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A B S T R A C T

Healthcare-associated infections (HAI), particularly those involving multi-drug resistant organisms (MDRO), 
pose a significant public health threat. Understanding the transmission of these pathogens in short-term acute 
care hospitals (STACH) is crucial for effective control. Mathematical and computational models play a key role in 
studying transmission but often overlook the influence of long-term care facilities (LTCFs) and the broader 
community on transmission. In a systematic scoping review of 4,733 unique studies from 2016 to 2022, we 
explored the modeling landscape of the hospital-community interface in HAI-causing pathogen transmission. 
Among the 29 eligible studies, 28 % (n = 8) exclusively modeled LTCFs, 45 % (n = 13) focused on non- 
healthcare-related community settings, and 31 % (n = 9) considered both settings. Studies emphasizing 
screening and contact precautions were more likely to include LTCFs but tended to neglect the wider community. 
This review emphasizes the crucial need for comprehensive modeling that incorporates the community’s impact 
on both clinical and public health outcomes.

1. Introduction

Healthcare-associated infections (HAI) present a significant burden 
on acute care and long-term care settings. In 2015, there were roughly 
687,000 HAIs in acute care hospitals in the United States. Each year, 
about 72,000 hospital patient deaths are attributed to HAIs [1]. The 
direct medical costs of HAIs in U.S. hospitals amount to $28.4 billion 
annually [2]. The morbidity and mortality associated with HAIs are 
predicted to increase dramatically as the threat of antimicrobial resis-
tance (AMR) progresses [3] and Multi-drug resistant organisms (MDRO) 
become larger drivers of infections. Despite the enormous cost and 
burden of HAIs, there is still a limited understanding of how 

transmission of HAI-causing pathogens circulates outside the acute care 
facilities. Uncertainty around these mechanisms ultimately undermines 
the effectiveness of infection control and prevention strategies imple-
mented within the healthcare environment to prevent transmission. 
Patient transfers between short-term acute-care hospitals (STACHs) or 
admissions and discharges from skilled nursing facilities to the com-
munity can greatly influence the incidence of colonized patients 
entering healthcare facilities [4]. In addition, reservoirs of HAI-causing 
pathogens outside STACHs can allow for the sustained introduction of 
pathogens into acute care facilities, leading to an increase in the prev-
alence of HAIs. Since colonized patients already have a higher risk of 
developing invasive disease that leads to longer and riskier 
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hospitalizations, the dangers of infection are magnified by MDROs. 
Furthermore, increases in colonized and infected patients can magnify 
the likelihood of onward transmission and increase costs for infection 
control measures within hospitals [5]. Finally, health behaviors in the 
outpatient setting, such as antibiotic use or hemodialysis, are associated 
with greater resistance in HAIs for hospital patients [6–10], causing 
extended hospital stays [11].

One approach to understanding the transmission of HAI-causing 
pathogens is to utilize computational and mathematical models that 
integrate dynamics associated with the transmission, whether fomite or 
direct person-to-person contact. Most epidemiological modeling can be 
classified as differential equation-based, agent-based (individual-based) 
(ABM/IBM), or discrete event simulation. In differential equation-based 
models, populations are typically modeled as having homogeneous 
mixing with cohesive contact patterns, while ABM/IBM can explicitly 
model contact patterns with more nuance and complexity. Different 
mixing assumptions (e.g., homogenous versus heterogeneous) in contact 

patterns can result in different behaviors in modeled community trans-
mission. Population mixing can be differentiated for various settings 
based on movement and social behaviors.

In this study, we broadly defined general community as long-term care 
facilities (e.g., skilled nursing homes, sub-acute rehabilitation facilities) 
and other community settings (e.g., residential homes, outpatient of-
fices, ambulatory care centers, hemodialysis centers). Modeling the 
community-hospital interface can be challenging due to the complex 
dynamics of healthcare access and transmissions across facilities. Fig. 1
illustrates the delineation of each setting in the One Health context. 
Previous systematic reviews have suggested that models of Clostridioides 
difficile transmission rarely considered transmission in LTCFs, nursing 
homes, and communities [12]. Other literature reviews have noted that 
modeling studies of AMR in LTCFs often lacked movement dynamics 
between LTCFs and acute-care hospitals [13]. Staff and visitors can also 
be sources of contamination and HAIs, but are not routinely modeled. 
[14] Finally, health equity concerns, both locally and globally, 

Fig. 1. Possible reservoirs and transmission settings for HAI-causing pathogens. In our analysis, we only investigated the general community and STACHs. However, 
other potential reservoirs of HAI-causing pathogens can exist and contribute to the carriage and transmission of these pathogens.
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necessitate modeling the community to (a) evaluate how dynamics may 
differ in at-risk populations and (b) the different dynamics that char-
acterize low and middle-income country settings, which are underrep-
resented in the modeling literature [15].

