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ABSTRACT OF THE DISSERTATION

Haplotype Assembly and Small Variant Calling using Emerging Sequencing Technologies

by

Peter Joseph Edge

Doctor of Philosophy in Computer Science

University of California San Diego, 2019

Professor Vikas Bansal, Chair

Short read DNA sequencing technologies from Illumina have made sequencing a human

genome significantly more affordable, greatly accelerating studies of biological function and the

association of genetic variants to disease. These technologies are frequently used to detect small

genetic variants such as single nucleotide variants (SNVs) using a reference genome. However,

short read sequencing technologies have several limitations. First, the human genome is diploid

and short reads contain limited information for assembling haplotypes, or the sequences of alleles

on homologous chromosomes. Moreover, there is significant input DNA required, which poses

challenges for analyzing single cells. Further, there is limited ability to detect genetic variants

inside long duplicated sequences that occur in the genome. As a result, there has been widespread

xv



development of novel methods to overcome these deficiencies using short reads. These include

clone based sequencing, linked read sequencing, and proximity ligation sequencing, as well as

various single cell sequencing methods. There are also entirely new sequencing technologies from

Pacific Biosciences and Oxford Nanopore Technologies that produce significantly longer reads.

While these emerging methods and technologies demonstrate improvements compared to short

reads, they also have properties and error modalities that pose unique computational challenges.

Moreover, there is a shortage of bioinformatics methods for accurate small variant detection and

haplotype assembly using these approaches compared to short reads. This dissertation aims to

address this problem with the introduction of several new algorithms for highly accurate haplotype

assembly and SNV calling. First, it introduces HapCUT2, an algorithm that can rapidly assemble

haplotypes using a broad range of sequencing technologies. Second, it introduces an algorithm

for variant calling and haplotyping using SISSOR, a recently introduced microfluidics based

technology for sequencing single cells. Finally, it introduces Longshot, an algorithm for detecting

and phasing SNVs using error-prone long read technologies. In each case, the algorithms are

benchmarked using multiple real whole-genome sequencing datasets and are found to be highly

accurate. The methods introduced in this dissertation contribute to the goal of sequencing diploid

genomes accurately and completely for a broad range of scientific and clinical purposes.
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Chapter 1

Introduction

1.1 The diploid human genome

The human genome describes the heritable material that controls cellular function and

organism development. The human genome is comprised of 22 autosomal chromosomes as well

as the sex chromosomes, which are DNA molecules comprised of four nucleotides. For this

reason, each chromosome can be represented as a string of the four letters A, C, G, T. Since

humans are diploid, there are two “homologous” copies of each autosomal chromosome (one

copy from each parent) that are highly similar to one another (∼99.9% identical), but have

different alleles (alternate forms) at the differing sites. The sequences of alleles on homologous

chromosome copies are known as haplotypes. The human genome is approximately 3.2 billion

bases long in total, or approximately 6.4 billion bases considering its diploid nature. The genome

contains genes, which encode the sequences of proteins that are responsible for a large amount of

cellular function. Therefore, variations between genomes can be tied to differences in phenotype

(observable traits), including genetic diseases.

1



1.2 Advances in DNA sequencing technology

The process of reading the DNA bases in a genome is called “DNA sequencing”. The

first complete draft of the human genome was completed in 2003 after 13 years of effort with a

total cost of 2.7 billion dollars [1]. This draft was constructed by the collaboration of many labs,

using an expensive and labor-intensive method of DNA sequencing. In 2006, the first “second

generation sequencing” method was introduced that provided significantly greater throughput

and cheaper operation [2]. Since then, the price of second generation sequencing has continued

to drop, and it is now possible to sequence a human genome for less than $1,000 [3]. This trend

has resulted in increased interest in sequencing the genomes of many individuals in order to

better understand how genetic variations relate to observable traits and human disease [4]. It

is believed that routine and affordable DNA sequencing will bring in an age of personalized

medicine, when medical treatments will be custom tailored to an individual’s genome to yield

optimal results [5, 6].

1.3 Single nucleotide variant calling

All available DNA sequencing methods work by sampling subsequences, or reads, from

the full DNA sequence. The reads contain errors, but by sampling with redundancy the reads

can be used to determine the overall sequence. Determining the entire sequence without prior

knowledge, also known as de novo assembly, requires long read lengths and significant computa-

tion in order to determine the entire sequence unambiguously. It is common instead to align the

reads to a “reference genome” and detect the variants, or differences, between the sample and the

reference genome. 90% of variants in the genome are alterations of a single base, known as single

nucleotide variants (SNVs)1 [7, 8]. Using the common language of DNA variants also enables

1The term single nucleotide polymorphism (SNP) is sometimes used interchangeably with the term SNV, but is
now usually understood to refer to SNVs that have a frequency of at least 1% in the population
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the creation of databases that associate those variants to phenotypes and diseases. There are many

known associations of SNVs to diseases, including lung cancer, type II diabetes, and a variety of

mendelian disorders [9, 10]. Oftentimes, observed traits are the result of the combined effect of

many variants or complex interactions between different DNA variants [11, 12].

1.4 Limitations of second generation sequencing

While second generation sequencing brought on an era of cheap DNA sequencing and

large-scale sequencing studies, it has notable limitations. Firstly, the method produces significantly

shorter read lengths then previous methods, and for this reason it is commonly referred to as “short

read sequencing” [13]. While short read sequencing enables the detection of SNVs and short

insertion deletion (indel) variants, it reveals little to no information about haplotypes (also known

as the variant phase). Most short reads cover at most a single variant site, so it is not possible to

associate alleles on adjacent sites to the same haplotype. Haplotype information is functionally

relevant and necessary for complete prediction of phenotype. For example, haplotype information

can predict diseases caused by a phenomenon known as compound heterozygosity [14].

Another limitation of short-read sequencing, which is common to most sequencing

methods, is that there is appreciable input DNA required to accurately sequence a sample. While

it is common to perform short read sequencing using a bulk tissue sample, there is significant

clinical and scientific interest in sequencing the genomes of single cells[15, 16, 17]. Because of

the input DNA required for short read sequencing, this is commonly performed by whole genome

amplification (repeated DNA replication) followed by short read sequencing. This results in

significant false positive variants resulting from amplification error [18].

Another limitation of short read sequencing has to do with the fact that reference-based

analysis requires reads to be “mapped” unambiguously to the appropriate site in the reference

genome. Approximately 3.6% of the genome consists of long duplicated sequences where the
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short reads cannot be accurately mapped, since it is not known which copy of the duplication a

read belongs to [19]. In order to detect variants in these regions, it is usually necessary to use

longer reads that can span repetitive sequence.

1.5 New technologies and new challenges

There has been widespread development of new technologies and protocols aiming to

address the deficiencies of short read sequencing. These include methods to encode information

about a larger DNA molecule into short reads using a pooling or partitioning based strategy. These

include clone based sequencing as well as linked-read sequencing [20, 21]. These strategies allow

the assembly of long haplotypes using short reads, but the read information may be sparsely

distributed over the original molecule (in the case of linked reads) or have errors when short

reads are mistakenly attributed to the wrong molecule (more common in clone based sequencing).

There are also techniques such as proximity ligation sequencing which encode spatial information

about the genome into short reads, and this method can be used to assemble haplotypes [22, 23].

This technique can result in haplotype errors caused by spatial interactions with homologous

chromosomes. New single-cell sequencing methods have been developed, and for these it is

necessary to overcome errors from genome amplification [24]. There are also entirely new “3rd

generation” sequencing technologies such as those from Pacific Biosciences (PacBio) and Oxford

Nanopore Technologies. These technologies produce significantly longer reads than second

generation sequencing, at the cost of a significantly higher error rate [25, 26]. Each of these new

technologies introduces benefits over traditional short reads, but also introduces new challenges

that must be overcome with computational techniques.
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1.6 Scope of the thesis

Despite encouraging progress for these new emerging sequencing technologies, there is

nonetheless a shortage of bioinformatics methods for accurately detecting SNVs and assembling

haplotypes using data from these methods compared to those for short reads. The scope of this

thesis is the discovery of novel computational techniques for detecting SNVs and assembling

haplotypes using emerging sequencing technologies.

First, we consider the problem of haplotype assembly. Chapter 2 introduces an algorithm,

HapCUT2, that is designed to assemble haplotypes quickly and accurately using a wide variety

of sequencing technologies. We show that HapCUT2 rapidly assembles haplotypes with best-

in-class accuracy using multiple different data types, including clone-based sequencing, linked-

read sequencing, single molecule real-time (SMRT) sequencing, and proximity ligation (Hi-C)

sequencing.

Secondly, we consider the problem of single-cell sequencing. As mentioned earlier,

single-cell sequencing usually requires the error-prone process of whole genome amplification.

Chapter 3 considers a new method, SISSOR, that uses a microfluidic device to enable highly

accurate variant calling and haplotyping for single cells by amplifying the single strands of the

double stranded DNA molecule separately. This high accuracy is achieved with the help of a

novel algorithm that models the SISSOR protocol and the unique error modalities it presents, as

well as haplotype-assembly-based analyses.

Finally, we consider the problem of detecting SNVs using error-prone reads. Third-

generation sequencing technologies such as those from Pacific Biosciences and Oxford Nanopore

Technologies offer significantly greater read lengths than short read sequencing, at a higher per

base error rate. These longer reads enable the assembly of long haplotypes as well as genotyping

variants that occur in duplicated regions with low short read mappability. However, there are

limited methods for detecting SNVs in diploid organisms using these read technologies. Chapter

5



4 introduces an algorithm, Longshot, that performs highly accurate SNV calling and haplotype

assembly for error prone long read technologies.
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Chapter 2

HapCUT2: robust and accurate haplotype

assembly for diverse sequencing

technologies

2.1 Abstract

Many tools have been developed for haplotype assembly - the reconstruction of individual

haplotypes using reads mapped to a reference genome sequence. Due to increasing interest

in obtaining haplotype-resolved human genomes, a range of new sequencing protocols and

technologies have been developed to enable the reconstruction of whole-genome haplotypes.

However, existing computational methods designed to handle specific technologies do not scale

well on data from different protocols. We describe a new algorithm, HapCUT2, that extends

our previous method (HapCUT) to handle multiple sequencing technologies. Using simulations

and whole-genome sequencing (WGS) data from multiple different data types – dilution pool

sequencing, linked-read sequencing, single molecule real-time (SMRT) sequencing, and proximity

ligation (Hi-C) sequencing – we show that HapCUT2 rapidly assembles haplotypes with best-
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in-class accuracy for all data types. In particular, HapCUT2 scales well for high sequencing

coverage and rapidly assembled haplotypes for two long-read WGS datasets on which other

methods struggled. Further, HapCUT2 directly models Hi-C specific error modalities resulting in

significant improvements in error rates compared to HapCUT, the only other method that could

assemble haplotypes from Hi-C data. Using HapCUT2, haplotype assembly from a 90× coverage

whole-genome Hi-C dataset yielded high-resolution haplotypes (78.6% of variants phased in a

single block) with high pairwise phasing accuracy (∼ 98% across chromosomes). Our results

demonstrate that HapCUT2 is a robust tool for haplotype assembly applicable to data from diverse

sequencing technologies.

2.2 Introduction

Humans are diploid organisms with two copies of each chromosome (except the sex

chromosomes). The two haplotypes (described by the combination of alleles at variant sites on

a single chromosome) represent the complete information on DNA variation in an individual.

Reconstructing individual haplotypes has important implications for understanding human genetic

variation, interpretation of variants in disease, and reconstructing human population history [27,

28, 29, 30]. A number of methods, computational and experimental, have been developed

for haplotyping human genomes. Statistical methods for haplotype phasing using population

genotype data have proven successful for phasing common variants and for genotype imputation

but are limited in their ability to phase rare variants and phase long stretches of the genome that

cross recombination hot-spots [27, 31].

Haplotypes for an individual genome at known heterozygous variants can be directly

reconstructed from reference-aligned sequence reads derived from whole-genome sequencing.

Sequence reads that are long enough to cover multiple heterozygous variants provide partial hap-

lotype information. Using overlaps between such haplotype-informative reads, long haplotypes
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can be assembled. This haplotype assembly approach does not rely on information from other

individuals (such as parents) and can phase even individual-specific variants. Levy et al. [32]

demonstrated the feasibility of this approach using sequence data derived from paired Sanger

sequencing of long insert DNA fragment libraries to computationally assemble long haplotype

blocks (N50 of 350 kb) for the first individual human genome.

Since then, advancements in massively parallel sequencing technologies have reduced

the cost of human WGS drastically, leading to the sequencing of thousands of human genomes.

However, the short read lengths generated by technologies such as Illumina (100-250 bases) and

the use of short fragment lengths in WGS protocols makes it infeasible to link distant variants

into haplotypes. To overcome this limitation, a number of innovative methods that attempt to

preserve haplotype information from long DNA fragments (tens to hundreds of kilobases) in short

sequence reads have been developed.

The underlying principle for these methods involves generating multiple pools of high-

molecular-weight DNA fragments such that each pool contains only a small fraction of the

DNA from a single genome. As a result, there are very few overlapping DNA fragments in

each pool and high-throughput sequencing of the DNA in each pool can be used to reconstruct

the fragments by alignment to a reference genome [33, 34]. Therefore, each pool provides

haplotype information from long DNA fragments and long haplotypes can be assembled using

information from a sufficiently large number of independent pools [30]. A number of methods

based on this approach have been developed to phase human genomes [33, 34, 35, 36, 37].

Recently, 10X Genomics described a novel microfluidics based library preparation approach that

generates long linked-reads that can be assembled into long haplotypes [21]. Third-generation

sequencing technologies such as Pacific Biosciences (PacBio) generate long sequence reads (2-20

kilobases in length) that can directly enable genome-wide haplotyping. Pendleton and colleagues

demonstrated the feasibility of assembling haplotypes from SMRT reads using variants identified

from short read Illumina sequencing [38].
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Haplotype assembly is also feasible with paired-end sequencing, i.e. pairs of short reads

derived from the ends of long DNA fragments, but requires long and variable insert lengths to

assemble long haplotypes [27]. Selvaraj et al. [23] used sequence data from a proximity ligation

method (Hi-C) to assemble accurate haplotypes for mouse and human genomes. Using mouse

data, they demonstrated that the vast majority of intra-chromosomal Hi-C read pairs correspond to

‘cis’ interactions (between fragments on the same chromosome) and therefore contain haplotype

information equivalent to paired-end reads with long and variable insert lengths. Subsequently,

17× whole-genome Hi-C data was used to assemble chromosome-spanning haplotypes for a

human genome, albeit with low resolution (less than 22% of variants phased).

In summary, multiple different sequencing technologies and protocols have the capability

to generate sequence reads with haplotype information, but require computational tools to

assemble the reads into long haplotypes. A number of combinatorial algorithms have been

developed for haplotype assembly [39, 40, 41, 42]. Among these, HapCUT [39] was developed

for phasing Sanger WGS data for the first individual genome [32]. HapCUT utilizes max-cuts in

read-haplotype graphs, an approach that is equally adept at handling data with local haplotype

information and data with long-range haplotype information such as that from long insert paired-

end reads. As a result, it has been successfully utilized to assemble haplotypes from different types

of high-throughput sequence datasets including fosmid pool sequencing [33], Hi-C data [23], and

single molecule long reads [38] with appropriate modifications. However, HapCUT only models

simple sequencing errors and does not scale well for long read data. More recently, several

algorithms have been designed specifically to enable accurate haplotype assembly from long

reads [41, 43].

The diverse characteristics and specific error modalities of data generated by different

haplotype-enabling protocols and technologies continue to pose challenges for haplotype assembly

algorithms. Some protocols, such as clone-based sequencing, can generate very long fragments

(BAC clones of length 140 kb have been used to assemble haplotypes [44]) but may have low
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fragment coverage. Other protocols, such as PacBio SMRT, generate fragments with shorter mean

lengths than clone-based approaches but can be scaled to higher read coverage more easily. 10X

Genomics linked-reads are long (longest moleculars > 100 kilobases) but have gaps resulting

in high clone coverage for each variant. Proximity ligation approaches, such as Hi-C, generate

paired-end read data with very short read lengths, but with larger genomic span. Hi-C reads can

span from a few kilobases to tens of megabases in physical distance. While an algorithm that

leverages characteristics of a specific type of data is likely to perform well on that particular type

of data, it may not perform well or not work at all on other types of data. For example, dynamic

programming algorithms such as ProbHap [43] that were developed for low-depth long read

sequence data are unlikely to scale well for datasets with high sequence coverage or for other

types of data such as Hi-C. Even if a haplotype assembly algorithm has broad support for data

qualities, there remains the challenge that different sequencing protocols each have systematic

error modalities. For instance, fragment data from the sequencing of multiple haploid subsets

of a human genome [33, 34] generates long haplotype fragments, but some of these fragments

are chimeric due to overlapping DNA molecules that originate from different chromosomes.

Similarly, noise in Hi-C data due to ligated fragments from opposite homologous chromosomes

increases with increasing distance between the variants. The accuracy of haplotypes assembled

from each sequencing protocol depends on both the haplotype assembly algorithm’s ability to

effectively utilize the sequence data and its ability to model protocol-specific errors.

2.3 Results

To address the challenge of haplotype assembly for diverse types of sequence datasets,

we developed HapCUT2, an algorithm that generalizes the HapCUT approach in several ways.

Compared to a discrete score optimized by HapCUT, HapCUT2 uses a likelihood-based model,

which allows for the modeling and estimation of technology-specific errors such as ‘h-trans
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errors’ in Hi-C data. To improve memory performance for long read data, HapCUT2 does not

explicitly construct the complete read-haplotype graph. Further, it implements a number of

optimizations to enable fast runtimes on diverse types of sequence datasets. To demonstrate

the accuracy and robustness of HapCUT2, we compared its performance with existing methods

for haplotype assembly using simulated and real WGS datasets. Previous publications [20, 43]

have compared different methods for haplotype assembly and concluded that RefHap [41],

ProbHap [43], FastHare [45] and HapCUT [39] are among the best performing methods. Other

methods such as DGS [32], MixSIH [46] and HapTree [47] did not perform as well on the datasets

evaluated in this study. Therefore, we compared the performance of HapCUT2 with four other

methods: RefHap, ProbHap, FastHare and HapCUT (Table 2.1).

2.3.1 Overview of HapCUT2 algorithm

The input to HapCUT2 consists of haplotype fragments (sequence of alleles at heterozy-

gous variant sites identified from aligned sequence reads) and a list of heterozygous variants

(identified from WGS data). HapCUT2 aims to assemble a pair of haplotypes that are maximally

consistent with the input set of haplotype fragments. This consistency is measured using a

likelihood function that captures sequencing errors and technology specific errors such as h-trans

errors in proximity ligation data. HapCUT2 is an iterative procedure that starts with a candidate

haplotype pair. Given the current pair of haplotypes, HapCUT2 searches for a subset of variants

(using max-cut computations in the read-haplotype graph) such that changing the phase of these

variants relative to the remaining set of variants results in a new pair of haplotypes with greater

likelihood. This procedure is repeated iteratively until no further improvements can be made to

the likelihood (see Methods for details).
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2.3.2 Comparison of runtimes on simulated data

We used simulations to compare the runtime of HapCUT2 with existing methods for

haplotype assembly across different types of sequence datasets. A fair comparison of the

performance of different methods is not completely straightforward. Different methods chose to

optimize different technology parameters and highlighted performance using those parameters.

We considered the following parameters: number of variants per read (V ), coverage per variant

(d), and the number of paired-end reads spanning a variant (d′). The parameter V is a natural

outcome of read length; for example, PacBio provides higher values of V compared to Illumina

sequencing. The parameter d is similar to read coverage, but only considers haplotype informative

reads – higher values result in better accuracy, but also increased running time. Finally, many

sequencing technologies (such as Hi-C) generate paired-end sequencing with long inserts and d′

can potentially be much greater than d. Some haplotype assembly methods implicitly analyze all

paired-end reads spanning a specific position and their runtime depends upon d′ rather than d.

In order to make a fair comparison of runtimes and allow users to determine the most

efficient method for any technology, we summarized the computational complexity of each

method as a function of these parameters (Table 2.1) and used simulations to verify the dependence

of runtime and accuracy on each parameter (Figure 2.1). We simulated reads using a single

chromosome of length ∼250 Mb (approximately equal to the length of human chromosome 1)

with a heterozygous variant density of 0.08 % and a uniform rate of sequencing errors (2%),

performing 10 replicates for each simulation. Standard deviations of runtimes and error rates

between replicates were small (Supplemental Fig A1). A method was cut off if it exceeded

10 CPU-hours of runtime or 8 GB of memory on a single CPU, since most methods required

significantly less resources than these limits. We note that the runtimes in Table 2.1 refer to

complexity as implemented, with parameters referring to maximum values (e.g. maximum

coverage per variant), while in simulations the parameters refer to mean values (e.g. mean

coverage per variant).
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To assess the dependence of runtime on d, we generated reads with a mean of 4 variants

per read (V ) and varied the mean read coverage per variant (d) from 5 to 100. The error rates of

HapCUT2, HapCUT, ProbHap, and RefHap were similar and decreased with increasing coverage

before reaching saturation. FastHare was significantly faster than other methods, but had error

rates that were several times greater. As predicted by the computational complexity of the different

methods (Table 2.1), HapCUT2 is significantly faster than HapCUT, RefHap, and ProbHap, once

the coverage exceeds 10× (Figure 2.1A). For example, RefHap required 10 CPU-hours to phase

reads at a coverage of 38×, while HapCUT2 took only 34 CPU-minutes to phase reads with

100× coverage per variant. ProbHap reached the 10 CPU-hour limit at a coverage of only 8×.

HapCUT shows a similar trend to HapCUT2, but is significantly slower and requires more than

8 GB of memory at coverages of 40× or greater. RefHap constructs a graph with the sequence

reads as nodes and performs a max-cut operation that scales quadratically with number of reads.

Therefore, its runtime is expected to increase as the square of read-coverage. ProbHap’s runtime is

exponential in the maximum read-depth [43] and exceeds the maximum allotted time for modest

values of d. FastHare greedily builds a maximally consistent haplotype from left to right in a

single pass, resulting in a low run-time but also lower accuracy. While HapCUT2 has the same

asymptotic behavior as HapCUT, it improves upon the memory usage and runtime significantly

in practice. It does this by only adding edges that link adjacent variants on each read to the

read-haplotype graph, as well as using convergence heuristics that reduce the number of iterations

performed (see Methods for details).

