
UC Irvine
UC Irvine Previously Published Works

Title
Toward improved calibration of hydrologic models: Combining the strengths of manual 
and automatic methods

Permalink
https://escholarship.org/uc/item/6q38v597

Journal
Water Resources Research, 36(12)

ISSN
0043-1397

Authors
Boyle, Douglas P
Gupta, Hoshin V
Sorooshian, Soroosh

Publication Date
2000-12-01

DOI
10.1029/2000wr900207

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6q38v597
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


WATER RESOURCES RESEARCH, VOL. 36, NO. 12, PAGES 3663-3674, DECEMBER 2000 

Toward improved calibration of hydrologic models: 
Combining the strengths of manual and automatic methods 

Douglas P. Boyle, Hoshin V. Gupta, and Soroosh Sorooshian 
Department of Hydrology and Water Resources, University of Arizona, Tucson 

Abstract. Automatic methods for model calibration seek to take advantage of the speed 
and power of digital computers, while being objective and relatively easy to implement. 
However, they do not provide parameter estimates and hydrograph simulations that are 
considered acceptable by the hydrologists responsible for operational forecasting and have 
therefore not entered into widespread use. In contrast, the manual approach which has 
been developed and refined over the years to result in excellent model calibrations is 
complicated and highly labor-intensive, and the expertise acquired by one individual with a 
specific model is not easily transferred to another person (or model). In this paper, we 
propose a hybrid approach that combines the strengths of each. A multicriteria 
formulation is used to "model" the evaluation techniques and strategies used in manual 
calibration, and the resulting optimization problem is solved by means of a computerized 
algorithm. The new approach provides a stronger test of model performance than 
methods that use a single overall statistic to aggregate model errors over a large range of 
hydrologic behaviors. The power of the new approach is illustrated by means of a case 
study using the Sacramento Soil Moisture Accounting model. 

1. Introduction and Scope 

Conceptual rainfall-runoff (CRR) models have become 
widely used for flood forecasting as the demand for timely and 
accurate forecasts has increased. Such models provide an ap- 
proximate, lumped description of the dominant subwatershed- 
scale processes that contribute to the overall watershed-scale 
hydrologic response of the system. Most operational CRR 
models have of the order of 10 or more parameters, whose 
values must be selected so that the modeled response to rain- 
fall closely simulates the actual behavior of the watershed of 
interest. For example, the Sacramento Soil Moisture Account- 
ing (SAC-SMA) model [Burnash et al., 1973] is used by the 
National Weather Service (NWS) for flood forecasting 
throughout the United States (Figure 1). The model has 17 
parameters whose values must be specified (Table 1). While a 
few of these parameters might be estimated by relating them to 
observable characteristics of the watershed, most are abstract 
conceptual representations of nonmeasurable watershed char- 
acteristics that must be estimated through a calibration proce- 
dure. 

The NWS has developed a sophisticated, highly interactive 
manual procedure to estimate parameter values for the SAC- 
SMA model [Anderson, 1997]. This process has been devel- 
oped and refined over the years resulting in excellent model 
calibrations. However, the process is complicated, difficult to 
learn, and highly labor-intensive, requiring a substantial com- 
mitment of human resources. As a result, the expertise ac- 
quired by one individual through extensive hands-on training 
and experience with a specific model is not easily transferred to 
another person (or another model). 

Over the past two and a half decades much research has 
been devoted to the development of automatic methods for 
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model calibration that take advantage of the speed and power 
of digital computers. Such methods seek to be objective and 
relatively easy to implement. However, the model calibrations 
provided by such methods do not tend to provide parameter 
estimates and hydrograph simulations that are considered ac- 
ceptable by the hydrologists responsible for operational fore- 
casting. As a result, automatic methods have not yet entered 
into widespread use. 

In this paper, we analyze the similarities and differences 
between the manual and automatic approaches to hydrologic 
model calibration and propose a hybrid approach that com- 
bines the strengths of each, The approach "models" the eval- 
uation techniques and strategies used in manual calibration by 
using several objective measures to reflect different observable 
characteristics of watershed behavior. The resulting optimiza- 
tion problem is posed within the multicriterion framework 
presented by Gupta et al. [1998] and solved by means of a 
computerized optimization algorithm [Yapo et al., 1998; Basti- 
das et al., 1999]. Sections 2-4 describe and discuss the rationale 
for this methodology and illustrate the power of the approach 
through a case study using the SAC-SMA model. 

2. Strategies for Parameter Estimation 

2.1. Three-Level Classification Scheme 

Model parameter estimation involves the selection of values 
for the parameters so that the model matches the behavior of 
the watershed system as closely as possible. For the purpose of 
this discussion we shall classify the parameter estimation pro- 
cess into three levels of increasing sophistication. 