We employed a systematic scoping review methodology based on 
PRISMA-ScR guidelines to explore the progress and gaps in mathemat-
ical modeling in healthcare epidemiology, specifically the role of com-
munity transmission. We highlighted the settings and pathogens, 
interventions (counterfactuals), model structure and assumptions, pop-
ulation characteristics, movement and transmission characteristics, and 
the role of data. Subsequently, we investigated the gaps and progress in 
these studies. Finally, we discussed and provided suggestions to advance 
the field of infectious disease modeling of HAI-causing pathogens.

2. Methods

We investigated modeling studies that were published between 
January 1, 2016, and June 15, 2022. The studies must include STACHs 
and the role of transmission of HAI-causing pathogens in community 
settings outside the STACHs. The following sections outline the search 
strategy, screening, and full-text review methods utilized for the current 
study.

2.1. Search strategy

The initial search was conducted on four databases: PubMed, Med-
line, Scopus, and Embase. We developed a comprehensive search query 
using key terms and controlled vocabulary. We first developed a system 
of search terms from four broad categories: (1) HAI-causing pathogens, 
(2) healthcare facility setting, (3) community setting, and (4) modeling 
methods (see Fig. S1 in Appendix A). For each category, subcategories 
were derived with search terms used to query each database. Search 
terms within subcategories were combined using the “OR” Boolean 
operator, and subcategories were combined using “OR” and “AND” 
operators in the final search strategy below. The exhaustive list of search 
terms is presented in Appendix A.

2.2. Selection criteria

All literature was collected and compiled into the Covidence Plat-
form [16]. We followed the guidelines laid out by PRISMA for scoping 
reviews [17]. Once the literature was collected from all four databases 
(Embase, PubMed, Medline, and Scopus), five reviewers conducted the 
preliminary title and abstract screening on Covidence (S.P., G.L., M.J., 
N.S., and F.H.). The screening protocol that reviewers used is described 
in detail in Appendix B.

The second phase encompassed reading the full text and determining 
the eligibility of each study. We compiled the screened studies into a 
Google Sheet shared among ten reviewers (G.L., S.P., M.L., A.Haz., N.S., 
A.Ham., S.L., C.L., A.L.L., F.H., and E.K.). Each reviewer read and 
determined whether the eligibility criteria were met based on the in-
clusion and exclusion criteria mentioned in the following sections. Af-
terward, two reviewers (S.P. and G.L.) reassessed each review for quality 
and accuracy. The questions used to guide the full-text analysis are 
located in Appendix C.

2.2.1. Inclusion criteria
We included studies published as journal articles (e.g., original 

research or letters). Regarding study design, studies needed to include 
STACHs (e.g., academic hospitals or ICUs) in their model. Additionally, 
included studies must incorporate some community settings. We 
generally define general community as long-term care facilities (e.g., 
nursing homes, long-term acute care facilities) and non-healthcare set-
tings (e.g., households, schools, offices). The intention was to include 
models that have an interface between the hospital and community 
where infected patients in the community and hospitals are represented 

explicitly.

2.2.2. Exclusion criteria
In our preliminary screening and full-text review, systematic re-

views, conference presentations, or conference abstracts were excluded 
from our analysis. We excluded any study that was not in English. 
Studies that included only admission and discharge rates as a surrogate 
for community importation were excluded. We also excluded models 
that looked at community transmission without modeling STACHs 
explicitly. Studies that relied on machine learning and statistical models 
were excluded as well.

2.3. Data extraction and analysis

Extracted data included the pathogen type, study setting, model 
structure, and role of data in the modeling process. Ten reviewers (G.L., 
S.P., M.J., A.Haz., N.S., A.Ham., S.L., C.L., A.L.L., F.H., and E.K.) 
reviewed each study in detail and answered questions related to the 
characteristics of each study. The review responses were then compiled 
into a Microsoft Excel Sheet where studies were tabulated and counted.

3. Results

Among the 4,733 unique studies identified in the four databases, 29 
studies met eligibility criteria for full-text analysis of modeling progress, 
trends, and gaps, including short-form questions regarding the model 
structure and study characteristics. A summary of the select study fea-
tures are in Table 1. The results are comprehensively listed in Tables S1 
- S9 in Appendix D. Fig. 2 illustrates the scoping review process and the 
inclusion and exclusion of studies based on PRISMA-ScR guidelines. Of 
the 141 studies that met the criteria in the title and abstract screening, 
111 studies were excluded based on the selection criteria. The most 
common reason was “irrelevant study design,” for which 100 studies 
were excluded. Among the excluded irrelevant study design studies, 16 
studies lacked STACHs, 81 studies either lacked community or long-term 
health facilities in their models, and 45 studies only modeled admission 
and discharge as a simple fixed importation/exportation rate. Addi-
tionally, 11 studies were excluded because they were commentary, 
literature reviews, or conference abstracts.