Next, we varied the number of variants per read (V ) and kept the coverage per variant (d)

fixed at 5×. The error rates for each method decrease monotonically (Figure 2.1B). HapCUT2,

RefHap, and ProbHap have similarly low error rates, while FastHare and HapCUT have error

rates higher than the other methods. The runtimes of RefHap and FastHare are consistently very

low, although the runtime of RefHap peaks very slightly around V = 15. The runtime of ProbHap

decreases monotonically as V increases. This is consistent with the fact that the runtime of these
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methods has a linear dependence on the read length because for a fixed sequence coverage, the

number of reads decreases as the read length increases. In comparison, HapCUT2’s runtime

is observed to increase linearly with V . This is consistent with the complexity of HapCUT2

being proportional to the square of the number of variants per read (see Table 2.1). Although

HapCUT2’s runtime increases, it remains practical across all tested values and is less than 50

CPU-minutes for mean read lengths consistent with very long sequences (160 variants per read or

200 kilobases). The space requirements for HapCUT have a quadratic dependence on the number

of variants per read, and therefore, exceeded the memory limit after only 8 variants per read.

Finally, we compared runtimes as a function of the average number of paired-end reads

crossing a variant (d′). For single-end reads, this parameter is identical to d. Proximity ligation

data, on the other hand, consists of pairs of short reads each with a single large gap (insert)

between them. The large and highly variable insert sizes result in a large number of reads crossing

each variant position. This property is important for linking distant variants, because the extremely

long insert size spans of proximity ligation methods are capable of spanning long variant-free

regions. For this reason, we simulated paired-end short read data with random insert sizes up to

a parametrized maximum value, to represent a generalized proximity ligation experiment. We

varied d′ by increasing the maximum insert size value from 6.25 kb (∼5 SNVs) to 125 kb (∼100

SNVs) while keeping d and V constant at 5× and 150 base pairs (0.1195 SNVs), respectively.

ProbHap and RefHap exceeded the time limit at d′ = 10 and d′ = 17, respectively. FastHare

exceeded the time limit at d′ = 36, but had extremely high error rates (10 to 18 times higher

than HapCUT2). ProbHap’s dynamic programming algorithm needs to consider the haplotype of

origin for each read crossing a variant, therefore the complexity scales exponentially in d′. In

the case of RefHap and FastHare, the failure to scale with increasing d′ appears to be a result of

representing fragments as continuous arrays with length equal to the number of variants spanned

by each read. Thus, as implemented, the runtimes for RefHap and FastHare scale with d′ rather

than d. In contrast, both HapCUT and HapCUT2 were able to phase data with arbitrarily long
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insert lengths, reaching d′ = 100 (Figure 2.1C). The runtime of HapCUT2 was independent of d′

and 8 to 10× times faster than that for HapCUT.

Overall, the results on simulated data demonstrate that the complexity of HapCUT2 is

linear in the number of reads and quadratic in the number of variants per read. HapCUT2 is fast

in practice and effective for both long reads and paired-end reads with long insert lengths, with

scalability unmatched by the four other tools we evaluated. Additionally, HapCUT2 and HapCUT

were the only tools tested that can reasonably phase paired-end data with long insert lengths that

result from proximity ligation (Hi-C) sequencing.

2.3.3 Comparison of methods on diverse WGS datasets for a single indi-

vidual

We next assessed the accuracy of HapCUT2 using data from four different sequencing

data types for a single individual (NA12878): fosmid-based dilution pool sequencing, 10X Ge-

nomics linked-read sequencing, SMRT sequencing, and proximity ligation sequencing. Haplotype

assembly methods require a set of heterozygous variants as input. Therefore, a set of heterozy-

gous variants for NA12878 identified from WGS Illumina data were used as input to assemble

haplotypes for each data type (see Methods for description). The accuracy of the haplotypes was

assessed by comparing the assembled haplotypes to gold-standard trio phased haplotypes and

using the switch error rate and mismatch error rate metrics (see Methods).

Fosmid-based dilution pool data: To assess HapCUT2 on long read sequencing data,

we used whole-genome fosmid-based dilution pool sequence data for a human individual,

NA12878 [20]. This data was generated from 1.44 million fosmids (33-38 kb and 38-45 kb in

length) that were partitioned into 32 pools such that each pool contains DNA from a small fraction

of the genome (∼5%). Subsequently, each pool was sequenced using the ABI SOLiD sequencer

and haplotype fragments identified using read depth analysis [20]. Although this dataset has

low sequence coverage (d ≈ 3×), the processed fragment data (needed as input for haplotype
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assembly) is publicly available and has been used to assess the performance of haplotype as-

sembly methods in several papers [20, 43]. On this data, the switch error and the mismatch

error rates for HapCUT2 were virtually identical or slightly better than ProbHap, the second best

performing method, across all chromosomes (Supplemental Fig A2). However, ProbHap pruned

approximately 1.2% of the variants from the assembled haplotypes in comparison to HapCUT2

which only pruned 0.6% of the variants. The switch error rates for RefHap and FastHare were also

similar to HapCUT2 and ProbHap (Supplemental Fig A2). To enable a head-to-head comparison

of the switch error rate across different methods, we also calculated the switch and mismatch

error rates on a subset of variants that were phased by all tools (not pruned). On this subset of

variants, the switch and mismatch error rates for HapCUT2 were similar to but slightly lower than

ProbHap (Figure 2.2A). In terms of running time, RefHap and FastHare were the fastest methods

on this dataset while HapCUT2 took a total of 1:09 CPU-hour to phase all chromosomes (Table

2.2). In summary, HapCUT2 had similar (but slightly better) accuracy to ProbHap, RefHap and

FastHare on this dataset and was more accurate than HapCUT.

10X Genomics linked-read data: We also used HapCUT2 to assemble haplotypes from

10X Genomics linked-read data [21], which is based on a similar ideas as the fosmid-based

dilution pool approach. 10X Genomics technology labels short DNA fragments originating from

a single long DNA fragment with barcodes inside hundreds of thousands of separate nano-scale

droplets [21]. The linked-reads produced can be extremely long (>100 kb). This dataset has a

short read coverage of 34×, with a linked-read coverage per variant of 12× [48]. For haplotype

assembly, we used the same set of variant calls as for the fosmid dataset and extracted haplotype

fragments from the 10X aligned reads (see Methods, “Long read datasets”). On this dataset,

neither RefHap nor ProbHap finished haplotype assembly within the time limit. HapCUT2 was

the fastest method and analyzed all chromosomes in 1:55 CPU-hours (Table 2.2). When compared

on the subset of variants that were phased by all tools, HapCUT2 had an accuracy slightly better

than the next best approach (HapCUT), which took 16:50 CPU-hours (Figure 2.2C).
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PacBio SMRT data: SMRT sequencing on the Pacific Biosciences platform generates

long (2-20 kilobases) but error prone (> 10 % indel error rate) reads. We used HapCUT2 to

assemble haplotypes from 44× coverage PacBio reads [38]. We extracted haplotype fragments

from the PacBio reads that were aligned to the human reference genome (hg19), using the same

set of variant calls as for the previous two datasets. On the full dataset, HapCUT2 was not only

the most accurate, but was also significantly faster than RefHap and HapCUT (see Supplemental

Fig A3 for detailed comparisons of error rates and runtimes). We calculated the switch error and

mismatch error rates on the subset of variants that were phased by all methods. HapCUT2 had

a 12.4% lower switch error and a 2% lower mismatch rate than RefHap. RefHap took 215:53

CPU-hours to phase the dataset. By comparison, HapCUT2 took only 4:05 CPU-hours in total.

Because ProbHap was unable to complete within the time limit on the full dataset, we also

compared the performance of the haplotype assembly tools on a lower, 11× coverage subsample

of this dataset. On the subsample, HapCUT2 had the lowest switch error and mismatch error rates

of the five methods (Figure 2.2B). FastHare was the fastest method on this dataset and ProbHap

was the slowest method taking 52:32 CPU-hours (Table 2.2).

HapCUT2 implements likelihood-based strategies for pruning low-confidence variants to

reduce mismatch errors and splitting blocks at poor linkages to reduce switch errors (see Methods).

These post-processing steps allow a user to improve accuracy of the haplotypes at the cost of

reducing completeness and contiguity. ProbHap’s “transition, posterior, and emission” confidence

scores are designed for the same purpose [43]. Post-processing strategies are of particular interest

for haplotype assembly with PacBio SMRT reads because the individual reads have a high error

rate. Therefore, we compared HapCUT2’s pruning strategies to ProbHap’s confidence scores

on chromosome 1 of the 11× coverage PacBio data. For single variant pruning, we found that

HapCUT2’s confidence scores provided a better trade-off between reducing the mismatch error

rate and pruning variants compared to ProbHap’s emission scores (Supplemental Fig A4 (A)).

By pruning 3.1% of covered variants, HapCUT2 achieved a 55.1% reduction in mismatch error
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rate. In comparison, ProbHap mismatch error rate was reduced by less than 15% when 3.1% of

variants were pruned. Similarly, HapCUT2’s block splitting strategy resulted in a lower switch

error rate compared to ProbHap at a fixed value of the AN50 for the haplotype assembly except

at very small AN50’s (Supplemental Fig A4 (B)).

Hi-C data: The Hi-C method was developed to comprehensively detect chromatin

interactions in the cell nucleus using proximity ligation and shotgun sequencing of the ligation

products [22]. Selvaraj et al. [23] demonstrated that the long-range information contained in Hi-C

reads can be used to determine the phase between distant variants and assemble chromosome-

spanning haplotypes from ∼17× coverage. They collaborated with some of the authors of the

current study in customizing HapCUT to assemble haplotypes from Hi-C data. Hi-C reads suffer

from a source of error that was referred to as “h-trans interactions”. An h-trans interaction (or

h-trans error) occurs when a piece of DNA interacts with a DNA fragment from the homologous

chromosome rather than the same chromosome (a “cis” interaction). The probability of h-trans

error depends on the insert size and can be estimated if the true haplotypes are known. We use the

function τ(I) to refer to the probability of an h-trans error for a read with insert size I. Selvaraj

et al. [23] estimated τ using Hi-C data from a mouse genome and used these estimates to lower

the base quality values of reads before running HapCUT. In developing HapCUT2, we were

motivated in part by the need to develop a method that could estimate τ directly from the data and

use these estimates to improve the accuracy of the haplotypes.

To assess different haplotype assembly tools, we used a high coverage Hi-C dataset

with ∼395× coverage on NA12878 generated using the MboI enzyme [49] and sub-sampled

reads from this dataset to generate 40× and 90× coverage. As expected from the simulations

using paired-end reads with variable span, only HapCUT and HapCUT2 were able to generate

haplotypes from Hi-C data within the 20 CPU-hour per chromosome time limit. The error rates

were significantly lower for the 90× sample, and HapCUT2 had lower error rates compared to

HapCUT at both coverage levels (Figure 2.2D). In terms of runtime, HapCUT2 was 4 to 5 times

19



slower than HapCUT on Hi-C data since it performs the haplotype assembly procedure multiple

times in order to estimate τ. We note that if HapCUT2 does not account for h-trans errors, it is

several times faster than HapCUT (Supplemental Table A1).

At 40× coverage, HapCUT2 achieved a 16.3% lower switch error rate and 13.2% lower

mismatch rate compared to HapCUT on variants phased by both methods. Similarly, at 90×

coverage, HapCUT2 achieved a 16.4% lower switch error rate and 7.2% lower mismatch rate

compared to HapCUT. The lower error rates for HapCUT2 are primarily due to the modeling and

estimation of h-trans errors in Hi-C data. HapCUT2 directly models h-trans errors as probabilities

in the likelihood formulation and estimates τ directly from the data using an iterative approach

(see Methods, “Estimation of h-trans error probabilities in Hi-C data”), eliminating the need

for a model dataset with known haplotypes. The h-trans function was estimated separately

for each chromosome since we observed significant variation in the h-trans error rates across

chromosomes (estimated using known haplotypes for NA12878). The per-chromosome h-trans

error rates estimated by HapCUT2 were very similar to those obtained using known trio-phased

haplotypes for NA12878 (see Supplemental Fig A5) demonstrating the accuracy of the estimation

procedure.

Overall, results on a variety of sequence datasets reaffirm what we observed on simulated

reads, i.e. HapCUT2 is the only tool that works across all sequencing paradigms. In particular,

haplotype assembly tools that were developed to phase low-coverage long read data, such as

ProbHap and RefHap, do not work on Hi-C data. Even on long read data (PacBio SMRT

sequencing and 10X Genomics linked-reads), HapCUT2 scales better in running time with

increasing coverage (Table 2.2). Moreover, it assembles haplotypes that are more accurate than

all other methods that we evaluated in this paper. This was somewhat surprising because ProbHap

implements an exact likelihood optimization approach. However, to reduce runtime, ProbHap

also uses an initial heuristic to merge reads that convey similar information and this could reduce

the accuracy.

20



2.3.4 Comparison of haplotypes assembled using Hi-C and SMRT sequenc-

ing

Sequencing technologies such as SMRT generate long reads that contain multiple variants

per read. Although most of the reads contain haplotype information, the read length limits the

ability to phase heterozygous variants that are separated by long runs of homozygosity. In contrast,

paired-end reads derived from Hi-C contain very few variants per read pair (most read pairs do

not cover any variant or cover only a single variant). However, read pairs that cover a variant at

each end have the potential to link distant variants because the insert size of Hi-C reads varies

from a few hundred bases to tens of millions of bases. Therefore, haplotypes assembled using

these two approaches differ significantly in both contiguity and accuracy. We utilized the PacBio

SMRT sequencing and MboI enzyme Hi-C datasets to compare the haplotypes assembled using

HapCUT2 for these two technologies.

The haplotypes assembled from the 44× coverage SMRT sequence data had an AN50

length of 218 kb with the largest block being 1.66 Mb in length. Also, 99% of the heterozygous

variants could be phased as part of some block. In contrast, the haplotypes assembled from the

90× coverage Hi-C data (for each autosomal chromosome) comprised of a large chromosome-

spanning block that contains 72-87% of the variants in addition to numerous small blocks with a

median block size of 2 variants. This effect can be observed in Figure 2.3A, which shows the

cumulative number of variants covered by the haplotype blocks (sorted in descending order)

for chromosome 1. One limitation of Hi-C data is that some of the variants that are far away

from restriction enzyme cut-sites cannot be phased due to lack of reads covering such variants.

Chromosome X, which has a lower variant density than autosomes, was more difficult to phase

than autosomal chromosomes, with only 55% of SNVs in the largest block and 32% of variants

unphased (Supplemental Fig A6).

In terms of accuracy measured using switch error rates, both technologies achieve com-
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parable error rates (0.002-0.003) at sufficiently high coverage (Figure 2.2). Further, the switch

error rates for haplotypes assembled using these two technologies decrease rapidly as coverage is

increased initially and saturate quickly after that (Supplemental Fig A7). Although the switch and

mismatch error rates are similar between high-coverage Hi-C data and high-coverage PacBio data,

we found that these statistics do not adequately distinguish between short stretches of erroneous

phased variants (masquerading as two switch errors) and “point” switches that effectively divide

the resulting haplotype into two pieces. Long read data, because of its linear structure, has a ten-

dency for this type of error. In comparison, Hi-C data is more web-like in structure and therefore

has essentially no incidence of point switches once there is sufficient coverage. To observe the

effect of point switches on accuracy for long reads compared to Hi-C, we plotted the fraction of

correctly phased variant pairs separated by a given genomic distance (Figure 2.3B). Point switch

errors accumulate linearly to diminish the probability of correct phasing with distance for PacBio,

but not for Hi-C. For example, two variants separated by 200 kb and phased with the 11× PacBio

data have a 62% chance of being phased correctly. On the other hand, MboI Hi-C data maintains

a high and constant rate of pairwise phasing accuracy across the entire chromosome: ∼ 96 at 40×

and ∼ 98 at 90×. This implies that not only do Hi-C haplotypes span the entire chromosome, but

the overall haplotype structure is also highly accurate.

2.3.5 Considerations when haplotyping with Hi-C

For Hi-C based haplotyping, the choice of restriction enzyme (RE) and depth of sequence

coverage can impact the completeness and accuracy of the haplotypes. Selvaraj et al. [23] were

able to assemble chromosome-spanning haplotypes for NA12878 using Hi-C data generated

using the HindIII RE. Despite assembling blocks that spanned the genomic distance of each

chromosome, the “resolution” of the largest block was rather low (only 18-22% of the variants

on each chromosome could be linked into haplotypes). The low resolution could potentially

be due to the modest sequence depth (approximately 17×). However, we observe that even at
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200× coverage, Hi-C data obtained using the HindIII RE from the Rao et al. [49] study has

less than 40% of variants phased in the largest block, with 71% of variants phased in total. In

contrast, 80% of the heterozygous variants on chromosome 1 can be successfully phased in a

single block using only 90× Hi-C data obtained using the MboI RE. The trend is similar across

autosomal chromosomes, with the largest block of each chromosome containing 72% to 87% of

the heterozygous variants (Supplemental Fig A6). This indicates that the choice of RE has an

important effect on the number of variants that can be phased.

A key step in the Hi-C protocol is the digestion of cross-linked DNA by an RE that cleaves

DNA at specific recognition sites. In comparison to the HindIII RE which recognizes a 6 base

pair DNA sequence (AˆAGCTT), the MboI RE has a 4 base pair recognition site which occurs

with much greater frequency in the genome (ˆGATC). The significantly greater completeness

of the haplotypes assembled using Hi-C data generated using the MboI RE is primarily due

to this reason. Even with an RE with a 4 base pair recognition sequence, some fraction of

variants are expected to be far away from a cut-site and therefore, cannot be captured in Hi-C

ligated fragments. Indeed, the fraction of SNVs phased using the MboI Hi-C data saturates with

increasing coverage and 7.3% of SNVs on chromosome 1 cannot be phased into the largest block

even at 395× coverage. The fraction of variants phased can potentially be increased by integrating

Hi-C data from different REs or by using imputation based approaches.

At low sequence coverage (< 25×), the largest haplotype block assembled using MboI

derived Hi-C data contains less than 40% of the variants (Figure 2.4A) and has a high error

rate (Figure 2.4B). With increasing sequence coverage, the fraction of the variants in the largest

component increases rapidly and the error rate of the largest haplotype block (measured as the

sum of the switch and mismatch error rates) decreases rapidly. The improvements in both these

aspects of Hi-C based haplotype assembly saturate around 80-100× coverage. These results

demonstrate that highly accurate, high-resolution, chromosome-spanning haplotypes can be

assembled from 80-100× whole-genome Hi-C data for a human genome generated using a single

23



restriction enzyme with a 4 base pair recognition sequence.

Some applications of haplotyping may benefit from combining sequence data derived

from different library preparation methods. Fortunately, HapCUT2’s flexibility enables haplotype

assembly using different sources of data. To demonstrate this, we combined 40× coverage Hi-C

data with 10X Genomics linked-read data (34× short read coverage) to assemble haplotypes with

98.9% of variants contained in the largest block for each chromosome (Supplemental Fig A8).

The haplotypes were highly accurate, with a switch error rate of 0.0008 and a mismatch rate of

0.003.

2.4 Discussion

We introduced HapCUT2, a maximum likelihood based algorithm for the haplotype

assembly problem that extends the original HapCUT method to model technology specific errors

and can handle sequence data from diverse technologies efficiently. Using simulated and real

WGS data, we demonstrated that HapCUT2 can assemble haplotypes for a diverse array of data

modalities while other tools are specialized for certain subsets of data modalities. One of the

new features of HapCUT2 is its support for long reads such as those generated by dilution-pool

sequencing based methods and long read sequencing technologies such as Pacific Biosciences.

Using multiple long read WGS datasets we demonstrate that HapCUT2 obtains higher accuracy

than all leading methods, while offering significantly higher speed and scalability. Apart from

PacBio, Oxford Nanopore sequencers are also capable of producing long reads, albeit with lower

throughput than PacBio sequencers [50]. As current technologies improve and new long read

data types continue to emerge, having a fast and flexible tool like HapCUT2 that can efficiently

and accurately assemble haplotypes from any type of data is important.

Using simulated data as well as whole-genome Hi-C data, we observed that HapCUT2

and HapCUT were the only computational methods for haplotype assembly that are reasonably

24



capable of phasing paired-end reads with large insert sizes. We demonstrated that high coverage

Hi-C data (e.g., ∼80-100× with a 4-cutter restriction enzyme) can be used to phase > 75-80% of

the variants per chromosome with high accuracy. While it was known that Hi-C can be used to

link distant variants, our results demonstrate that high resolution whole-chromosome haplotypes

can be assembled directly from the sequence reads. In addition, the low rate of pairwise variant

error at long genomic distances is a unique feature of the assembled haplotypes and could be

useful for applications that require accurate long-range phasing. Although generating Hi-C data

requires intact cells, Putnam et al. [51] recently described a proximity ligation method using

in-vitro reconstituted chromatin from high-molecular-weight DNA.

HapCUT2 implements an iterative approach for modeling and estimating h-trans error

probabilities de novo that reduces errors in assembled Hi-C haplotypes compared to HapCUT.

We expect that a similar approach could be utilized to improve the accuracy of haplotypes

assembled using data from other technologies that exhibit systemic patterns of error, e.g. chimeric

fragments present in dilution pool sequencing and reference allele bias in PacBio reads due to

alignment ambiguity. In general, the flexibility of the HapCUT2 likelihood model lends itself

well to modeling sources of error that result from experimental protocol and design, but are not

adequately represented by read quality scores. Another advantage of the HapCUT2 likelihood

model and its implementation is the ability to integrate sequence data from diverse methods

to generate highly accurate and comprehensive haplotypes for reference human genomes, e.g.

NA12878 and other genomes that have been sequenced by the GIAB consortium [48]. We

demonstrated this by assembling accurate and complete chromosome-spanning haplotypes for

NA12878 by combining Hi-C data with linked-read data.

Similar to the original HapCUT method, HapCUT2 is a heuristic algorithm that iteratively

searches for better haplotypes with increasing likelihood using graph-cuts in a greedy manner.