In level zero, approximate ranges for the parameter esti- 
mates are specified by examining lookup tables or by borrow- 
ing values from similar watersheds that have been previously 
calibrated. Note that these ranges reflect our uncertainty in the 
values of the parameters and might be termed prior estimates 
in the sense that they are not conditioned on any input-output 
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Figure 1. National Weather Service Sacramento Soil Moisture Accounting (SAC-SMA) model [from Brazil, 
1988]. 

time series data collected for the watershed of interest. If a 
point estimate is desired, it can be selected from within this 
range. This approach is often applied in the case of ungaged 
watersheds or when historical data records are insufficient for 

the application of level one and two calibration techniques (see 
below). It is also used typically with complex "physics-based" 
models whose parameters are intended to represent measur- 
able physical quantities (e.g., distributed hydrologic models 
such as the European hydrological system Systeme Hy- 
drologique (SHE) and land-surface energy and water balance 
models such as the Biosphere-Atmosphere Transfer Scheme). 

Levels one and two involve the use of progressively more 
sophisticated procedures for refining the parameter estimates 
by the use of information available in input-output time series 
data collected for the watershed of interest. They might there- 
fore be termed posterior estimates. In level one the parameter 
ranges are refined by identifying periods in the output time 
series where the effects of individual parameters (or small 
group of parameters) are relatively dominant and can there- 
fore be isolated. A defining characteristic of level one is that 
the effects of parameter interactions are essentially ignored. 
Such procedures are commonly described in introductory level 
textbooks on hydrology [e.g., Linsley et al., 1982, chapter 7]. 
The U.S. National Weather Service follows an explicit set of 
procedures and guidelines for level one refinement of individ- 
ual parameters (discussed further in section 2.2). 

Finally, level two consists of further refinement (narrowing) 

of the parameter ranges by means of a detailed analysis of 
parameter interactions and model performance trade-offs. 
This is the most difficult step in the parameter estimation 
process, because it requires a great deal of understanding of 
the model and typically involves complex decisions that weigh 
the multiple effects of adjusting several parameters at a time. 

2.2. Approaches to Calibration 

The methods employed in both levels one and two involve 
two components: (1) evaluation of the "closeness" between the 
model outputs and the corresponding measurement data and 
(2) adjustment of the values of the parameters to improve the 
closeness. Manual (sometimes called expert) and automatic 
calibration techniques can be compared and contrasted in 
terms of how each of these components is implemented. 

2.2.1. Manual calibration. Manual calibration is the ap- 
proach most widely used to calibrate hydrologic models. In this 
approach the "closeness" is typically evaluated in terms of 
several (more than three!) measures, and a semi-intuitive trial- 
and-error process is used to perform the parameter adjust- 
ment. Usually, the exact number and nature of these measures 
is not specified clearly. While some aspects of "closeness" may 
be evaluated in terms of objective measures (i.e., one or more 
mathematical criteria), most are, in fact, evaluated subjectively 
based on visual comparison of the model outputs and the data. 
Although the performance evaluation and parameter adjust- 
ment procedures are usually influenced by guidelines estab- 
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Table 1. Parameters and State Variables of the SAC-SMA Model 

Level Two 

Multiple Criteria 
Level Level 

Parameter Description Zero One Range "Best" 

Single Criterion 

RMSE Log RMSE 

Maximum Capacity Thresholds 
UZTWM upper zone tension water maximum storage, mm 1.0-150.0 ... 20.8-96.3 
UZFWM upper zone free water maximum storage, mm 1.0-150.0 .-. 26.9-49.3 
LZTWM lower zone tension water maximum storage, mm 1.0-500.0 ... 196.5-250.3 
LZFPM lower zone free water primary maximum storage, mm 1.0-1000.0 120.0-140.0 122.4-128.3 
LZFSM lower zone free water supplemental maximum storage, 1.0-1000.0 40.0-60.0 40.0-40.9 

mm 

ADIMP additional impervious area (decimal fraction) 0.0-0.4 ... 0.38-0.40 

Recession Parameters 

UZK upper zone free water lateral depletion rate, day -1 0.1-0.5 ... 0.13-0.31 
LZPK lower zone primary free water depletion rate, day-1 0.0001-0.025 0.006-0.01 0.006-0.008 
LZSK lower zone supplemental free water depletion rate, 0.01-0.25 0.15-0.20 0.17-0.19 

day -1 

Percolation and Other Parameters 

ZPERC maximum percolation rate, dimensionless 1.0-250.0 ... 204.6-250.0 
REXP exponent of the percolation equation, dimensionless 0.0-5.0 .-. 2.5-3.8 
PCTIM impervious fraction of the watershed area 0.0-0.1 0.0-0.02 0.0033-0.0088 

(decimal fraction) 
fraction of water percolating from upper zone directly 0.0-0.6 ... 

to lower zone free water storage (decimal fraction) 
PFREE 0.002-0.13 

RIVA 
SIDE 

RSERV 

PXMLT 

Parameters Not Optimized 
riparian vegetation area (decimal fraction) 0.00 
ratio of deep recharge to channel base flow, 0.00 

dimensionless 

fraction of lower zone free water not transferable 0.30 

to lower zone tension water (decimal fraction) 
precipitation multiplication factor, dimensionless 1.00 