3.1. Model structure and assumptions

The most common type of model was stochastic agent/individual- 
based (n = 15, 51 %; Fig. 3A) [18–32]. There were eight differential 
equation-based models (27 %) [23,33–39], and all but one were deter-
ministic [35]. In studies that reported their software implementation, 
most models were programmed using C++ (n = 7, 24 %) [24–28,30,40], 
followed by R (n = 5, 17 %) [35,36,38,39,41]. Among the seven studies 
programmed in C++, six studies [24–28,30] utilized the same model.

As with most epidemiological models, individuals’ health/disease 
states were characterized as compartments (e.g., susceptible, infected, 
and colonized). Most studies included at least three disease states, 
including differing levels of susceptibility (e.g., high susceptibility due 
to antimicrobial exposure), infectiousness, or strains (antimicrobial 
resistant versus antimicrobial susceptible). In our analysis, 13 studies 
(45 %) [18–20,22,23,29,34,36,37,40–43] had varying levels of suscep-
tibility, 11 (38 %) [18,19,22,25,33,35,37,39–41,43] had varying levels 
of infectiousness in the infected compartment state, and 4 studies (14 %) 
[35–38] had multiple pathogenic strains included in their model. We 
also found that 13 studies (45 %) [22,23,25–30,33,34,39,44,45] 
included the detection status of colonization.

3.2. Settings and pathogens

Table 1 summarizes the studies that were included in our analysis. In 
the included studies, we found that 9 studies (31 %) included both long- 
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Table 1 
Brief summary of the eligible studies for full-text review.

Study [Refs] Pathogens Publication 
Year

Settings Model Type Hospital-community 
interactions

Contact Network 
or Movement

Country

Durham et al. [40] C.diff 2016 LTCF + Other 
Community

Stochastic Sim/ 
Gillespie Algorithm

Admission and 
discharge

No USA

McLure et al. [18]
C.diff 2019

Other 
Community ABM/IBM

Admission and 
discharge No USA

McLure et al. [19]
C.diff 2019

Other 
Community

ABM/IBM
Admission and 
discharge

No USA

Rhea et al. [20]
C.diff 2019

LTCF + Other 
Community ABM/IBM

Admission, discharge, 
transfer, and 
readmission

Yes USA

Rhea et al. [21]
C.diff 2020 LTCF ABM/IBM

Admission, discharge, 
transfer, and 
readmission

Yes USA

Toth et al. [22]
C.diff 2020

LTCF + Other 
Community ABM/IBM

Admission, discharge, 
transfer, and 
readmission

No USA

Van Kleef et al. [23] C.diff 2016 LTCF + Other 
Community

ABM/IBM Admission, discharge, 
and readmission

No UK

Changruenngam 
et al. [33]

Carbapenem-resistant 
Klebsiella pneumonia 2022

Other 
Community

Differential 
Equations

Admission and 
discharge No

Not 
specified

Bartsch et al. [30]
CRE 2020 LTCF ABM/IBM

Admission, discharge, 
transfer, and 
readmission

Yes USA

Lee et al. [25]
CRE 2020

LTCF + Other 
Community ABM/IBM

Admission, discharge, 
transfer, and 
readmission

No USA

Lee et al. [27]
CRE 2021 LTCF ABM/IBM

Admission, discharge, 
transfer, and 
readmission

Yes USA

Lee et al. [26]
CRE 2021 LTCF ABM/IBM

Admission, discharge, 
transfer, and 
readmission

Yes USA

Lee et al. [28]
CRE 2016 LTCF ABM/IBM

Admission, discharge, 
transfer, and 
readmission

Yes USA

Lin et al. [34]
CRE 2021

LTCF + Other 
Community

Differential 
Equations

Admission, discharge, 
and transfer Yes USA

Toth et al. [29]
CRE 2017 LTCF ABM/IBM

Admission, discharge, 
transfer, and 
readmission

Yes USA

Knight et al. [35] E.coli 2018 Other 
Community

Differential 
Equations

Admission and 
discharge

No UK

MacFadden et al. 
[36] E.coli 2019

Other 
Community

Differential 
Equations

Admission and 
discharge No Sweden

Talaminos et al. 
[42]

