

Hydrography Dataset, USGS3), and percent cover calculated from California GAP 

data (Gap Analysis Project, USGS4) over a 90 m x 90 m moving window calculated 

	
3 https://www.usgs.gov/core-science-systems/ngp/national-hydrography	
4 https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap 
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using a focal analysis in the raster package (see Appendix 2.S1 for vegetative 

categories; Hijmans 2019). Step distance (log transformed) and directional 

persistence (cos[θt - θt-1], with θt - θt-1 representing the difference in cardinal direction 

between the previous two steps) were also included as a predictors as has been 

recommended in previous studies (Duchesne et al. 2015, Forrester et al. 2015). All 

covariates were standardized, and generalized estimating equations were used for 

robust standard error estimation (Prima et al. 2017), with each individual puma 

treated as a separate cluster. We checked for collinearity by calculating Pearson’s 

correlations between all pairs of covariates (all |r| < 0.21).  

Because we were interested in the degree to which behavioral responses 

aligned with risk, we allowed habitat selection to potentially vary non-linearly with 

housing density and differ between day and night. We considered models that 

included linear and quadratic forms for the housing density term (models M1 and 

M2). We also considered interactions between night and housing density terms for 

both linear and quadratic models to allow pumas to respond differently to human risk 

during the nighttime compared to daytime (models M3 and M4). Thus, we built 

several candidate models with and without interactions and non-linear relationships 

and used quasilikelihood information criterion (QIC) to evaluate model support, with 

models <2 ΔQIC considered strongly supported (Pan 2001). 

 

Spatial predictors of retaliatory killing events 
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 We characterized where retaliatory killings were most likely to occur across 

the gradient of housing density using a resource selection function (RSF) framework, 

in which “used” locations were locations where retaliatory killings occurred 

(McLoughlin et al. 2005) and available locations were drawn from the study area as 

defined by merged 95% minimum convex polygons (MCPs) for collared individuals. 

Here, the relative probability of retaliatory killing [wrk(x)] also takes the form wrk(x) = 

exp(βx) where x are covariates associated with GPS locations and covariate effects β 

are estimated via logistic regression (Manly et al. 2002).  

 Used points were locations of death for pumas killed by humans after killing 

and consuming livestock. To quantify retaliatory killing risk, we included data from 

N = 32 (9 females, 22 males, 1 unknown sex) retaliatory deaths within the SCM from 

11/23/2009 to 12/31/2019. For collared animals that were killed via depredation 

permits (N = 8) or unpermitted but confirmed retaliatory killings (N = 4), GPS 

locations of death were taken from collar data. For uncollared animals killed via 

depredation permit, GPS points were recorded by field personnel when possible. If a 

GPS point had not been recorded, we used the GPS coordinates associated with the 

address where the retaliatory killing occurred.  

Locations of death are driven both by how risk is distributed across the 

landscape but also by where animals choose to spend time. To account for this, we 

generated available locations that reflected the range of availability across the study 

area while accounting for the habitat selection tendencies of pumas in our system. We 

first sampled the study area by randomly drawing 10,000 GPS locations from the 
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merged 95% MCPs for all collared individuals. For each of these locations, we 

calculated nighttime wmvt(x) values using our best-fit model for habitat selection (M4) 

that included a day/night interaction with a quadratic housing density relationship. 

We calculated nighttime-specific rather than time-of-day-independent relative 

selection because all retaliatory killings occurred at night, but our results are robust to 

controlling for time allocation using time-of-day-independent habitat selection (Fig. 

2.S1). From those 10,000 locations, we then sampled a subset of 1000 locations 

weighted by wmvt(x) values, such that areas that were more likely to be used by pumas 

were more likely to be included. Thus, our final availability sample consisted of 1000 

points that are distributed throughout the study area after taking into account puma 

time allocation through nighttime habitat selection. 

To characterize how housing density is related to risk of retaliatory mortality, 

we considered models with linear and quadratic housing density terms. If risk of 

retaliatory killing increased linearly with housing density, then housing density would 

be a reliable risk cue, but a quadratic relationship between housing density and risk 

could result in a mismatch between cue and risk if risk peaked at intermediate levels. 

Housing density was calculated at the 500m-scale to reflect the larger-scale gradient 

of human use and was cube root transformed to improve normality. Additionally, 

vegetative cover may impede a person’s ability to see or shoot a puma. Percent cover 

was included to control for this possibility, and was calculated over a 510m x 510m 

moving window using a focal analysis in the raster package (Hijmans 2019) using the 

cover definitions as presented in Appendix 2.S1. We did not include other covariates 
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that may influence puma habitat selection (e.g., slope) but are not likely to influence 

retaliatory killing risk directly, as we had already accounted for these when 

generating available points. We standardized both covariates, and Pearson correlation 

between percent cover and housing density showed that they were not collinear (r = -

0.01).  

We fit RSFs using the glm function and we conducted model selection using 

Akaike information criterion corrected for small sample size (AICc) by considering 

models with <2 ΔAICc to be strongly supported (Burnham and Anderson 2002). 

Candidate models included a model with percent cover only (model R1), models with 

linear and quadratic terms for housing density (models R2 and R3), and models with 

linear and quadratic housing density terms as well as percent cover (models R4 and 

R5).  

We also modeled the spatial distribution of mortalities from other causes to 

check whether costs resulting from heightened retaliatory killing risk in some areas 

would be offset by higher risk of other sources of mortality elsewhere. For this 

analysis, used locations were the 21 locations of mortality of collared individuals 

from sources other than retaliatory killings. To generate available locations, we 

controlled for time allocation by sampling points weighted by time-of-day-

independent relative probability of use (wmvt(x) calculated by M2). In contrast to 

retaliatory killing deaths, other causes of death occurred across all times of day and 

night so it would be inappropriate to use a habitat selection model that was specific to 
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a particular time of day. We fit models and conducted model selection in the same 

way as we did for retaliatory killing mortalities.  

 

State-dependent foraging 

We used t-tests to compare the observed weights for pumas killed following 

livestock consumption with weights recorded for all animals during capture. We also 

calculated the time since last predicted black-tailed deer (Odocoileus hemionus 

columbianus) kill for pumas killed following livestock consumption and compared 

that to mean inter-kill intervals observed in this population using a kill prediction 

model developed for a prior study (Appendix 2.S2; Smith et al. 2015). We also used 

t-test to compare mean ages at death for pumas killed following livestock 

consumption to deaths from other causes to evaluate whether our results were driven 

by potentially naïve juvenile pumas. 

 

Results  

The overall mortality rate for pumas in the SCM was 0.252 (N = 33 deaths of 

collared pumas, 95% CI: 0.169, 0.327). Of the 33 deaths observed, 17 were from 

confirmed anthropogenic causes (12 retaliatory killings, 4 vehicle strikes, and 1 

poaching event not related to livestock depredation). The cause-specific mortality rate 

for retaliatory killings was 0.090 (95% CI: 0.049, 0.131), accounting for 36% of total 

mortality and the majority of anthropogenic mortality.  
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 Locations of retaliatory mortalities for both collared and uncollared pumas 

(N=32) were most likely to occur at intermediate housing densities (βHD = 1.625, SE 

= 0.421, p < 0.001; βHD2 = -0.785, SE = 0.269, p = 0.003; Fig. 2.1A). All retaliatory 

killings where time of death was recorded (N = 17) occurred at night. Percent cover 

was negatively related to risk of retaliatory killing (βcover = -0.394, SE = 0.157, p < 

0.012) and was included in the model with the most support (Table 2.1). Other 

sources of mortality were distributed randomly with respect to housing density (Table 

2.1, Fig. 2.2). Indeed, the null model was among the top competing models (ΔAICc = 

0.56) and superior to all models including housing density (ΔAICc ≥ 1.99), 

suggesting no support for an influence of housing density and on risk of other causes 

of mortality.   

During the daytime, pumas avoided areas of higher housing density and 

avoidance increased monotonically across the gradient of housing density (N = 65 

pumas monitored from 5/2/2009 to 8/18/2019; Table 2.2, Table 2.S1). In contrast, at 

night pumas selected intermediate levels of housing density and avoided housing less 

strongly overall (Fig. 2.1B). Comparing risk and habitat selection indicated a 

mismatch between avoidance behavior and areas where retaliatory killings were most 

likely to occur (Fig. 2.1B, Fig. 2.3). At night, pumas selected levels of housing 

density that almost perfectly corresponded to those associated with higher risk of 

retaliatory killing by humans. Areas that had both high risk of retaliatory killing and 

that were relatively selected by pumas during the nighttime made up 17.2% of the 

study area (Fig. 2.3C).  
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There was no difference in weights of pumas killed following depredation 

events compared to weights observed from live pumas during captures for either 

females (retaliatory killing weights: 77.5 lb [SD=5.4, N=3]; capture weights: 81.9 lb 

[8.34, 56]; p = 0.30) or males (retaliatory killing weights: 108 lb [21.2, 14]; capture 

weights: 112 lb [21.2, 63]; p = 0.60). Additionally, estimates of time since last 

predicted deer kill for pumas consuming livestock were within the range of mean 

inter-kill intervals estimated for pumas during the study (Fig. 2.4). Mean kill rates 

were 62.1 (SE=2.87, N=29) deer/year for females and 51.8 (3.97, 33) deer/year for 

males, corresponding to mean inter-kill intervals of 6.27 (SE=0.06) and 8.71 (0.13) 

days, respectively. Mean time since last predicted deer kill for pumas killed following 

livestock depredation was 6.58 (SE=0.42, N=2) days for females and 7.69 (1.60, 8) 

days for males. Finally, there was no difference between the age at death of pumas 

killed following consuming livestock (mean=63.3 months, SD=26.5, N=12) versus 

other causes (55.0 months, SD=26.7, N=21; p=0.40). 

 

Discussion  

We demonstrated a mismatch between a human cue, the associated fear 

response, and anthropogenic mortality risk for pumas in the SCM, which appeared to 

produce an ecological trap affecting considerable portions of habitat. Retaliatory 

killings were the leading cause of death and largest source of anthropogenic mortality 

for pumas in this area, accounting for over a third of the overall annual mortality rate 

and the majority of anthropogenic mortality. If habitat selection were to effectively 
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mitigate risk from humans, pumas would need to avoid areas associated with high 

risk of retaliatory killing. In contrast, though pumas exhibited strong behavioral 

responses to human cues and habitat selection varied across the housing density 

gradient, they did not distinguish the conditions where risk from humans was highest. 

Rather, pumas selected the riskiest places during the riskiest times.  

The reliability of human risk cues determines whether fear responses are 

effective at mitigating the risk of being killed by people. Here we found that housing 

density as a risk cue was not monotonically related to risk from humans. Instead, 

retaliatory killing risk peaked at intermediate housing densities, which likely reflects 

the distribution of livestock ownership across the study area as residents in more 

remote areas are more likely to keep livestock on their properties relative to residents 

in denser neighborhoods. Thus, housing density is a complicated cue for actual 

mortality risk in the SCM, as pumas would need to exhibit avoidance across lower 

levels of housing density to mitigate risk effectively.  

Indeed, pumas’ responses to human risk cues were decoupled from risk both 

spatially and temporally. During the daytime, pumas strongly avoided housing, 

including the range of housing density associated with high risk of retaliatory killing. 

But at night, pumas relaxed this avoidance and even selected intermediate levels of 

housing density that presented the most risk (Fig. 2.1B). Relaxing avoidance during 

the nighttime is consistent with temporal partitioning, in which carnivores shift their 

activity patterns towards nighttime hours to minimize overlap with human activity 

(Oriol-Cotterill et al. 2015a, Gaynor et al. 2018, Suraci et al. 2019b) likely in an 
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attempt to reduce risk (Kronfeld-Schor and Dayan 2003, Benson et al. 2015). 