State Variables 

UZTWC upper zone tension water storage content, mm 
UZFWC upper zone free water storage content, mm 
LZTWC lower zone tension water storage content, mm 
LZFPC lower zone free primary water storage content, mm 
LZFSC lower zone free secondary water storage content, mm 
ADIMC additional impervious area content, mm 

58.0 10.1 127.6 
45.8 31.2 21.0 

247.5 257.7 210.0 
124.4 120.0 120.1 

40.5 40.1 40.1 

0.40 0.37 0.28 

0.18 0.19 0.34 

0.006 0.010 0.007 
0.18 0.20 0.15 

230.2 249.2 247.5 
3.2 2.5 3.5 
0.005 0.00002 0.0178 

0.04 0.0002 0.25 

lished through previous experiences of model calibration, the 
actual sequence of parameter adjustments will vary from per- 
son to person based on their experience and training, their 
understanding of the model structure, the properties of the 
data, and the characteristics of the watershed system. In the 
following discussion we refer mainly to the parameter estima- 
tion procedures used by the NWS during manual calibration of 
the SAC-SMA flood forecast model. 

The manual calibration process employed by the NWS be- 
gins with level zero parameter estimates obtained (primarily) 
by examining the range of parameter values for previously 
calibrated watersheds in the local forecast group (a group of 
neighboring watersheds having similar geology, hydrology, and 
climatology). Next, a systematic sequence of steps is followed 
to develop level one parameter estimates by examination of the 
hydrometeorological database for the watershed [Peck, 1976]. 
Periods in the observed time series data are identified where 

specific hydrologic processes are dominankx(.e.g., base flow, 
interflow, surface flow, evaporation, transpiral•on, abstraction, 
infiltration, etc.). For each of these periods the 8{oseness of the 
model and the data is evaluated visually, an.d x•lues for the 
relevant parameters are estimated by heuristic m6thods. As a 
trivial example, periods dominated by base flow are used to 
estimate the base flow recession rate parameter of the model 

(for each period) as the slope of the log of the hydrograph time 
series (Figure 2). The range of recession values identified over 
all the relevant periods then represents the new (refined) un- 
certainty in the value of the base flow recession parameter; a 
point estimate is typically computed by averaging the values. 
For the SAC-SMA model, Peck [1976] listed five parameters 
(LZFPM, LZPK, LZFSM, LZSK, and PCTIM) for which level 
one estimates can be easily obtained from the observed hydro- 
graph and precipitation data. Level one estimates for another 
six parameters (LZTWM, UZTWM, UZK, SSOUT, UZFWM, 
and PFREE) are considered possible but more difficult to 
obtain from the data. The estimates for the remaining six 
parameters (SARVA, ZPERC, REXP, SIDE, ADIMP, and 
RSERV) cannot be refined by level one procedures. 

A graphical user interface called the Interactive Calibration 
Program (ICP) [National Weather Service (NWS), 1997] was 
developed by the NWS to facilitate the identification of differ- 
ent hydrometeorologic periods within the data for level one 
analysis. The ICP program will also be an integral part of the 
new Advanced Hydrologic Prediction System initiative recently 
funded by Congress starting fiscal year 2000. However, the ICP 
code also enables more detailed empirical and statistical anal- 
yses of the observed data, state values, and outputs simulated 
by the model and is therefore the primary tool used to obtain 
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Figure 2. Partitioning of the observed hydrograph into three 
components: Qz•, Q Q, and Qs. The dashed line shows how the 
observed hydrograph can be used to estimate the recession 
constant K. 

level two parameter estimates via manual calibration. The in- 
teractive graphical display allows the user to visually observe 
the impact of parameter adjustments on the internal behavior 
of the model (state variables) and on the "closeness" of the 
model-simulated streamflows to the observed hydrograph. 

The complex effects of parameter interactions on the model 
responses make level two calibration a difficult process, requir- 
ing training and a great deal of practice to master. The hydrol- 
ogist must simultaneously evaluate a number of subjective and 
objective criteria while iteratively adjusting the parameter val- 
ues, some of which influence the overall behavior of the model 
while others have a significant impact only during certain spe- 
cial hydrologic events. While there are experts skilled at man- 
ual methods for level two parameter estimation, the proce- 
dures they use are not explicitly defined (some very general 
guidelines can be found in the ICP manual [NWS, 1997]). 

A comprehensive understanding of the model, the real wa- 
tershed system, and the data is required to produce consistent 
and reliable results with manual calibration. Unfortunately, 
this knowledge is not easily transferred from person to person 
or model to model and must come from extensive hands-on 

training and experience with the specific model. Even when 
performed by an expert, the process is highly labor-intensive 
and requires a substantial commitment of human resources. 
Manual calibration of the SAC-SMA model to a single water- 
shed may require several hundred hours of effort. Further, the 
subjectivity of the evaluation procedure and the complex trade- 
offs in the model's abilities make it very likely that many 
different solutions (sets of parameter values) may seem to 
produce equally "good" results. The NWS conducts several 
workshops annually to train hydrologists in calibration proce- 
dures for their models. Development of the skills needed to 
conduct a competent calibration for the SAC-SMA model can 
require several months of practice (M. Smith, Hydrologic Re- 
search Laboratory, NWS, personal communication, 1999). 