Although it provides no performance guarantees on the optimality of the final haplotype assembly,

its performance on multiple sequence datasets demonstrates its high accuracy and suggests that
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it is able to find haplotypes that are close to the optimum. Further, previous work on exact

algorithms for haplotype assembly [40] has shown that the haplotypes assembled using HapCUT

are very close to the optimal solution.

Even at high sequencing depth, not all variants on a chromosome can be assembled

into a single haplotype block. Using Hi-C data, ∼ 20% of the variants that are at a large

distance from cut-sites for a 4 bp restriction enzyme remain unphased. In comparison, long read

technologies can phase the vast majority (> 95%) of variants into multiple haplotype blocks

for each chromosome (N50 lengths ranging from few hundred kilobases to several megabases).

In the absence of additional sequence data, information from population haplotype data can

be used to link unphased variants to the chromosome spanning haplotype block in the case of

Hi-C [23] and to determine the phase between disjoint haplotype blocks assembled from long

read datasets [52]. Recently, a population phasing method, SHAPEIT2, has been extended to

incorporate information from haplotype-informative sequence reads in the statistical model for

phasing using population haplotypes [53]. Analogous to this, it should be feasible to incorporate

information from population haplotypes while assembling haplotypes from sequence reads for an

individual in the likelihood based framework of HapCUT2.

Another important consideration for sequencing based haplotype assembly is the source

of the variant calls. Most haplotype assembly methods, including HapCUT2, require a set of

reliably called variants as input. Illumina short read sequencing at ∼30-40× is considered the

de facto standard approach to obtain reliable heterozygous calls [54]. Therefore, the simplest

approach would be to perform short read WGS in addition to the sequencing protocol for phasing

variants. However, in some cases (e.g. 10X linked-read data [21]), variants can be called directly

from the sequence data used for haplotyping, eliminating the need to generate additional sequence

data. In principle, it should also be possible to call variants directly from high-coverage Hi-C data

before haplotyping. For PacBio sequence data, variant calling is more challenging due to high

error rates, but an integrated variant calling and haplotyping approach could potentially work
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because haplotype information can be used to distinguish true heterozygous variants from errors.

Finally, all analysis and comparisons of different methods in this paper were performed

using SNVs only. Short insertions and deletions (indels) represent the second most frequent

form of variation in the human genome and are frequently associated with diseases. Therefore,

reconstructing haplotypes that include not only SNVs but also small and large indels is important

for obtaining a complete picture of genetic variation in an individual genome. However, the

detection and analysis of indels is more challenging compared to SNVs. In principle, HapCUT2

can phase indels along with SNVs. However, it may not be feasible to phase short indels

using PacBio reads that have high rate of indel errors. Recently, Patel et al. [55] developed a

machine learning method to phase large deletions using Hi-C data. Assessing the capability of

different sequencing technologies and protocols for haplotyping all forms of genetic variation is

an important topic of future work.

2.5 Methods

The input to the haplotype assembly problem consists of fragments or “reads” from an

individual genome that have been aligned to a reference genome with information about alleles

(encoded as 0 and 1 for bi-allelic variants) at each heterozygous variant. The heterozygous

variants are assumed to have been identified separately from WGS data for the same individual.

Haplotype assembly algorithms for diploid genomes aim to either (i) partition the fragments

into two disjoint sets such that fragments in each set originate from the same homologous

chromosome, or (ii) reconstruct a pair of haplotypes such that the fragments are maximally

consistent with the assembled haplotypes. HapCUT belongs to the second type and aims to

optimize the Minimum Error Correction (MEC) objective function: the number of allele calls in

the fragment matrix that need to be changed for each fragment to be perfectly consistent with one

of the two haplotypes [56].

27



Several algorithms use a probabilistic model for haplotype assembly and attempt to

maximize a likelihood function that relates the observed reads to potential haplotypes [57, 58].

ProbHap [43] aims to optimize a likelihood function that generalizes the MEC criteria. Rather

than the MEC criterion, HapCUT2 uses a haplotype likelihood model for sequence reads [58].

2.5.1 Haplotype likelihood for sequence reads

Let H = (H1,H2) represent the unordered pair of haplotypes where H1 is a binary string

of length n. H2 is also a binary string of length n. H2 is the bitwise complement of H1 if

all sites are heterozygous. Consider a collection of reads R, where each read (fragment) Ri is

denoted by a string of length n over the alphabet {0,1,−} where − corresponds to heterozygous

loci not covered by the read. Given a haplotype h and a fragment Ri, define the delta function

δ(Ri[ j],h[ j]) = 1 if Ri[ j] = h[ j] and 0 otherwise. Given qi[ j], the probability that the allele call at

variant j in read Ri is incorrect, the likelihood of observing read Ri is:

p(Ri|q,h) = ∏
j,Ri[ j]6=−

δ(Ri[ j],h[ j])(1−qi[ j])+(1−δ(Ri[ j],h[ j]))qi[ j] . (2.1)

Extending this to a haplotype pair H = (H1,H2), we can define

p(Ri|q,H) =
p(Ri|q,H1)+ p(Ri|q,H2)

2
, (2.2)

assuming equal probability of sampling the read from either haplotype. Then, P(R|q,H), the data

likelihood given a pair of haplotypes H, can be computed as a product over fragments (assuming

independence of fragments) as:

p(R|q,H) = ∏
i

p(Ri|q,H)

The read likelihood function assumes a simple copying model where the read Ri is copied
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from either H1 or H2 with zero or more sequencing errors. It can be modified to account for

additional types of errors in reads. For example, Hi-C reads can be ‘cis’ or ‘trans’ (switch error)

and the probability of a read being trans depends on the distance between the two interacting

loci captured in a Hi-C fragment. Given a set S of variants, H(S) is defined as the haplotype pair

formed by flipping the alleles between the haplotype pair at the variants in the set S. If τ(I) is the

probability that a read is trans, the likelihood of a Hi-C fragment with insert length I is the sum of

two terms:

p(Ri|q,H,τ(I)) = (1− τ(I))p(Ri|q,H)+(τ(I))p(Ri|q,H(S)) (2.3)

where S is the set of variants covered by one end of the Hi-C fragment.

2.5.2 Likelihood-based HapCUT2 algorithm

The original HapCUT algorithm is an iterative method that attempts to find better hap-

lotypes using a max-cut heuristic that operates on the read-haplotype graph. This graph is

constructed using the fragments and the current haplotype. The nodes of this graph correspond to

variants and edges correspond to pairs of variants that are connected by a fragment. Similar to

HapCUT, HapCUT2 also uses a greedy method to find a max-cut in the read-haplotype graph

such that the variants on one side of the cut can be flipped to improve the current haplotype.

However, it utilizes the likelihood function instead of the MEC score allowing it to account for

read quality scores as well as model technology specific errors such as trans errors in Hi-C data.

To describe the new likelihood-based max-cut procedure used in HapCUT2, we define a

partial likelihood function that represents the likelihood of the fragments restricted to a subset of

variants S as follows:

pS(R|q,H) = ∏
i

pS(Ri|q,H) (2.4)
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where

pS(Ri|q,h) = ∏
j∈S

δ(Ri[ j],h[ j])(1−qi[ j])+(1−δ(Ri[ j],h[ j]))qi[ j] (2.5)

The objective of the greedy algorithm for finding the maximum likelihood cut is to find

a subset of variants or vertices S such that the haplotype H(S) has better likelihood than the

current haplotype H. It starts by initializing the two shores (S1 and S2) of the cut using a pair

of vertices in the graph and at each step adds a vertex or node to one of the two shores of the

cut. Adding a vertex v to S1 results in a new haplotype H(S1∪ v) while adding the vertex to S2

does not change the current haplotype H(S1). This vertex v is chosen such that it maximizes the

absolute difference between two log likelihoods:

L(v) = log [pS(R|q,H(S1∪{v}))]− log [pS(R|q,H(S1))] (2.6)

where S = {S1∪S2∪ v}.

In other words, we select the vertex v for which adding it to one side of the cut is signifi-

cantly better than adding it to the other side of the cut. This process is repeated until all variants

have been added to one side of the cut. The Maximum-Likelihood-Cut routine (full description

available in Supplemental Methods) considers many possible cuts by initializing each cut using

a different edge in the graph and selects the cut that gives the maximum improvement in the

likelihood of the haplotypes defined by the cut. This maximum-likelihood-cut heuristic is the

core of the HapCUT2-Assemble algorithm outlined below:

Initialization: H = H0

Iteration: until p(R|q,H) stops changing:

1. S∗ = Maximum-Likelihood-Cut(H,R)
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2. if p(R|q,H(S∗))> p(R|q,H): H = H(S∗)

Return: H

2.5.3 Complexity of HapCUT2

The HapCUT2-Assemble routine is run for T iterations (default value = 10000) on each

connected component of the read-haplotype graph. To speed up the convergence, we utilize

a convergence criterion wherein components for which there has been no improvement in the

likelihood for C iterations (default value = 5) are not analyzed further. A similar convergence cri-

terion is also used for the maximum-likelihood-cut heuristic. In practice, this simple convergence

criterion results in considerable improvement in running time compared to HapCUT.

HapCUT2 does not store an edge for each pair of nodes covered by a read because

this leads to prohibitive storage requirements for long reads (proportional to V 2 where V is the

maximum number of variants per read). Instead, it only stores an edge for adjacent vertices

covered by each read. However, it still has to consider all pairs of edges per fragment in order

to calculate and update the partial likelihoods. Therefore, the computational complexity of

HapCUT2 scales as V 2. The runtime of one iteration of the maximum-likelihood-cut routine is

O(N log(N)+N ·d ·V 2) where N is the number of variants, d is the average coverage per variant,

and V is the maximum number of variants per read. Therefore, the overall runtime of HapCUT2

is O(T ·M · (N log N +N ·d ·V 2)) where T and M are the maximum number of iterations for the

HapCUT2-assemble and maximum-likelihood-cut routines respectively.

2.5.4 Estimation of h-trans error probabilities in Hi-C data

In order to properly model h-trans error we must know the probability that a read pair

with insert size I is h-trans, i.e. the two ends of the paired-end read originate from different

homologous chromosomes. We assume that the h-trans error probability, represented as τ(I), is
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the same for all reads with the same insert length I. If the true haplotypes are known, τ(I) can

be estimated by comparison of all reads with insert length I to the haplotypes and calculating

the fraction of reads that are inconsistent with the haplotypes. Because the true haplotypes are

unknown, we use an iterative Expectation-Maximization-like approach to directly estimate τ from

the data. Initially, the HapCUT2-Assemble routine is used to phase all reads with τ(I) = 0 for

all I. The assembled haplotypes H are used to calculate a maximum-likelihood estimate of τ(I)

for each insert size I. Subsequently, the HapCUT2 routine is used to assemble a new set of

haplotypes using τ and the Hi-C version of the read likelihood function. This is repeated until the

likelihood of the haplotypes does not improve (see Supplemental Methods for more details).

2.5.5 Post-processing of haplotypes

HapCUT2 assumes that the heterozygous sites are known in advance. However, some of

the heterozygous sites in the input may actually be homozygous, e.g. due to errors during variant

calling or read alignment. In addition, some variants cannot be phased reliably due to low read

coverage or errors. Therefore, the accuracy of the final assembled haplotypes can be improved

by removing variants with low confidence phasing. HapCUT2 implements a likelihood-based

pruning scheme that considers the possible phasings for each variant individually and calculates

a bayesian posterior probability for each of the 4 possible configurations (00,11,10,01). If the

maximum posterior probability is less than a user-defined threshold (0.8 by default) then the

variant is pruned from the output haplotypes (see Supplemental Methods for details). For long

read datasets, we also consider the possibility of a switch error between each pair of adjacent

variants in a haplotype block and if the posterior probability of the final haplotype configuration

is less than a threshold, the block is split at that position. This can reduce switch errors at the cost

of reducing the length of haplotype blocks.
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2.5.6 Accuracy and completeness of haplotype assemblies

The AN50 metric summarizes the contiguity of assembled haplotypes [59]. It represents

the span (in base pairs) of a block such that half of all phased variants are in a block of that

span or larger. To adjust for unphased variants, the base pair span of a block is multiplied by

the fraction of variants spanned by the block that are phased. For Hi-C data, we assessed the

completeness of the haplotypes on a chromosome-wide scale by using the fraction of variants in

the largest (also called most-variants-phased or MVP) block [23]. The accuracy of a haplotype

assembly is typically assessed by comparing the assembled haplotypes to ‘truth’ haplotypes and

calculating the switch error rate [41, 43]. A “switch error” (also known as long switch) occurs

when the phase between two adjacent variants in the assembled haplotypes is discordant relative

to the truth haplotypes. Two consecutive switch errors correspond to the flipping of the phase of a

single variant and were counted as “mismatch” (also known as short switch) errors instead of two

switch errors.

For many applications of haplotyping, the ability to determine the phase between a pair

of heterozygous variants is important. To assess the pairwise accuracy of the haplotypes, we

utilized a pairwise phasing accuracy metric where all pairs of phased variants in a block were

classified as concordant (1) or discordant (0) (by comparison to the gold-standard haplotypes)

and the accuracy was defined as the fraction of discordant pairs among all pairs with the same

genomic distance [30].

2.5.7 Long read datasets and haplotype assembly tools

Haplotype fragment files corresponding to the whole genome fosmid sequence

data (32 pools) for NA12878 [20] were downloaded from http://www.molgen.mpg.de/

˜genetic-variation/SIH/data/ Aligned PacBio SMRT whole genome read data for

NA12878 [48] was obtained from the GIAB ftp site: ftp://ftp-trace.ncbi.nlm.nih.
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gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai Haplotype fragments for phasing

were extracted from the sorted BAM files using the extractHAIRS tool (see Supplemental

Methods). Aligned 10X data for NA12878 [48] was also obtained from the GIAB ftp site:

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/10XGenomics. Molecule

boundaries were called when the distance between two consecutive reads with the same bar-

code exceeded 20 kb, and haplotype fragments were generated for each molecule using the

extractHAIRS tool (see Supplemental Methods). The software tools RefHap and ProbHap were

downloaded from the authors’ websites. For FastHare, we used the implementation of Duitama

et al [20]. Default parameters were used for each tool except for HapCUT which was run with

memory reduction heuristics to enable it to generate results for comparison.

2.5.8 Variant calls and haplotypes for NA12878

The NA12878 trio haplotypes from the 1000 Genomes project [20] were used as truth

haplotypes for assessing the accuracy of all haplotype assemblies. Only single nucleotide variants

(SNVs) were considered for phasing. The variants from this dataset (aligned to hg18) were used

for phasing the fosmid dataset. For usage with the PacBio, 10X Genomics, and Rao Hi-C data,

the hg18 NA12878 VCF file was carried over to hg19 with CrossMap [60].

2.5.9 Alignment and processing of Hi-C data

Two sets of Hi-C read datasets for NA12878 from Rao et al. [49] were used: one containing

all primary and replicate experiments using the restriction enzyme MboI (total of ∼ 395×

coverage) and another containing all experiments performed with the restriction enzyme HindIII

(total of ∼ 366× coverage). The paired-end reads were mapped as single reads to the reference

human genome (hg19) using BWA-MEM[61]. To handle reads that contain the ligation junction

for the Hi-C fragments, we developed a post-processing pipeline (see Supplemental Methods)
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to generate sorted BAM files that were used for haplotyping. Read pair information from intra-

chromosomal read pairs with an insert size greater than 40 Mb were not used to avoid linkages

with excessively high h-trans error rates. To subsample datasets to lower coverage, fragments

were randomly sampled from the aggregate dataset with the appropriate frequency.

2.5.10 Read simulations

Haplotypes were simulated by randomly introducing heterozygous SNVs at a uniform

rate of 0.0008 in a genome of length 250 megabases. Each heterozygous SNV is assigned a

random allele ∈ {0,1} for haplotype H1, with H2 assigned to the complement. Reads of a given

length were generated by selecting the start position randomly and the corresponding haplotype

fragment was obtained by appending all overlapping alleles from one of the two haplotypes.

Base miscalls were introduced in the reads with probability 0.02, resulting in an allele flip with

probability 1
3 or an uncalled SNV otherwise (to represent miscalls to non-reference, non-alternate

calls). Hi-C-like reads of length 150 base pairs were simulated in pairs. The insert length of each

read pair was sampled from the uniform distribution (minimum value of 0 and maximum value

equal to the maximum insert length).

2.6 Software availability

HapCUT2 is available for download at https://github.com/vibansal/HapCUT2 and also

from Supplementary Materials.

2.7 Disclosure declaration

V. Bafna is a co-founder, has an equity interest, and receives income from Digital Pro-

teomics, LLC. The terms of this arrangement have been reviewed and approved by the University

35



of California, San Diego in accordance with its conflict of interest policies. DP was not involved

in the research presented here.

2.8 Acknowledgments

V. Bansal was supported in part by a grant from the NIH (HG007430). V. Bafna and

P. Edge were supported in part by grants from the NIH (HG007836 and GM114362) and NSF

(DBI-1458557, IIS-1318386).

Chapter 2, in full, is a reprint of the material as it appears in HapCUT2: robust and

accurate haplotype assembly for diverse sequencing technologies. Edge, Peter; Bafna, Vineet;

Bansal, Vikas. Genome Research, 27(5), pp.801-812. Cold Spring Harbor Laboratory Press,

2017. The dissertation author was the primary author of this paper.

Permission to reuse the article is granted by Genome Research as described at https:

//genome.cshlp.org/site/misc/terms.xhtml.

36

https://genome.cshlp.org/site/misc/terms.xhtml
https://genome.cshlp.org/site/misc/terms.xhtml


2.9 Tables

Table 2.1: Comparison of the approach, time complexity, and applicability of five algorithms
for haplotype assembly: HapCUT2, HapCUT, RefHap, ProbHap and FastHare. R denotes the
number of reads (all algorithms process reads for each haplotype block separately), N denotes
the total number of variants, V denotes the maximum number of variants in a read, and d is the
maximum read depth per site. d′ is the maximum number of reads crossing a site (equivalent
to d except with paired-end inserts being included as part of the read). c1, c2, and c3 represent
method-specific variables that are either fixed in advance or selected by the user. Reads are
assumed to be sorted by starting position.

Method Approach Complexity Long reads Hi-C Variant
support pruning

HapCUT2 likelihood optimization O(c1c2(N log(N)+NdV 2)) scalable yes likelihood
using graph-cuts based

HapCUT MEC optimization O(c1c2(N log(N)+NdV 2)) high memory yes no
using graph-cuts requirements

RefHap Max-cut O(c3(R2V d′+RV 2d′2)) low-to-medium no discrete
on read graph coverage

ProbHap exact likelihood O(Nd′2d′) low-coverage no confidence
using dynamic prog. scores
+ merging heuristic

FastHare read partitioning O(RV d′) yes no discrete
optimization

Table 2.2: Comparison of total runtime (hours:minutes, summed across all chromosomes) for
different haplotype assembly methods on various sequence datasets for NA12878. For each
dataset, only methods that produced results within 20 CPU-hours per chromosome are shown.

HapCUT2 HapCUT RefHap ProbHap FastHare
Fosmid 1:09 1:49 0:01 0:31 0:01
PacBio (111111×××) 0:52 1:45 0:25 52:32 0:02
PacBio (444444×××) 4:05 6:56 215:53 - 0:20
10X Genomics 1:55 16:50 - - 12:07
Hi-C (444000×××) 4:38 0:46 - - -
Hi-C (999000×××) 9:11 1:49 - - -
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2.10 Figures

Figure 2.1: Comparison of runtime (top panel) and switch+mismatch error rate (bottom panel)
for HapCUT2 with four methods for haplotype assembly (HapCUT, RefHap, ProbHap, and
FastHare) on simulated read data as a function of (A): mean coverage per variant (variants per
read fixed at 4), (B): mean variants per read (mean coverage per variant fixed at 5), (C): mean
number of paired-end reads crossing a variant (mean coverage per variant fixed at 5, read length
150 base pairs, random insert size up to a variable maximum value). Lines represent the mean of
10 replicate simulations. FastHare is not visible on panel C (bottom) due to significantly higher
error rates.
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Figure 2.2: Accuracy of HapCUT2 compared to four other methods for haplotype assembly
on diverse whole-genome sequence datasets for NA12878: (A) fosmid dilution pool data [20],
(B) PacBio SMRT data(11× and 44× coverage), (C) 10X Genomics linked-reads, (D) Whole-
genome Hi-C data (40× and 90× coverage, created with MboI enzyme). Switch and mismatch
error rates were calculated across all chromosomes using the subset of variants that were phased
by all methods. For each dataset, only methods that produced results within 20 CPU-hours per
chromosome are shown.
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Figure 2.3: Haplotype completeness and accuracy compared between Hi-C (MboI enzyme,
90× and 40× coverage) and PacBio SMRT (44× and 11× coverage). (A) Cumulative measure
of the fraction of variants phased within a given number of the largest haplotype blocks. (B)
Fraction of correctly phased variant pairs as a function of distance.

Figure 2.4: Improvements in the (A) completeness and (B) accuracy (switch + mismatch error
rates) of the largest haplotype block with increasing Hi-C sequencing coverage for two different
restriction enzymes: MboI and HindIII. Results are presented using data for chromosome 1 with
coverage ranging from 18× to 200×.
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Chapter 3

Computational techniques for highly

accurate variant calling and haplotyping of

single human cells

3.1 Abstract

There is widespread interest in sequencing the genomes of individual human cells for

clinical and scientific purposes. However, single-cell sequencing usually requires amplification

of the source DNA with a DNA polymerase, and errors from replication result in a significant

amount of false positive variant calls. Recently, a new method called SISSOR (single-stranded

sequencing using microfluidic reactors) for single-cell sequencing was described that uses a

microfluidic processor to separate the positive and negative strands of megabase scale DNA

fragments for amplification in separate reaction chambers before barcoding and short read

sequencing. The redundancy that is afforded by sequencing the strands separately enables the

removal of amplification errors, observed as differences between the strands. SISSOR also

enables the construction of megabase-scale haplotypes using the single stranded fragments. The
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data produced using the SISSOR method introduces unique computational challenges that are not

met by existing variant calling tools, including unique error modalities. We introduce a single

nucleotide variant calling algorithm uniquely designed for the SISSOR method. Given SISSOR

data for multiple single cells, the algorithm calculates the probability that a variant is present by

considering all possible ways that single DNA strands may have been distributed amongst reaction

chambers while being subject to multiple sources of error. The algorithm enables SISSOR to

achieve error rates orders of magnitude lower then the amplification error rate. Further, haplotype

assembly of the single-stranded fragments enables direct error correction between the positive

and negative strands for error rates as low as 1∗10−8.