However, all retaliatory killings occurred at night, so while exhibiting stronger 

avoidance in the daytime likely reduced pumas’ exposure to human activity, it did not 

reduce their exposure to risk. Thus, the risk of retaliatory killing was high in the 

absence of risk cues, which rendered puma fear responses – both spatial avoidance 

and temporal partitioning – ineffective at mitigating risk. Instead, unreliable cues led 

pumas into an ecological trap in which they selected the conditions where they were 

most likely to be killed. 

Humans can be unpredictable predators, and in this case we found that risk 

from humans did not easily map onto the cues pumas use to gauge anthropogenic risk 

and was high under conditions where risk cues were low or absent. Only a subset of 

people (i.e., livestock owners who have lost livestock to puma depredation) have the 

reason and ability to legally kill pumas in the SCM, and even among that population 

some choose not to request lethal permits following loss of livestock. The distribution 

of this relatively small subset of people with motive to kill pumas across a landscape 

that is characterized by high human population density and activity may be difficult 

or impossible for pumas to perceive. Furthermore, since retaliatory killings are 

decoupled from easily discernable human presence and activity cues, it might be 

difficult for pumas to evolve an adaptive behavioral response or learn to mitigate this 

risk.  

Historically, however, avoidance of high-human areas during times of higher 

human activity likely aided pumas in avoiding being killed by people. For much of 
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the twentieth century, pumas were heavily persecuted in California through vermin 

and game classifications, including a bounty system, with pumas killed for myriad 

reasons: opportunistically, for sport, following livestock depredation, and when they 

ventured into more populated areas (Dellinger and Torres 2020). Over time, attitudes 

among the general public began to shift and became more positive towards pumas, 

which was reflected in legislation and management policy. In 1990, CA voters passed 

a proposition imposing a permanent hunting ban on pumas in CA, and in 2013 the CA 

legislature voted to mandate local law enforcement to non-lethally remove pumas 

from densely populated areas – prior to this, they were often shot in these situations. 

Before these changes in attitudes and policy, mortality risk from humans almost 

certainly scaled directly with the intensity of human cues, and avoiding areas with 

more people during times of high human activity likely did allow pumas to avoid risk 

from humans, especially since pumas were regularly shot when entering more 

developed areas. Now, as our analyses show, areas of high housing density are 

actually less risky than areas of intermediate housing density, likely due to generally 

positive public attitudes towards pumas (Crook 2019), increased legal protections, 

and more humane management policies. It is thus likely that anthropogenic risk has 

only recently become decoupled from human cues in the SCM. 

An alternative potential explanation for these findings is that individuals in 

poor body condition accept additional risk consistent with state-dependent and risk-

sensitive foraging theory (Mangel and Clark 1986, McNamara and Houston 1987, 

Blecha et al. 2018). For example, a study in Colorado’s Front Range showed that 
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pumas relaxed avoidance of housing density when hungry to take advantage of 

increased hunting success for native prey that they experienced in areas closer to 

people (Blecha et al. 2018). Our data did not support this alternative conclusion, 

however, as both body condition and time since previous deer kill for pumas killed 

following livestock depredation in the SCM were within the range of what was 

observed in the general population. Thus, our results suggest that state-dependent 

foraging decisions did not drive pumas to kill livestock in this system. Rather, it is 

likely that pumas were simply not able to ascertain where they were at risk of being 

killed by people. This has conservation implications, as any individual, regardless of 

energetic state, could fall into this trap – including prime-age adults in good body 

condition, whose survival strongly impacts population dynamics.  

One limitation of our study is that we were unable to assess true fitness via 

lifetime reproductive success. However, there is strong evidence both that 1) adult 

survival is a good proxy of fitness for pumas, and 2) accounting for other components 

of fitness, including reproduction, would not counteract the mortality costs associated 

with higher retaliatory killing risk at intermediate housing densities. First, as 

discussed above, survival is expected to correlate to lifetime reproductive success and 

thus determine individual fitness for K-selected species that reproduce multiple times 

over relatively long lives (Pianka 1970, Beckmann and Lackey 2008, Johnson et al. 

2020), and additionally is the most important driver of large carnivore population 

dynamics (Heppell et al. 2000, Robinson et al. 2014, Benson et al. 2016a). As such, 

survival has been used as a reliable proxy for individual fitness in other large 
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carnivore studies (e.g., Nielsen et al. 2006, Benson et al. 2015). Second, other 

components of fitness, including reproduction, are unlikely to produce costs or 

benefits along the housing density gradient that would counteract costs from 

retaliatory killing risk. Locations of mortality from other causes of death were 

distributed randomly with respect to housing density, so unlike retaliatory killings, 

risk of mortality from other causes did not have a strong association with a particular 

level of housing. It is also unlikely that the fitness costs at intermediate levels of 

housing were offset by fitness gains in these areas, either through reproduction or 

resource acquisition. Pumas strongly avoid housing while reproducing and raising 

young (Wilmers et al. 2013, Yovovich et al. 2020). Interestingly, even in systems 

where certain areas are associated with reduced survival but increased reproduction 

(in contrast to this system), survival is still more important for large carnivore fitness, 

and reproductive gains do not offset survival costs (Beckmann and Lackey 2008, 

Johnson et al. 2020). So while we were unable to account for reproduction, both the 

higher fitness contribution of survival relative to reproduction and the fact that 

reproduction is inversely related to housing density suggests that survival is a 

reasonable metric for true habitat quality for pumas. Finally, there is no evidence that 

intermediate or high housing density areas present increased hunting opportunities for 

deer in the SCM, as previous analyses have found that pumas select wildland areas, 

rather than places with any housing, for deer kill sites (Wilmers et al. 2013, Nickel et 

al. 2021), and that deer occupancy is not related to housing density (Nickel et al. 

2021). Taken together, this evidence suggests that fitness costs stemming from 
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heightened retaliatory killing risk at intermediate housing densities were not offset 

either by higher mortality from other sources elsewhere on the housing density 

gradient or by improved reproduction or resource acquisition in high-risk areas. 

 Previous literature has described two mechanisms that can produce ecological 

traps for large carnivores. First, especially near protected area boundaries, carnivores 

may be unable to perceive elevated risk outside of protected areas, since habitat type 

may be similar and there are often no risk cues associated with higher human risk 

outside of parks (Balme et al. 2010, Loveridge et al. 2017). These are generally equal-

preference traps (Robertson and Hutto 2006), where carnivores simply do not avoid 

high-risk areas as they should, rather than selecting these areas (Balme et al. 2010). 

Secondly, especially for bear species (Ursus spp.), anthropogenic subsidies can create 

high-risk, high-reward areas, where human-associated resource inputs – for example, 

agricultural resources, alteration to vegetative communities producing enhanced berry 

growth, grain spillage and ungulate carcasses along transportation lines, and/or easier 

travel along linear features – can promote preference or use of habitats that have 

higher anthropogenic mortality risk (Nielsen et al. 2006, Northrup et al. 2012, Lamb 

et al. 2017, Penteriani et al. 2018, St Clair et al. 2019, Johnson et al. 2020). 

 Here, rather than failing to perceive risk cues or being drawn into high-risk 

areas by food resources, pumas in the SCM responded to unreliable human risk cues 

that actually put them at increased risk of being killed. While pumas were able to 

generally avoid humans, they were not able to successfully avoid conditions in which 

they were likely to be shot. Cue accuracy and reliability, along with an animal’s 
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ability to perceive these cues, are the mechanisms that underlie habitat selection and 

determine whether animals can behave optimally and respond to anthropogenic 

change (Sih 2013). In this case, anthropogenic risk has become decoupled from 

anthropogenic cues, rendering these human risk cues unreliable. Anthropogenic 

landscapes of fear are common among large carnivore species as well as other taxa 

(Frid and Dill 2002), so the mechanism we report here may result in traps for a range 

of other species and systems in cases where anthropogenic risk cues become 

unreliable or inaccurate. 

Anthropogenic mortality is a key contributor to large carnivore decline 

(Ripple et al. 2014, Darimont et al. 2015) and fear responses to humans are both 

widespread and energetically costly (Frid and Dill 2002, Smith et al. 2017). Thus, 

understanding how fear responses reflect anthropogenic mortality risk will be useful 

in informing management especially in human-dominated areas where anthropogenic 

mortality rates are high. When ecological traps are identified, they can be remedied 

either by improving cues or improving habitat quality (Robertson and Hutto 2006). 

Manipulating risk cues has been accomplished for some large carnivore species and is 

recognized as a potentially important strategy to enable human-carnivore coexistence 

(Miller and Schmitz 2019, St Clair et al. 2019). In this case, improving livestock 

husbandry to reduce livestock losses by fully enclosing livestock in enclosures at 

night, especially in high-risk, lower-housing-density areas, would help reduce 

mortality risk for pumas in areas that they perceive as safe.   
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Large carnivore behavior can facilitate coexistence with humans in mixed 

landscapes (Carter and Linnell 2016), but here we show that even when fear 

responses are evident, they may not effectively mitigate mortality risk. Ecological 

traps involving fear responses in turn may have negative implications for carnivore 

conservation, especially when they impact prime-age adults. Understanding whether 

and when large carnivore behaviors are effective or ineffective can thus inform 

conservation and management actions to promote their persistence in complex, 

human-dominated landscapes.  

  



	 78	

Table 2.1. Model selection for retaliatory killing location RSF [wrk(x)] and locations 

of mortality from other sources. HD denotes housing density. 

Cause of death Model ΔAICc 

Retaliatory 
killing 

R5 Cover + HD + HD2 0.00 
R3 HD + HD2 3.67 
R4 Cover + HD 14.56 
R2 HD 20.36 
R1 Cover 21.48 

Null   25.70 

Other 

R1 Cover 0.00 
Null  0.56 
R4 Cover + HD 1.99 
R2 HD 2.54 
R5 Cover + HD + HD2 3.55 
R3 HD + HD2 4.23 

	

 
Table 2.2. Model selection for population-level movement SSF [wmvt(x)].   

Model ΔQIC 
M4 Quadratic (night interaction) 0.00 
M3 Linear (night interaction) 641.56 
M2 Quadratic  2965.74 
M1 Linear  3408.48 
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Figure 2.1. Retaliatory killing risk peaked at intermediate housing densities (A), 

creating a mismatch between risk and puma behavior during high-risk times (i.e., 

nighttime; B). In panel (A), predicted relative probability of retaliatory killing values 

>1 indicate that retaliatory killings are more likely than random to occur at those 

housing densities, and values <1 are less likely to occur than at random. Risk was 

predicted using coefficient estimates from model R5. Rug plots in maroon show 
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housing densities at retaliatory killing locations, and grey show available locations. In 

panel (B), relative strength of avoidance during movement was calculated by 

subtracting the predicted relative probability of use during movement from 1, with 

negative values indicating selection and positive values indicating avoidance. The 

yellow shaded area represents the range of housing densities where retaliatory killing 

risk is high (wrk(x) > 1). Rug plots in lighter blue show housing densities of used 

daytime points, and darker blue show used nighttime points. In both panels, shaded 

areas around curves are ±1 SE.  
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Figure 2.2. Distribution of locations of retaliatory killings and other mortalities for 

collared pumas across the housing density gradient (rug plots). Lines show the 

distribution of housing density at available locations, with time allocation controlled 

for using time-of-day-independent (solid) and nighttime-only (dashed) habitat 

selection.  
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Figure 2.3. Maps showing (A) relative risk of retaliatory killing (wrk(x)), (B) relative 

probability of nighttime selection (wmvt(x)), and (C) ecological trap habitat across the 

SCM study area. In (A) values >1 indicate higher retaliatory killing risk than would 

occur at random and in (B) values >1 indicate selection. Trap habitats in (C) are 

defined as areas where relative risk of retaliatory killing >1 and relative probability of 

nighttime movement >1, and are plotted in orange. The study area boundary is 

outlined in black, and satellite imagery is provided by Google.  
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Figure 2.4. Box plots showing the inter-kill intervals for all collared pumas. Red 

points are time since last predicted kill for collared pumas killed after consuming 

livestock. 
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Appendix 2.S1 – Assigning cover class to vegetation categories 

Cover classes (0 or 1) were assigned to raster grid cells from California GAP 

data. The following vegetative classes were considered cover (coded 1): Forest and 

woodland systems (CN Level 1); Developed (CN Level 2, within Human Use Land); 

Chaparral, Deciduous dominated savanna and glade, and Conifer dominated savanna 

(CN Level 2, within Shrubland, steppe and savanna systems; all Floodplain and 

riparian (CN Level 1, within Riparian and wetland systems) except for Inter-

Mountain Basins Greasewood Flat and North American Warm Desert Wash (CN 

Level 3); and Harvested Forest - Northwestern Conifer Regeneration (CN Level 3), 

Recently burned forest (CN Level 3), , (CN Level 3), Recently burned forest > 

Introduced Upland Vegetation - Treed (CN Level 3), Introduced Riparian and 

Wetland Vegetation (CN Level 3). 