E.coli 2016
LTCF + Other 
Community

Discrete Event/ 
Microsim

Admission and 
discharge

No Spain

Godijk et al. [37] ESBL-producing 
Enterobacteriaceae

2022 Other 
Community

Differential 
Equations

Admission, discharge, 
and readmission

No Netherlands

Haverkate et al. [43] ESBL-producing 
Enterobacteriaceae 2017

Other 
Community Markov Model

Admission and 
discharge No Netherlands

Salazar-Vizcaya 
et al. [41] ESBL-producing Klebsiella 

pneumoniae
2022 Other 

Community
Differential 
Equations

Admission, discharge, 
transfer, and 
readmission

No Switzerland

Bartsch et al. [24] Generic nosocomial 
bacteria

2021 LTCF ABM/IBM Admission and 
discharge

Yes USA

Belik et al. [31] Generic nosocomial 
bacteria

2016 Other 
Community

ABM/IBM Admission, discharge, 
and transfer

Yes Germany

Van Den Dool et al. 
[46]

Generic nosocomial 
bacteria 2016

LTCF + Other 
Community

Discrete Event/ 
Microsim

Admission and 
discharge Yes Netherlands

Van Kleef et al. [38] Generic nosocomial 
bacteria

2017
Other 
Community

Differential 
Equations

Admission and 
discharge

No EU

Di Ruscio et al. [32] MRSA 2019 LTCF + Other 
Community

ABM/IBM Admission and 
discharge

Yes Norway

Gowler et al. [39] MRSA 2022 Other 
Community

Differential 
Equations

Admission and 
discharge

No Not 
specified

Rocha et al. [44]
MRSA 2020 LTCF Network Sim

Admission, discharge, 
and readmission Yes Sweden

Piotrowska et al. 
[45]

Multidrug resistant 
Enterobacteriaceae 2020

Other 
Community Network Sim

Admission, discharge, 
transfer, and 
readmission

Yes Germany

Key Abbreviations: ABM = agent-based model; C.Diff = Clostridioides difficile; CRE = Carbapenem-resistant Enterobacterales; ESBL = Extended-spectrum β-lac-
tamase; IBM = individual-based model; LTCF = long term care facility; MRSA = Methicillin-resistant Staphylococcus aureus.
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term care settings and other types of community settings (e.g., house-
holds and workplaces) in their model [20,22,23,25,32,34,40,42,46], 
while 8 studies (27 %) only included long-term care settings 
[21,24,26–30,44] and 12 studies (41 %) only included other types of 
community settings [18,19,31,33,35–39,41,43,45]. Fig. 3B lists the 
HAI-causing pathogens that were included in models reviewed; the two 
most common pathogens modeled were Clostridioides difficile (C. diff) (n 
= 7, 24 %) [18–23,40] and Carbapenem-resistant Enterobacteriaceae 
(CRE) (n = 7, 24 %) [25–30,34]. Fig. 3C shows the distribution of 
transmission settings modeled by the pathogen category. Studies that 
modeled CRE were more likely to include LTCFs, while studies that 
modeled C.diff included more community settings outside of LTCFs. 
Most studies utilized data from the United States (n = 13, 45 %) 
[18–22,24–30,34,40]. No studies included data from low- and middle- 
income countries (LMIC).

3.3. Study interventions

Fig. 4 summarizes the reviewed studies by model characteristics and 
setting. Many studies tested different aspects of an infection, prevention, 
and control (IPC) measures. Eight studies investigated the imple-
mentation of contact precautions and isolation [24,26,28–30,32,33,40], 
and three studies with those interventions included other community 
settings [32,33,40]. Other IPC interventions include improving HCW 
hygiene (n = 5, 17 %) [26,38–40,44], environmental cleaning (n = 1, 3 
%) [40], and decolonization treatment (n = 4, 14 %) [24,26,32,39]. 
Studies also included non-specific abstraction of reduction in hospital 

transmission (n = 6, 21 %) [19,27,34,39,41,42] and community trans-
mission (n = 2, 7 %) [19,40].

Studies that investigated improved surveillance and screening (n = 9, 
31 %) [26,28–32,34,40,44] were more likely to include LTCFs (n = 8, 
28 %) [26,28–30,32,34,40,44] and less likely to include other commu-
nity settings (n = 4, 14 %) [31,32,34,40]. Three studies (10 %) included 
both community and LTCF settings [32,34,40]. Studies that included 
interfacility coordination (n = 3, 10 %) [24,28,30] or regional registries 
(n = 2, 7 %) [25,27] interventions where multiple stakeholders were 
involved usually included LTCFs, but only one study included other 
community settings [25].

As for pharmaceutical interventions, eight studies that varied anti-
microbial consumption and prescribing, i.e., antimicrobial stewardship 
efforts (n = 8, 28 %) [19,21,23,33,36,37,41,42] while two studies 
investigated the impact of vaccination (n = 2, 7 %) [22,23].