2.2.2. Automatic calibration. Automatic calibration pro- 
cedures for hydrologic models have been under development 
for at least three and a half decades, with the degree of so- 

phistication generally paralleling the increases in computing 
power. The goal has been to develop an objective strategy for 
parameter estimation that provides consistent performance by 
eliminating the kinds of subjective human judgements involved 
in the manual approach. In the classical approach, borrowed 
from systems and operations research theory, the "closeness" 
is typically evaluated in terms of a single objective measure (a 
mathematical criterion) of the overall difference between the 
simulated and observed hydrographs, and the parameter ad- 
justment is performed using an optimization algorithm. Con- 
siderable research has been devoted to trying to identify a 
"best" criterion [e.g., Sorooshian and Dracup, 1980; James and 
Burges, 1982; Kuczera, 1983a, 1983b] and the "best" optimiza- 
tion algorithms [e.g., Brazil and Krajewski, 1987; Brazil, 1988; 
Wang, 1991; Duan et al., 1992, 1993; Sorooshian et al., 1993]. 
Recent work has suggested that automatic calibration proce- 
dures also can be extended to handle multiple criteria [Gupta 
et al., 1998, 1999; Yapo et al., 1998]. 

In the automatic approach the performance evaluation and 
parameter adjustment procedures are objective in the sense 
that they establish explicit rules by which the actual sequence 
of parameter adjustments is made. The power of the procedure 
therefore depends on how well it has been designed to reflect 
the factors important to a successful calibration, and much 
effort has been devoted to establishing what those factors are. 
The following discussion is based primarily on our own expe- 
riences with the development and testing of automatic parameter 
estimation procedures for the SAC-SMA flood forecast model. In 
this discussion we explicitly distinguish between the classical 
single-criterion method and the new multicriteria approach. 

In general, implementation of an automatic calibration pro- 
cess requires the user to specify a region of the parameter 
space which is considered to contain feasible values for the 
parameters; this is given typically as upper and lower bounds 
on each parameter. It is common practice for these bounds to 
be established via the level zero and level one parameter esti- 
mation procedures described above for manual calibration. 
The single-criterion and multicriteria automatic calibration meth- 
ods therefore differ only in their approach to level two calibration. 

The single-criterion approach searches the feasible param- 
eter space for a single point that optimizes the mathematical 
criterion selected to measure the closeness of the model output 
and the data. The OPT3 automatic calibration code used by 
the NWS allows the user to select from among several choices 
for the criterion and the optimization algorithm. In general, 
the criterion most commonly used in the literature has been 
the root-mean-squared error (RMSE) evaluated on either the 
streamflows or the log of the streamflows: 

I•r N _sim__ z?bs) 2 RMSE= • (zt , (1) 
t;1 

_•m is either the simulated streamflow or log streamflow where z t 
and z? us is the corresponding observed value. Of the several 
optimization algorithms that have been tested, the Shuffled 
Complex Evolution-University of Arizona (SCE-UA) method has 
generally proved to be both robust and efficient [e.g., Duan et al., 
1992; Gan and Biftu, 1996; Kuzcera, 1997; Thyer et al., 1999]. 

It has been suggested that although the single-criterion au- 
tomatic approach is able to provide good parameter estimates, 
it can also "degenerate into pure curve fitting and produce a 
set of parameters that fit the calibration reasonably well but 
are hydrologically unrealistic" [Peck, 1976]. For this reason and 
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because automatic approaches require some mathematical 
background and familiarization with more complicated com- 
putational tools, the approach has not become popular for 
routine calibration of hydrologic models. It is not difficult to 
see that the approach has both a major strength and a major 
weakness. Its strength is its use of a robust optimization pro- 
cedure to rapidly make successful parameter adjustments in 
the presence of strong parameter interaction. Its weakness, 
however, is its "complete dependency on one error function" 
[Peck, 1976]. 

The main problem with the single-criterion automatic ap- 
proach is that the criterion must be chosen carefully to mea- 
sure the difference between the simulated and observed hy- 
drographs in a manner that does not place undue emphasis on 
matching one aspect of the hydrograph at the expense of an- 
other. While an expert can give due consideration to this fact 
in the course of manual calibration, the selection of a single 
criterion before initiating the process of calibration can pre- 
dispose the automatic procedure toward an inappropriate 
(even hydrologically unrealistic) solution. For example, it has 
been our experience that use of the RMSE criterion evaluated 
on the streamflows tends to overemphasize fitting of the flood 
peaks and leads to strongly biased simulations of the recessions 
(and hence incorrect tracking of soil-moistur• storages). 