 

Appendix 2.S2 – Estimating kill rates and interkill intervals 

GPS locations were aggregated into clusters using a custom cluster algorithm 

described in (Wilmers et al. 2013, Smith et al. 2015). Characteristics of clusters, 

including whether the cluster lasted for >1 day, the number of nighttime locations, 

and the harmonic mean distance of points to cluster center, were then used to predict 

whether a cluster was a kill site as described in Smith et al. (2015). We calculated 

mean puma kill rates in the SCM for all animals whose collars recorded continuous 

data for > 21 days by dividing the number of predicted kills by total time monitored. 

We calculated inter-kill intervals as the reciprocal of kill rate. We next quantified 
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time since last predicted kill for each depredation event for which 4-hour GPS data 

was recorded prior to death (N = 10). Pumas were shot at least one day after killing 

livestock, so we defined the date of livestock kill as one day before the puma’s date 

of death. Time since last predicted kill was then estimated by comparing the time of 

livestock kill to the start date of the prior predicted kill. 
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Figure 2.S1. Predicted relative probability of retaliatory killing using two time 

allocation controls. The orange solid line shows relative risk when the nighttime-

specific time allocation control was used, and the dashed red line shows relative risk 

when the time-of-day-independent control was used. Dashed areas are ±1 SE. 
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Table 2.S1. Coefficient estimates for the best-supported puma movement SSF (model 

M4). Standard errors are noted in parentheses and asterisks indicate p-values <0.01. 

Covariate Coefficient  
Slope -0.088* (0.004) 

TPI 0.158* (0.003) 
Slope*TPI -0.075* (0.003) 

Cover 0.170* (0.005) 
Distance to river -0.023 (0.007) 

Step distance 0.013 (0.003) 
Directional persistence 0.216* (0.004) 

HD:Day -0.462* (0.011) 
HD:Night 0.206* (0.009) 
HD2:Day -0.100* (0.006) 

HD2:Night -0.084* (0.004) 
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CHAPTER 3 

Habitat fragmentation reduces puma survival and drives source-sink dynamics  

 

Abstract 

Conservation of large carnivore populations in fragmented, human-dominated 

landscapes is essential to their long-term persistence, yet living in human-dominated 

landscapes comes with both direct and indirect costs, including direct anthropogenic 

mortality and sublethal behavioral and energetic costs. How these costs impact 

individual fitness and population dynamics are not fully understood, due in part to the 

difficulty in collecting long-term demographic data for these species. Rigorous 

understanding of how habitat features impact population dynamics is essential for 

species conservation, especially in mixed-use landscapes where source-sink dynamics 

may be at play. Here, we analyzed a 11-year dataset on puma (Puma concolor) space 

use, mortality, and reproduction in the Santa Cruz Mountains, CA, to quantify how 

living in a fragmented landscape impacts individual survival and population 

dynamics. Long-term exposure to housing density drove mortality risk, resulting in a 

20-point reduction in annual survival for individuals in exurban versus remote areas. 

This relationship was stronger for females, who experience higher energetic costs in 

more developed areas compared to males, suggesting that these costs scale up over 

time to negatively impact survival. While overall population growth appears stable, 

reduced female survival in more developed areas drove source-sink dynamics across 

the study area, with 42.1% of the study area exhibiting estimated population growth 
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rates < 1. These results underscore the importance of conserving high-quality source 

habitat within the Santa Cruz Mountains to support long-term population persistence. 

Habitat selection is often used as a proxy for habitat quality, and we also assessed 

whether puma habitat selection predicted true habitat quality as defined by expected 

population growth rate. Habitat selection modeled for daytime behavior and with the 

same spatial sensitivity to development as seen during reproduction best predicted 

true habitat quality, but habitat selection that did not account for time of day 

performed poorly as a proxy. Together, these results illuminate the individual and 

population consequences of indirect behavioral costs that large carnivores experience 

in human-dominated landscapes and highlight the importance of quantifying and 

considering source-sink dynamics in these places. As these costs are widespread 

across large carnivore taxa, these results can inform their conservation in similar 

systems.     

 

Introduction 

Effective species conservation relies on an accurate understanding of habitat 

quality. Habitat quality is most rigorously and reliably quantified by linking habitat 

features to individual fitness and population dynamics through some demographic 

process, such as survival or reproduction (Van Horne 1983, Pulliam 2000, Mosser et 

al. 2009). When habitat quality is not defined via its relationship to fitness, for 

example, through patterns of occupancy, distribution, or habitat selection, important 

ecological dynamics, such as source-sink dynamics, may be obscured (Pulliam and 
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Danielson 1991, Schlaepfer et al. 2002). However, for many species, quantifying the 

relationship between habitat features and individual fitness can be difficult due to the 

related issues of high data requirements, the necessity of long-term monitoring for 

long-lived species, and/or logistical constraints (Dias 1996, Johnson 2007) . These 

constraints and challenges are especially true for long-lived species, species that exist 

at low densities on the landscape, or species that are cryptic or otherwise difficult to 

study – characteristics that typify many species of conservation concern (Cardillo et 

al. 2005). A rigorous definition of habitat quality is particularly important in human-

dominated landscapes, where species must coexist alongside humans and bear any 

associated costs of living alongside anthropogenic disturbance. However, despite the 

critical conservation importance of understanding the relationship between habitat 

features, animal space use, individual fitness, and population dynamics, these 

relationships have rarely been quantified for species in human-dominated 

environments.   

Large carnivore decline is widespread across the globe and conservation of 

large carnivore populations outside of protected areas and in human-dominated 

landscapes is recognized as being essential for continued persistence of many of these 

species (Chapron et al. 2014, Ripple et al. 2014, Carter and Linnell 2016). However, 

living in human-dominated areas comes with a suite of direct and indirect costs. 

Direct anthropogenic mortality is very high for large carnivores in comparison to 

other taxa (Darimont et al. 2015), and is often elevated outside of protected areas due 

more lenient take regulations, and/or increased exposure to human hazards (e.g., 
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Wolfe et al. 2015). Large carnivores tend to respond to humans as though they are 

predators, altering their movement, habitat selection, and feeding behavior to avoid 

the risk of encountering people (Wilmers et al. 2013, Oriol-Cotterill et al. 2015a, 

Suraci et al. 2019b, 2019a). These behavioral responses can carry substantial costs, 

including increased energetic expenditure during movement and reduced feeding 

times at kills (Smith et al. 2015, 2017, Nickel et al. 2021). Thus, large carnivores in 

human-dominated areas experience both elevated risk of anthropogenic mortality, as 

well as sub-lethal costs associated with anti-predator behaviors that allow them to 

minimize the risk of such mortality. It is not known, however, whether or to what 

degree these indirect costs may scale up over time to impact individual survival.  

In turn, impacts on survival likely have consequences for population 

dynamics, since adult survival most strongly determines individual fitness and 

population growth for many large carnivore species (Heppell et al. 2000, Beckmann 

and Lackey 2008, Robinson et al. 2014, Benson et al. 2016a). Understanding how 

habitat features are related to survival will thus enable a rigorous quantification of 

habitat quality for large carnivores in human-dominated environments and can reveal 

source-sink dynamics, which occur when certain areas support positive population 

growth while others cannot. Especially for territorial species with despotic 

distributions such as pumas, source-sink dynamics may not be apparent from 

occupancy-based metrics, and long-term studies that relate population dynamics to 

habitat features are essential for elucidating these processes (Horne 1983, Pulliam and 

Danielson 1991, Dias 1996, O’Neil et al. 2020). Identifying source-sink dynamics is 
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of central conservation importance, as sources must be protected and conserved in 

order to maintain long-term population viability (Dias 1996).   

Quantifying the relationship between habitat features and habitat quality for a 

population of large carnivore in a human-dominated environment can also shed light 

on when other, more easily obtainable metrics may be appropriate proxies for habitat 

quality (Stephens et al. 2015). For example, patterns of habitat selection are often 

used as a proxy for habitat quality under the assumption that animals select areas that 

confer higher fitness (Johnson 2007). However, several ecological and behavioral 

processes may decouple habitat selection patterns from true habitat quality. First, 

following rapid environmental change, formerly adaptive behaviors may become 

maladaptive, resulting in ecological traps (Robertson and Hutto 2006, Robertson et al. 

2013). Second, density is expected to reflect habitat quality when animals are 

distributed under the ideal free distribution, but territorial behavior often results in 

animals being distributed according to other distributions such as the despotic 

distribution (Mosser et al. 2009, O’Neil et al. 2020). Under both of these 

circumstances, habitat selection is expected to be an incomplete and potentially even 

misleading predictor of true habitat quality. Additionally, habitat selection is often 

dynamic and may change with time of day and/or behavioral state of the animal. 

Animals often partition their activity across the course of the day to minimize overlap 

with human activity, often exhibiting stronger avoidance of human development 

during the daytime, (Kronfeld-Schor and Dayan 2003, Oriol-Cotterill et al. 2015b, 

Suraci et al. 2019b) and also avoid or select features differently depending on 
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behavior (Wilmers et al. 2013, Abrahms et al. 2015). It is thus likely that habitat 

selection patterns during certain times or certain behaviors will better predict true 

habitat quality, and understanding to what degree habitat selection reflects habitat 

quality could shed light on whether and how habitat selection be used as an effective 

proxy, despite its limitations.  

The puma (Puma concolor) population in the Santa Cruz Mountains, CA, 

presents an opportunity to quantify the impacts of exposure to human development on 

large carnivore survival and population dynamics. The Santa Cruz Mountains consists 

of a mosaic of different levels of human use and residential development, including a 

considerable amount of exurban sprawl, which is the fastest growing land use type in 

the western U.S. (Theobald 2005). Pumas in this area experience direct anthropogenic 

mortality, primarily due to retaliatory killings following livestock loss as well as 

vehicle strikes (Nisi et al. Chapter 2). Pumas also exhibit strong behavioral responses 

to humans in this system, including avoidance of human infrastructure, reduced 

activity in areas of high human presence, and reduced feeding time due to earlier 

carcass abandonment when near people, which have been shown to present 

substantial energetic costs (Wilmers et al. 2013, Smith et al. 2015, 2017, Nickel et al. 

2021). The degree to which pumas exhibit these responses also varies between 

individuals, allowing us to investigate how individual variation in risk avoidance 

behavior is related to mortality risk. 