3.2 Introduction

Single nucleotide variants (SNVs) are the most common form of human genetic variation,

and detection of SNVs is crucial for scientific and clinical purposes [7]. It is now routine to

detect SNVs genomewide via whole-genome resequencing of a sample of cells. Usually this is

performed with a bulk tissue sample and as a result information about cell-to-cell variations is

lost [62]. Also, this approach requires tens of thousands of cells per sample. There are many

applications of DNA sequencing where it is not feasible to obtain a sample of this size, such as

profiling circulating tumor cells or in preimplantation genetic diagnosis [15, 16]. Furthermore,

single-cell sequencing enables the sequencing of individual cells in samples such as tumors that

have significant genomic heterogeneity [17].

Because short read sequencing technologies require a large sample of source DNA, single-

cell sequencing is typically performed by whole genome amplification with a technique such as

multiple displacement amplification (MDA). The error rate of conventional MDA followed by

sequencing is approximately 1.2∗10−5, resulting in tens of thousands of false positive variant

calls per genome and obscuring the true cell-specific variations [18]. Further, conventional short
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read sequencing provides limited information about haplotypes, or the ordering of alleles on

homologous chromosomes. Recently, a new method for single-cell sequencing was introduced

called SISSOR that aims to address these problems [24]. SISSOR uses a microfluidic device

to separate the single strands of DNA and partition them in separate reaction chambers for

amplification, after which they are barcoded and sequenced. The sequenced strands of DNA are

haploid and can be used to assemble long haplotypes similar to other partitioning and synthetic

long read approaches [21]. A schematic of the SISSOR device is in figure 3.1. A microfluidic

device is used to capture a single cell, which is lysed and the DNA is separated into single strands.

The single strands are mixed in a ring mixer and randomly distributed to 24 reaction chambers,

where they are amplified with MDA. The products in the individual chambers are bar coded and

sequenced. The independent amplification of the two single strands provides redundancy so that

errors occurring on one strand or the other can be removed.

Traditional SNV calling algorithms such as samtools, GATK, or FreeBayes are designed

to call variants using sequencing reads from a single organism or a population of multiple

organisms [63, 64, 65]. These algorithms do not account for error modalities that occur in single-

cell sequencing. There have been algorithms designed specifically for single-cell sequencing,

including Monovar and SCcaller [66, 67]. However, neither of these methods are ideal for calling

variants using sequencing libraries derived from randomly partitioned single strands from each

haplotype. We introduce a novel algorithm for calling variants designed and optimized for the

SISSOR method to enable highly accurate variant calls. The algorithm models all of the possible

ways that single stranded DNA from each haplotype might have been distributed amongst all of

the reaction chambers, accounting for sources of error such as amplification error and overlap

of different haplotypes in the same chamber. We also describe strategies for processing the

sequenced single strands for optimal haplotype assembly, and show that even greater accuracy

can be achieved by directly correcting errors between haplotype-assigned strands.
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3.3 Results

3.3.1 SNV calling algorithm

The goal of the SISSOR SNV calling algorithm is to determine the SNV alleles present

for each site in the genome, given SISSOR aligned read data (24 reaction chambers) for one or

multiple individual cells. It is assumed that the input data for each variant site is 24n read base

pileups, where n is the number of sequenced cells. In other words, the input data is the observed

DNA bases for the variant site across all the reaction chambers, as well as quality information.

In the absence of DNA strand loss or errors from sources such as sequencing or ampli-

fication, it is trivial to determine all of the alleles present (the full genotype) for each site. For

each cell, exactly 4 of the 24 chambers should have read base observations. If the individual is

homozygous for an allele, then the read bases in all four chambers should be the same. If the

individual is heterozygous for an allele, the bases in two chambers should match while the bases

observed in the other two chambers should match. However, there is significant DNA strand

loss in the current implementation of the SISSOR method which means that most sites will have

anywhere from 0 to 4 chambers with observations, and it is not known which haplotypes the

observations belong to. Further, it is possible for strands to be placed in the same chamber, which

results in a mixture of DNA bases observed in that chamber at heterozygous sites. There are also

errors from amplification, which can cause a subset of bases observed in a single chamber to be

changed to a random DNA base.

To address these problems, the algorithm uses a probabilistic model for the SISSOR

experimental protocol that considers all possible ways that single DNA strands could be arranged

to reaction chambers and subjected to errors (Figure 3.2). It is assumed that the locus has a

diploid source genotype, which results in four single strands (two strands from each haplotype)

after strand separation. After strand separation, the strands could be distributed to any of the 24

chambers, or be unsampled. The model accounts for the fact that multiple strands could overlap
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in the same chamber, and that there could be errors during amplification. Given this model, the

algorithm accounts for all possible ways that the strands might have been distributed amongst the

reaction chambers and subjected to the multiple types of errors. A bayesian calculation is used to

calculate the posterior probability of a genotype or the presence of an allele given the data and

model. The algorithm also supports calling variants using data for multiple cells, in which case

all possible ways of distributing strands and applying error sources in all of the available cells is

calculated.

The algorithm was applied to data from 3 single cells sequenced with the SISSOR method

from the PGP1f fibroblast cell line, and compared against a highly confident reference for PGP1

(see methods). The results are in table 3.1. At the most lenient threshold, 1.7 million SNVs were

called with a false-positive rate of 5∗10−5. At a moderate threshold, 613,669 SNVs were called

with a false-positive rate of 1∗10−6. At the strictest threshold, 177,096 SNVs were called with a

false-positive rate of 1∗10−7. For comparison, the base error rate of amplification and sequencing

for these samples was estimated to be 1.7∗10−5, so using the variant calling algorithm to leverage

multiple-chamber information can result in orders of magnitude better accuracy [24].

3.3.2 Haplotype Assembly

Accurate assembly of haplotypes requires a set of haploid sequence reads or fragments,

and an accurate set of known heterozygous SNV sites. A set of heterozygous SNVs obtained

from 60×WGS sequencing of the PGP1f cell line were used for haplotype assembly (ENCODE

project “ENCSR674PQI”). SISSOR fragments are observed as sets of aligned reads clustered in

the same region of the reference genome. Normally, a cluster of reads like this are sampled from a

single haploid fragment originating from a single strand of DNA. For this reason, the boundaries

of SISSOR fragments were drawn using a read coverage based Hidden Markov Model [24].

The variant calling algorithm used for calling consensus variants was extended to determine the

most likely sequence of bases for each haploid fragment in each chamber. Then, the HapCUT2
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method was used to assemble haplotypes for the ∼1.2 million SNV sites overlapping SISSOR

fragments [68]. The haplotype N50 was∼15 Mb and the total error rate (switch+mismatch errors)

was ∼1.5%.

However, when single-stranded fragments aligning to the same region of the reference

genome but from different haplotypes occur in the same amplification chamber, it can result in a

hybrid fragment of mixed ploidy. If there is extensive overlap between the two fragments, the

resulting hybrid fragment may contain numerous heterozygous variant sites with observations

of both alleles. If there is limited overlap between the fragments, then the haplotype phase

may “switch” from one haplotype to the other at a single point in the fragment with no such

signal. Two general strategies were used to minimize errors in haplotype assembly from this

problem (Figure 3.3). First, the SISSOR haplotype fragments were split at the sites of detectable

switch errors, where a single haplotype fragment has a switch error inconsistency with multiple

other haplotype fragments in the same location. Secondly, the haplotype fragments were split at

clusters of mixed allele calls (more than 25% of allele calls having a mixed allele in a span of ≥ 3

heterozygous SNV locations), which are likely to indicate an overlapping region between two

haploid fragments. Fragments were completely removed if they were found to be low-quality by

these two metrics, i.e. having excessively high switch error rate compared to other fragments or

having excessively many mixed alleles.

This strategy greatly improved the haplotype accuracy, for a trade-off in haplotype

contiguity (Figure 3.4). The haplotype N50 reduced from ∼15 Mb using unprocessed fragments

to ∼7 Mb using processed fragments, but the haplotype switch error rate dropped from 0.009 to

0.004 and the mismatch error rate dropped from 0.006 to 0.003. Note that these error rates are

upper bounds; the haplotypes were compared to haplotypes assembled using BAC sequencing

that have non-negligible errors [44].
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3.3.3 Strand-to-strand matching for improved SNV accuracy

The variant calling algorithm enables more accurate single-cell sequencing variant calling

by comparing read base observations between chambers and between cells. However, the SIS-

SOR method can enable even greater accuracy when it is possible to compare directly between

the two single strands in a sample. Amplification errors occur separately in the independent

reaction chambers, so most amplification errors will be observed as differences between the two

independently amplified and sequenced strands and can be removed. However, this type of error

removal can only be performed between two single strands from the same DNA molecule (haplo-

type). This was addressed by assigning SISSOR fragments back to the assembled haplotypes.

Fragments matching the source haplotype with 80% accuracy were considered to be assigned and

the remaining fragments were discarded.

The strand-to-strand consensus strategy was used to call variants in each of the 3 sequenced

cells separately (table 3.3). The total number of positions called ranged from 30 to 70 million,

and the number of SNVs called per cell ranging from 23477 to 54832. The calls were compared

to a reference for PGP1 obtained by intersecting high-confidence complete genomics (CGI)

and high-coverage WGS calls, plus calls from BAC libraries for PGP1 (see methods). Variants

confirmed by a third independent chamber outside of the strand-matched chambers were also

considered unlikely to be false positives. By these metrics, the upper bound of the error rate for

SISSOR was found to be 2.63∗10−7, 6.50∗10−7 and 2.97∗10−7 for the three cells. This error

rate includes actual errors as well as cell-specific variations.

Real cell-specific variations may contribute significantly to the measured error rates.

Therefore, a proxy argument was used to measure a more accurate upper bound of the SISSOR

error rate. The same strand-to-strand consensus strategy was used between haplotype-matched

strands from different cells (cross-cell), so that the strand-to-strand matching would remove real

cell-specific variants as well as the errors in the sequenced single strands. When this analysis was

performed, 355 million cross-cell matched positions were called, and there were 9 differences to
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the high-quality PGP1 reference. 5 of those differences were confirmed by a 3rd chamber, leaving

4 positions that are possible errors. This upper bounds the SISSOR error rate, after accounting for

cell-specific variations, to 1.14∗10−8.

3.4 Discussion

We have introduced a novel variant calling method designed specifically for the SISSOR

method that probabilistically models the SISSOR experimental workflow. The approach demon-

strates significantly improved accuracy over the baseline error rate of MDA based sequencing,

and using haplotype-based strand-to-stand consensus analysis improves the accuracy even further.

In the future, this approach could be improved in several ways.

Firstly, the existing algorithm considers variant sites independently rather than considering

sites together in haplotypes. While the early SNV calling algorithms for short reads considered

variant sites independently, the state-of-the-art algorithms for short read variant calling now

utilize haplotype information as much as possible [64, 65]. If the algorithm were extended to

consider and model the random distribution of haplotype chunks to the different chambers rather

than SNVs only, it could greatly improve variant calling accuracy. This would essentially bring

the consideration of haplotype information directly into the main algorithm, rather than calling

variants first and performing secondary analysis of haplotype assembly and haplotype-based error

removal.

Secondly, the existing algorithm considers the entire space of possible strand configuration

events, with minimal pruning or optimizations in place. As a result, the existing implementation

requires thousands of CPU hours to process whole genome data across three single cells. The

algorithm could be redesigned to prune or approximate the probabilities for the strand-to-chamber

configurations that are highly unlikely. Optimizations similar this would be crucial if the algorithm

is extended to integrate haplotype information. A naive implementation that directly replaces
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single-base alleles with haplotype chunks would result in an exponential increase in runtime with

the length of haplotypes.

Finally, haplotype assembly with SISSOR could be improved with more sophisticated

methods for delineating separate fragments, such as the FragmentCut algorithm [69]. For

this work, a simple Hidden Markov Model based on read coverage was used to call fragment

boundaries. However, read coverage after amplification with MDA is highly nonuniform [70].

A method that models the read coverage and combines it with signals such as mixed-allele

observations could result in fewer hybrid fragments and better haplotype accuracy.

3.5 Methods

3.5.1 SNV calling algorithm

SNV calling overview

The goal of SNV calling with SISSOR data is twofold: first, to determine the best

consensus call (SNV or reference) for every genomic position, given read data for every chamber,

second, to determine the best call for each individual SISSOR chamber in light of information

from the other chambers. For instance, if the same SNV is observed in multiple chambers, then

the confidence of the SNV call in each chamber is higher than if the SNV were only observed in

one chamber. Similarly, the confidence for that SNV in the consensus genotype over all chambers

is higher if it is observed multiple times. In general, a group of reads observed in a chamber at

a genomic position is generated from one of four strands: the forward or reverse strand from

one haplotype, or the forward or reverse strand from the other haplotype (hereafter referred to

as strands 1, 2, 3 and 4, respectively). The variant caller accounts for multiple sources of errors

besides sequencer error, including error introduced during MDA from the Phi29 enzyme, and

the occurrence of multiple source DNA strands being amplified in the same chamber. Given sets
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of read observations from different chambers, the variant caller considers every possible way in

which the four single strands of DNA for each genotype could be distributed across chambers.

Given multiple single-cell libraries, it considers all combinations of events in each cell that could

result in the combined set of data. These events are modeled in a likelihood framework to make

a bayesian calculation for the posterior probability that a SNV is present. The variant caller is

implemented in python and takes as input a multi-sample pileup of all the chamber bam files,

generated with samtools mpileup [63]. The caller makes the following primary assumptions:

reads are correctly mapped, variant calls at different genomic positions are independent, and the

genotypes of each cell in the multiple-cell case are the same. To make use of reads amplified from

strands smaller than the 60 kb HMM window sizes, all chambers with read coverage ≥ 3 were

considered in the model (and genomic positions with more than 4 such chambers in a cell were

left uncalled, in keeping with the diploid model). The following sections describe the consensus

SNV calling model.

SNV calling parameters

The SNV caller models the experimental workflow of the SISSOR method. As such, it

requires knowledge of various library-specific parameters. We estimated parameters for the model

either empirically from the data or based on prior studies. The prior probability of a genotype,

P(G), was estimated using the method described by Li et al [8]. We refer to the set of genotype

priors as PG.

We denote the probability of sampling a fragment from a given chamber i as Ps[i]. Ps[i]

was assumed to be proportional to the relative genomic coverage of a chamber:

Ps[i] = (1−Ps[∅])∗ cov(i)
∑ j∈1..24 cov( j)

(3.1)

Ps[∅] represents the probability that a strand is not sampled, and was estimated to be

consistent with the distribution of strand depth (the number of chambers at a given position
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containing fragments. Let S[i] be the number of genomic positions with exactly i chambers

with reads. Let the 4-tuple C = (c1,c2,c3,c4) represent a chamber configuration of 4 distinct

DNA strands to chambers, with c1,c2,c3,c4 ∈ {1,2, ...,24,∅}. Let C̆ refer to the set of all

possible configurations, and let C̆i ∈ C̆ be the set of chamber configurations such that exactly i

of (c1,c2,c3,c4) are not equal to ∅. If we assume that strand coverage per position results from

independent trials depending only on the overall probability of drawing exactly that many strands,

we can describe a likelihood for the observed strand coverages:

P(S|Ps) =
4

∏
i=0

∑
c∈C̆i

Ps[c1]∗Ps[c2]∗Ps[c3]∗Ps[c4]

S[i]

(3.2)

We selected Ps[∅] 0.81 as the approximate value that maximizes this likelihood, and this

result was consistent with estimates based on the difference of the total coverage from theoretical

perfect 4-strand coverage.

We use ε to refer to the probability of error in base-calling. It is described as a constant

variable for simplicity but in general represents the per-base quality score of a read position.

However, errors can also be introduced as a result of MDA. We use Pm[x] to denote the probability

that x fraction of reads in a chamber are noise of a minority base resulting from MDA amplification.

Assuming the X chromosome should be monoallelic except for MDA error (the PGP1f cell line is

male), we estimated Pm[x] as the distribution of the fraction of the second-most-common allele

for each position on the X chromosome. Although this accounts for noise from secondary bases

due to MDA, it is known that the consensus error rate from MDA is on the order of 1∗10−5 [71].

We let ω = 1∗10−5 represent the probability that the majority base in a chamber (the consensus)

was changed as a result of MDA amplification.

We use Pp[x] to denote the probability that x fraction of reads in a chamber originate from

a given parent. Pp[x] accounts for the possibility of strands from different haplotypes occuring

at the same position in the same chamber. Pp was estimated using the logic that the fragments
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of the hemizygous X chromosome can be shuffled to random positions to simulate a separate

homologous chromosome. By overlapping the original fragments with the shuffled fragments

we can simulate strand overlaps in a diploid case. With this in mind, we sampled coverages

x1 and x2 of independent random positions from the X chromosome 1 ∗ 108 times, and used

the distribution of the value x1
x1+x2

as an estimate of Pp. In the following formulation, we use

π = {PG,Ps,ε,Pm,ω,Pp} to refer to the entire collection of parameters.

SNV calling framework

We begin by considering a single genomic position, with some number of observed reads

aligned to the position in each of 24 chambers. Let ai represent the pileup of observed bases

in chamber i, and ai, j denote the base ∈ {A,C,G,T} observed in chamber i at the j-th read (in

chamber is base pileup). The set of observed data is A = [a1,a2, ...,a24]. Let G denote the true

genotype of the individual at the site, so G can be homozygous in the reference or alternate

allele, or heterozygous. Using Bayes rule, we can compute the posterior probability of a specific

genotype in terms of the probability of the data given each genotype:

P(G|A,π) = P(A|G,π)P(G))

∑G P(A|G,π)P(G)
(3.3)

Because of DNA strand loss and uneven amplification, the data for many positions may

be insufficient to assign a diploid genotype even though it is highly likely that a specific allele is

present. For this reason, we computed the probability that each allele α ∈ {A,C,G,T} is present:

P(α|A,π) = ∑
G,α∈G

P(G|A,π) (3.4)

Likelihood of data in all chambers

In order to calculate P(A|G,π), it is necessary to account for every configuration in which

the 4 strands can be distributed amongst 25 chambers (treating ∅, or unsampled, as a 25th
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chamber). Let C = (c1,c2,c3,c4) be the chambers corresponding to the four strands where ci can

take values from 1−25. We can compute the probability of this configuration as the product of

the probabilities of sampling strands in those chambers:

P(C) = ∏
i∈C

Ps[i] (3.5)

Given SISSOR read data A for a single position, Let N(A)⊆ C̆ denote the set of configu-

rations that could have generated A with non-zero probability. Then,

P(A|G,π) = ∑
C∈N(A)

P(A|C,G,π)P(C|G) (3.6)

= ∑
C∈N(A)

(
24

∏
i=1

P(ai|C,G,π)

)
P(C|G) (3.7)

In the case of multiple cells, the data from different cells is independent conditional on

the genotype G. To generalize to multiple (in our case) cell samples, we change A to be of length

24n and refer to the observed data across all 24n = 72 chambers. We redefine C̆ for multiple

cells as the nth Cartesian power of C̆ in the single-cell case, or the set of unique n-tuples of

4-tuples that combines one single-cell strand configuration of each cell. The probability of an

n-cell configuration is equal to the product of the constituent single-cell strand configurations

probabilities.

Likelihood of data in one chamber

Now we consider how to calculate P(ai|C,G), or the likelihood of the observed chamber

data (read bases) given the genotype and knowledge of which strands are present (strand configu-

ration). Let g1,g2 ∈ {A,C,G,T} denote the allelic values of G currently being considered. First,
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we define the probability of seeing a read base ai, j given that it originated from genotype allele g:

P(ai, j|g,π) =


(1− ε) i f ai, j = g

ε otherwise
(3.8)

We address each possible case for chamber-strand configurations separately. We use K1 to

represent the set of configurations in which 1 strand falls into chamber i. We use K2 to represent

the set of configurations in which 2 or more strands fall into chamber i, and more than 1 distinct

allele is present. In the case where there is only one strand allele present, we take the product of

the probabilities of observing each base ai, j given that the true allele is g. g refers to the allele of

G that is present in chamber i as a result of configuration Ci. We assume that MDA error changes

the majority allele from g to a different base b (consensus allele) with probability ω. We assume

that MDA also introduces noise bases of a base ∼b with probability j
n , and otherwise the base is

b with probability n− j
n . Pm[

j
n ] is the probability that j of the n bases are noise.

Ω[b] =


1−ω i f b = g

ω

3 otherwise
(3.9)

P(ai|C ∈ K1,G,π) = ∑
b∈{A,C,G,T}

Ω[b]
n

∑
j=1

P(ai|b,π,noise = j)Pm[
j
n
] (3.10)

To compute the probability of chamber data given that the consensus allele is b, we sum

over all possible proportions of allele mixture from MDA:

P(ai|b,π,noise = j) =
n

∏
k=1

((
j
n

)
P(ai,k|∼b,π)+

(
n− j

n

)
P(ai,k|b,π)

)
(3.11)

We now consider the case where there are multiple strands with different alleles occurring

in the same chamber. This is modeled similarly to MDA noise. To compute the total likelihood of
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an allele call ci given a genotype, we sum over all possible proportions of strand mixture, with

j representing reads originating from parental allele 1 and n− j representing reads originating

from parental allele 2:

P(ai|C ∈ K2,G,π) =
n

∑
j=1

[
Pp

[
j
n

] n

∏
k=1

((
j
n

)
P(ai,k|g1,π)+

(
n− j

n

)
P(ai,k|g2,π)

)]
(3.12)

The Pp[
j
n ] term accounts for the probability of occurrence of a parental allele in the

given fraction. k represents the current index in the set of base calls for chamber i. The term(
j
n

)
P(ai,k|g1,π) represents the case that ai,k was generated by g from strand 1 (probability j

n that

ai,k came from strand 1, times P(ai,k|g1) the probability of allele ai,k given that it came from g1).

The next two terms represent analogous information for the case that ai,k came from strand 2. To

reduce computation, we assume that MDA noise and strand overlap do not occur in the same

chamber. Computation was further minimized by constraining the domains of Pm and Pp to ≤ 20

evenly spaced bins.