The multicriteria approach addresses this problem through a 
two-step process. In the first step an automatic search of the 
feasible parameter space is used to find the set of solutions (the 
so-called "Pareto optimal" region) which simultaneously opti- 
mizes several user-selected criteria that measure different as- 

pects of the closeness of the model output and the data. This 
quickly results in several viable solutions, reflecting the range 
of different ways in which the hydrograph can be simulated 
with different kinds of "minimal" error [Yapo et al., 1997; 
Gupta et al., 1998]. In the second step the solutions having 
unacceptable trade-offs in fitting of the different parts of the 
hydrograph are rejected, and additional criteria (both objective 
and subjective) are employed to narrow the solution space. 
The major objective of this paper is to demonstrate how the 
two-step multicriteria automatic approach can be used to de- 
velop a hybrid strategy that combines the strengths of the 
manual and automatic calibration, resulting in efficient, yet 
acceptable, estimates for the parameters of a conceptual hy- 
drologic model. 

3. Combining the Strengths of Manual 
and Automatic Calibration 

Manual calibration uses a subjective process of visual inspec- 
tion and comparison of the model output and the observed 
data to implicitly evaluate (measure) the ability of the model to 
simulate specific aspects of the hydrologic behavior. Examples 
of these behaviors include the magnitude and timing of the 
peak flows and the shapes of the rising and falling limbs of the 
hydrograph. In addition, statistical criteria such as monthly and 
seasonal biases are typically used to provide an objective eval- 
uation of the overall (long-term) behavior of the model. In 
principle, it could be said that the hydrologists doing manual 
calibration keep track of a number of different "criteria," most 
of which are not explicitly defined, while adjusting the model 
parameters. This allows them to balance the trade-offs in the 
ability of the model to simulate various aspects of the hydro- 
graph (i.e., to consider the characteristics of the model struc- 
tural error) with recognition of any potential errors in the 

observed data. Emulation of this process via automatic cali- 
bration requires the use of explicit mathematical criteria to 
approximate (model) the implicit measures used in the manual 
approach. This development involves identification of several 
characteristic features of the observed streamflow hydrograph, 
each representing a distinct (preferably unique) aspect of the 
behavior of the watershed. The "closeness" of the model out- 

put to the observed data for each of these features is measured 
objectively by means of a mathematical criterion. 

There have been several recent reports on the exploration of 
hybrid methodologies that emulate manual procedures 
through stepwise application of optimization techniques. Sug- 
awara et al. [1984] used a rule-based procedure to identify 
subperiods in the simulated hydrograph for automated adjust- 
ment of parameter subgroups of the Tank model. Brazil [1988] 
used an interactive procedure to perform level one estimates 
of parameter values of the SAC-SMA model, followed by au- 
tomated global random search and iterative parameter opti- 
mization steps. A postsimulation multicriteria evaluation 
(based on up to 10 criteria) was used to obtain level two 
parameter estimates. Harlin [1991] and later Zhang and Lind- 
strom [1997] developed automated approaches that emulate 
the manual calibration procedures for the Hydrologiska Byr- 
ans Vattenbalansavdelning (HVB) model [Bergstrom, 1976]. 
Their procedures involve partitioning the runoff time series 
into several subperiods associated with specific, dominant hy- 
drologic processes (e.g., rain flood, snowmelt flood, and base 
flow). Each subperiod is used to calibrate a different parame- 
ter (or subgroup). An iterative automated procedure cycles 
through the different periods to search for an "optimal" pa- 
rameter set. 

While the previous methods have been shown to be effec- 
tive, they avoid dealing explicitly with the effects of interac- 
tions among the model parameters and, in particular, provide 
little insight into the performance trade-offs associated with 
model structural errors. In addition, they are largely model- 
dependent and must be adapted for use with different hydro- 
logic models. The automatic multicriteria calibration strategy, 
however, provides a more versatile approach to emulating the 
evaluation procedures used in the manual approach to level 
two calibration, while taking advantage of the power and effi- 
ciency of an optimization algorithm to search the parameter 
space. In this approach a multicriteria optimization problem is 
defined in terms of simultaneous minimization of all the model 

performance criteria representing the "closeness" of the model 
output to the observed streamflow hydrograph. A multicriteria 
optimization methodology, such as the multi-objective complex 
evolution (MOCOM-UA) algorithm [Yapo et al., 1998], is used 
to search for the Pareto solution space containing the "good" 
solutions to the problem. Finally, one or more "acceptable" 
parameter estimates are selected from within the Pareto solu- 
tion space by rejecting solutions with unacceptable trade-offs 
and/or poor overall (long-term) statistical characteristics (e.g., 
annual, monthly, and flow group biases). 