Here, we analyzed 11 years of tracking and mortality data for 65 adult and 

subadult pumas to quantify the survival consequences of habitat fragmentation, 
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implications for population dynamics and source-sink dynamics, and whether and 

how habitat selection reflects habitat quality in terms of population growth. We 

predicted that both long- and short-term exposure to housing density would be related 

to higher risk of mortality. We also investigate how puma behavior mediates the 

relationship between habitat fragmentation and mortality risk, hypothesizing that 

animals who exhibit stronger avoidance of human features will experience less 

mortality risk. We then parameterized a matrix population model to examine how the 

population growth rate varies across the landscape, as mediated by the relationship 

between adult survival and exposure to housing density. Here we predicted that 

source-sink dynamics, which occur when some areas support positive growth while 

others cannot, will be evident, with areas of higher housing density being population 

sinks. Finally, we compared habitat quality as defined by estimated population 

growth rate to patterns of habitat selection to ask whether and which habitat selection 

metric reflects true habitat quality. Here, we predicted that daytime behavior will 

more accurately reflect fitness compared to nighttime or time-of-day-independent 

habitat selection behavior.  

 

Methods 

Study System: The Santa Cruz Mountains (SCM) was a 2800 km2 area located in 

California’s Central Coast. The SCM is bounded by Silicon Valley, San Francisco, 

and San Jose to the north, the Pacific Ocean to the west, the city of Santa Cruz and 

neighboring beach towns to the south, and mixed farmland, residential development, 
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and a major interstate highway to the east. Within the SCM there is a mosaic of open 

space preserves, large state and county parks, privately held undeveloped properties 

which contain large swaths of relatively undisturbed native forests with various levels 

of exurban and rural residential development interspersed throughout. This creates a 

variegated environment ranging from urban, suburban and exurban areas to large 

tracts of intact, undeveloped habitat.  

 

Puma capture and monitoring  

We captured pumas using trained hounds or box traps, and we anaesthetized 

pumas with Telazol (Animal Use Protocol WilmC1402 issued by UC Santa Cruz to 

C. C. Wilmers). We fit pumas with GPS collars that recorded locations once every 4 

hours. Collars were produced by Vectronics (Vectronics Aerospace GPS Plus, Berlin, 

Germany) as well as one Lotek collar (Lotek, Seattle, WA, USA).  

 Mortality events of collared pumas were investigated following either 1) 

notification from California Department of Fish and Wildlife (CDFW) or California 

Highway Patrol about a retaliatory killing or vehicle strike (respectively); 2) mortality 

signal sent by collar over satellite network (which turns on following 24 hours of a 

collar being stationary); or 3) UHF download of GPS data indicating that a collar had 

been in the same spot for at least several days. For cases 2 and 3, as soon as we 

received GPS data that suggested a mortality event had occurred, we investigated the 

location and attempted to determine cause of death from clues in the field. 

Specifically, we looked for indications of intraspecific mortality, including puncture 
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wounds on the skull or crushed skull, or anthropogenic mortality, including gunshot 

wounds. When possible, we collected carcasses and sent them to CDFW Wildlife 

Investigations Laboratory for internal necropsies. If we were unable to determine 

cause of death, the cause was recorded as “unknown”.  

 For all mortality events, we define estimated time of death to be the first 4-

hour GPS point recorded at the location of mortality.  Two collars were damaged on 

impact during vehicle strike and did not record new locations after death, so we 

defined time of death as the last GPS point that the collar recorded (the last point 

before death). Since these collars were both on 4-hour schedules, their recorded time 

of death is <4 hours from their actual time of death.  

 

Survival modeling: 

We used a Cox Proportional Hazards model (Cox 1972) to relate mortality 

risk to spatial, behavioral, and demographic covariates for animals that were collared 

until their time of death. This approach models hazard, or instantaneous mortality 

risk, semi-parametrically, and allows for time-varying covariate effects and staggered 

entry and exit into the study (Pollock et al. 1989, Fieberg and DelGuidice 2009). For 

this study, we used an annual recurrent design (Fieberg and DelGuidice 2009), which 

allows the baseline hazard to vary over the course of the year.  

The Cox Proportional Hazards model assumes that the instantaneous risk of 

mortality (hazard (hi(t))) for each individual i at time t is related to both the baseline 
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hazard at time t (h0(t)), which all animals experience, as well as covariate effects 

experienced by that individual. This relationship takes the form:  

ℎ!(𝑡) = ℎ"(𝑡)𝑒𝒙𝒊𝜷 

in which xi is a vector of covariates associated with individual i at time t, β is a vector 

of coefficients that describe the effects of each covariate x on mortality risk. Because 

all individuals monitored at the same time experience the same baseline hazard, the 

hazards ratio between any two individuals under observation is constant over time. 

For a series of event times for mortalities from m monitored animals (t1 through tm), 

this property allows for covariate effects (β) to be estimated through the following 

partial likelihood function (Cox 1972, Hosmer and Lemeshow 1999):  

𝑃𝐿(𝜷) =*
𝑒𝒙𝒊𝜷

∑ 𝑒𝒙𝒋𝜷%∈'#

(

!)*

 

This partial likelihood function compares the instantaneous hazard experienced by 

each individual mortality event (i in 1 through m) with the hazard experienced by 

animals under observation at time ti (or in the risk set, Ri) in a matched-case 

framework. 

 Here, we are interested in how exposure to housing density impacts mortality 

risk. As such, for each time of death ti, we calculated housing density experienced 2 

and 45 days prior to ti for all animals in the risk set at ti and coded start and stop times 

accordingly. For each death, animals in the risk set “entered” at ti – 1 and “exited” at ti 

+ 1, while the animal that died “entered” at ti – 1 and “exited” at ti. Because the partial 

likelihood function only incorporates information from times of death, this approach 
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allowed us to directly compare the exposure of animals in the risk set at each ti to the 

animal that died without losing any information (Fieberg and DelGuidice 2009). The 

alternative approach would have been to regularly update exposure at regular 

intervals (e.g., each month), but this would result in individuals dying early- or mid-

month having a different time scale of exposure than animals in the risk set. We used 

the survival package (Therneau 2015) to conduct all survival analyses. 

 

Spatial and behavioral covariates:  

Residential housing is the primary human use in the SCM, so we calculated 

housing density as a metric of exposure to anthropogenic impact. Exposure to 

housing is scale-dependent metric, and pumas in our area have been shown to respond 

to housing density both at longer and shorter temporal scales (Nickel et al. 2021), so 

we considered both short-term and long-term housing exposure. For long-term 

exposure, we calculated housing density (buildings/km2) calculated within an 

animal’s home range (number of buildings divided by home range area) calculated 

over the 45 days prior to each event time. We used semivariance analysis to confirm 

that the 45-day period was sufficient to encompass several home-range-crossing times 

for range-resident individuals (Fleming et al. 2014, Calabrese et al. 2016; Appendix 

3.1). We calculated short-term exposure taking the mean housing kernel density over 

an animal’s movement path 2 days prior to each event time.  

We also considered different spatial scales of both short- and long-term 

housing exposure. For long-term exposure, we considered different home range 
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metrics. We calculated housing density in 50% (core) and 95% (total) minimum 

convex polygons (MCPs) and adaptive local convex hulls (aLoCoHs) (Getz et al. 

2007). MCPs tend to include more unused space by an individual, reflecting the 

broader landscape in which an animal was spending time, while aLoCoHs are more 

tightly constrained around the areas an individual actually used, minimizing Type 1 

and Type 2 error to a greater degree than other estimator types (Getz et al. 2007, 

Laforge et al. 2016). MCPs were fit using the adehabitatHR package (Calenge 2006), 

and aLoCoHs using the tlocoh package (Lyons et al. 2013). For short-term exposure, 

we calculated housing density with different kernel extents: 150m and 500m.  

Behavioral variability in habitat selection was quantified by step selection 

functions (SSFs) (Fortin et al. 2005). Step selection functions are a type of resource 

selection function, in which used points are compared to available points to estimate 

the relative probability of use through the exponential function, w(x) = exp(βx), with 

x a vector of spatial covariates and coefficients (β) (Manly et al. 2002). For step 

selection functions, available points are drawn via simulated steps and paired with the 

corresponding used point, and covariate effects (β) are estimated via matched-case 

logistic regression (Fortin et al. 2005, Forester et al. 2009, Thurfjell et al. 2014). 

Here, 4-hour GPS locations that were > 20m from the previous point were used 

movement locations. Available locations were drawn via simulated steps, with step 

distances drawn from empirical distributions for other animals of the same sex, 

excluding the focal individual (Fortin et al. 2005) and turning angles drawn from a 

circular uniform distribution. 
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To describe behavioral variability in habitat selection for each individual over 

time, separate SSFs were fit for each individual for each 45-day period to each time 

of death. We included covariates that had been identified as important drivers of 

habitat selection in previous analyses (Wilmers et al. 2013, Nisi et al. Chapter 2), 

including housing density (500m kernel; cube root transformed), absolute value of 

topographic position index (TPI), topographic slope, the interaction between slope 

and TPI, step distance (log transformed), and directional persistence (cos[θt - θt-1], 

with θt and θt-1 being the angles from the x-axis of the two previous steps; Duchesne 

et al. 2015, Nicosia et al. 2017). All covariates were rasterized at 30m resolution and 

were centered and scaled across all data (rather than within each model’s dataset) to 

ensure that coefficient estimates were directly comparable across individuals and time 

periods. SSFs were fit using the clogit function in the survival package (Therneau 

2015). The coefficient estimate associated with housing density (βh) from each 

individual’s SSF to be the degree to which that animal was selecting for or avoiding 

housing density during that 45-day interval. Thus, we included βh as a predictor in 

Cox proportional-hazards models to assess whether the strength of selection or 

avoidance of housing impacts mortality risk. 

 

Model selection 

For selecting best spatial and temporal scale of housing density, we competed 

univariate models that included each housing density term. We used Akaike’s 

Information Criterion corrected for small sample size (AICc; Burnham and Anderson 



	 101	

2002) to identify supported models, with models with ΔAICc < 2 considered well-

supported. After selecting the best-supported housing density covariate, we 

considered models that included sex, behavioral variability, and interaction terms. 

Because of low sample size, no models with > 2 covariates were considered. All 

models included a cluster term by individual to allow for robust standard error 

calculation.  

 

Matrix population modeling 

 We used the relationship between housing density and mortality risk to make 

inference on population growth rates across the study area via matrix modeling. We 

specified a single-sex (female-only), stage-specific matrix (Caswell 2000) as follows: 

nt+1 = Ant, in which nt is a vector of population sizes for each stage and A is a 

projection matrix:  

  

𝑨 = 	 .
0 0 0.5𝐿𝑏𝑆+
𝑆, 0 0
0 𝑆% 𝑆+

4 

 

Where Sk, Sj, and Sa are stage-specific survival rates for kittens, juveniles, and adults, 

respectively, L is mean litter size, and b is mean birth rate (number of births per year). 

 Vital rates were calculated from puma monitoring data. The birth rate was 

calculated by dividing the number of denning events by the amount of time females 

were wearing collars recording 4-hour GPS data. Denning events were identified 
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visually by periods of time lasting longer than three weeks when female pumas 

localize to one cluster of points and make repeated excursions and returns to multiple 

different neighboring locations.  

We investigated a subset of these denning events, making field visits to count 

kittens at two weeks and to collar kittens at 4 weeks. Since survival monitoring 

started at 4 weeks, we calculated litter size as the average number of kittens alive at 

the 4-week visit. We assumed a .5 sex ratio. We fit kittens with custom-made, 

expandable VHF collars (transmitters produced by Telonics Inc, Mesa, AZ), and 

monitored kittens weekly for mortality signals. When we heard mortality signals, we 

immediately investigated to determine whether the kitten had died or whether its 

collar had slipped.  

We estimated Sk and Sj by fitting a Cox proportional hazards model with an 

interaction between sex and age class and calculating estimated survival rates using 

the survfit function. For Sa, we used the best-fit model that included an interaction 

between sex and housing density to calculate estimated survival rates at different 

housing densities.   