Likelihood of an allele in a chamber

Along with a consensus call across many chambers, we also called the most likely allele

occurring in a specific chamber, in light of information from other chambers. This is done in a

similar fashion to computing the most likely genotype G. Consider a single chamber i for which

we want to determine the allele present (if any) on the original strand. We denote the assignment

of an allele ∈ {A,C,G,T} to chamber i as αi. We want to choose the most likely αi:

max
α

P(αi|A,π) (3.13)
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As before, we use Bayes rule:

P(αi|A,π) =
P(A|αi,π)P(αi)

∑α̂i P(A|α̂i,π)P(α̂i)
(3.14)

Computing P(A|αi,π) follows similarly to computing P(A|G,π), except that we sum the

likelihood of chamber data over all genotypes and configurations in which chamber i contains

allele α.

3.5.2 Haplotype assembly

Haplotype assembly requires a large set of high-confidence heterozygous SNVs. For the

purpose of haplotype assembly, we used a set of heterozygous SNVs from 60× Illumina WGS of

PGP1f cells (Encode phase 3, ENCSR674PQI) [72]. The original VCF containing SNV calls was

lifted over to hg19 using CrossMap and sorted with vcftools [60, 73]. After this, the heterozygous

SNV calls were filtered for coverage ≥ 10 and quality score ≥ 30. Reference and variant calls in

each SISSOR chamber were grouped into haplotype fragments if they fell inside the boundaries

of the same called fragment. Chamber calls that differed from the majority base in the chambers

base pileup were filtered out (e.g. in unusual cases where data for individual chambers does not fit

cleanly into the diploid base-calling model). Only base calls with coverage≥ 5 that overlapped the

set of heterozygous SNVs were retained, and quality scores of allele calls in haplotype fragments

were fixed to 20. Four post-processing steps were applied to increase haplotype accuracy: first,

fragments were filtered out if more than 5% of base calls were mixed alleles, which indicate

strand overlap from different haplotypes or similar error. Then, fragments were split at spans of

multiple mixed-allele base calls (more than 25% of calls having a mixed allele in a span of ≥ 3

heterozygous SNV locations). Then, fragments that were highly discordant to other fragments

were filtered out (≥ 30% rate of switch errors of any length across all overlaps to other fragments).

Finally, a haplotype fragment was split if it had a switch error of length 2 SNVs or greater with
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respect to multiple overlapping fragments. If it was ambiguous which fragment was the source of

the error (for instance, in the case of only two overlapping fragments), multiple fragments were

split. Following these fragment processing steps, the processed fragments were assembled into

haplotype blocks with HapCUT2 [68]. SNVs were pruned at a HapCUT2 SNV confidence level

of 0.95, blocks were split at a switch confidence level of 0.95, and a standard discrete pruning

heuristic was applied [20].

3.5.3 Accuracy of haplotypes

To assess haplotype accuracy, it is important to compare against a confident reference

haplotype. We compared against haplotypes assembled from BAC clones [44]. To maximize the

accuracy of the BAC clone haplotypes, the original BAC fragments were filtered for heterozygous

SNVs present in the PGP1f Illumina WGS dataset used to generate SISSOR haplotype fragments

[72]. In the same fashion as raw SISSOR fragments were processed, BAC clones were split

at positions where 2 or more heterozygous SNVs were switched with respect to other clones.

After this, the processed BAC clones were assembled into haplotype blocks using HapCUT2

[68] and pruned at high stringency: SNVs were removed at HapCUT2 SNV confidence level of

0.9999, blocks were split at switch confidence level of 0.9999, and a standard discrete pruning

heuristic was applied [20]. Accuracy of SISSOR haplotypes was assessed by allpairs comparison

of SISSOR haplotype blocks to these high-stringency BAC haplotype blocks. Accuracy was

measured using the concept of switch and mismatch errors (also called long and short switches,

respectively) [43]. Looking at positions shared by a single SISSOR haplotype block and a single

BAC haplotype block, a switch error is defined as a heterozygous SNV position where the phase

in the SISSOR haplotype block is different than the BAC reference with respect to the previous

shared position (called in both haplotypes). Two switch errors occurring in a row are instead

called a single mismatch error, which results in a difference in phase of only one SNV with respect

to the BAC reference. The mismatch discordancy rate is defined as the fraction of compared
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positions that had a mismatch error. The switch discordancy rate is similarly defined, but the

denominator is slightly smaller as it does not count first and last compared SNVs in a block

(these are always called mismatch errors if the phase differs). The term discordancy rate is used

instead of error rate because it is assumed that the BAC haplotypes, while accurate, may have

non-negligible error.

3.5.4 Same haplotype strand pairing

Fragments were assigned to haplotypes by matching them back to the assembled haplotype

blocks. A fragment was required to match the assembled block with 80% accuracy or greater and

contain at least 2 haplotype-informative calls at heterozygous SNV positions. After assignment,

all base calls (with calls different from the pileup majority base filtered out) inside overlapping

fragments were analyzed and a position was classified as a strand-match if both fragments had

the same call and as a strand-mismatch if the fragments had different calls. Strand-mismatched

positions were quantified for the purpose of estimating the effects of errors from MDA, DNA

damage, and other sources. Strand-matched positions in adjacent chambers (chambers 1 and 2,

chambers 2 and 3, ... chambers 23 and 24) were discarded, because cases of DNA leakage were

observed where DNA from a single strand leaked to physically adjacent chambers and generated

a false haplotype-paired strand. The remaining strand-matched calls are of higher confidence than

other calls because of their haplotype support, so these calls were tested for concordance against

a curated set of SNV and reference calls for PGP1 (described below). Strand-matched calls

between strands in different cells that differed from the PGP1 reference were used to estimate the

maximum error rate for strand-matched calls in SISSOR technology since these calls are shared

by the cell line. Strand-matched calls between strands in the same cell that differed from the

PGP1 reference were analyzed as potential de novo variants specific to the cell.
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3.5.5 Accuracy of SNV calling

SNV (and reference) calls from SISSOR were compared to a dataset obtained by combin-

ing multiple sources for PGP1. First, raw BAMs from a 60× Illumina WGS sequencing of PGP1f

cells (Encode phase 3, ENCSR674PQI) were used to generate calls at every genomic position

using Freebayes with the standard filters and report monomorphic options [65]. These calls were

lifted over to hg19 with CrossMap and sorted with vcftools [60, 73]. The single-nucleotide calls

in this dataset were filtered for those matching a CGI WGS dataset for PGP1, to filter for only

high-quality calls shared by both samples [74]. The resulting intersected dataset had 2.7 billion

reference calls and 3.0 million SNV calls. This dataset served as the basis for comparison (SIS-

SOR calls were compared against positions called in the intersected dataset). Variants observed

in BAC sequencing libraries [44] served as an extra source for validation; calls that differed from

the intersected data but were seen in BAC were considered to be correct.

3.5.6 Workflow management

The complete workflow for variant calling, haplotype assembly, haplotype strand pairing,

and accuracy calculations was managed with Snakemake [75].
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3.7 Figures and Tables

Table 3.1: Tabulated data in cross chamber base calling algorithm
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Table 3.2: Summary of error rate analysis from strand-strand consensus
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Table 3.3: Summary of differences in individual cells
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Figure 3.1: [figure and caption from publication [24]] An overview of the experimental process
of SISSOR technology. A single cell in suspension was identified by imaging and captured.
The cell was lysed, and chromosomal DNA molecules were separated into single-stranded form
using ALS. The single-stranded DNA molecules were randomly distributed and partitioned in
24 chambers. Each partition was pushed into an air-filled MDA chamber using a neutralization
buffer, followed by an MDA reaction solution. MDA reaction was carried out by heating the
entire device at 30 C overnight. The amplified product in each individual chamber was collected
out of the device and processed into the barcoded sequencing library.
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Figure 3.2: The SISSOR variant calling algorithm considers all possible ways that data for
multiple reaction chambers could have been generated, accounting for sources of error such as
same-chamber allele overlap and amplification (MDA) error. The graphic shows one possible
data generation event considered by the SISSOR variant calling algorithm for bases observed
at a single variant site. In this example, the observed data includes a mixture of two alleles
(A and C) in chamber 1, many observations of a single allele (T) in chamber 9, and a mixture
of two different alleles (A and T) in chamber 24. One likely way that this data could have
been generated is if the source genotype were A/T and fragments from different haplotypes co-
occurred in chamber 24. The observed C alleles in chamber 1 could be the result of amplification
error.
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Figure 3.3: After variant calling, SISSOR fragments are processed prior to haplotype assembly
to remove errors. If a fragment contains a ”switch error” (switching from one haplotype
sequence to the other) that is detectable by comparison to other fragments, the fragment is split
at that location. Similarly, if a fragment contains a region with multiple sites called as ”mixed”
(same-chamber allele overlap), the fragment is split and the mixed region is removed. Both
switch errors and mixed allele calls are evidence of the two haplotypes overlapping in the same
chamber.
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Figure 3.4: SISSOR fragments were processed to remove haplotype errors prior to haplotype
assembly, by splitting fragments at detectable switch errors and regions with multiple mixed-
allele calls. The error rates (in terms of switch and mismatch errors) and completeness (in terms
of N50 and AN50) are shown for the haplotypes assembled using the processed and unprocessed
fragments for 3 cells.
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Chapter 4

Longshot enables accurate variant calling

in diploid genomes from single-molecule

long read sequencing

4.1 Abstract

Whole-genome sequencing using sequencing technologies such as Illumina enables the

accurate detection of small-scale variants but provides limited information about haplotypes

and variants in repetitive regions of the human genome. Single-molecule sequencing (SMS)

technologies such as Pacific Biosciences and Oxford Nanopore generate long reads that can

potentially address the limitations of short read sequencing. However, the high error rate of

SMS reads makes it challenging to detect small-scale variants in diploid genomes. We introduce

a variant calling method, Longshot, that leverages the haplotype information present in SMS

reads to accurately detect and phase single nucleotide variants (SNV) in diploid genomes. We

demonstrate that Longshot achieves very high accuracy for SNV detection using whole-genome

Pacific Biosciences data, outperforms existing variant calling methods, and enables variant
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detection in duplicated regions of the genome that cannot be mapped using short reads.

4.2 Introduction

The availability of second-generation DNA sequencing technologies such as Illumina short

reads has made the resequencing of human genomes routine [76]. Both single nucleotide variants

(SNVs), the most abundant form of variation in the human genome, and small indel variants can be

reliably detected using whole-genome Illumina sequencing using sequence coverage of 30–40×

[77, 78]. Nevertheless, sequencing human genomes using short-read sequencing technologies has

many limitations. First, humans are diploid organisms with two copies (maternal and paternal) of

each autosomal chromosome. Haplotypes, or the sequence of alleles that occur on an individual

chromosome, can be computationally assembled from whole-genome sequencing using overlaps

between reads that span multiple heterozygous variants [39, 32, 20]. However, due to the low rate

of heterozygosity of human genomes [79], Illumina reads derived from paired-end sequencing

of short fragment libraries (200–500 bp in length) typically cover only a single variant site, and

do not provide long-range haplotype information. Second, approximately 3.6% of the genome

consists of long and highly similar duplicated sequences where short-reads cannot be uniquely

mapped and hence SNVs cannot be detected. These regions overlap hundreds of coding genes,

including many disease associated genes such as PMS2 and STRC [80].

Third-generation single molecule sequencing (SMS) technologies such as Pacific Bio-

sciences (PacBio) and Oxford Nanopore (ONT) generate long sequence reads; average read

lengths for the PacBio Single Molecule, Real-Time (SMRT) technology are 10–30 kilobases [81].

These long reads have the potential to overcome many of the limitations of short read sequencing

technologies including haplotyping and detection of structural variation. Indeed, SMS data has

been successfully used for de novo assembly of human genomes [38, 82], identifying complex

structural variation [83] and haplotype assembly of human genomes [68, 38]. However, compared
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to short read sequencing technologies such as Illumina, the per-base accuracy of SMS reads is

low with an error rate exceeding 10% (primarily due to insertion/deletion errors) [81]. This high

error rate makes the detection of small sequence variants such as SNVs, particularly heterozygous

variants, difficult.

With the decreasing cost of SMS technologies and their increasing use for sequencing

human genomes, accurate short variant calling methods for long read SMS data can be valuable

in many ways. Current benchmarks for variant calling in human genomes, developed by the the

Genome in a Bottle (GIAB) Consortium [84, 85], are based on short read sequence data and

cover ∼90.8% of the reference human genome sequence. These high-confidence variant calls are

immensely valuable for developing new variant calling methods and sequencing technologies.

However, these variant call sets are biased towards regions of the genome that are easy-to-

call using short reads [86]. Accurate SNV calling using long read SMS data can provide

independent validation of short read SNV calls leading to reduction in false positives and increased

understanding of systematic errors and artifacts. Furthermore, SNV calling using SMS reads

can enable the generation of high-confidence variant calls in repetitive regions of the genome

that include segmental duplications. The ability to call variants in repetitive regions that are

inaccessible to short read sequencing technologies can also advance the use of SMS technologies

for detection of disease causing mutations in duplicated genes via whole-genome or targeted

sequencing [87].

Haplotype-resolved SNV detection from SMS reads can also enable the discovery of

other types of human genetic variation, such as structural variants (SV) via separation of reads

using haplotypes. Huddleston et al. [88] used an assembly-based approach, SMRT-SV, to identify

thousands of SVs from whole-genome PacBio data of two haploid genomes, 89% of which were

not reported by the 1000 Genomes Project [89]. However, the sensitivity of SV detection using

SMRT-SV was only 41% in diploid genomes. Chaisson et al performed dense whole-genome

haplotyping of a human genome using multiple sequencing technologies, and were able to call
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structural variants successfully on each group of haplotype-separated SMS reads [90].

Variant calling tools such as GATK HaplotyperCaller [64] and FreeBayes [65] developed

for short read data analysis are not well-suited for SNV detection using PacBio data for two

reasons: (i) short reads have low error rates (< 0.5%) and these methods do not model the high

indel error rate of SMS reads which makes it difficult to distinguish true SNVs from errors and

(ii) these methods analyze reads in short windows (typically a few hundred bases) and are not

designed to leverage the haplotype information present in SMS reads. This haplotype information

can be invaluable in distinguishing true variants from errors since observations of a true variant

segregate with the reads originating from the haplotype on which it occurs, whereas sequencing

errors are unlikely to segregate. Recently, several methods for variant calling from long reads

and deep-learning based variant calling methods have been developed [91, 92, 93]. However, the

accuracy of these methods for SNV calling on SMS data is currently much lower than that using

Illumina whole-genome sequencing (WGS) [93, 92].

We describe a diploid SNV calling method, Longshot, that harnesses long SMS reads to

jointly perform SNV detection and haplotyping. For this, it uses our read-based haplotype phasing

method HapCUT2 [68]. To overcome the high error rate of SMS reads, it utilizes a pair-Hidden

Markov Model to average over the uncertainty in the local alignments and estimate accurate base

quality values that can be used for calculating genotype likelihoods. We benchmarked Longshot

using simulated data and whole-genome SMS data for multiple human individuals sequenced

using the PacBio SMRT and Oxford Nanopore sequencing technologies [84, 85, 26]. LongShot

achieves very high accuracy for SNV detection (precision ≥0.992 and recall ≥0.96) on PacBio

SMS datasets and outperforms current variant calling methods in accuracy and run-time. We find

that Longshot can also call SNVs with high accuracy using whole-genome Oxford Nanopore

data.
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4.3 Results

4.3.1 Overview of method

Alignments of SMS reads suffer from reference bias which can cause a SNV allele to

be obscured by gaps (insertions and deletions) in the alignments (Supplementary Figure B1).

Nevertheless, a true SNV is likely to have at least a few correctly aligned reads with the alternate

allele. The first step in the Longshot algorithm identifies potential SNV sites using a standard

pileup-based genotyping calculation [63] (Fig. 4.1a). A low variant quality threshold is used to

select SNVs in order to minimize false negatives. Next, for each candidate SNV, we determine the

most likely allele for each read covering the SNV and the corresponding estimate of the quality

of the allele call (Fig. 4.1b). This allelotyping is done by local realignment of a segment of the

read to short haplotype sequences (one for each of the two alleles at a biallelic SNV site). In

low-complexity regions of the genome (e.g. homopolymers), there is significant ambiguity in the

placement of gaps for SMS reads and many alignments are equally likely [94]. Therefore, we use

the forward algorithm on a sequence alignment pair-HMM [95] to perform the local realignment

by averaging all possible local alignments of a read to a given haplotype.

After estimating the allele call and quality value for each read overlapping a SNV site,

we estimate phased genotypes for all SNVs simultaneously using a haplotype-based likelihood

model (see Methods). SMS reads typically cover multiple heterozygous sites and this haplotype

information is useful since a SNV on a haplotype is expected to segregate with reads from the

same haplotype (while random sequencing errors are not). In Longshot, heterozygous SNVs are

assembled into haplotypes using HapCUT2 and a local update procedure is used to estimate the

most likely phased genotype for each SNV given the current haplotypes for all other SNVs (Fig.

4.1c). This procedure is repeated for a few iterations until the likelihood stops improving. Finally,

the variants are filtered for maximum read coverage, excessive variant density and minimum

Genotype Quality (GQ) score, where the GQ score is estimated using the phased genotype
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likelihoods.

4.3.2 Accurate SNV calling using simulated data

First, we used simulations to assess the accuracy of SNV calling using Longshot and also

compared the precision and recall to short-read variant calling. We simulated a diploid genome

by adding SNVs to the reference human genome, and simulated paired-end Illumina reads and

PacBio SMS reads from this genome (maximum coverage of 60×). Subsequently, we aligned the

reads to the reference genome using BWA-MEM [61] (Illumina) and BLASR [96](PacBio) and

called SNVs using FreeBayes and Longshot respectively. Across the entire genome, the precision

was consistently high (≥0.9999) at all read coverages (20–60×) for both short read and SMS

read-based SNV calling (Supplementary Figure B2). Short reads achieved greater recall than

SMS reads at lower coverage (≤30×), while SMS reads had marginally greater recall at higher

coverage (≥40×). SMS reads are expected to have better mappability in repetitive regions of

the genome compared to Illumina reads, particularly in long segmental duplications with high

sequence identity. Indeed, the recall for SMS reads in segmental duplications with high sequence

similarity (≥95%, 127.5 Mb of DNA sequence) was significantly higher (0.86 at 40× coverage)

compared to that using short reads (0.57 at 40× coverage) and increased with increasing coverage

(Supplementary Figure B2).

We also compared the precision/recall of SNV calling using BLASR with several long-

read mapping tools: NGMLR [97], BWA-MEM [61], and MINIMAP2 [98]. All tools showed

high precision and recall when considering SNVs across the whole genome, but BLASR had

significantly higher recall (maximum of 0.88) than all other aligners (0.72 using Minimap2)

in segmental duplications (Supplementary Figure B2). Therefore, we utilized BLASR for the

analysis of real datasets.

We used the simulated datasets to estimate the theoretical fraction of the genome that is

callable with SMS long reads compared to short reads at 60× coverage. We found that SMS
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reads were able to span 99.4% of the genome (non-N bases on chromosomes 1-22 with at least

30x coverage and at least 90% of reads well-mapped at each position (Supplementary Figure

B3)). In comparison, Illumina reads covered 96.3% of the genome under these same criteria, a

difference of 3.1%.

4.3.3 Accurate SNV calling using whole-genome PacBio data

We used Longshot to call SNVs using whole-genome human PacBio data for four human

genomes from the Genome in a Bottle (GIAB) consortium [84]. Specifically, we used WGS

data for the NA12878 individual (45×) and a mother-father-child trio of Ashkenazi ancestry

(NA24385 at 64×, NA24149 at 29×, and NA24143 at 27×). For each dataset, a genotype quality

threshold that was linearly proportional to the median read depth was used for filtering variants

(see Methods). For comparison, we also called SNVs using Illumina short-read WGS data (∼30×

coverage) for each individual.

Longshot identified 3.51 to 3.65 million SNVs per genome (on chromosomes 1-22

only) and required 35 hours on average to process ∼28× whole-genome data on a single-core

(Supplementary Table B1). To assess the precision and recall of SNV calling, we utilized the

GIAB high-confidence variant call set for each individual [84, 85]. The comparison of SNV calls

was limited to GIAB high-confidence regions for each genome [85]. The precision and recall

for NA12878 were 0.9942 and 0.9592 respectively at 30× coverage and the recall improved to

0.9734 at 45× coverage. The precision and recall and the precision-recall curves (Supplementary

Figure B4) were highly consistent across the four genomes at 27-30× coverage (Figure 4.2a and

b), demonstrating the robustness of our method. To assess the improvement in precision/recall

as a function of sequence coverage, we sub-sampled data for the AJ son individual (NA24385),

who was sequenced to 64× coverage. The recall improved steadily from 0.9608 (28×) to 0.9798

(64×) while the precision only changed moderately with increasing coverage (0.9930 to 0.9936).

The precision and recall for SNV calling using SMS reads was slightly lower than Illumina based
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variant calling (Figure 4.2). Nevertheless, the ability of Longshot to consistently achieve high

recall (only 2-3% lower than Illumina WGS for the same depth of coverage) while achieving a

low false discovery rate (average = 0.7%) was remarkable given the significantly high error rate

of SMS reads (∼10%) compared to Illumina reads.

In contrast with simulated data, the precision of of Longshot on real SMS reads was

slightly lower than short read variant calling. To determine the source of false positive calls, we

analyzed if such calls were enriched in specific sequence contexts or overlapped with indels. For

the NA12878 dataset, (Supplementary Table B2) we observed that the vast majority (71.4%)

of false positive SNVs are located within 5 bp of a true indel. These false positive SNVs are

called since the current implementation of Longshot does not consider indels as potential variants.

Filtering SNV calls located near known indels (using the Mills + 1000 Genomes Gold Standard

Indels set from the GATK resource bundle [64]), reduced the number of false positives by

34−45% for the four GIAB genomes (Supplementary Table B3) while only slightly decreasing

the recall. Analysis of false negative SNVs showed that 19.5% of false negative SNVs occurred

inside homopolymer sequences of length 5 or greater, which is 3.4× the expected value. This

follows naturally from the fact that these regions have low information content; insertion and

deletion errors could plausibly lie anywhere along the length of a homopolymer. Therefore, allele

calls inside homopolymers receive lower quality scores from the pair-HMM realignment, which

reduces the power to call SNVs in such regions.