The MOCOM-UA is a general purpose global multiobjec- 
tive optimization algorithm that provides an effective and ef- 
ficient estimate of the Pareto space with a single optimization 
run and is based on an extension of the SCE-UA population 
evolution method [Duan et al., 1993]. A detailed description 
and explanation of the method are given by Yapo et al. [1997, 
1998], and so they will not be repeated here. In brief, the 
MOCOM-UA method involves the initial selection of a pop- 
ulation of p points distributed randomly throughout the s- 
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dimensional feasible parameter space. In the absence of prior 
information about the location of the Pareto optimum a uni- 
form sampling distribution is used. For each point the mul- 
tiobjective vector F is computed, and the population is ranked 
and sorted using a Parteo-ranking procedure suggested by 
Goldberg [1989]. Simplexes of s + 1 points are then selected 
from the population according to a robust rank-based selection 
method [Whitley, 1989]. A multiobjective extension of the 
downhill simplex method is used to evolve each simplex in a 
multiobjective improvement direction. Iterative application of 
the ranking and evolution procedures causes the entire popu- 
lation to converge toward the Pareto optimum. The procedure 
terminates automatically when all points in the population 
become nondominated. Experiments conducted using stan- 
dard synthetic multiobjective test problems have shown that 
the final population provides a fairly uniform approximation of 
the Pareto solution space [Yapo et al., 1997, 1998]. 

In this paper, we investigate an automated multicriteria 
scheme that emulates the manual approach with a simple two- 
step procedure. In the first step the hydrograph is partitioned 
into three components based on the reasonable assumption 
that the behavior of the watershed is inherently different dur- 
ing periods "driven" by rainfall and periods without rain. Fur- 
ther, the periods immediately following the cessation of rain- 
fall and dominated by interflow can be distinguished from the 
later periods that are dominated by base flow. The streamflow 
hydrograph can therefore be partitioned into three compo- 
nents (Figure 2), which we call "driven" (Qz•), "nondriven 
quick" (Qo), and "nondriven slow" (Qs). The time steps 
corresponding to each of these components are identified 
through an analysis of the precipitation data and the time of 
concentration for the watershed. The time steps with nonzero 
rainfalls, lagged by the time of concentration for the water- 
shed, are classified as driven. Of the remaining (nondriven) 
time steps those with streamflows lower than a certain thresh- 
old value (e.g., mean of the logarithms of the flows) are clas- 
sified as nondriven slow, and the rest are classified as non- 
driven quick. In this paper, a simple empirical method is used 
for partitioning the nondriven flows; note that there are a wide 
range of different techniques based on physical reasoning [e.g., 
Rutledge, 1993; Nathan and McMahon, 1990] available for base 
flow separation that could be used to improve the partitioning 
of the nondriven component. For each of the components the 
closeness between the model outputs and the corresponding 
observed values is estimated separately with one or more sta- 
tistical criteria. Finally, MOCOM-UA is used to search for the 
Pareto solution space containing the "good" solutions to the 
problem. 

In the second step, one or more "acceptable" parameter 
estimates are selected from within the Pareto solution space by 
rejecting solutions with unacceptable trade-offs and/or poor 
overall (long-term) statistical characteristics (e.g., annual, 
monthly, and flow group biases). This approach is illustrated in 
section 4 with a case study involving parameter estimation for 
the SAC-SMA model. 

4. Case Study 
4.1. Introduction 

In this study, the multicriteria approach outlined above was 
used to estimate values for the parameters of the SAC-SMA 
flood forecast model using historical data from the Leaf River 
watershed (1950 km 2) located north of Collins, Mississippi. 

Forty consecutive years of data (water years (WY) 1948-1988) 
are available for this watershed, representing a wide variety of 
hydrologic conditions. The details of the SAC-SMA model and 
the Leaf River data have been discussed previously in the 
literature [e.g., Burnash et al., 1973; Peck, 1976; Brazil and 
Hudlow, 1981; Sorooshian and Gupta, 1983]. The level zero and 
level one estimates of parameter uncertainty (Table 1), the 
unit hydrograph ordinates, and potential evapotranspiration 
demand curve for this watershed have been determined previ- 
ously by Brazil [1988]. Of the 17 model parameters, only 13 are 
usually estimated via level two parameter estimation proce- 
dures. An 11-year period (WY 1952-1962 inclusive) was se- 
lected to be used for this purpose. 

4.2. Level Two Parameter Estimation 

As described in section 3, the hydrograph was partitioned 
into three components: driven (Qz•), nondriven quick (Qo), 
and nondriven slow (Q s). For each of the components the 
simulation error was measured using the RMSE statistic, re- 
sulting in three evaluation criteria, designated as FD (driven), 
FQ (nondriven quick), and FS (nondriven slow). The Pareto 
optimal solution space for the three criteria was estimated 
using the MOCOM-UA multicriteria optimization algorithm 
[Yapo et al., 1997]; the algorithm used 15,533 trials and ap- 
proximately 1 hour of computer time (on a Sun workstation) to 
converge to a set of 500 Pareto optimal solutions. 