We then projected this model across the study area. We created a raster of 

density of building points by aggregating building locations at a 1 km2 resolution, 

which corresponded to the mean size of a female 50% aLoCoH calculated with 45 

days of GPS data. For grid cells that had a housing density within the range of the 

housing densities within 50% aLoCoHs (358 houses/km2), we calculated estimated 

survival rates and estimated λ. Confidence intervals for λ were calculated from 
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parameterizing a matrix with the upper and lower 95% CI’s of estimated female 

survival in that grid cell.     

 

Comparing metrics of habitat quality 

 To test the degree to which habitat selection is a reliable indicator of habitat 

quality, we first fit population-level habitat selection models through step selection 

functions (SSFs) and then quantified the relationship between predicted relative 

probability of use and whether λ > 1 using logistic regression. To model habitat 

selection, we fit SSFs as described above but for the entire population rather than by 

individuals. We used generalized estimating equations (GEE) to account for temporal 

autocorrelation and estimate robust standard error (Prima et al. 2017). From previous 

work (Nisi et al. Chapter 2), the relationship between relative probability of selection 

and housing density is quadratic and conditional on time of day (day/night). We thus 

fit a model containing linear and quadratic housing density terms both interacted with 

day/night alongside other habitat covariates that have been shown to be important for 

puma movement: slope, topographic position, distance to nearest perennial stream, 

and percent vegetation cover. We also included step length and directional persistence 

as predictors, which is recommended to account for the movement process (Forrester 

et al. 2015, Nicosia et al. 2017). We also fit models with no time-of-day interaction 

with housing density. Finally, to examine how spatial grain of measuring housing 

density mediates this relationship, we considered these models with housing density 

calculated with a 150m and 500m kernels. The 150m kernel is most informative for 



	 104	

movement behavior while larger kernels (500m) more strongly inform reproductive 

behaviors (Wilmers et al. 2013). Thus, we had 4 movement models: TOD-dependent 

and TOD-independent responses to housing density at the 150m scale (M1 and M2) 

and TOD-dependent and TOD-independent responses to housing density at the 500m 

scale (M3 and M4).  

 From these models, we calculated the relative probability of selection (RSS), 

relative to mean habitat conditions, for each 1 km2 grid cell. For time-of-day-

dependent models, RSS was calculated during the day and during the night. We next 

used logistic regression to relate whether or not a grid cell was expected to support 

population growth or decline (λ>1  versus λ<1) to its RSS (combined, day, and night 

for each spatial grain of housing density). We conducted model selection using ∆AIC 

and calculated area under the receiver operator characteristic curve to assess goodness 

of fit. All analyses were conducted in R version 3.6.0.  

 

Results 

 We observed 33 mortality events from the 65 adult and subadult pumas 

monitored from 3/11/2009-10/19/2020. We also observed 14 deaths of the 42 kittens 

collared and monitored between 6/6/2009 and 3/4/2020. Sex- and age-specific 

survival rates are presented in Table 1. We also observed 35 denning events over a 

cumulative female-monitoring-time of 61.8 years, resulting in an observed birth rate 

of 0.565 births/year. The mean observed litter size was 2.24 kittens.  
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 Long-term exposure to housing density drove mortality risk for pumas in the 

Santa Cruz Mountains. The best spatial scale for predicting mortality risk was 

housing density calculated in the 50% aLoCoH home range (Table 3.2). Short-term 

exposure to housing (over 2 days prior to death) was not informative, performing 

worse than the null model and violating the proportional-hazards assumption. 

 Sex mediated the relationship between housing density and mortality risk. The 

model interacting sex with housing density received the most support, and the only 

other model that received support was an additive model with sex and housing 

density (∆AIC = 1.84). Females living in more developed areas exhibiting heightened 

risk compared to females in more remote areas, but males exhibited similar risk 

across the gradient of housing density (Fig. 3.1). For females, the reduction in 

expected annual survival rates associated with housing exposure was substantial, with 

females in exurban areas (25 buildings/km2) exhibiting an 18.8-point reduction in 

annual survival relative to females in remote areas (0 buildings/km2; Fig. 3.1). 

Finally, pumas exhibited variation in habitat selection behavior relative to housing 

density, with selection responses ranging from strong avoidance to selection (range of 

βh: -3.27 to 1.22). However, this behavioral variability among animals in response to 

housing did not predict mortality risk, with all models containing behavior terms 

receiving no support (ΔAICc > 2). Adult survival was the most elastic vital rate with 

an elasticity of 0.581, and maternity, kitten survival, and juvenile survival all had 

elasticity values of 0.140. 
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 The reduction in female survival in more developed areas had population-

level consequences. For example, parameterizing population matrix models with 

expected female survival rates at 3 levels of housing density shown in Fig. 2.1, the 

expected population growth rate is 1.113 (95% CI: 1.040, 1.181) in remote areas (0 

buildings/km2), 1.037 (95% CI: 0.952, 1.135) in rural areas (5 buildings/km2), and 

0.945 (95% CI: 0.840, 1.071) in exurban areas (25 buildings/km2). Furthermore, 

projecting expected puma population growth rate across the study area shows that 

source-sink dynamics are at play in the Santa Cruz Mountains, with 57.9% of the 

study area exhibiting λ ≥ 1 and 42.1% exhibiting λ < 1 (including 7.1% of the study 

area for which housing densities were above the maximum observed housing density 

for a core home range; Fig. 3.2).  The expected λ when adult female puma survival is 

set at its mean for this population (0.826, 95% CI: 0.742, 0.921) was 1.025 (95% CI: 

0.950, 1.110).  

 Daytime habitat selection behavior was the best predictor of population 

growth rate (Table 3). Time-of-day-independent habitat selection performed poorly, 

and nighttime behavior was inversely related to population growth rate (Fig. 3.3). 

Additionally, habitat selection modeled with housing density calculated at the scale at 

which it more strongly influences reproductive behaviors (500m) better predicted 

population growth compared to when habitat selection was modeled at the scale that 

housing density impacts movement behaviors (150m).   

  

Discussion 
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Long-term exposure to housing density led to reduced puma survival, which 

drove source-sink dynamics in this fragmented, human-dominated landscape. Female 

pumas living in more human-dominated areas experienced heightened mortality risk 

compared to their more remote counterparts. In turn, reduced survival rates associated 

with exposure to human development produced sink areas that exhibited negative 

population growth rates across large areas of the Santa Cruz Mountains.   

Long-term exposure to housing density drove mortality risk for female pumas, 

but not males, which likely reflected the difference in behavioral and energetic costs 

that male and female pumas experience in this landscape. Previous research from this 

system has documented sex-specific indirect behavioral and energetic costs, with 

female pumas (but not males) exhibiting higher deer kill rates in areas of higher 

housing density (Smith et al. 2015). These higher female kill rates in more developed 

areas are driven by earlier carcass abandonment and less complete consumption 

(Smith et al. 2017) and presents significant energetic costs for females, since hunting 

and killing deer requires substantial energetic expenditure (Williams et al. 2014). Our 

finding that female pumas experienced increased mortality risk in more developed 

areas dovetails with this previous finding that female pumas experience much higher 

indirect costs of living closer to people and suggests that these indirect behavioral and 

energetic costs scale up over the long term to negatively impact individual fitness for 

female pumas. Additionally, the poor performance of short-term housing exposure 

relative to long-term exposure suggests that mortality risk was driven by chronic 

exposure to human development and its associated indirect costs. While previous 
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work has described energetic costs associated with living near humans (Wang et al. 

2017, Nickel et al. 2021), these costs have not been linked to components of 

individual fitness or population-level processes. Our study suggests that the energetic 

costs associated with living alongside people can, over time, negatively impact 

individual survival for females. Pumas experience energetic costs associated with 

avoiding humans during locomotion, which scale up to constrain long-term territory 

size for males (Nickel et al. 2021). Reduced home range size in more developed areas 

may confer fitness losses to males if they come into contact with fewer females or 

secure fewer breeding opportunities – however, these results suggest that these 

locomotory energetic costs do not negative survival outcomes for male pumas. 

This reduction in female survival drove source-sink dynamics across our study 

area. Remote and wildland areas were associated with survival rates that result in 

positive population growth, while rural and exurban areas contain development that 

caused a reduction in survival below that which supports a stable population over 

time. While the overall population growth rate was stable (1.025), this indicates that 

further development of the Santa Cruz Mountains has the potential to expand sink 

habitat and threaten puma population viability, in addition to reducing habitat 

connectivity (Smith et al. 2019b). Low-density exurban development and rural sprawl 

are the leading cause of land-use change in the US and often surrounds or is adjacent 

to protected areas (Theobald 2001, 2005). Our work underscores that in addition to 

the many other environmental issues associated with exurban sprawl (Radeloff et al. 
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2005a, Wilson and Chakraborty 2013), low-level exurban and rural development has 

substantial negative consequences for the population viability of large carnivores.  

Furthermore, characterizing the relationship between habitat features – 

namely housing density – and individual fitness allowed us to rigorously quantify 

habitat quality for an urban-adjacent large carnivore population, and investigate how 

other metrics of habitat quality that require less data but may be less reliable compare 

to more rigorous but less accessible metrics. Puma habitat selection differed between 

day and night, but only daytime behavior reflected habitat quality in terms of fitness 

and population growth. While daytime habitat selection behavior was directly 

predictive of population status, nighttime behavior was inversely related to whether 

an area could support positive population growth because at night pumas select areas 

of intermediate housing density (Nisi et al. Chapter 2). Because of the opposing 

responses to housing density between day and night, when time of day was not 

considered (combined habitat selection in Fig. 3.3), habitat selection behavior was 

only loosely related to habitat quality. This underscores the necessity of relating 

habitat characteristics directly to fitness metrics rather than inferring habitat quality 

by presence, use, or selection alone (Mosser et al. 2009, Gaillard et al. 2010) . 

Animals in human-dominated environments partition their activity to use higher-risk 

areas at night, when human activity is generally lower, and often become more 

nocturnal overall (Gaynor et al. 2018, Suraci et al. 2019b). Our results suggest that 

the increased sensitivity and spatial partitioning that animals exhibit during the 

daytime better reflects habitat quality in terms of fitness costs relative to their 
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nighttime behavior, and that temporal partitioning can decouple the apparent 

relationship between habitat selection and habitat quality.  This is a novel insight that 

would benefit from repetition in other species and systems – if this pattern is shown 

to be general, then daytime selection may be more useful in inferring habitat quality 

for species that exhibit temporal partitioning of space and activity related to risk from 

humans.  

Additionally, habitat selection models fit with housing density calculated at a 

broader scale (500m) better predicted population growth compared to those fit with 

finer-scale housing density (150m), even though finer-scale housing density 

performed better in predicting habitat selection when pumas move and feed (Wilmers 

et al. 2013). The broader scale corresponds to the scale at which pumas respond to 

housing during reproduction (Wilmers et al. 2013), suggesting that the scale of 

selection associated with sensitive behaviors that carry high fitness costs, such as 

reproduction, may better reflect true habitat quality compared to selection patterns at 

finer scales associated with movement and feeding. Broadly, our results suggest that 

for adaptable animals in human-dominated environments, the most predictive 

behaviors – such as daytime movement rather than nighttime movement, and at scales 

representative of reproductive versus movement behaviors – likely best reflect habitat 

quality in terms of population dynamics.  