To compare Longshot’s accuracy on SMS data with other methods, we considered existing

variant calling methods for short read data including GATK and FreeBayes. However, the GATK

HC tool did not generate variant calls on the NA12878 PacBio dataset, consistent with previous

evaluations of these methods on SMS data [92]. Recently, a deep learning based method for

variant calling has been developed that can process both Illumina and SMS long-read data [92].

Although we were unable to perform a direct comparison with DeepVariant due to unavailability

of trained models for PacBio continuous long read (CLR) data, comparison of the reported
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precision and recall for DeepVariant on the NA12878 dataset (aligned with the same tool) showed

that Longshot had better precision than DeepVariant while the recall was similar (Supplementary

Table B4). At a genotype quality cutoff of 36, Longshot had the same recall as DeepVariant but

higher precision (0.9939 versus 0.9819).

We directly compared the accuracy of Longshot with a deep learning based method Clair-

voyante [99] and WhatsHap [93], using whole-genome SMS data for four individual genomes.

We used reads aligned with the NGMLR aligner [97] for evaluation since Clairvoyante provides

trained models for this aligner (see Supplementary Methods for details). For WhatsHap, we used

the potential variants identified in step 1 of Longshot as input since the current version of this

tool (version 0.18) does not support potential variant identification. On the NA12878 dataset,

although the precision and recall for Longshot were higher than both Clairvoyante and WhatsHap

(Table 4.1). In particular, Longshot achieved very high precision or a low false discovery rate

(FDR) of 0.5%. In comparison, the FDR for Clairvoyante was 3-fold higher, 1.6%. Comparison

of the precision-recall curves for three methods on the NA12878 dataset showed that Longshot

outperforms both competing methods for all precision values greater than 0.98 (Supplementary

Figure B5). Similarly, analysis of variant calls for two other GIAB genomes (NA24143 and

NA24149) showed that Longshot had the best precision and recall among the three methods ( 4.1).

On the high-coverage NA24385, Clairvoyante’s recall and precision were marginally better than

Longshot (0.3-0.4% higher). Nevertheless, the precision (0.994) and recall (0.980) for Longshot

on this dataset using the BLASR alignments were better than Clairvoyante (0.990 and 0.969

respectively). Longshot was also the most computationally efficient of three methods in terms of

run-time ( 4.1). For the NA12878 dataset, the maximum memory usage for Longshot was 5.5 GB

compared to 6.2 and 12.7 GB for WhatsHap and Clairvoyante respectively.

The phased genotyping or haplotype assembly step of Longshot distinguishes it from

state-of-the-art variant callers for short read data [64, 65] and recent deep learning based methods

for variant calling [99, 92]. We investigated the importance of the phased genotyping for

75



the accuracy of Longshot by running it on the NA12878 PacBio dataset (downsampled to

30× coverage) without phased genotyping (essentially skipping step 3 of the algorithm). We

found that skipping the phased genotyping reduced Longshot’s recall significantly from 0.959

to 0.905 (genotype quality threshold of 30) while the precision remained virtually unchanged

(Supplementary Figure B6).

4.3.4 Accuracy of Longshot haplotypes

Next, we assessed the accuracy and completeness of haplotype assembly using Longshot

for two GIAB individuals, NA12878 and NA24385, by comparison to gold-standard haplotypes

for these individuals inferred using pedigree data (see Methods). The median read lengths for

these two datasets were 3,587 and 7,235 bp, respectively. The Longshot haplotypes for NA12878

had an N50 length of 217.4 kb (with respect to the phased portion of the genome) and were

very accurate, with a combined switch error rate of 0.05% (Figure 4.2c and d). Similarly, the

haplotypes for NA24385 (30× coverage) had an N50 length of 299.9 kb and a combined switch

error rate equal to 0.04%. In comparison, haplotypes assembled using short reads had a N50

length less than 2 kb for both genomes (Figure 4.2d). We also used HapCUT2 and WhatsHap

to assemble haplotypes for NA12878 and NA24385 using SMS reads and SNVs identified

using ∼30× coverage Illumina sequencing [68]. We found that the haplotype accuracy and

completeness were comparable between the three methods while HapCUT2 had the lowest switch

and mismatch error rates (Supplementary Figure B7). Separation of SMS reads using SNV

haplotypes can enable discovery of non-SNV variants such as indels and structural variants using

methods such as SMRT-SV [82] that work well on haploid genomes. For the NA12878 dataset

(chromosome 1 only), 51.1% of reads (weighted by length) could be assigned to a haplotype with

high confidence. The ability to assign reads to haplotypes was dependent on read length: the

haplotype-assigned reads had a median length of 4.3 kb while the unassigned reads had a median

length of 2.6 kb only.
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4.3.5 SNV calling using Oxford Nanopore reads

Recently, reads from Oxford Nanopore Technologies’ (ONT) MinION sequencer were

used to assemble a human genome [26]. Nanopore reads have a similar error profile to PacBio

SMRT reads, however, the total per-base error rate of ONT reads is reported to be higher than for

PacBio SMRT [100] and the errors are dependent on sequence context [101]. We applied the

Longshot algorithm to call SNVs using a whole-genome Oxford Nanopore dataset for a human

individual (NA12878, 37× coverage). We observed that the candidate set of SNVs considered

by Longshot contained a significant fraction of false positives due to the context-specific errors

in Nanopore reads. To amelioriate this, we implemented a simple filter to remove potential

SNVs for which the allele observations show a significant strand bias (Fisher’s exact test p-value

< 0.01), prior to haplotype assembly. On the latest version of this ONT dataset, LongShot

achieved a precision equal to 0.991 and recall value equal to 0.933 at a GQ threshold of 65 for

SNV calling (see Supplementary Figure B8 for a precision-recall curve). For comparison, we

called variants using Nanopolish, a software tool for signal-level analysis of Oxford Nanopore

data [101]. Nanopolish required more than 43 hours to call variants on chromosome 20 using 4

cores and achieved a best F1 score of 0.93 (Supplementary Figure B8). In contrast, Longshot

had a best F1 score of 0.967 and took only 5 hours and 13 minutes for variant calling (using a

single core). In addition, the accuracy of Longshot on Oxford Nanopore data was better than the

reported accuracy of other methods (Supplementary Table B4).

4.3.6 Analysis of SNV calls in repetitive regions

As demonstrated with simulations, the recall of variant calling using SMS reads in

segmental duplications with high sequence similarity (≥ 95%, Figure 2) is significantly higher

(0.86) compared to short reads (0.57). These regions correspond to 102.8 Mb of the genome

(excluding the sex chromosomes). However, 97.7% of these regions are excluded from the GIAB
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high-confidence variants, making it challenging to assess the accuracy of SNV calling using real

SMS data. We compared SNV calls in segmental duplications for the NA12878 genome made

using short read Illumina data (33× coverage) and SMS reads (30× coverage). In segmental

duplications with ≥ 95% similarity, 180,889 SNVs were called using SMS reads, 55.0% more

than those using Illumina reads (Table 4.2). The fewer calls using Illumina reads likely reflect

the inability to map in segmental duplications. For example, Illumina reads cannot be mapped

uniquely in a significant portion of the STRC gene, resulting in 52.3% fewer variants called

compared to SMS reads (Fig. 4.3). We found that in total, 1.66 Mb of the bases in segmental

duplications with ≥ 95% similarity overlap with coding exons and 90.3% of these bases were

well-mapped in the 45× PacBio dataset (each position having at least 20× coverage and ≥ 90%

of reads aligned to the position having MAPQ ≥ 30). The difference was more stark in segmental

duplications with ≥ 99% similarity: 78,851 SNVs were called with SMS reads compared to only

18,684 with Illumina reads (4.2 fold difference). The Transition/Transversion (Ts/Tv) ratio for

the SNVs called only using SMS reads in these regions was 1.99, slightly lower than the ratio

for the SNV calls in GIAB confident regions (∼2.1). This is consistent with the expectation that

the Ts/Tv ratio is usually ∼2.0−2.1 for SNVs across the whole genome [102]. In contrast, the

Ts/Tv ratio for Illumina-only calls in segmental duplications with ≥99% similarity was 1.55,

much lower than the expected value (Table 4.2).

Next, we assessed the Mendelian consistency of SNV calls for the mother-father-child

trio of Ashkenazi ancestry from the GIAB project. To minimize discordance due to false negative

calls, only sites with at least 20× read coverage in every individual were considered. SMS calls

in the high confidence GIAB regions had higher concordancy (98.88%) compared to calls outside

GIAB confident regions (96.17%). Within segmental duplications (≥ 95% similarity), 4.99% of

the SNVs in the child were discordant with Mendelian inheritance. Many of the discordant SNVs

were clustered in contiguous blocks, indicating that they are the result of mismatched reads or

structural variation in one or more individuals.
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Finally, we compared Longshot SNV calls for NA12878 to the Platinum Genomes small

variant call set for this genome that have been generated using Illumina WGS and validated using

haplotype inheritance on a 17-member pedigree [103]. In GIAB high confidence regions, 95.2%

of the PG SNVs were also called by Longshot. The PG calls cover a significant fraction of the

genome (330.7 Mb) that is excluded from the GIAB high-confidence calls. In these regions, only

79.6% of the PG SNVs were shared with Longshot and 74,641 SNVs were unique to the PG calls

(Supplementary Figure B10). The low concordance in regions outside the GIAB high-confidence

regions highlights the challenge of accurate variant calling in these regions. Longshot’s ability

to call SNVs accurately using SMS reads provides an orthogonal validation for SNVs called

using short reads. In-depth analysis of variant calls made using short-read and SMS data in these

regions can enable the expansion of confidently called regions for reference human genomes.

4.4 Discussion

Our results demonstrate that highly accurate detection of SNVs is feasible even from

long-read sequence data with high error rates. Combined with recent work demonstrating the

ability to detect and genotype structural variants from SMRT-seq data, our results indicate that

long-read sequencing can be used to accurately detect all forms of genetic variation in human

genomes. Recently, Li et al wrote that “although PacBio assembly is accurate at the base-pair

level for haploid genomes, it is currently not accurate enough to confidently call heterozygotes

in diploid mammalian genomes” [86]. We have demonstrated that heterozygous SNVs can be

called accurately in diploid genomes, by combining sensitive allelotyping of reads at SNV sites

with haplotype-informed genotyping. Our method has a very low false discovery rate (0.5-0.8%)

across multiple whole-genome PacBio datasets that is 2-4 fold lower than other variant calling

methods. Furthermore, we find that the FDR can be reduced further to 0.3% by filtering out

known common indels.
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We have also demonstrated that SMS reads can be used to call SNVs in segmental du-

plications and other regions of the genome with low short-read mappability. However, correctly

mapping PacBio reads in highly similar segmental duplications remains a challenge. As Sup-

plementary Figure B2 shows, there is wide variance in the ability of SMS read mappers to map

reads in segmental duplications. This is likely due to the mappers having different strategies

for dealing with highly similar mappings that are differentiated by a small number of paralog-

specific-variants (PSVs). Despite BLASR performing relatively well using simulated reads, many

of the discordant SNVs observed between the AJ trio in segmental duplications appeared to be

caused by the presence of multiple mismapped reads. SMS read mapping methods with specific

optimizations for segmental duplications could improve the ability to call variants in segmental

duplications [98].

The GIAB and Platinum Genomes variant sets used to assess variant calling accuracy in

this paper were generated using short read datasets, are therefore biased in favor of short-read

technologies [86] and exclude regions where long reads are likely to have better precision and

recall. Therefore, in an unbiased genome-wide comparison, Longshot may achieve even better

accuracy than short read variant calling methods. Furthermore, some of the false positives calls

by Longshot may actually correspond to false negatives in the GIAB high-confidence call sets.

A recent graph-based read alignment approach identified thousands of variants that were absent

in the GIAB call-sets [104]. In the NA12878 genome, Longshot identified 5900 SNVs that are

located in GIAB high-confidence regions and do not overlap indels present in the GIAB variant

calls. Many of these variants are located in variant-dense genomic regions that are problematic

for mapping using short reads but should be callable using long single-molecule reads. Further

analysis of these variants will be helpful in improving the recall of gold-standard variant call-sets

for human genomes.

Longshot offers the ability to assemble haplotypes without prior knowledge of SNVs

and leverage the haplotypes to separate SMS reads by haplotype. This opens up a wide range
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of possibilities for SMS read analysis, given that many SMS analysis tools work much better

on haploid samples. For example, the haplotype-separated reads could be used to call structural

variants with greater sensitivity using a tool such as SMRT-SV [82]. A similar approach was

recently used to profile structural variation genome-wide after extensive haplotype assembly with

multiple sequencing technologies and computational separation of the SMS reads by haplotype

[90]. Currently, Longshot uses the read pileups to identify candidate SNVs and the vast majority

(∼72%) of false positive SNVs identified with Longshot correspond to misclassified indel variants.

Using a genomic consensus of haplotype separated reads should improve the accuracy of variant

calling using Longshot.

LongShot was also able to call SNVs with high accuracy from Oxford Nanopore long

read data without any modification to the likelihood model. Although the precision and recall

was lower than PacBio reads at similar coverage, this is expected due to the higher error rate of

Nanopore reads. Continued improvements in the sequencing technology and the raw basecalling,

and the use of context-specific error models for local realignment are expected to further improve

the accuracy of variant calling using Nanopore reads.

In this paper, we focused on the detection and phasing of single nucleotide variants

alone since accurate calling of short indels using SMS reads is challenging due to the high

insertion/deletion error rate. A recently developed deep-learning based variant caller [92] had low

precision (0.589) and recall (0.12) for short indel calling on PacBio WGS data. In comparison to

CLR reads, PacBio circular consensus sequencing (CCS) produces reads with greater accuracy by

sequencing multiple times around the same DNA template. Recent improvements have enabled

the generation of highly accurate long reads (10-15 kilobases read lengths and error rates < 1%)

using CCS [105]. We expect that using Longshot with these low-error reads will improve the

accuracy of SNV calling and also enable accurate short indel calling. As the cost of SMS

technologies continues to decrease, these technologies are likely to see widespread use in human

disease studies in the near future. In particular, whole-genome SMS can enable the detection of
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disease-associated structural variants and variants in repetitive regions of the genome that cannot

be identified using standard Illumina WGS [106, 107, 108]. Tools such as LongShot will be

valuable for realizing the potential of SMS technologies for the comprehensive detection of all

forms of genetic variation in such studies.

4.5 Methods

4.5.1 Identification of candidate SNVs

The first step in the Longshot algorithm is to identify positions in the genome that may

contain a SNV. Potential SNVs are identified from the pileup of aligned reads by performing a

genotype likelihood calculation similar to Samtools or other NGS variant calling methods [78]

(see Supplementary Methods). The prior probabilities for genotypes are defined using a slight

modification of the approach of Li et al [8] (see Supplementary Methods). SNV sites for which

the posterior probability of a non-reference genotype is greater than 0.01 are considered as

candidate SNVs for the next step of the algorithm. The sites are also filtered for mininum read

coverage (6 by default), minimum alternate allele count and fraction (3 and 0.125 by default).

4.5.2 Local realignment using pair-HMMs

For an SMS read that overlaps a candidate bi-allelic SNV site with two alleles ‘ref’ and

‘alt’, we want to determine which allele is the most likely observation (allele call) and also assign

a probability of error to this observation (quality value). To accomplish this, we perform local

realignment of a short sequence from the read to the reference and to the alternate sequence (with

the SNV allele added, see Fig 4.1B). This local realignment is performed using a pair-Hidden

Markov Model (pair-HMM) [95]. The parameters for the HMM are estimated directly from the

aligned reads prior to realignment (see Supplementary Methods).
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It is sufficient to perform the local realignment within a short window covering the SNV

site. This window is defined using the nearest non-repetitive anchor sequences of length k

(default k = 6), to the left and right of the SNV where the read sequence matches the reference

sequence perfectly (see Supplementary Methods). Once the window W is identified, we use

the forward algorithm to calculate pref = P(read(W) | ref(W)) and palt = P(read(W) | alt(W))

where read(W ) is the sequence of the read in the window W defined by the two anchors. We

select the allele amax ∈ {ref,alt} for which the probability is higher, as the observed allele and

use phred
(

1− pamax
pref+palt

)
as the allele quality score.

When multiple candidate SNVs are located in close proximity, we define the window to

include all such SNVs and use a generalization of the calculation described above to determine

alleles and estimate base quality values (see Supplementary Methods). For computational

efficiency, a banded version of the forward algorithm is used. This reduces the complexity to

O(mb) where b is the width of the band and m is the length of the window (50-200 bp). Allele

observations with phred-scaled quality score below a threshold (7.0 by default) are discarded.

This reduces the effective read depth for SMS reads (Supplementary Figure B9).

In order to remove false variants resulting from strand-specific sequencing errors, we

filter potential SNVs whose allele observations are over-represented in reads from one strand.

For each potential SNV, we build a contingency table of the counts of the reference and alternate

allele on reads from the forward strand and reverse strand respectively. Variants for which the

Fisher’s exact test p-value (2-tailed) is less than 0.01 are not considered for haplotype-informed

genotyping.

4.5.3 Haplotype-informed genotyping

Longshot achieves accurate variant calling using SMS reads by performing phased geno-

typing for all candidate SNVs jointly. Given a set of candidate SNVs V and the allele calls (and

quality values) for each read r ∈ R, we aim to maximize the likelihood p(R|H) where H is a pair
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of haplotypes (H1,H2) over the variant set V . Longshot optimizes the likelihood function using

an iterative approach that uses (i) the HapCUT2 algorithm [68] to estimate the most likely pair of

haplotypes for variants with heterozygous genotypes and (ii) local updates to estimate the most

likely phased genotype for each variant given the current haplotype pair (Fig. 1C).

Assuming independence between reads, the likelihood function p(R|H) can we written

as [68]:

p(R|H) = ∏
r

p(r|H) = ∏
r

p(r|H1)+ p(r|H2)

2

p(r|H1) for any read r can be calculated using the pair-HMM probabilities for each

(read,variant) pair. Let G be the set of possible phased genotypes for a biallelic variant:

{0|0,0|1,1|0,1|1} (homozygous reference, the two heterozygous states, and homozygous al-

ternate). Let H refer to the current estimate of the most likely haplotype pair, and H i,g refer to

the haplotype pair H with the ith SNV altered to have the phased genotype g. Given H, we can

calculate the posterior probability for the phased genotype g as follows:

p(H[i] = g|R,H) =
p(g)p(R|H i,g)

∑g′∈G p(g′)p(R|H i,g′)
(4.1)

The optimization starts with the initial set of variants identified from the pileup-based

likelihood calculation and the unphased genotypes for each variant estimated using the local

realignment. The iterative phase of the Longshot algorithm consists of the following steps:

For i = 1 . . .k

1. L = p(R|H)

2. Let V ′ be the set of heterozygous SNVs in V

3. H(V ′) = HapCUT2(R,V ′)
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4. Repeat:

(a) For each variant v ∈V : update H[v] using equation 4.1

(b) If no genotype was updated in (a), BREAK

5. L′ = p(R|H)

6. If log(L′)−log(L)
log(L) < ∆: BREAK

In Step 3, HapCUT2 is used to phase the current set of heterozygous variants. Then,

the haplotype scaffold is used to refine the genotypes of each variant in step 4. This serves to

remove false heterozygous variants and identify new heterozygous variants that can be phased by

HapCUT2 in the next iteration. Steps 1-5 are repeated until the relative log-likelihood of the data

between consecutive iterations is smaller than ∆ (default = 1×10−5).

4.5.4 Variant filtering

The raw variant calls were subjected to three types of filters to reduce false positives.

SNVs were first filtered according by genotype quality (GQ) estimated by the variant caller. The

GQ cutoff was fixed at 50 for short reads. For Longshot, we used a variable GQ cutoff (matched

to the median read coverage) for filtering variants. This was done to reduce the number of false

SNVs due to true indel variants that have high GQ. For simulations, which do not have indel

variants, we used a fixed genotype quality cutoff of 50.

To filter false SNVs due to copy number amplifications, a maximum read depth filter simi-

lar to what has been used previously for short-read based variant calling was used [109]. Variants

with read depth greater than d +5
√

d, where d is the median read depth across the entire dataset

were filtered out. We also observed that for SMS reads, many false positive SNVs occur nearby

each other in dense clusters. These dense clusters may result from systematically mismapped reads

due to missing sequence in the reference genome, or are indicative of structural variations such as
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CNVs. We used a simple density filter (> 10 SNVs in a window of 500 base pairs) to filter out such

false variants for variants called with Longshot. For the AJ trio, variants in the Delly exclusion re-

gions (available from https://github.com/tobiasrausch/delly/blob/master/excludeTemplates/human

.hg38.excl.tsv) were also filtered out for the analysis of Mendelian consistency.

4.5.5 Simulations

We simulated a diploid genome using the reference human genome sequence with het-

erozygous SNVs (rate = 0.001) and homozygous SNVs (rate = 0.0005) (see Supplementary

Methods for details). Paired-end 100bp reads were generated from the simulated genome with

a substitution error rate of 0.001 [110]. The short reads were aligned to the human reference

(hs37d5) using BWA-MEM, and variants were called using FreeBayes [65]. Similarly, we

used SimLoRD [111] to generate PacBio SMS reads (median length = 7.5 kb) from the sim-

ulated genome using the default error rates of 0.11 for insertion, 0.04 for deletion, and 0.01

for substitution [111]. The -mp 1 option was used to force each read to only have a single

sequencing pass, so that the error profile of the reads resembles PacBio continuous long reads

(lower accuracy) as opposed to circular consensus reads (greater accuracy). We aligned the SMS

reads to the human reference (hs37d5) using the long-read alignment tools BLASR (v5.3.2,

options --nproc 16 --bestn 1 --bam), MiniMap2 (v2.11-r797, options -t 16 -ax map-

pb), BWA-MEM (v0.7.17, options -x pacbio -t 16 -T 0) and NGMLR (v0.2.7, options

-t 16 -x pacbio).