The results of the multicriteria automatic calibration run are 

shown in Figures 3 and 4. Figures 3a-3c present two- 
dimensional projections of the three-criterion trade-off surface 
represented by the 500 Pareto optimal parameter sets (indi- 
cated by the shaded dots). Figures 3a-3c clearly illustrate the 
inability of the model to simultaneously match all three aspects 
of the hydrograph. For example, Figure 3b indicates a 
smoothly varying trade-off between the models' ability to 
match the driven (Qz•) and the nondriven slow (Qs) portions 
of the hydrograph (similarly, see Figure 3c). Figure 3a, how- 
ever, shows that the FD and FQ criteria are very highly cor- 
related, indicating that these two portions of the hydrograph 
contain very similar information about the parameters of this 
model and that one of these criteria can be considered to be 

redundant in this case study. As a result, equivalent solutions 
can be expected (for this model structure and data set) using 
only two criteria, either a combination of FD and FQ with FS, 
or FD with FS, or FQ with FS. The behavior of the model 
within FD and FQ is strongly influenced by the shape of the 
unit hydrograph, which was fixed (not optimized) in this case 
study. Optimization of the unit hydrograph shape, or replace- 
ment and optimization of a different routing model, may in- 
crease the model's ability to fit the FD and FQ components 
and, as a result, reduce some of the correlation. Note also that 

the solutions corresponding to the best fits to the QD, Qo, and 
Q s portions of the hydrograph (i.e., solutions corresponding to 
minimal FD, FQ, and FS, respectively) correspond to the ex- 
treme points of the set of shaded dots on each plot. 

Figures 3a-3c also reveal that the trade-offs in fitting the 
three hydrograph components are quite significant. For exam- 
ple, the RMSE error in fitting the slow-flow component Q s 
increases from 2.5 to 4 m3/s as the RMSE error in fitting the 
driven (rising limb) component Q D decreases from 25 to 22 
m3/s. The 1.5-m3/s variation in Qs error is a fairly large fraction 
(33%) of the average slow-flow level (4.5 m3/s), while the 
3-m3/s variation in Q z• error is only 9% of the average rising 
limb flow level (35 m3/s). 



BOYLE ET AL.: TOWARD IMPROVED CALIBRATION OF HYDROLOGIC MODELS 3669 

30 

28 

• 24 

22 

20 
20 

B 

C© 

e D 

(a) (b) (c) 

ø E 
4. p $ 

B " E ø 
A 

4. 

25 30 20 25 30 20 

FD (cms) FD (cms) 

p $ 

25 3O 

FQ (cms) 

(• 0 6 i •.•-q, '• i i ' 
"' ' ß -- "'i..•'•: /• ,•.•-- • •:--.-:%. : • ' 
• :•:.•.•...• • -•.. • : : 

. •:• 
• • '• ......... .•.• ..... :,.•--• . 

o •, , •, , • • , • • i 
Izf )m Izfsm Izpk Izsk Iztwm uztwm uzk uz•m pctim pfree zperc 

Parameter Name 
rexp adimp 
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The normalized parameter plot presented in Figure 3d 
shows the variability in the parameter values for the 500 Pareto 
optimal solutions (indicated by the shaded lines). Each line 
across the graph represents one of the parameter sets. The 
maximum range for each parameter is the parameter uncer- 
tainty remaining after the level one analysis (Table 1). Notice 
that the parameter uncertainty has been reduced significantly 
by the multicriteria optimization. In particular, the parameters 
LZFPM and LZFSM show virtually no sensitivity to the trade- 
off analysis, indicating that these values are very precisely de- 
termined. In addition, the parameters LZPK and LZSK show 
only small amounts of variability. These results provide strong 
support for the claim by Peck [1976] that estimates for these 
four lower zone parameters (which are primarily associated 
with the shape of the slow-flow component of the hydrograph) 
can be easily obtained from the observed data (see section 2.2). 

In general, there is larger variability in the estimates for 
PCTIM, UZTWM, UZK, ZPERC, REXP, and PFREE. These 
parameters are associated with partitioning of the hyetograph 
into quick flow (overland and interflow) and infiltration (called 
percolation in the SAC-SMA model). The variability in these 
parameters is consistent with the intuitive notion that the struc- 
tural error in the model is associated primarily with difficulties 
in correctly modeling the nonlinear and spatially variable in- 
filtration processes at the surface. 

Taken together, these results suggest (not surprisingly) that 
the lumped conceptual representation of lower zone recession 
processes in the SAC-SMA model is actually quite adequate 
and that further attempts to improve the model would be most 
productive if focused on upper zone processes. These results 

also imply that the long sequences of systematic errors com- 
monly observed in the slow-flow portions of the simulated 
hydrograph are caused primarily by incorrect estimation of the 
volume and timing of percolation. 

Figure 4a presents the results in the hydrograph space for a 
100-day portion of the calibration period. Figure 4b shows the 
same information in the log-transformed flow space so the 
slow-flow behavior can be clearly seen. The solid circles cor- 
respond to the observed data, the shaded region corresponds 
to the hydrograph trade-off uncertainty associated with the 500 
Pareto optimal solutions, the solid line corresponds to the 
minimal FD (driven) solution, and the dashed line corresponds 
to the minimal FS (nondriven slow) solution. Notice that the 
minimal FD solution tends to fit the peaks better at the ex- 
pense of overestimating the recessions, while the minimal FS 
solution fits the recessions better at the expense of overesti- 
mating the peaks (the minimal FQ solution is almost identical 
to the minimal FD solution and is not plotted). More interest- 
ing, however, is that the uncertainty region as a whole tends to 
overestimate the hydrograph recessions, again supporting the 
inference that the percolation estimates are incorrect (biased). 