Despite variation in habitat selection behavior among individuals, this 

variation did not predict mortality risk, which could be due to several factors.  First, 

previous research has shown a mismatch between avoidance behavior and risk of 
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retaliatory killing, meaning that puma behavior is not effective at mitigating this 

mortality source (Nisi et al, Chapter 2), and this mismatch likely contributed to this 

relationship. Additionally, it is possible that selection of home range locations (2nd-

order selection; Johnson 1980) more strongly constrains and determines individual 

fitness relative to selection of locations within home ranges (3rd-order selection), 

which was what we modeled here. In a territorial species like the puma, exclusion of 

conspecifics from home ranges results in deviation from the ideal free distribution 

whereby animals are evenly spaced out across a gradient of habitat quality (O’Neil et 

al. 2020). In this case, pumas occupying high-quality, remote habitat exclude others 

from doing so. Since long-term exposure to housing density, calculated over the time 

it takes to cross a home range multiple times, drove mortality risk, this suggests that 

locations of home ranges, rather than behavior within home ranges, is the most 

important factor in determining individual fitness. Put another way, where a home 

range is located matters most, and behaviors that pumas exhibit to further mitigate 

their exposure to humans, including avoiding housing density, are not sufficient to 

overcome the long-term energetic costs associated with living in these areas. 

Compared with other puma populations, survival rates in this system are 

higher than those seen in heavily hunted and more urban-adjacent populations, but 

lower than those remote and unhunted areas. Survival rates observed here are most 

similar to other semi-protected populations with minimal hunting (Wolfe et al. 2015), 

and as well as to those found in Colorado’s Front Range, which contains similar 

levels of exurban development (Moss et al. 2016). Populations that were more fully 
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protected exhibited higher survival rates (Logan and Sweanor 2001b, Ruth et al. 

2011), and as expected, heavily hunted populations exhibit much lower survival rates 

than this population (Robinson et al. 2014), although female rates observed here are 

similar to rates observed in some hunted populations, especially for females with 

exurban home ranges (Lambert et al. 2006, Robinson et al. 2008). Finally, survival 

rates in the SCM are much higher than what is seen in the Santa Ana and Eastern 

Peninsular Ranges, which are two non-hunted populations in southern California that 

experience substantial anthropogenic mortality through vehicle strikes and 

depredation mortalities, respectively (Vickers et al. 2015), but are lower than survival 

rates in the Santa Monica Mountains (Benson et al. 2016a).  

While our study only modeled the relationship between survival and housing 

density, previous research suggests that puma reproduction also decreases with 

increasing development, which would exacerbate the negative relationship between 

development and population growth rate that we document here. While we lack 

sufficient data to quantify the relationship between reproductive output and housing, 

pumas strongly avoid human development when selecting den site locations (Wilmers 

et al. 2013, Yovovich et al. 2020). Additionally, as adult survival was the most elastic 

vital rate in this analysis and for other puma populations (Robinson et al. 2014, 

Benson et al. 2016a), we expect that the survival impacts associated with human 

development would be stronger than any reproduction-mediated impacts between 

development and puma population growth.   
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Overall, this work emphasizes the cryptic precarity of a population of large 

carnivores living within a developed and developing environment: while currently 

stable, further development could threaten long-term viability for pumas in the Santa 

Cruz Mountains by expanding population sinks and reducing population sources. 

Exurban development is a common and growing component of land use change in the 

western U.S. (Theobald 2005), and this study shows that even relatively low levels of 

rural and exurban development negatively impact habitat quality for large carnivores. 

Large carnivore persistence in human-dominated landscapes is increasingly 

recognized as essential for global conservation efforts (Carter and Linnell 2016), but 

for this to be possible, we must understand how anthropogenic features impact 

population vital rates such as survival, as well as any thresholds in levels of human 

use or disturbance that reduce long-term viability. Here we emphasize that though 

pumas can coexist alongside humans within a matrix of low-density residential 

development, they experience costs in doing so that reduce their individual fitness 

and cascade on to have population-level consequences. Because exurban sprawl is a 

widespread across the US, our research sheds light on mechanisms by which other 

large carnivore populations in many systems may be impacted by human 

development.		 	
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Table 3.1. Estimated annual survival rates for all sex and age classes.  

Sex Age class Survival rate 95% CI Deaths 

Female 
Kitten 0.59 1.00 0.32 10 

Juvenile 0.68 1.00 0.31 4 
Adult 0.83 0.92 0.74 17 

Male 
Kitten 0.29 0.64 0.13 4 

Juvenile 0.43 0.98 0.19 1 
Adult 0.69 0.82 0.59 13 

	

Table 3.2. Univariate models relating housing density to mortality risk at different 

spatial and temporal scales.  

Temporal scale Spatial scale 
Coefficient 
estimate SE p ΔAICc 

PH 
Assumption 

Long term (45 
days) 

50% aLoCoH 0.37 0.17 0.034 0.00 Meets 
95% MCP 0.36 0.18 0.042 0.10 Meets 
50% MCP 0.34 0.17 0.052 0.85 Meets 

95% aLoCoH 0.26 0.19 0.157 2.33 Meets 
Null Null       2.57   

Short term (2 
days) 

150m kernel 0.06 0.25 0.814 4.60 Violates 
500m kernel 0.05 0.24 0.836 4.63 Violates 

	

Table 3.3. Model selection for logistic models relating population status (growth or 

decline) to habitat selection (RSS). 

Housing density Time of day ∆AIC 

500m 
Combined 1050242.46 

Night 671089.44 

Day 0.00 

150m 
Combined 1014797.64 

Night 1133893.71 

Day 460759.61 
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Figure 3.1. Predicted annual survival curves for (A) females and (B) males across 3 

levels of housing density. Remote, rural, and exurban housing densities refer to 0, 5, 

and 25 buildings/km2, respectively, in an individual’s 50% aLoCoH home range. 

Shaded areas are 95% confidence intervals. 
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Figure 3.2. Projected (A) annual survival rates and (B) estimated population growth 

rate across the study area. In (B), the darkest blue color indicates all values < 0.60. 
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Figure 3.3. Relationship between predicted population status (growth [λ > 1] or 

decline [λ < 1]) and relative selection strength. Lefthand panels show results from 

models hta tinclude housing density calculated at a broader spatial grain (500m) and 

righthand panels show results from finer-grained (150m) housing density. Top panels 

show RSS results from time-of-day-independent models, and bottom two panels show 

nighttime- and daytime-specific RSS.   
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Appendix 3.1 

Semivariance analysis 

We used semivariance analysis to inform our choice of 45 day periods as 

long-term movement. For resident (non-dispersing) pumas that had >60 days of data, 

we used the ctmm package to fit semivariograms for each individual (Calabrese et al. 

2016). Next, to characterize asymptotic behavior we fit Michaelis-Menten functions 

to semivariograms, which take the form +-
./-

, in which a represents the asymptotic 

semivariance (in km2) and b is the half-saturation parameter, or half the time it takes 

to reach the asymptote. The long-term asymptote for semivariograms denotes long-

term home-ranging behavior (Fleming et al. 2014, Calabrese et al. 2016), so the 

parameter b sheds light on how long it takes for an animal to traverse its home range. 

We calculated mean half-saturation values for resident animals, and considered mean 

home-range-crossing time to be twice the value of the mean half saturation value. 

In our population, the mean half-saturation value was 7.80 days for females, 

10.26 days for males, and 8.90 days overall. The long-term 45-day intervals thus 

represent >2 home range crossings for males and > 2.9 home range crossings for 

females. 
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CHAPTER 4 

Wildfire vulnerability, carbon emissions, and wildlife habitat quality across the 

wildland-urban interface 

 

Abstract  

Land use patterns can either contribute to or mitigate many environmental issues – 

including climate change, wildfire risk, and habitat loss. Understanding whether and 

how these impacts align may shed light on land-use strategies that could confer 

benefits to multiple environmental problems. Here, we examined how wildfire risk, 

household carbon emissions, and wildlife habitat quality vary across land use 

categories, from sparsely developed areas to the wildland urban intermix and 

interface to dense, urban areas. These three environmental impacts largely aligned - 

sparsely developed areas were associated with high habitat quality, household 

emissions, and burn risk, with urban areas associated with lower levels of each. 

Intermix areas emerged as especially problematic, characterized by high burn risk and 

carbon emissions, and further development in these areas has the potential to 

drastically reduce habitat quality. Combined, these results highlight that low-density 

exurban development has negative impacts on climate change, wildfire vulnerability, 

and wildlife conservation, and suggest that urban infill could mitigate these three 

environmental impacts.  

 

Introduction  
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Land use patterns related to residential development contribute to – and can 

either exacerbate or mitigate – key factors related to both climate change and 

biodiversity loss (Wilson and Chakraborty 2013, Venter et al. 2016, Jones et al. 2018, 

Radeloff et al. 2018). Land use decisions often come with environmental trade-offs, 

and in some cases, action to mitigate one environmental impact may have negative 

impacts on the other. For example, renewable energy infrastructure can cause 

mortality or habitat degradation for sensitive species (Northrup and Wittemyer 2013), 

and LEED-certified buildings may have higher rates of bird collisions due to higher 

glass area (Ocampo-Peñuela et al. 2016). In other cases, multiple environmental 

objectives may align and can be accomplished by the same action, for example, 

restoration projects may enhance both biodiversity and carbon sequestration (Dybala 

et al. 2019), and reducing vehicle miles traveled lowers carbon emissions while 

conferring co-benefits to air and water quality and reducing wildlife mortality (Fang 

and Volker 2017). Exurban sprawl is the fastest-growing land use category in the 

Western United States and is associated with myriad negative environmental impacts, 

including both climate change and biodiversity loss (Theobald 2005, Wilson and 

Chakraborty 2013). Here, we explore how three key environmental issues – 

greenhouse gas emissions, catastrophic wildfires, and habitat loss – are driven by land 

use type across rural to exurban to urban areas and whether there are alignments, 

synergies, or trade-offs between these impacts.  

Residential development patterns strongly influence greenhouse gas 

emissions. Denser urban development enables wider transit options and better 
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walkability, leading to lower automobile travel and reduced greenhouse gas emissions 

(Kahn 2000, Ewing and Cervero 2010) while also increasing efficiency in household 

energy use (Glaeser and Kahn 2010, Jones et al. 2018). Across land use types, this 

results in carbon footprints and greenhouse gas emissions that are highest in the 

suburbs and rural areas, and decline with increasing density in urban areas (Jones and 

Kammen 2014).  

Climate change is causing an increase in frequency and severity of 

catastrophic wildfires  across the Western U.S. and California specifically, leading to 

loss of life, widespread negative health impacts, and destruction of property and 

habitat (Abatzoglou and Williams 2016, Williams et al. 2019, Bowman et al. 2020). 

Wildfire risk and vulnerability are strongly driven by land use patterns and peak in 

the wildland-urban interface (WUI), where residential development abuts (interface 

WUI) or is interspersed within (intermix WUI) wildland vegetation (USDA and 

USDI 2001, Stewart et al. 2007). Compared to sparsely developed areas as well as 

denser urban areas, the wildland urban interface and intermix are most impacted by 

wildfire in terms of loss of life and property destruction and have the highest 

frequency of human-caused ignitions (Radeloff et al. 2005b, 2018). Despite the 

increasing danger that wildfire poses to these places (Holden et al. 2018, Goss et al. 

2020), the WUI is rapidly expanding in the U.S. and California specifically, and is 

driven by housing expansion and development into wildland areas rather than 

changes in wildland vegetation patterns (Mann et al. 2014, Radeloff et al. 2018).  
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 Habitat loss and fragmentation through conversion to development are key 

drivers of species decline and extinction (Newbold et al. 2015). Exurban development 

has negative impacts for wildlife habitat quality as it often converts remote, 

undisturbed areas to lower-quality, human-dominated spaces (Theobald et al. 1997, 

Burdett et al. 2010, Smith et al. 2019a). Large carnivore species are particularly 

vulnerable to this type of land use change and are at heightened risk of extinction and 

population declines due to their large area requirements, low population densities, and 

reliance on mobile and large-bodied prey (Crooks et al. 2011, Ripple et al. 2014). 