4.5.6 Whole-Genome Sequencing data

45× coverage Pacific Biosciences Single Molecule Real Time (SMRT) reads for NA12878,

aligned to the hs37d5 reference genome using BLASR, were obtained from the Genome in a

Bottle consortium [48]. PacBio read data for the AJ trio was also obtained from the GIAB ftp
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site and aligned to the hg38 reference genome using BLASR [96], using the same parameters

used for aligning the simulated reads. Oxford Nanopore reads for NA12878 were obtained from

the Nanopore WGS Consortium [26] and aligned to hg38 using minimap2. Illumina WGS data

for NA12878 and the AJ Trio (NA24385, NA24143, NA24149), sequenced on the HiSeq 2500

(30× and 60× coverage respectively, 148 bp paired-end reads), was obtained from the GIAB.

The 60× coverage datasets were downsampled to half coverage. The reads were downloaded in

BAM format aligned to as hs37d5 using bwa-mem (NA12878) and hg38 using NovoAlign (AJ

trio). Variant calling on Illumina WGS data was performed using FreeBayes [65] (v1.0.2-33-

gdbb6160) with --standard-filters and --genotype-qualities turned on). BED files for

segmental duplications and repeat elements in the human genome were obtained from the UCSC

table browser [112].

4.5.7 Assessment of variant calling and phasing accuracy

High confidence variant call sets generated by the GIAB project were used for assessing

accuracy of SNV calling [48, 85]. For NA12878, SNVs were compared against the GrCh37 (for

Illumina and PacBio) or GrCh38 (for Oxford Nanopore) version of the GIAB high-confidence

call set (release v3.3.2). For the AJ trio, SNVs were compared against the GrCh38 version of the

GIAB high-confidence call set (release v3.3.2). For comparing the accuracy of Longshot with

Clairvoyante and WhatsHap, the GrCh37 version of the calls were used (release v3.3.2). For each

individual, the comparison of SNV calls was limited to high-confidence regions (provided in a

bed file). Precision and Recall were calculated using RTGtools (v3.9.1) vcfeval.

For NA12878, we compared the accuracy of the Longshot haplotypes using the Platinum

Genomes haplotypes for the same individual as ground truth. For NA24385, we generated

high-quality haplotypes from a consensus of the GIAB trio-based phased genotypes and 10X

Genomics phased variant calls and used the resulting haplotypes for assessment of haplotyping

accuracy. The haplotypes were compared at all unfiltered SNVs that were called heterozygous in

87



both the assembled haplotypes and the ground truth. The errors were tabulated in terms of the

total combined rate of switch and mismatch errors, also known as long-switch and short-switch

errors respectively [68, 43]. The N50 metric - defined as the length N in base pairs such that half

of the phased portion of the genome is in haplotype blocks of length N or greater - was used to

measure the completeness of haplotype blocks.

For the AJ trio, Mendelian consistency of the SNV calls was assessed using RTGtools

[113]. For this, SAMtools [63] and BEDtools [114] were used to obtain a set of regions that have

high coverage (> 20×) of well-mapped SMS reads (MAPQ > 30 and filter -F 3844 applied) in

all three individuals. These regions were further intersected with a bed file for the region being

investigated (either GIAB confident regions, outside GIAB confident regions, or 95% similar

segmental duplications). The individual VCFs for the trio were merged into a single VCF and

filtered so that all records have a genotype quality greater than 50.

4.5.8 Server configuration

All experiments in this study were performed on CentOS 6.6 with Intel Xeon CPU

E5-2670 0 @ 2.60GHz, with jobs managed by a Torque/PBS system.

4.6 Data Availability

The PacBio and Illumina sequence datasets and variant calls used in this paper are publicly

available from the GIAB ftp site: ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/. The sub-folders for

each individual are as follows:

NA12878:

data/NA12878/NA12878 PacBio MtSinai,

release/NA12878 HG001/NISTv3.3.2/GRCh37/,

data/NA12878/NIST NA12878 HG001 HiSeq 300x
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NA24385:

data/AshkenazimTrio/HG002 NA24385 son/PacBio MtSinai NIST,

release/AshkenazimTrio/HG002 NA24385 son/NISTv3.3.2/GRCh38,

data/AshkenazimTrio/HG002 NA24385 son/NIST HiSeq HG002 Homogeneity-10953946

NA24149:

data/AshkenazimTrio/HG003 NA24149 father/PacBio MtSinai NIST/,

release/AshkenazimTrio/HG003 NA24149 father/NISTv3.3.2/GRCh38,

data/AshkenazimTrio/HG003 NA24149 father/NIST HiSeq HG003 Homogeneity-12389378

NA24143:

/data/AshkenazimTrio/HG003 NA24143 mother/PacBio MtSinai NIST,

release/AshkenazimTrio/HG004 NA24143 mother/NISTv3.3.2/GRCh38,

data/AshkenazimTrio/HG004 NA24143 mother/NIST HiSeq HG004 Homogeneity-14572558

For the direct comparison between methods, BAMs aligned using NGMLR from the Clair-

voyante study were used[99]. The BAMs were obtained from http://www.bio8.cs.hku.hk/clairvoyan

te/bamUsed/.

The Oxford Nanopore sequence dataset is publicly available from the Nanopore WGS

Consortium: https://github.com/nanopore-wgs-consortium/NA12878/blob/master/Genome.md.

The NA12878 genome was sequenced using the Oxford Nanopore MinION with version R9.4

version of the chemistry on 39 flowcells. We used the rel6 version of the base calls (called using

ONT Guppy basecalling software version 2.3.8+498297c). All other relevant data are available

upon request. The source data underlying Supplementary Figure 9 is provided as a Source Data

file.
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4.7 Code availability

Longshot is implemented in the Rust programming language, uses the rust-bio and

rust-htslib libraries [115] and the HapCUT2 C code [68]. It is freely available for download at

https://github.com/pjedge/longshot. It is also available on Bioconda [116]. A Snakemake

workflow [75] for automatically generating all of the results of the paper is available at https://

github.com/pjedge/longshot_study.
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4.11 Figures and Tables

Figure 4.1: Overview of the Longshot algorithm. (a) Candidate variants are identified using
the pileup of the original alignments and a standard genotype likelihood calculation is used
to determine if the site is a potential variant. (b) To determine the allele for each read at each
potential SNV site it overlaps, a window is formed around the variant and the probability of the
observed read sequence given each allele is calculated using the forward algorithm on a Pair
Hidden Markov Model. The most likely allele and quality score is chosen based on the relative
likelihoods of the two alleles. (c) Using the alleles and quality values for each read at variant
sites, phased genotypes for all variants are determined jointly by performing haplotype assembly
using HapCUT2 (on heterozygous variants) and local updates of the phased genotypes in an
iterative manner.
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Figure 4.2: Accuracy and completeness of Longshot SNV calls on whole-genome SMS
data. Longshot was used to call single nucleotide variants (SNVs) using SMS data from
the GIAB project for four human genomes: NA12878 (30× and 45× coverage), NA24385
(28×,37×,46×, and 64× coverage), NA24149 (29× coverage), and NA24143 (27× coverage).
For each individual, variants were also called using FreeBayes applied to ∼30× coverage
Illumina short reads. (a) Precision of the SNV calls calculated using the GIAB high-confidence
variant call set, (b) Recall of the SNV calls, (c) The combined switch error rate (total rate of
switch errors and mismatch errors) of the Longshot and Illumina short-read based haplotypes,
(d) N50 length of the haplotypes, and (e) The fraction of heterozygous variants phased in each
dataset.
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Figure 4.3: Accurate variant calling using SMS reads and Longshot in the duplicated
gene STRC. An Integrated Genomics Viewer (IGV) view of mapped reads shows that a long
segment of the gene (circled in black) has low coverage using uniquely mapped Illumina reads
due to the presence of a long segmental duplication with high sequence similarity (> 99.8%)
that spans the entire gene. PacBio reads (separated by haplotype using Longshot phased SNVs)
have consistent coverage of mapped reads across the entire gene, allowing Longshot to call 42
SNVs of which 20 are shared with short reads, and 22 are unique to Longshot.
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Table 4.1: Comparison of accuracy for variant calling methods on whole-genome SMS
data. All methods were run on BAM files generated using the NGMLR aligner and precision
and recall values were calculated using the GIAB high-confidence variant calls. The runtime
listed is the total walltime to process all chromosomes individually. Clairvoyante supports
multi-threading and was run using four threads per chromosome.

Genome Read Method Precision Recall Run time
Coverage (hours)

Longshot 0.995 0.968 23:31
NA12878 44 WhatsHap 0.972 0.975 27:47

Clairvoyante 0.984 0.957 21:44 (x4)
Longshot 0.987 0.965 41:55

NA24385 62 WhatsHap 0.976 0.974 32:09
Clairvoyante 0.990 0.969 22:25 (x4)
Longshot 0.981 0.927 20:03

NA24385 27 WhatsHap 0.959 0.941 22:54
Clairvoyante 0.960 0.927 21:09 (x4)
Longshot 0.993 0.941 18:51

NA24143 27 WhatsHap 0.962 0.949 22:06
Clairvoyante 0.960 0.920 21:42 (x4)
Longshot 0.993 0.924 16:59

NA24149 23 WhatsHap 0.959 0.934 20:30
Clairvoyante 0.938 0.904 23:59 (x4)
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Appendix A

Supplemental Material for Chapter 2
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A.1 Supplemental Methods for Chapter 2

A.1.1 Maximum Likelihood cut heuristic

Maximum-Likelihood-Cut(H,R)

Initialization: c = 0, S∗ =∅

Iteration: for i = 1 . . .M:

1. Chose a pair of vertices (u,v)

2. Initialize S1 = {u}, S2 = {v} and S = S1∪S2

3. While |S|< |V |

(a) Let w′ = argmaxw∈V−S |L(w)|.

(b) If L(w′)< 0, S1 = S1∪{w′}

(c) else if L(w′)> 0, S2 = S2∪{w′}

(d) else add w′ uniformly at random to S1 or S2

4. If p(R|q,H(S1))> p(R|q,H(S∗))

(a) S∗ = S1, c = 0

else c = c+1

5. If c >C: break

Return: S∗

A.1.2 Implementation of HapCUT2

HapCUT2 operates on each connected component or haplotype block of the read data

to search for good haplotypes iteratively using the maximum-likelihood-cut heuristic. Each
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fragment is stored as a list of blocks that cover consecutive variants. This compact representation

is efficient at storing long reads as well as paired-end reads that span a large number of variants.

For short read data, HapCUT2 stores all pairs of edges corresponding to each fragment in the

read-haplotype graph. However, for long read datasets, HapCUT2 reduces the number of edges

in the graph by only storing edges for adjacent variants in each fragment. This is sufficient for

determining the connected components in the read-haplotype graph and also for selecting an

edge to initialize the cut in the Maximum-Likelihood-Cut heuristic. Note that HapCUT2 still

has to consider all pairs of edges per fragment in order to search for good cuts. Therefore, the

computational complexity of HapCUT2 scales as V 2 where V is the maximum number of variants

covered by a fragment.

The first step in the Maximum-Likelihood-Cut heuristic is to select a pair of vertices to

initialize the cut. In the original HapCUT method [39], edges were selected at random from the

read-haplotype graph to initialize the cut. This requires a large number of iterations (proportional

to number of edges in the graph) to ensure that ‘good’ edges are considered. An alternate greedy

approach (also used in the RefHap algorithm [41]) is to identify edges such that the current

phase between the pair of vertices (as defined by the haplotype H) is highly inconsistent with the

fragment data. Such edges can be found by sorting the list of edges in the read-haplotype graph

by weight and selecting the lowest weight edges. HapCUT2 uses a hybrid approach (combination

of K lowest weight edges (default K = 5) and min(N/10,100) randomly sampled edges where

N is the number of variants in the block) to initialize the cut in the maximum-likelihood-cut

heuristic. Therefore, the maximum number of iterations for the maximum-likelihood-cut routine

is M = K +min(N/10,100).

A.1.3 Likelihood-based variant pruning

Following haplotype assembly, HapCUT2’s variant pruning scheme makes a single pass

over the haplotype H in which it considers each variant i of H separately. The goal is two-
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fold: firstly, if the likelihood of the haplotype can be improved by changing the haplotype or

genotype assignment at i, then the allele or genotype is reassigned. Secondly, if the haplotype

is low confidence at i even after being reassigned, position i is pruned from the solution. While

considering position i, it is assumed that that the rest of the haplotype H[i′ 6= i] is correct. At variant

i, each of four possibilities are considered for the two alleles in the ordered pair of haplotypes:

{10,01,11,00}. Let Hi�x denote H that has been modified to have phasing x ∈ {10,01,11,00}

at position i. Optionally, HapCUT2 supports obtaining the prior probabilities of the unordered

genotype configurations (00),(01),(11) from the VCF genotype likelihoods. The results obtained

in this paper used the default behavior, which sets prior probabilities of 0 for the homozygous

configurations (00) and (11), such that genotype calls are assumed to be correct. The prior

probabilities for the two haplotype configurations (01) and (10) are set to be equal. Then, the

posterior probability of each possibility can be calculated as:

P(Hi�x|q,R,H) =
p(x)p(R|q,Hi�x)

∑y∈{10,01,11,00} p(y)p(R|q,Hi�y)
(A.1)

The posterior probability of the most likely configuration is:

PH [i] = max
x∈{10,01,11,00}

P(Hi�x|q,R,H) (A.2)

For a given position, the haplotype is assigned to the configuration that maximizes PH [i].

If PH [i] < α for some user-defined threshold α ∈ [0.5,1], the variant is pruned from the final

result. The default value of α is 0.8. HapCUT2 also offers the RefHap heuristic as an alternative

to the likelihood based method, which may be preferable when quality scores are not accurate.

A.1.4 Block Splitting

HapCUT2 includes an optional scheme for splitting blocks at low-confidence sites. Let

Hs(i) denote H that has been edited to have a switch starting at position i. That is, every position
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from i onwards is flipped with respect to those before i. Similarly to before, we assume that

H[1..(i−1)] and H[i..N] are correct.

P(Hs(i)|q,R,H) =
p(R|q,Hs(i))

p(R|q,R,H)+ p(R|q,R,Hs(i))
(A.3)

Under the assumption that H[1..(i− 1)] and H[i..N] are correct, this is equivalent to

computing a Bayesian posterior probability of a switch at i with equal priors. After computing

the posterior probability of each phasing, a block is split at i if 1−P(Hs(i)|q,R,H)< α2 for some

user-defined threshold α2 ∈ [0.5,1]

A.1.5 Estimating τ(I) for Hi-C reads

In order to properly model h-trans error we must know the probability that a read pair

with insert size I is h-trans, i.e. the two ends of the paired-end read originate from different

homologous chromosomes. Selvaraj et al. estimated these probabilities using mouse Hi-C data

where the haplotypes was known. We estimated the function τ for the NA12878 MboI data using

the known trio phase and observed that τ varies from chromosome to chromosome, with certain

chromosomes such as chromosome 17 and 19 having rates of h-trans error several times larger

than others. It is possible that the rate of h-trans error may also vary across different cell types.

Therefore, it would be ideal to estimate the rate of h-trans error directly from the data as a part of

the haplotype assembly process.

Assume that we have assembled the haplotypes (H) from the Hi-C reads using HapCUT2-

Assemble. Our goal is to estimate the probability τ(I) that a paired-end read with distance

between the two inner ends equal to I represents an h-trans read. We assume that this probability

is the same for all reads that have insert size I. For one such read R, let us assume without loss of

generality that the haplotype pair for the two variants covered by the read is (00,11). If the read

sequence is also 00 or 11, the read matches the haplotype pair H. This can happen if the read is a
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cis-read and has 0 or 2 sequencing errors or if it is a trans-read and has a sequencing error at only

one end. The probability of this is:

(1−τ(I)) [(1−q1)(1−q2)+q1q2]+τ(I) [(1−q1)q2 +(1−q2)q1] = (1−τ(I))a+(τ(I))(1−a)

where q1 and q2 are sequencing error probabilities and a is the probability that the read

pair has 0 or 2 sequencing errors (at the variant sites). Conversely, if the read sequence at the

two variants is 01 or 10, the read can be either (i) a cis-read with one sequencing error, or (ii) a

trans-read with 0 or 2 sequencing errors. The likelihood of the read in this case is:

(τ(I))a+(1− τ(I))(1−a)

The likelihood of each read can be calculated using the above two expressions. The joint

likelihood of all reads with an insert length equal to I is simply the product of individual read

likelihoods and is a function of the variable τ(I). To get a maximum likelihood estimate of τ(I),

we simply find the value of τ(I) that maximizes this likelihood function. It is not difficult to show

that the maximum likelihood estimate of τ(I) is:

∑Ri,Ri=H bi +∑Ri,Ri 6=H ai

NI
(A.4)

where NI is the total number of reads with insert length I, ai is the probability that read
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pair i has 0 or 2 sequencing errors, and bi is the probability that read pair i has 1 sequencing error.

HapCUT2-HiC-Mode(R)

Initialization: H = H0,Hold = H0

τ(I) = 0 for all I

Iteration: while p(R|q,H,τ)≥ p(R|q,Hold,τ) :

1. Hold = H

2. H = HapCUT2-HiC-Assemble(R,τ)

3. estimate τ(I) =
∑Ri,Ri=H bi+∑Ri,Ri 6=H ai

NI
for each insert size I

using all reads with insert size I

Return: H

HapCUT2-HiC-Assemble, used as a subroutine by HapCUT2-HiC-Mode, is the exact

same as HapCUT2-Assemble described in the main text, except that it incorporates τ into all

read likelihood calculations. Therefore, the algorithm works by iteratively assembling a complete

haplotype H from the reads and τ using an “h-trans aware” version of the assembly algorithm,

estimating a new τ from H, and repeating. Note that the haplotypes assembled by HapCUT2

are expected to have some errors, particularly at low coverage. If we can calculate the posterior

probability of the phasing between each pair of variants, we could estimate τ using an exact EM

approach. However, the posterior probability of the phase between a pair of variants depends on

the errors in the paths in the read-haplotype graph between the two variants and is computationally

infeasible to calculate. Nevertheless, we found that this EM-like approach was able to accurately

estimate the h-trans error rates at sufficient coverage (Figure A5), and the model consistently

improved switch error and mismatch accuracy both at modest coverage levels such as 30× and

40× and high coverage levels such as 90×.
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A.1.6 Extraction of haplotype informative reads

Most haplotype assembly algorithms use a haplotype “fragment file” as input. This file

represents each haplotype informative read or fragment as a list of heterozygous variants (indices

of variants in the VCF file) and the corresponding alleles (with quality values) at each variant

site. Consecutive heterozygous variants covered by a single read are compressed to form a single

block. This format was first utilized in the assembly of the whole-genome Sanger sequence data

for HuRef [32]. The ExtractHAIRs (Extract HAplotype Informative Reads) program was created

to process aligned reads in a sorted BAM file and heterozygous variants from a VCF file (with

variant calls) to create the haplotype “fragment file”. It has been available as part of the HapCUT

software package since 2011 and can efficiently process paired-end sequence data as well as

long read datasets such as PacBio reads. For analyzing Hi-C data, the fragment file format was

modified to store extra information for each read including the data type (Hi-C or long read),

variant start index of the second read and paired-end insert size.

For 10X Genomics linked-reads, reads with the same barcode may originate from the

same DNA molecule or from several other DNA molecules scattered over the genome. For

this reason, reads with the same barcode that were separated by 20 kb or more were called as

originating from separate molecules. The molecule boundaries were derived from the aligned

BAM file using a python script and the haplotype fragment for each molecule was extracted from

the BAM file using the extractHAIRS tool (code available at https://github.com/vibansal/hapcut2).

A.1.7 Post processing of alignments for Hi-C reads

We observed that a significant fraction of the reads (∼10-20%, depending on the experi-

ment) contained a chimeric mate resulting from the ligation junction being located towards the

ends of DNA fragment. This resulted in one read reading past the ligation point of the Hi-C

fragment, making it a chimera of its own sequence and a sequence originating from near the
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other read’s location. These chimeras appeared in the BWA alignment as primary and secondary

alignments. For the purpose of haplotype assembly, it is important to have as much sequence

material as possible. For this reason, we repaired chimeric alignments by cutting the chimeric

portion and pasting it to the other mate with an added gap. This post-processing script is freely

available with HapCUT2. Following Hi-C chimera repair, the single end alignments for each

paired end reads were combined and mate information was filled in with samtools fixmate [63].

Subsequently, the BAM files were sorted with samtools sort and PCR duplicates were marked for

removal with Picard MarkDuplicates (http://broadinstitute.github.io/picard). Finally, bam files

were split by chromosome with BamTools split [117] and converted to HapCUT fragment matrix

format using extractHAIRs.

A.1.8 Experiment and Pipeline Management

Processing and experiment pipelines were managed with Snakemake software [75]. A

Snakemake snakefile is available with the HapCUT2 software that will reproduce the results of

this paper (all main and supplemental figures) from raw online data sources.
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A.3 Supplemental Figures and Tables for Chapter 2

Figure A1: An expanded version of Figure 2.1 with shaded areas added to represent the standard
deviation of the 10 replicate experiments. Comparison of runtime (top) and switch+mismatch
error rate (bottom) for HapCUT2 with leading methods for haplotype assembly (HapCUT,
RefHap, ProbHap, and FastHare) on simulated read data as a function of (A): mean coverage
per variant (variants per read fixed at 4), (B): mean variants per read (mean coverage per variant
fixed at 5), (C): mean number of paired-end reads crossing a variant (mean coverage per variant
fixed at 5, read length 150 base pairs, random insert size up to a variable maximum value).
Lines represent the mean of 10 replicate simulations and shaded regions represent the standard
deviation. FastHare is not visible on panel C (bottom) due to error rates 10 to 18 times higher
than HapCUT2.