3.4. Population characteristics

Besides disease states, most models assumed the population was 
homogenous and that behavior, susceptibility, and transmissibility were 
identical across all demographic segments of the population. However, 
six studies (21 %) included age differences in the population 
[20,21,32,39,40,43], three studies (10 %) included gender in their 
analysis [20,21,43], two studies (7 %) included race [20,21], and one 
study (3 %) included ethnicity (immigrant versus non-immigrant) [32]. 
No study specifically analyzed health disparities between populations 
beyond reporting population-specific outcomes.

Fig. 2. The PRISMA-ScR flowchart showing the inclusion process of the systematic scoping review. During the eligibility stage, exclusion based on “hospital 
interface” indicates studies that did not have mechanistic relationships or flows between community (homes, nursing homes, long-term care facilities) and acute 
care hospitals.
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3.5. Movement and transmission characteristics

In terms of movement of patients, all models included admissions 
and discharges to STACHs and/or LTCFs. Readmission was included 
explicitly in 13 studies (44 %) [20–30,37,45]. There were 12 studies (41 
%) that included transfers between STACHs and other healthcare facil-
ities [20–22,24–30,34,46]. Among those studies, nine studies (31 %) 
incorporated transfers between STACHs [20–22,24,26,27,30,34,44] and 
three of them modeled additional movement between STACHs and 
communities [20,21,34]. One study (3 %) simulated international travel 
outside the country of interest [32]. Seven studies with spatially defined 
locations included geospatial features and considerations, including 
hospital or community settings (n = 5, 17 %) [20,21,34,44,45] and 
movement assumptions based on near proximity to hospitals (n = 2, 7 
%) [32,46]. We found that two studies (7 %) utilized data to investigate 
the impacts of movement on colonization in the community setting 
between high and low-prevalence geographical regions [41,43].

Most studies (n = 22, 76 %) assumed direct transmission and did not 
distinguish between patients and healthcare workers 
[18,19,22,23,25–29,31–36,40–46]. Three studies (10 %) that consid-
ered HCW-mediated transmission in their analysis, where HCWs 
explicitly acted as vectors between patients [24,30,38]. Haverkate et al. 
[43] included hospital-visitor interactions in their model. In three 
studies (10 %) with healthcare workers, Di Ruscio et al. [32] and van 
Kleef et al. [38] modeled HCWs identically to the general population 
(homogenous mixing), while Changruenngam et al. [33] modeled 
transmission as only possible through HCW-mediated contact networks. 
Two studies (7 %) with community transmission included zoonotic or 
foodborne transmission [18,19].

3.6. Role of data and parameterization

Among the 29 included studies, all used data to inform their pa-
rameters in some manner. There were 14 studies (48 %) 
[20,21,24,26–32,34,43–46] that incorporated contact or movement 
networks, for example transfers between healthcare facilities and con-
tact rate matrix between populations. Parameters in all but two studies 
[33,42] were informed by primary source data, such as a survey or 
electronic health records (EHR) data (e.g., admission rates, average 
length-of-stay), while 16 studies (55 %) were parameterized by fitting 
their models to data, such as observed cases 
[18–23,29,32,33,35,36,39–43]. In addition, sensitivity analyses (Latin- 
hypercube parameter sampling) were performed in 22 studies (76 %) 
[18,19,22–30,32,34–36,38–43,46]. Finally, for parameters that could 
not be directly informed, most studies utilized parameter values from 
other literature (n = 28, 97 %) with Belik et al. being the exception [31]. 
Most studies (n = 23, 79 %) inferred their model parameters based on 
expert opinion except for six studies [19,31,32,37,44,45]. Only two 
studies (7 %) quantified the uncertainty of less-known parameters 
[39,40].

4. Discussion

Although there has been progress in incorporating community and 
LTCF settings in simulating nosocomial infections, most HAI modeling 
studies still limit themselves by investigating only the healthcare set-
tings and do not include community or long-term care facilities with 
higher risks of HAIs. Only 29 studies (21 %) out of the 140 studies that 
were eligible for full-text screening included community settings. While 
these computational and mathematical models of the hospital and 

Fig. 3. (A) Stacked bar chart showing the number of studies with corresponding model types stratified by deterministic and stochastic modeling implementations. (B) 
Pie chart showing the distribution of studies for each class of HAI-causing pathogens modeled for all 29 included studies. (C) Stacked bar chart showing the number of 
studies by modeled settings by pathogens. The plot shows the number of studies for each pathogen and is stacked by modeled settings: long-term care facilities 
(LTCFs), other community settings, or both (LTCFs & Other Community).
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community interface can provide valuable insights into the transmission 
of HAI-causing pathogens and incidences of infections, there are also 
limitations to those models to consider.