Because of these characteristics, many large carnivores can be considered an 

“umbrella species” whose protection can confer benefits to other co-occurring species 

with similar habitat suitability requirements (Di Minin et al. 2016, Thornton et al. 

2016). Thus, understanding how exurban development impacts large carnivore habitat 

quality and pursuing planning strategies that conserve high-quality carnivore habitat 

likely will have cascading benefits to other species conservation.  

 Because these three environmental problems – greenhouse gas emissions, 

wildfire risk and vulnerability, and habitat destruction – are influenced by residential 

land use patterns, there is value in understanding the intersections between these 

issues and where new housing could be built to minimize impacts. For example, 

depending on how these impacts are distributed across land use types, certain policy 

interventions, such as urban infill, could be used to mitigate multiple impacts at once.  

The Santa Cruz Mountains of California and surrounding urban areas, including the 

Silicon Valley and the city of Santa Cruz, present an opportunity to examine the 
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linkages and intersections between these three environmental impacts. The Santa 

Cruz Mountains contain widespread residential development throughout wildland 

areas, and there are also detailed, fine-resolution information available on estimated 

household carbon emissions and habitat quality for an important umbrella species, 

pumas (Puma concolor) throughout this area. Here, we ask how wildfire risk, 

household emissions, and puma habitat quality vary across land use types: from 

sparsely developed open space to the wildland urban intermix and interface to urban 

areas. Understanding the links and synergies between these impacts can shed light on 

optimal land use strategies to simultaneously mitigate multiple environmental 

problems.  

 

Methods 

Study area 

Our 4236 km2 study area encompasses the Santa Cruz Mountains of California 

(Fig. 1). Of this, 42.2% is sparsely developed, 18.8% is intermix, 13.3% is interface, 

and 11.7% is non-WUI urban according to the definitions of (Radeloff et al. 2005b, 

Stewart et al. 2007). The remaining 14%, made up of industrial areas or row-crop 

agriculture, was excluded from this analysis. Since 2000, a total of 471.02 km2 was 

burned in this area, in 30 individual fires ranging in size from 0.027 km2 to 350.03 

km2 (the CZU Lightning Complex Fire of 2020, which killed 1 person and destroyed 
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1490 structures5). For analyses related to puma habitat quality, a 2823 km2 subset of 

this study area was considered, representing the merged 95% minimum convex 

polygon of all puma locations used for habitat modeling (Fig. 1). This restricted area, 

rather than the entire study area, was used for puma habitat quality analyses to avoid 

extrapolating model results beyond the range of housing densities experienced by 

monitored pumas. Our study area has a Mediterranean climate of wet winters and hot, 

dry summers. Dominant vegetation communities include redwood (Sequoia 

sempervirens) and Douglass fir (Pseudotsuga menziesii) forests at lower elevations 

and northerly aspects, mixed oak (Quercus sp.), conifer, and madrone (Arbutus 

menzziensii) forests at higher elevations and southerly aspects, alongside grasslands, 

scrub, and chaparral habitats (for more detailed description see Wilmers et al. 2013).    

 

Spatial layers of wildfire risk, wildlife habitat quality, and household carbon footprint 

We obtained land use type classifications for wildland urban interface, 

intermix, and sparsely developed and urban areas from6 (Fig. 1A; Radeloff et al. 

2005, Stewart et al. 2007). Unvegetated areas classified as medium and high housing 

density were considered urban, no- and very-low-density vegetated areas were 

considered sparsely developed (Mann et al. 2014). For distribution of housing density 

	
5	https://www.fire.ca.gov/incidents/2020/8/16/czu-lightning-complex-including-
warnella-fire/ 
6 http://silvis.forest.wisc.edu/data/wui-change/ 
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categories within each land use designation see Fig. S4. Burn perimeters from 

wildfires from 2000-2021 was obtained from CALFIRE7.  

We investigated climate change impacts via household carbon footprints (Fig. 

1B). Mean household carbon footprints (HCF) in metric tons CO2 equivalent (tCO2e) 

in 2010 at the census block group level were obtained from8 (Jones and Kammen 

2014, Jones et al. 2018). HCF data was only available for inhabited block groups and 

block groups with missing HCF data were excluded. This data was modeled using 

consumption-based inventory methods to estimate carbon footprint at the household 

level - meaning that carbon footprint is calculated for all that that household 

consumes, incorporating the entire supply chain's emissions and including 

transportation, housing, food, goods, and services (Jones and Kammen 2014, Jones et 

al. 2018). To better understand how HCF varies across land use types we also 

considered how income is distributed and obtained median household income data for 

the year 2015 at the census block group level using the R tidycensus package. Data 

from 2010 was not available.   

Puma habitat quality was used as a proxy for wildlife habitat suitability. 

Pumas, as a large carnivore that requires ample space and relatively undisturbed 

habitat, can be considered an umbrella species in coastal California, as preserving 

high-quality puma habitat will also likely benefit myriad other co-occurring species 

(Thornton et al. 2016). Habitat quality is most rigorously defined through vital rates 

	
7 https://frap.fire.ca.gov/frap-projects/fire-perimeters/ 
8 https://coolclimate.org/scenarios  
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and population dynamics, as high-quality habitat must be able to support a self-

sustaining population (Van Horne 1983, Pulliam 2000, Mosser et al. 2009). A 

previous study modeled expected puma population growth rates across the study area 

(Fig. 1C; Nisi et al. Chapter 3) and found that housing density is negatively related to 

annual survival for female pumas, which means more developed areas exhibit lower 

population growth rates and reduced habitat quality. Alongside population dynamics, 

we also considered two other components of puma habitat suitability: human-puma 

conflict and puma time allocation. Human-carnivore conflict is a key threat to many 

carnivore species, who are often killed after consuming livestock (Inskip and 

Zimmermann 2009, Ripple et al. 2014). In our study area, pumas often kill goats held 

in small numbers on residential properties and until recently were allowed to be shot 

if a permit was obtained. The relative risk of retaliatory killing across the study area 

peaks in areas of intermediate housing density, rather than scaling directly with 

development intensity (Fig. 1D). For details on modeling the risk of retaliatory killing 

see Nisi et al., Chapter 2. Finally, habitat selection sheds light on animal occupancy 

and time allocation (Fig. 1E). Areas that are selected by an animal are places where 

they spend more time relative to places that animal avoids. For details on habitat 

selection modeling see Nisi et al. Chapter 2. Notably, habitat selection is not a direct 

metric of habitat quality, but is important alongside population-relevant metrics to 

understand animal occupancy and distribution across a landscape. 

 

Statistical analysis  
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 Wildland urban interface and intermix zones are associated with high risk of 

wildfire losses and high rates of wildfire ignitions (Radeloff et al. 2018). To quantify 

wildfire risk across land use categories in the Santa Cruz Mountains, we first 

extracted whether each structure had been threatened by wildfire (i.e., within a burn 

perimeter) since 2000, using a manually digitized satellite map of building locations 

across our study area (Wilmers et al. 2013). We then conducted a logistic regression 

relating the probability that a home was threatened by wildfire to land use category. 

No urban areas were within burn perimeters, so urban areas were excluded in this 

analysis. We present odds ratios of being in a burn perimeter for intermix and 

interface areas, relative to sparsely developed areas, as well as the proportion of 

homes within burnt areas in each land use category. To categorize the continuous 

relationship between housing density and burn risk, we fit logistic regressions relating 

whether a building was threatened by wildfire to housing density, calculated as 

households per area within each census block group to correspond with the scale of 

analysis for household emissions data. For this analysis, we included urban areas. To 

test for a non-linear relationship between housing density and burn risk, we also 

considered a quadratic relationship and competed models using Akaike information 

Criterion (AIC). Housing density was log-transformed for these analyses.    

 To assess how household carbon footprint (HCF) varied across land use types, 

we drew a sample of 5000 locations from all non-agricultural block groups in the 

study area. For each location we extracted land use category (non-WUI urban, 

interface, intermix, sparsely developed) and mean HCF was compared across land use 
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types using analysis of variance (ANOVA) and Tukey post-hoc tests. We also looked 

at how income was distributed across land use type – this relationship varied by 

county, so we also investigated county-specific patterns in HCF.  

To quantify how puma habitat quality varied with land use category, we 

extracted three components of puma habitat quality –puma population growth rate 

representing overall habitat quality, habitat selection representing puma time 

allocation, and retaliatory killing risk representing human-carnivore conflict – at 5000 

random locations from within the puma study area boundary. We used ANOVA with 

Tukey post-hoc tests to assess whether metrics of habitat quality differed across land 

use categories.  

To visualize how HCF and puma habitat quality change continuously with 

housing density, we calculated mean HCF, puma population growth rate, and 

retaliatory killing risk in each census block group and fit smoothing splines (5 knots) 

against household density (households/km2) in each block group. Splines were fit 

using the npreg package.  All analyses were conducted in R version 3.6.0, with spatial 

operations performed using the sf package (Pebesma 2018).  

 

Results 

 Houses in intermix and interface areas were significantly less likely to be 

threatened by wildfire relative to houses in sparsely developed areas (odds ratio for 

intermix: 0.388 [95% CI: 0.355, 0.425]; interface: 0.00366 [0.00306, 0.00438], Fig. 

2A). Intermix areas were at much higher risk of being in a burn perimeter relative to 
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interface, and no burn perimeters entered urban areas. While homes in sparsely 

developed areas were at increased risk of being threatened by wildfire, intermix 

homes made up the majority of threatened structures: of the total buildings that were 

in burned areas, 70% were in intermix areas, with 24.7% in sparse development and 

5.1% in interface. Burn risk declined with housing density, and the quadratic 

relationship was best supported (β0=-2.12 [SE=0.098, p < 0.001], βHD=0.377 

[SE=0.069 p<0.001], βHD2=-0.229 [SE=0.011 p<0.001]; Fig. 3B).  

Mean household carbon footprint was lowest in urban areas compared to 

intermix, interface, and sparsely developed areas (Fig. S2, Fig. 3C), though between 

counties, this relationship depended on income. This pattern was very pronounced in 

Santa Clara and Santa Cruz Counties, with urban areas in both counties exhibiting 

significantly lower HCF compared to other land use types (Fig. 2B). In contrast, San 

Mateo County exhibited the opposite trend - mean HCF was actually higher in urban 

areas compared to sparse development and was not significantly different from 

intermix or interface areas. This pattern mirrors how household income, which 

strongly influences HCF, is distributed across land use categories in the three 

counties, with median household income in urban areas in San Mateo being higher 

than other land use types, in contrast to Santa Clara and Santa Cruz Counties (Fig. 

2B). Transportation contributed the most to household carbon footprint, and 

transportation-related emissions were lowest in urban areas compared to other 

categories (Fig. S3).  
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 Across all three metrics of puma habitat quality considered (population 

dynamics, time allocation, and conflict risk), intermix and interface areas were 

poorer-quality relative to sparsely developed areas. Puma habitat quality measured by 

population dynamics was better in intermix areas relative to interface, and pumas 

largely avoided low-quality interface and urban areas relative to sparsely developed 

and intermix areas (Fig. 2C, Fig. 3D). However, intermix areas exhibited higher 

human-carnivore conflict risk, with retaliatory killing risk highest in intermix areas 

(Fig. 2C, Fig. 3E). 

   

Conclusions 

  Wildland urban interface and intermix habitats were associated with 

heightened wildfire risk and household carbon emissions relative to urban areas, and 

lower wildlife habitat quality relative to sparsely developed areas. This alignment of 

multiple environmental impacts underscores that exurban development within or near 

wildland vegetation contributes both to the causes and consequences of the climate 

crisis, as well as biodiversity loss. Together, these results suggest that land use policy 

that encourages development within urban areas thus can confer co-benefits to 

wildfire risk, carbon emissions, and wildlife conservation.  