106



Figure A2: Comparison of the performance of HapCUT2 with other tools on NA12878 fosmid
data across all chromosomes: (A) Switch error rate, (B) Mismatch rate, (C) Fraction of covered
variants pruned, and (D) Runtime in CPU-minutes. Switch and mismatch errors were calculated
using the set of phased variants specific to each tool.
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Figure A3: Comparison of the performance of HapCUT2 with other tools on NA12878 44×
coverage PacBio SMRT data across all chromosomes: (A) Switch error rate, (B) Mismatch
rate, (C) Fraction of covered variants pruned, and (D) Runtime in CPU-minutes. Switch and
mismatch errors were calculated using the set of phased variants specific to each tool. ProbHap
exceeded 20 CPU-hours for some chromosomes.
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Figure A4: Efficacy of HapCUT2, ProbHap, and RefHaps’ post-processing strategies on 11×
coverage PacBio SMRT data. (A) Reduction in mismatch error rate by pruning individual
low-confidence variants and (B) Reduction in switch error rate by splitting haplotype blocks at
possible switch errors (block size represented by the AN50 metric). RefHap is presented as a
single point since it does not support variant confidence thresholding or block-splitting.
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Figure A5: Comparison of the h-trans interaction probabilities τ(I) estimated by HapCUT2
(for chromosomes 1 and 19 of NA12878 using 90× Hi-C data) against probabilities estimated
using knowledge of ground truth haplotypes on the same dataset. Raw HapCUT2 probabilities
are smoothed with a Savitzky-Golay filter for visualization, and ground truth probabilities are
created using 1 Mb bins.
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Figure A6: Comparison of HapCUT2 to HapCUT on 90× coverage MboI Hi-C data. (A)
Switch error rate (B) Mismatch rate (C) Fraction of covered variants pruned (D) Fraction of
variants phased in largest block. Switch and mismatch errors reported here are for all variants
phased by a given tool, so the fraction of variants pruned is also reported.
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Figure A7: Haplotype accuracy (switch and mismatch error rates) for the NA12878 genome as
a function of sequence coverage for (A) PacBio SMRT data and (B) Hi-C (MboI enzyme) data.
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Figure A8: Comparison of haplotypes obtained using HapCUT2 on 40× coverage MboI Hi-C
reads combined with 10X Genomics linked-reads (34× short-read coverage) to the haplotypes
obtained using the two datasets separately: (A) Switch error rate, (B) Mismatch rate, (C) Fraction
of covered variants pruned, and (D) Fraction of variants phased in largest block.
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Table A1: Comparison of the total runtime to phase whole-genome Hi-C data (format in
hours:minutes) using HapCUT and HapCUT2. To assess the impact of the trans-error probability
(τ) modeling on run time, HapCUT2 was run in three different ways: default (no trans-error
modeling), Hi-C mode with a pre-computed τ model and Hi-C mode that estimates τ from the
data.

Method Hi-C (30×××) Hi-C (40×××) Hi-C (90×××)
HapCUT 0:36 0:46 1:49
HapCUT2 (no trans-errors) 0:10 0:15 0:34
HapCUT2 (fixed τ model) 0:34 0:52 2:02
HapCUT2 (estimate τ from data) 3:05 4:38 9:11
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B.1 Supplemental Methods for Chapter 4

B.1.1 Simulating a diploid genome

In order to simulate Illumina and PacBio reads, a diploid genome was generated from

the hg19 reference genome (chromosomes 1-22). For simplicity, only SNVs were simulated.

Heterozygous SNVs were placed uniformly at random at a rate of 0.001 and homozygous SNVs

were placed uniformly at random at a rate of 0.0005. The SNV alleles were selected according

to the genotype priors used by Li et al [8]. The phase for heterozygous genotypes was selected

uniformly at random. Two fasta sequences for each chromosome were generated using the

bcftools consensus command to insert the alleles at SNVs from each haplotype into the reference

sequence.

B.1.2 Estimating coverage from aligned reads

For both Illumina and PacBio whole-genome read datasets, the median coverage for each

dataset was measured by sampling 100,000 random positions from the genome using bedtools

random [114] and counting the number of aligned reads covering each position (passing samtools

flag filter 3844). Then, the median value of the measured coverages was taken. For the simulated

data, the median coverage was not measured, and instead the reported coverage is the read

coverage that was generated for the simulation.

B.1.3 Identification of candidate SNVs

Longshot uses a simple (and standard) genotyping model for identifying candidate SNVs.

For each position on the reference, the read bases piled up over that position are considered. The

most frequent non-reference base is selected and denoted as the alt (1) allele. The three genotypes

G ∈ {0/0,0/1,1/1} are considered. Let A be the vector of allele observations over {0,1}.
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Using Bayes’ rule,

p(G|A) =
p(A|G)p(G))

∑G p(A|G)p(G)
(B.1)

The probability of the observed pileup alleles is the product of their respective probabilities:

p(A|G) = ∏
a∈A

(a|G) (B.2)

p(a|G) =


1− ε if a = G0 = G1

ε if a 6= G0 = G1

1
2(1− ε)+ 1

2ε otherwise

(B.3)

ε is the probability of a sequencing error to a specific base. Since quality values are of

limited use for SMS reads, we use our own estimated base-mismatch emission scores for this

value (see the subsection ‘alignment parameter estimation’). We can compute the probability of a

non-reference genotype as:

p(0/1|A)+ p(1/1|A) = 1− p(0/0|A)

B.1.4 Finding non-repetitive anchors

For an SMS read overlapping a potential SNV site, non-repetitive anchor sequences to

the left and right of the potential SNV site are identified to perform local realignment. For this,

Longshot searches leftward (and rightward) from the SNV site to find a sequence of length k

(default value 6) in the reference sequence where the aligned SMS read matches the reference

exactly. This implies that the k-mer in the SMS read was likely sequenced from the template

without error and is aligned correctly. This assumption may not hold when the reference sequence

is repetitive. For example, consider a 6-mer AAAAAA that matches between reference and SMS
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read perfectly. This may be a good anchor sequence if it is the only occurence of AAAAAA in

the nearby reference sequence. It is a bad anchor if this is not the case; for instance, if it occurs

inside an even larger homopolymer run of A’s. We circumvent this issue by ignoring any potential

anchor that occurs more than once on the reference sequence within the maximum anchor search

window (100 bp by default). The rust-bio implementation of the BNDM algorithm is used to

quickly perform this k-mer search[115, 118]. If the leftward or rightward anchor search exceeds

half the size of the maximum anchor search window, then that position on the reference and read

is used as the anchor regardless of any other factors. This means that in the worst case with default

parameters, a realignment window of 100 bp will be formed around the potential SNV. In order

to avoid forming realignment windows at a locus with large gaps, if a insertion/deletion/refskip

event of length ≥ 20 is encountered near the window, the site is not realigned.

B.1.5 Pair-HMM realignment for clusters of SNVs

When multiple potential SNVs are located in close proximity, the realignment approach

should consider the alternate haplotypes defined by these SNVs jointly rather than perform the

local realignment for each SNV independently. This is especially important for false potential

SNVs – it is common for a single true SNV to be misaligned in the original BAM so that the

pileup-based scan identifies it as two or three potential heterozygous SNVs within a few bp of

each other. Therefore, we use a simple approach to merge nearby SNVs into SNV clusters. For

every pair of adjacent potential SNVs, we merge them into the same SNV cluster (and merge

their realignment windows) if their realignment window boundaries overlap. For a cluster with

n potential SNVs, we use the pair-HMM forward algorithm to realign against each of the 2n

possible short-haplotype sequences, which we will refer to as the set H . For example, the possible

haplotypes in the case of three potential SNVs are H = {000,001,010,100,110,101,011,111}

represented in bitstring form for the 3 SNV sites. We then use a Bayesian calculation similar to

the single SNV case to calculate the probability of each possible short-haplotype h ∈H
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p(h | read) =
p(read | h)

∑h′∈H p(read | h′)

where p(read | h) is calculated using the forward algorithm between the (multi-SNV)

read-window and the haplotype sequence obtained by inserting into the reference sequence

window each SNV in h. The short-haplotype hmax maximizing p(h | read) is selected and used

to assign the call for each of the n alleles. The quality value qi for each allele is calculated

independently as:

qi = phred

(
1−∑

hc

p(hc | read)

)

where hc is the set of haplotypes in H for which hc[i] = hmax[i]. In other words, it is 1

minus the sum of probabilities of all short haplotypes sharing the same best allele call in position

i. The total computational complexity of all the realignments is O(m22n), for read and haplotype

windows of length m. For computational efficiency, we limit the cluster size (n) to a maximum

value (default = 3) and break large clusters into smaller ones.

B.1.6 Priors on genotypes

Longshot uses the same approach as Li et al. [8] to estimate the prior probability of

the genotypes. The prior probabilities for each SNV genotype (given the reference base) are

derived assuming that heterozygous SNVs occur at a rate of 0.001 and homozygous SNVs occur

at a rate of 0.0005. By default, Longshot differs from the Li et al approach in that a transition

(Ts) mutation is assumed to occur at the same rate as a transversion (Tv) mutation. The prior

probabilities can be specified as parameters to the software.

B.1.7 Haplotyping and measuring accuracy

Longshot produces a phased VCF as output, using the standard ‘phase set’ (PS) notation

to delineate phased haplotype blocks. To assess the accuracy of the haplotypes assembled by
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Longshot, the output VCF was first filtered to remove SNVs with a low phase quality (PQ < 30).

This value is similar to the genotype quality (GQ), except that it represents the confidence

in the most likely phased genotype (0|0,0|1,1|0,1|1). The GQ, on the other hand, combines

the heterozygous phased genotypes together to represent the most likely unphased genotype

(0/0,0/1,1/1).

A switch error occurs when, at a single SNV, the phase (e.g. 0|1 or 1|0) of the assembled

haplotype differs from the ground-truth haplotype with respect to the previously compared

SNVs. A switch error indicates that the phase of the SNVs that follow will be different. If two

consecutive switch errors occur such that the phase of only one SNV is incorrect, this corresponds

to a ‘mismatch’ error or a short switch error. We calculated the switch and mismatch error rate

separately and report a single error rate by adding these two error rates.

To compare the phasing performance of short reads with long reads using Longshot, we

used HapCUT2 to assemble haplotypes using short reads and variants called using FreeBayes

on the same set of reads [65]. Variants identified from short read WGS can also be paired with

long read data to assemble long haplotypes [68]. This differs from Longshot, which requires no

prior knowledge of SNVs (and genotypes) to assemble haplotypes. We compared the phasing

accuracy of Longshot with this composite approach. For this, SNVs called using 30× Illumina

WGS with the previously described filters were used with the extractHAIRS program to extract

haplotype fragments in the PacBio reads mode (--pacbio 1). Then, the fragments were used

to assemble haplotypes with HapCUT2 (v1.1). The resulting haplotypes were filtered for a

minimum mismatch quality (similar to the phase quality described for Longshot) of 30.

B.1.8 Separation of reads by haplotype

Let H = (H1,H2) be the final pair of haplotypes output by Longshot. Assuming that the

prior probability of a read originating from H1 or H2 is equal, the probability that a read r was

sampled from haplotype H1 can be calculated as:
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p(r|H1)

p(r|H1)+ p(r|H2)

The read is assigned to H1 if this probability is at least T (default value = 0.99), assigned

to H2 if the probability is ≤ 1−T and left unassigned otherwise.

B.1.9 Alignment Parameter Estimation

In order to estimate allele probabilities using the pair-HMM, it is necessary to know the

best alignment parameters for SMS reads. Specifically, the parameters are transition probabilities

between every state in {MATCH, INSERTION, DELETION} (with outgoing probabilities for

a state summing to 1) as well as emission probabilities for a pair of aligned bases. We use a

single emission probability for matched bases, and a single emission probability for mismatched

bases. In order to use parameters that accurately reflect the data, we estimate these probabilities

directly from the alignments in the bam file. While the bam alignments are too inaccurate for

sensitive genotyping, we can expect the alignments to roughly reflect the probabilities of insertion,

deletion, and base mismatch errors for the reads. This approach also assumes that variants from

the reference genome are significantly less common than read errors, which is true for SMS reads

from the human genome. We perform a single scan over every CIGAR string and sequence in

the BAM, and transition between MATCH, MISMATCH, and DELETION states according to

the CIGAR string. The number of observed transitions from each state to itself or other states is

counted and converted into probabilities by dividing by the total transitions out of the outgoing

state. The aligned bases at each step in the CIGAR are tracked, and the total number of matching

and mismatching bases are used to estimate the emission probability for matched vs. mismatched

bases.
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B.1.10 Variant calling using Clairvoyante and WhatsHap

We installed Clairvoyante 1.02 using the Bioconda method described on the github

(https://github.com/aquaskyline/Clairvoyante), but encountered a runtime error related

to CPU affinity alteration that we avoided with a small fix to the code, described in this github issue

(https://github.com/aquaskyline/Clairvoyante/issues/27). We used the pre-trained

models available at http://www.bio8.cs.hku.hk/trainedModels.tbz that were trained at

learning rate 1e-3 for 999 epochs. We used the model trained on NA24385 to call variants on

NA12878 and the model trained on NA12878 for other genomes. We ran Clairvoyante using

commands of the form:

clairvoyante.py callVarBam --chkpnt_fn {model} --ref_fn ref.fa \

--bam_fn ngmlr_alignments.bam --ctgName {chrom} \

--call_fn {chrom}.out.vcf --sampleName {sample_name} \

--threshold 0.2 --minCoverage 4 --threads 4

Comparison of precision and recall values between methods requires choosing a threshold

for the variant quality. For Clairvoyante, following the authors’ approach [99], we used the 0.2

allele frequency cutoff and the variant quality threshold that maximized the F1-score.

We used WhatsHap 0.18 (https://bitbucket.org/whatshap/whatshap) using the potential

variants discovered in step 1 of the Longshot algorithm as input. The program was run with the

following command for each genome:

whatshap genotype --ignore-read-groups --reference ref.fa \

-o {chrom}.out.vcf potential_snvs_{chrom}.vcf input.bam

After calling variants, the VCF was filtered using the same maximum coverage filter as Longshot.

Both methods were run separately on each chromosome on an Intel Xeon CPU E5-2670 0 @

2.60GHz.
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B.1.11 Variant calling using Nanopolish

We used Nanopolish version 0.11.1 to call variants using the rel6 version of the NA12878

ONT data (https://github.com/nanopore-wgs-consortium/NA12878/blob/master/Genome.md).

The raw fastq files were downloaded and aligned with minimap2 to hg38 reference genome. First,

we downloaded the individual fast5 files and ran nanopolish index with command of the form:

nanopolish index \

-d fast5/Bham/FAB39043-3709921973_Multi \

.... \

-d fast5/Bham/FAB41174-3976885577_Multi \

-s fast5/rel_6_sequencing_summary.txt rel_6.fastq.gz

For variant calling, we divided chromosome 20 into chunks of size 1 MB and ran nanopolish on

the chunks using commands of the form:

nanopolish variants --threads 4 --ploidy 2 -q cpg --window chr20:{start}-{end} --

reads rel_6.fastq.gz --bam minimap2_alignments.bam --genome hg38.fa --outfile

chr20.{start}.{end}.vcf

After this, the VCF’s from the individual chunks were recombined. We note that we ran nanopolish

in the methylation aware mode since it yielded better results.
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B.3 Supplemental Figures and Tables for Chapter 4

Figure B1: Illustration of reference bias in SMS read alignments. PacBio SMS reads
covering a homozygous SNV (chr1:12,067,044 T−→G) site in the individual NA12878 are
shown (visualized using IGV). Frequent indel errors in the SMS reads, combined with a bias in
the alignment algorithm to favor the reference allele, results in 3 reads that contain the reference
allele at the SNV site, 1 read containing a C, and 9 reads that contain a deletion. As a result,
the variant can incorrectly be called as a heterozygous SNV. Realigning each read to both the
reference allele and the alternate allele and selecting the most likely alignment can ameliorate
this bias. To the right of each read, the most likely allele call and quality value calculated by
Longshot using the Pair-HMM realignment strategy is shown. All reads, except two reads with
very low quality values (< 5), support the ’G’ allele resulting in the correct homozygous SNV
call.
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Figure B2: Comparison of precision and recall of SNV calling using different long-read
mapping tools. Simulated Illumina and PacBio reads were generated at multiple coverages
(20×, 30×, 40× and 60×) from chromosomes 1-22 (hs37d5 reference genome) and variants
were called using either Longshot (PacBio) or FreeBayes (Illumina). SMS reads were mapped
with multiple mapping tools (NGMLR, BWA-MEM, MINIMAP2, and BLASR) for compar-
ison. Precision (top) and Recall (bottom) of called variants were assessed across the entire
chromosome (left) and within segmental duplications with 95% or greater sequence identity
(right).
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Figure B3: Comparison of the mappability of short reads with long reads using simulated
data. Illumina short reads and PacBio SMS long reads were each simulated at 60× coverage
and mapped to the genome with BWA-MEM and BLASR, respectively. For every position in
the genome, the coverage of primary read mappings was assessed. The positions in the genome
were filtered for those with at least 20×,30×, and 40× coverage of primary read mappings.
Of those positions, it was determined what fraction of the mappings were “well-mapped”, or
passing standard filters and having MAPQ≥ 30. The number of positions meeting the minimum
coverage cutoff and also meeting a minimum “well-mapped read” cutoff of at least 50%, 75%,
90% are shown as a fraction of total genomic positions (excluding “N” positions).
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Figure B4: Precision-Recall curve for SNV calling on four individuals: (a) NA12878, (b)
NA24385, (c) NA24149, and (d) NA24143. For each individual, variants were called from Illu-
mina short reads using FreeBayes and from whole-genome PacBio SMS reads using Longshot.
Precision and recall were calculated using GIAB SNV calls within high-confidence regions.
Points on each curve are obtained by varying the minimum Genotype Quality (GQ) cutoff.
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Figure B5: Comparison of precision and recall of SNV calling using different variant call-
ing methods (Longshot, Clairvoyante and WhatsHap), on the NA12878 PacBio dataset.
Reads aligned using the NGMLR tool were used for variant calling using each method. Preci-
sion and recall were calculated using GIAB SNV calls within high-confidence regions.
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Figure B6: Precision-Recall Curves for Longshot with and without phased genotyping.
Longshot was run as normal on the whole-genome NA12878 PacBio data (downsampled to 30×
coverage), as well as with “no haplotype assembly” (skipping step 3 of the algorithm).
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Figure B7: Comparison of the accuracy of haplotypes assembled with Longshot, Hap-
CUT2 and WhatsHap for two genomes: NA12878 (45×) and NA24385 (64×). For running
HapCUT2 and WhatsHap, variants identified from ∼30× coverage Illumina sequencing were
used as input for phasing. The accuracy of the resulting haplotypes (a) was measured using
the combined switch error rate (long switches and mismatches), and the completeness (b) was
measured using the N50 length of the haplotypes. Results are also shown for Longshot and
HapCUT2 after filtering for SNVs with Phase Quality (PQ) greater than 30.
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Figure B8: Precision-Recall curve for SNV calling using whole-genome Oxford Nanopore
data for NA12878 (∼ 37× coverage). Precision and recall were calculated using GIAB SNV
calls within high-confidence regions of the genome. Points on the curve were obtained by
varying the cutoff of the Genotype Quality (GQ) score for Longshot and the QUAL score for
Nanopolish. Results shown are based on chromosome 20 only.
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Figure B9: Actual vs effective read coverage in PacBio SMS data. At each SNV site, alleles
for which the quality value estimated by the allelotyping method in Longshot is lower than a
threshold (default = 7) are discarded; this reduces the effective read coverage. The data shown
here is for SNV sites from the 45× coverage NA12878 PacBio dataset (chromosome 1 only).
The median effective read coverage (as well as 1st and 3rd quartiles) is plotted for variant sites
with the same actual read coverage. Source data is provided as a Source Data file.
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Figure B10: Comparison of Platinum Genomes variant calls (outside GIAB confident
regions) with Longshot variants for NA12878. Variants were called on chr1-22 with Longshot
using 45× coverage PacBio SMS reads for NA12878. The Longshot variants, GIAB variants,
and Platinum Genomes variants were each filtered for regions that are outside GIAB confident
regions, but inside the Platinum Genome called regions. 79.6% of SNVs in these difficult-to-call
regions are shared between the Platinum Genomes calls and the Longshot calls.
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Table B2: Fractions of False Positive (FP) and False Negative (FN) variant calls that were
misgenotyped or coincide with genomic features. Variants were called using Longshot on
chr1 using 45× coverage SMS reads for NA12878. The FP and FN variants were determined
with respect to the ground truth (GIAB variant set within GIAB confident regions). In order to
reason about why the FPs and FNs occurred, the fraction of those variants that fall into different
categories was counted. For comparison, 100,000 random positions from chr1 were selected,
filtered by the GIAB confident regions and subjected to the same analysis. The fold enrichment
compared to the random positions is shown as a measure of the significance.

Genome False FP False FN
Positives (FP) Enrichment Negatives (FN) Enrichment

Misgenotyped SNV 0.050 - 0.014 -
Near Indel 0.714 176.99 0.053 13.17
In homopolymer 0.323 5.70 0.195 3.44
In homopolymer but 0.025 0.46 0.163 2.94

not near indel
In STR 0.008 27.90 0.002 7.20
In LINE 0.286 1.32 0.215 0.99
In SINE 0.122 0.81 0.221 1.46
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Table B3: Improvement in variant precision by filtering out SNVs near known indel vari-
ants. Most false positive (FP) variants called with Longshot occur at true indel variant sites that
are mistaken as SNVs. Filtering out SNVs occuring within 5 bp of known indel sites (Mills +
1000G Indel variant set from the GATK bundle) results in improved precision at the cost of a
small reduction in recall.

Genome Read Precision Precision Recall Recall
Coverage (known indels (known indels (known indels (known indels

not filtered) filtered out) not filtered) filtered out)
NA12878 45× 0.995 0.997 0.974 0.969
NA24385 64× 0.994 0.996 0.979 0.974
NA24149 29× 0.993 0.995 0.948 0.943
NA24143 27× 0.993 0.995 0.941 0.936
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Table B4: SNV calling accuracy for different methods on PacBio and Oxford Nanopore
data for NA12878. The precision and recall values for DeepVariant on the PacBio data were
obtained from Poplin et al. [92] and based on three chromosomes (20, 21 and 22). For a direct
comparison, we calculated the precision and recall for Longshot using the BLASR-aligned bams
on these three chromosomes only. The precision/recall for Clairvoyante was obtained from
Supplementary Data (Luo et al. [99]) and was based on rel3 release of the ONT data aligned
with NGMLR. The accuracy values for MarginPhase were obtained from [93].

Genome Technology Method Precision Recall
NA12878 PacBio Longshot 0.9947 0.9701
NA12878 PacBio DeepVariant 0.9819 0.9739
NA12878 ONT MarginPhase 0.809 0.769
NA12878 ONT Clairvoyante 0.9148 0.7518
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[115] Johannes Köster. Rust-bio: a fast and safe bioinformatics library. Bioinformatics, 32(3):
444–446, 2015.
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