Overall, the included studies had models tailored to the settings of 
higher transmission risk. For example, C. diff and E.Coli, which have a 
higher risk of transmission in community settings outside of LTCFs, were 
more likely to include those settings in their model, while CRE, which is 
primarily nosocomial, was more likely only to include LTCFs (Fig. 3C). 
However, transmission of these pathogens can be complex and include a 
myriad of pathways and interactions in healthcare and community en-
vironments, making it challenging to capture all mechanisms in a model.

All studies included patient admission and discharges to STACHs and 
LTCFs. A handful of studies explicitly included movement between 
healthcare settings, but only a few studies included travel between 
communities and hospitals or readmission. Some models were more 
nuanced with patient transfer or movement networks, and those studies 
were typically stochastic ABMs and included real-world data (e.g., 
EHRs) to build a patient flow network. In network modeling studies with 
both communities and LTCFs, agents in communities are characterized 
by a synthetic population that defines transmission risks based on con-
tacts from stochastic movement in the community [20,32], random 
mixing [34], or no possibility of transmission [46]. No study leveraged a 
synthetic population to produce more realistic contact networks.

Model development and validation with empirical data or expert 
opinion are necessary to assume the generalizability of results. All 
studies included data to inform the model structure or parameters. A 

major limitation is the lack of data on transmission and prevalence in the 
community. Based on the analysis of the role of data and parameteri-
zation, roughly half of the studies included information about the con-
tact or movement network, which would introduce added realism to the 
propagation of colonization events in community settings. Even with a 
synthetic population, studies with contact networks still utilize random 
contacts. A small number of those studies conducted uncertainty quan-
tification. Leveraging uncertainty quantification methodologies can 
provide insights into model behavior where parameters that drive 
transmission are yet to be quantified. This suggests that most studies that 
do consider community settings may oversimplify transmission dy-
namics that impact changes in the importation of HAI-causing patho-
gens into the healthcare setting.

Models are often used to measure intervention effectiveness before 
real-world implementation. Studies that include antimicrobial stew-
ardship interventions that vary AMR use focused on other community 
settings outside of LTCFs, which is typical for those types of programs 
because AMR-based interventions occur within and outside of health-
care settings. As expected, those studies also include differing levels of 
susceptibility based on AMR consumption rate, which will alter trans-
missibility risks in the hospital and community. Durham et al. found that 
the effect of antimicrobial drug use exacerbated incidence in the com-
munity, which is amplified in a high-transmission setting like LTCFs and 
STACHs [40]. In contrast, we found that most models that included 
screening and surveillance interventions typically focused on LTCFs and 
were less likely to include other community settings (Fig. 4). One 

Fig. 4. A heatmap showing the co-occurrence of study settings and various model characteristics with different modeled interventions. The number of studies that fit 
the description is indicated both numerically in the boxes and by shading of the boxes.
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limitation of testing surveillance of healthcare settings in models 
without communities is an inaccurate assessment of public health 
impacts.

4.1. Challenges and gaps in modeling transmission of HAI-causing 
pathogens

Studying the impacts of healthcare-level interventions can be diffi-
cult if the community is not sufficiently modeled. Colonization of most 
HAI bacteria, like Staphylococcus aureus and Carbapenem-resistant 
Enterobacteriaceae, tends to be subclinical or asymptomatic, which cre-
ates additional difficulties in identifying the importation of carriers from 
the community upon admission. Identification of colonized patients 
through surveillance screening can reduce onward transmission when 
patients are placed under precautions; however, the greater pressure 
from more colonized patients entering the facility will typically lead to 
increased nosocomial transmission. In addition to patients themselves, 
visitors and healthcare workers may import HAI-causing pathogens after 
acquisition from regular contact with the broader community, including 
household members, random contacts, and animals. [47]

Similarly, population characteristics such as race, ethnicity, age, and 
geographic attributes must be accounted for in the model to assess the 
potential impact of health disparities on both transmission and effec-
tiveness of interventions. None of the identified studies included any 
health disparity research in their analysis, which can be detrimental to 
understanding the increased morbidities associated with HAI-causing 
pathogens in impoverished communities and safety-net hospitals. [48] 
Additionally, examining the impact of HAIs in vulnerable populations 
and incorporating population structure, including spatial and age 
characteristics, can provide valuable insight into the spread of disease. 
[49]

From a high-level disease importation perspective, no studies were 
conducted in low or middle-income countries where HAI prevalence is 
much higher than in Europe and the U.S. [50] Furthermore, most studies 
in this scoping review did not include international travel, which has 
been shown to introduce HAI-causing pathogens and antimicrobial- 
resistant bacteria through importation. [51]