While the risk of a structure being threatened by wildfire declined with 

increasing housing density, the majority of threatened structures were in intermix 

spaces. These results are consistent with larger-scale patterns of WUI areas being 

associated with high structure lost and frequent wildfire ignitions, especially in 
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California (Kramer et al. 2018, Radeloff et al. 2018), and combined underscore the 

high wildfire risk and vulnerability in WUI areas, especially intermix areas, in our 

study system. Interestingly, a study that investigated the risk of structure destruction 

found that most destroyed homes in California were in interface areas (Kramer et al. 

2019) – together with our results, this perhaps highlights the stochastic nature of 

catastrophic fires and spatial variability in their impacts even within California. 

Because different forms of development have drastically different outcomes for 

wildfire vulnerability, land use policy can help mitigate wildfire risk by encouraging 

growth in certain areas over others, with urban infill development resulting in reduced 

wildfire impacts (Syphard et al. 2013).  

Similar to burn vulnerability, household carbon footprints overall were 

inversely related to housing density, which is expected given the improved transit 

options and walkability alongside increased home energy efficiency associated with 

higher-density living (Ewing and Cervero 2010, Glaeser and Kahn 2010, Jones et al. 

2018). The county-level differences we found were driven by household income, as 

urban areas in San Mateo county had higher median household incomes than 

neighboring WUI and sparsely developed areas, driving higher urban HCFs. 

Wealthier households consume more goods and services and have higher home 

energy expenditure and transportation-related emissions (Glaeser and Kahn 2010, 

Jones and Kammen 2014, Jones et al. 2018), but importantly, higher-income 

households in urban areas have lower carbon emissions compared to if the same 

household were located in a suburban or rural area (Jones et al. 2018).  
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Alongside high wildfire risk and carbon emissions in interface and intermix 

areas, these places were also lower-quality habitat for pumas relative to sparsely 

developed areas. Interface and urban areas were largely unsuitable for and avoided by 

pumas, consistent with previous studies documenting the detrimental effects of 

development on these species (Chapter 3, Wilmers et al. 2013, Ripple et al. 2014). In 

contrast, intermix areas, with lower housing densities compared to interface areas 

(Fig S4), supported reduced population growth relative to sparsely developed areas 

but were not strongly avoided by pumas. Intermix areas were places where human-

carnivore conflict was most prevalent, since puma depredation of livestock and 

subsequent retaliatory killings peaks at intermediate levels of exurban development 

(Fig. 3D; Chapter 2). Taken together, these results indicate the problematic nature of 

low-density, exurban development for pumas and other carnivores: while these areas 

can still support resident animals, animals that live there experience enhanced costs 

and threats compared to those in undeveloped areas. Thus the intermix, in addition to 

being a place of high wildfire risk and vulnerability, is also uniquely problematic for 

wildlife habitat quality.   

 Considering the marginal impact of further development in each land use 

category can shed light on policies or development strategies that can mitigate these 

multiple environmental impacts. For both wildfire risk and household carbon 

footprint, any additional home built in one area will likely experience the same 

wildfire risk and carbon emissions as their neighbors, assuming characteristics of the 

homes built are the same. Further development in urban areas, where wildfire risk and 



	 133	

per-household emissions were lowest, would thus confer benefits for both impacts.  

However, pumas and many other species exhibit continuous responses to housing 

density such that an additional unit can alter habitat quality or connectivity (Smith et 

al. 2019a). Retaliatory killing risk sharply increased across the gradient of housing 

density in intermix areas, and population growth rates decreased across the gradient 

of housing density (Fig. 3E) - indicating that any additional housing constructed in 

sparsely developed and intermix areas carries with it increased risk of human-puma 

conflict and negative implications for population growth. Importantly, because urban 

areas are already essentially unsuitable habitat for pumas, further development within 

urban spaces will have minimal impact on puma population health or human-puma 

conflict. More generally, urban areas generally constitute lower-quality habitat in 

themselves for many species, but they can facilitate land-sparing and reduced overall 

human footprint in more remote, higher-quality areas (Venter et al. 2016).  

 Taken together, these results emphasize the need for urban infill development 

that is accessible to lower incomes. Further development in urban areas would come 

at reduced wildfire risk, expected household carbon emissions, and impacts on 

wildlife habitat relative to further development in remote, intermix, or interface areas. 

In the planning context, there is increasing attention on the dual benefits of urban 

infill development in mitigating wildfire risk and reducing greenhouse gas 

emissions9, and some environmental NGOs are recognizing the links between 

	
9 https://urbanland.uli.org/planning-design/planning-for-a-fire-resilient-future-in-
northern-california/ 



	 134	

sprawling development’s impact on wildlife alongside efficiency and housing equity 

impacts10. These linkages are promising, and looking across academic and subject-

matter silos to understand the links and relationships between several environmental 

impacts can inform optimal strategies to address environmental crises and foster 

synergies between organizations working to mitigate seemingly disparate 

environmental impacts.   

These implications are particularly salient for much of California and the 

Santa Cruz area specifically. Santa Cruz is the least affordable small city in the U.S. 

and is currently gripped by a housing crisis forcing renters into extreme rent burden 

or displacement, and last year (2020) was impacted by the deadly, destructive, and 

terrifying CZU Lightning Complex Fire in the neighboring wildland areas that 

displaced many rural residents whose homes were destroyed.11 Developing higher-

density housing stock in already developed areas in Santa Cruz could help to address 

the housing crisis and protect residents from future wildfire threats while mitigating 

these other environmental impacts. While Santa Cruz is exceptionally unaffordable, 

many of the land use policies that created the housing crisis in Santa Cruz – including 

prioritizing single-family-homes and preventing higher-density development in urban 

areas – are common across many municipalities. In such contexts, increasing density 

within already developed urban areas would confer multiple environmental benefits. 

	
10 https://www.sierraclub.org/sites/www.sierraclub.org/files/sce/sierra-club-
california/PDFs/SCC_Housing_Policy_Report.pdf 
11 https://www.santacruzsentinel.com/2021/08/16/housing-struggles-remain-one-year-
after-czu-lightning-complex-fire/	
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More broadly, these results highlight the intersection and alignment of these three 

environmental issues – wildfire risk, carbon emissions, and habitat loss – and 

indicates that land-use actions taken to mitigate one impact will likely carry co-

benefits for others.  
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Figure 4.1. Maps of land use category, household C footprint, and puma habitat 
quality metrics across the study area. Panel (A) shows land use categories: sparsely 
developed, intermix, interface, and urban, in shaded colors alongside burned 
perimeters (2000-2021) outlined in red. The black solid outline is the study area 
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boundary for puma habitat quality metrics, and the dashed outline is the study extent 
for household C footprint data. Panel (B) shows mean household C footprint across 
census block groups, with the puma study area outlined in black. Three metrics of 
puma habitat quality (puma population growth rate, human-carnivore conflict 
represented by retaliatory killing risk, and puma time allocation represented by puma 
habitat selection) are shown in panels C-E.  
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Figure 4.2. Burn risk (A), household C emissions (B), and puma habitat quality (C) 
across land use categories. Panel (A) shows the log odds of a housing unit being 
within a burn perimeter in intermix and interface areas relative to sparsely developed 
areas (dashed line at 1 represents if the odds of burning were equivalent to in sparse 
development). Urban areas were excluded as no urban homes fell within burn 
perimeters. Panel (B) shows mean household C footprint (in metric tons CO2 
equivalent) by county. Since C footprint is closely related to income, median 
household income across counties is also plotted. In panel (B), mean puma population 
growth rate reflects habitat quality in terms of population dynamics, retaliatory killing 
risk represents human-carnivore conflict, and mean relative selection shows puma 
time allocation (i.e., what areas they are spending more time in). 
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Figure 4.3. Changes in burn risk, household C footprint, and habitat quality across 
the gradient of housing density. Panel (A) shows a conceptual diagram with color 
bars showing high values in yellow and low values in blue. Panel (B) shows predicted 
probability of a house being within a burn perimeter from logistic regression. Panels 
C-E show mean household C footprint (tCO2e), mean puma population growth rate, 
and mean retaliatory killing risk in each census block group against household density 
within that block group. Vertical lines in B-E show cutoff values between land use 
categories: 6.78 buildings/km2 (purple), 49.42 buildings/km2 (pink), and 741.31 
buildings/km2 (orange) (Fig. S3). Housing densities >6.78 (purple) can be intermix or 
interface areas depending on wildland vegetation characteristics- however, in our 
study area, intermix areas are predominantly low (6.78-49.42) while interface areas 
are generally medium (49.42-741.31) and high ( >741.31; Fig. S4).    
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Figure 4.S1. Spatial layers for puma habitat quality and household C footprint plotted 
across the study area (right), in intermix areas (center) and in interface areas (left).  
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Figure 4.S2. Mean household C footprint (tCO2e) across land use categories.   

●

●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●
●

●●●

●
●

●

●●

●

●●●
●
●●●●●●

●

●

●
●
●

●
●●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

a
b

b
c

20

40

60

80

Sp
ar

se

In
te

rm
ix

In
te

rfa
ce

U
rb

an

M
ea

n 
ho

us
eh

ol
d 

C
 fo

ot
pr

in
t (

tC
O

2e
)



	 143	

 
Figure 4.S3. Sector contributions to household C footprints across land use 
categories.  
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Figure 4.S4. Housing density classifications by land use category. As in Fig. 3, land 
use categories are very low (>0 to 6.78 houses/km2), low (6.78-49.42), medium 
(49.42-741.31), and high ( >741.31; Radeloff et al. 2005, Stewart et al. 2007, Mann et 
al. 2014). 
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CONCLUSION 
 

Together, these chapters show that carnivores exhibit complex behavioral 

strategies in human-dominated landscapes that allow them to avoid human features 

spatially and human activity temporally while balancing other goals (Chapter 1). 

However, because humans are unpredictable predators, carnivore behavior is not 

always sufficient in allowing carnivores to avoid being killed by people (Chapter 2). 

In fact, the energetic costs associated with these behaviors may negatively impact 

survival for animals in more developed areas (Chapter 3). Carnivore conservation in 

shared landscapes requires minimizing further development in high-quality source 

areas as well as marginal-quality sink areas (Chapter 3). Minimizing development in 

wildland areas confers benefits to other environmental impacts as well, and urban 

infill presents a win-win strategy for habitat conservation, wildfire risk, and 

household carbon emissions (Chapter 4).   

 The Santa Cruz Mountains landscape is emblematic of a common and 

accelerating form of land use across California and the Western United States: low-

level residential development in wildland areas. That a population of large carnivores 

lives here – in the backyard of Silicon Valley and several major metropolitan areas – 

is a testament both to the resilience of these species as well as the ability for humans 

and wildlife to coexist in shared landscapes. I hope that this research – in shedding 

light on human-carnivore coexistence as well as the broader environmental impacts of 

residential development in wildland areas – will be useful and applicable to the 

conservation of other carnivore populations in similar places.   
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 I want to close with a brief reflection on the more abstract benefits that 

sharing space with carnivores – getting to glimpse one while hiking, seeing a track or 

scat, or just knowing that they are there – has for our own psyches (or at least for 

mine). Carnivore presence in human-dominated landscapes captures our imaginations 

and reminds us that we are connected to other species – even ones that we think of as 

being particularly wild, or fierce, or other. Maybe this allows us to better see the 

wildness and fierceness in smaller, more “mundane” beings, including ourselves. In 

running around and living their lives in spaces that we think of as ours, carnivores 

remind us that the human/nature dichotomy is a false one. 

 

Paws travel over 

crumbling slopes, redwood duff, 

and sometimes concrete 

 

En-chapparalled, just 

off trail. Wild, they see us, 

wild, they know us. 

 

Our cryptic neighbors 

nighttime stealth, daytime distance 

moving to survive 
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