4.2. Opportunities and the one health perspective

Understanding the fluctuating and changing prevalence of HAI- 
causing pathogens can help determine the disease burden on hospitals 
and other healthcare facilities. Seasonal changes in transmission be-
tween seasons can be modeled, given their seasonal variations of HAI- 
related hospitalization [52]. Given the advances in other infectious 
disease modeling, we acknowledge tradeoffs in data availability on 
community prevalence, biological understanding, and research efforts. 
Transmission models of other pathogens, especially ones that cause 
upper respiratory infections and circulate widely in the community, 
such as influenza [53], pertussis [54], MDR-tuberculosis [55], and, more 
recently, SARS-CoV-2 [56,57], have included the community-hospital 
interface due to their importance in the disease dynamics and their 
contributions to nosocomial infections. Household transmissions can be 
modeled when epidemiological data becomes available, which was the 
case for SARS-CoV-2 [45]. Spatial features of disease spread have also 
been modeled [58]. For other infectious diseases, we see advances in 
understanding human and social behavior, such as HIV [59], where drug 
use and sexual activity are modeled. Multiscale interactions such as 
within-host (immune-viral interactions) and between-host (trans-
mission) dynamics have also been investigated for many diseases 
[60,61].

A One Health approach, which considers the interdependencies of 
human, animal, and environmentalhealth, can help bridge these gaps 
and provide a more comprehensive understanding of the role of com-
munity reservoirs in HAI incidences. By understanding the gaps in 
modeling in the One Health context, we can start speculating about the 

missing information and knowledge, such as data and modeling 
methods, and begin formalizing a plan to refocus data collection and 
propose better paradigms in modeling. Given the One Health context, 
we also need to understand how other reservoirs, shown in Fig. 1, play a 
role in importing HAI-causing pathogens into the hospital. Under-
standing multiscale interactions (within-host and between-host) can 
also better inform our understanding of colonization dynamics in in-
dividuals and their contribution to community prevalence. Animal 
carriage can also play a large role in propagating these pathogens, 
whether foodborne or zoonotic, and was included in only one study in 
our review [18].

Community transmission has been extrapolated from admission and 
discharge rates in many modeling studies investigating HAI-causing 
pathogens. Although simplifying importation may be sufficient in 
some studies, understanding the dynamic changes in HAI-causing 
pathogen prevalence in the community can better inform policies and 
interventions that reduce HAI prevalence in the hospital. Possible 
population-level interventions include vaccines and outpatient decolo-
nization. These interventions will impact general communities with no 
specific place or settings, which were often abstracted in models with no 
LTCFs [18,19,33,35–39,41,45].

4.3. Need for digital and public health surveillance

Most studies investigated STACHs and LTCFs with greater granu-
larity and communities with less granularity. This leads to potential gaps 
in understanding finer and more nuanced transmission pathways that 
could occur in non-healthcare settings. Improvements in digital and 
community surveillance can add granularity to models of the commu-
nity. Digital surveillance can help construct a synthetic social mobility 
network that drives the true prevalence of HAI-causing pathogens in the 
community. Tracking patient movement between hospitals and com-
munities, whether in their homes or a long-term care facilities, while 
collecting their data either passively (e.g., wastewater monitoring, 
digital surveillance) or actively (e.g., follow-up sampling) can help 
models achieve higher fidelity and incorporate more realistic disease 
dynamics of AMR and HAIs. For example, infection with C. diff increases 
the risk of infection in household members [62]. Even hospitalization 
without C. diff increased the risk of other family members having similar 
infections [63]. The latter suggests that asymptomatic colonization may 
play an important role in community and subsequent hospital 
transmission.

Although studies included in this scoping review capture the com-
munity abstractly, further data collection is still needed, whether 
through active surveillance via sampling or tracking colonized patients 
through the community. Tracking HAI-causing pathogens in animal 
populations can inform potential zoonotic and foodborne transmission 
[47]. McLure et al. [18] modeled non-human populations, such as 
livestock, which would have benefited from tracking animal pop-
ulations. Multiple data sources, like wastewater surveillance and EHR 
data, must be integrated to understand the burden of HAI-causing 
pathogens fully. Three studies attempted to model households 
[31,42,43], where community-based surveillance, such as wastewater 
monitoring, could shed insight into inter-household transmission. 
Additionally, understanding and modeling health disparities between 
demographic and social groups may be better informed through 
enhanced public health surveillance in low-income and underserved 
areas. Opportunities to improve disease detection in lower and middle- 
income countries can be achieved through syndromic surveillance and 
accessible home testing [64].

4.4. Review scope and limitations

As with most scoping reviews, this review was subject to some lim-
itations in scope. The review investigated four databases (PubMed, 
Medline, Scopus, and Embase) using comprehensive search terms but 
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may have missed studies that did not specify their use in modeling. Any 
study outside of these databases was not included. Additionally, we 
investigated recent trends and did not include studies before January 1, 
2016. Studies that relied on statistical and machine learning models 
were not selected due to their lack of mechanistic dynamics (i.e., black 
box). However, these studies may yield additional insights into com-
munity transmission that are not mechanistically understood and detect 
possible causation.

5. Conclusion

Computational and mathematical modeling is essential in under-
standing the transmission of healthcare-associated infections (HAI) 
pathogens. However, it is vital to recognize the limitations of these 
models, including dependence on assumptions and input data, difficulty 
in fully capturing all relevant factors, lack of community-level data, and 
neglect of health disparities. Accurate assessments of clinical and public 
health interventions, such as improved screening and contact pre-
cautions, require studies to model the disease dynamics in the commu-
nity. Moreover, modeling communities allow studies to recognize the 
contributions of external reservoirs on nosocomial transmission and 
clinical disease prevalence. We propose a One Health approach to 
identify and bridge these gaps in HAI modeling.
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support for local action: Modeling strategies to facilitate behavior adoption in 
urban-poor communities of Liberia for sustained COVID-19 suppression, Epidemics 
37 (2021) 100529, https://doi.org/10.1016/j.epidem.2021.100529.

G. Lin et al.                                                                                                                                                                                                                                      One Health 20 (2025) 100951 

10 

https://doi.org/10.7326/M18-0850
https://doi.org/10.1017/S0950268819000384
https://doi.org/10.1017/S0950268819000384
https://doi.org/10.1016/j.jhin.2019.03.001
https://doi.org/10.1016/j.jhin.2019.03.001
https://doi.org/10.1089/hs.2019.0021
https://doi.org/10.1371/journal.pone.0234031
https://doi.org/10.1371/journal.pone.0234031
https://doi.org/10.1016/j.vaccine.2020.06.081
https://doi.org/10.1016/j.vaccine.2020.06.081
https://doi.org/10.1016/j.vaccine.2016.09.046
https://doi.org/10.1001/jamanetworkopen.2021.19212
https://doi.org/10.1001/jamanetworkopen.2021.19212
https://doi.org/10.1093/cid/ciz300
https://doi.org/10.1093/aje/kwaa247
https://doi.org/10.1093/aje/kwaa247
https://doi.org/10.1093/cid/ciaa072
https://doi.org/10.1093/cid/ciaa072
https://doi.org/10.1093/aje/kwv299
https://doi.org/10.1093/cid/cix370
https://doi.org/10.1093/INFDIS/JIZ288
https://doi.org/10.1007/978-3-319-28028-8_22
http://refhub.elsevier.com/S2352-7714(24)00277-5/rf0160
http://refhub.elsevier.com/S2352-7714(24)00277-5/rf0160
http://refhub.elsevier.com/S2352-7714(24)00277-5/rf0160
http://refhub.elsevier.com/S2352-7714(24)00277-5/rf0160
https://doi.org/10.1038/s41598-022-07728-w
https://doi.org/10.1038/s41598-022-07728-w
https://doi.org/10.1017/ice.2021.361
https://doi.org/10.1017/ice.2021.361
https://doi.org/10.1186/s12916-018-1121-8
https://doi.org/10.1186/s12916-018-1121-8
https://doi.org/10.1093/cid/ciy978
https://doi.org/10.1371/journal.pcbi.1009875
https://doi.org/10.12688/wellcomeopenres.11033.2
https://doi.org/10.12688/wellcomeopenres.11033.2
https://doi.org/10.1371/journal.pone.0264344
https://doi.org/10.3201/eid2204.150455
https://doi.org/10.1186/s12879-022-07441-z
https://doi.org/10.1017/S0950268816000030
https://doi.org/10.1016/j.cmi.2016.08.021
https://doi.org/10.1038/s41598-020-66270-9
https://doi.org/10.1016/j.epidem.2020.100408
https://doi.org/10.1016/j.epidem.2020.100408
https://doi.org/10.1017/ice.2016.59
https://doi.org/10.1017/ice.2016.59
https://doi.org/10.1186/s13756-020-00737-2
https://doi.org/10.1186/s13756-020-00737-2
https://doi.org/10.1007/s11908-021-00758-x
https://doi.org/10.1007/s11908-021-00758-x
https://doi.org/10.1098/rsif.2019.0317
https://doi.org/10.1098/rsif.2019.0317
https://doi.org/10.1016/S0140-6736(10)61458-4
https://doi.org/10.1186/s13073-021-00893-z
https://doi.org/10.1186/s13073-021-00893-z
https://doi.org/10.1093/aje/kws273
https://doi.org/10.1093/aje/kws273
https://doi.org/10.1126/science.1115717
https://doi.org/10.1086/644755
https://doi.org/10.1086/644755
https://doi.org/10.1016/S0140-6736(07)61636-5
https://doi.org/10.1016/S0140-6736(07)61636-5
https://doi.org/10.1016/j.epidem.2021.100529
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