4.3. Selecting a "Best" Parameter Set 

The analysis presented above illustrates how the automatic 
multicriteria approach generates a set of Pareto optimal solu- 
tions which provide useful information about the characteristic 
behaviors of the model and its strengths and limitations. How- 
ever, to use the model for on-line streamflow forecasting, it is 
desirable to select a single representative parameter set that 
provides an acceptable trade-off in fitting of the different parts 
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of the hydrograph. For this purpose, we draw again on the 
standard methods employed in manual calibration by NWS 
hydrologists. Two important considerations are that the long- 
term bias of the model simulations is as close to zero as pos- 
sible (i.e., the model preserves the observed water balance) 
and the overall residual variance is relatively small. A third 
important consideration is that the bias by flow level also tends 
to be close to zero. Figure 5 shows a bicriterion plot of the 
overall l 1-year percent bias against residual variance for the 
500 potential solutions generated by the multicriteria optimi- 
zation run. The pattern of the points clearly indicates a trade- 
off between the bias and variance: The points with minimal 
variance tend to have strong positive bias, whereas the points 
having close to zero bias have somewhat larger error variances. 
This plot shows that the classical approach, which uses a single 
overall RMSE criterion for model calibration, may give small 
error variances but at the expense of significant model bias 
(leading to parameter estimates that "fit the data" but are 
unacceptable to manual calibration experts). Lindstrom [1997] 
also acknowledged this fact and proposed a single-criterion 
approach to correct for it based on a weighted combination of 
variance and bias measures. 

Figure 5 also shows that only 24 of the original 500 points 
fall on the Pareto frontier (i.e., these 24 points are superior to 
the remaining 476 points in a multicriteria sense). The three 
points marked A, B, and C are of special interest; A and C 
represent the extreme points in the trade-off analysis, while B 
has the smallest overall bias (essentially zero). Figure 6 shows 
the percent bias by flow group for each of the 500 solutions, 

with points A, B, and C highlighted. Notice that the minimum 
variance point C (dashed-dotted curve) tends to severely over- 
estimate the low and medium flow portions of the hydrograph, 
while point A (dashed curve) tends to underestimate the low- 
flow region. However, point B (solid curve) seems to be rela- 
tively balanced across the full range of flows. On the basis of 
this analysis we would select point B as the parameter set to be 
used for streamflow forecasting. 

The relative locations of the points A, B, and C in the 
original multicriteria (FD, FQ, and FS) space are shown in 
Figure 3. Points A and C fall near opposite ends of the trade- 
off surface. However, point B, selected to have minimal overall 
bias, seems to represent a reasonable compromise between 
matching of the three criteria (FD(B) = 22.7, FQ(B) = 25.6, 
and FS(B) = 2.9). For completeness, Figure 3d shows the 
relative position of the three points in the parameter space. 

4.4. Comparison With Conventional Single-Criterion 
Calibration 

To demonstrate the advantages of the level two multicriteria 
approach, we show a comparison with the results obtained by 
conventional single-criterion automatic calibration [e.g., So- 
rooshian and Gupta, 1993]. The SAC-SMA model was cali- 
brated by separately fitting to the RMSE criterion and the log 
RMSE criterion (RMSE evaluated after log transformation of 
the flows) using the SCE-UA global optimization algorithm 
[Duan et al., 1993]. The SCE RMSE and SCE log RMSE 
calibration results have been plotted as points D (pluses) and 
E (squares) in Figures 3, 5, and 6 for easy comparison with the 
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Table 2. Overall Statistics for Selected Parameter Sets 

Bias, % RMSE, m3/s 

Calibration Evaluation Calibration Evaluation 

Multicriteria (B) -0.05 6.5 19.2 19.7 
Single Criterion (D) 8.9 14.4 18.0 18.8 
Single Criterion (E) 6.1 11.7 22.5 24.6 

multicriteria results. From Figures 3a-3c and Figure 6 we see 
(as expected) that the SCE RMSE solution is biased toward 
fitting the high-flow portions of the hydrograph (particularly 
the nondriven quick (FQ) portion) at the expense of poor 
fitting of the nondriven slow portion, while the SCE log RMSE 
solution is biased toward fitting the low-flow portions of the 
hydrograph at the expense of poor fitting of the driven and 
nondriven quick portions. In general, Figures 3, 5, and 6 show 
that the SCE RMSE (point D) parameter values are similar 
(and provide similar performance) to those for point C (Pareto 
set solution having minimum overall variance) and tend to 
provide hydrographs with larger overall bias. 

To verify the consistency and reliability of the results, the 
performance of the multicriteria estimate B and the single- 
criterion estimates D and E were evaluated over a 36-water- 

year period of the available data. Table 2 shows that the overall 
percent bias and variance statistics for the parameter estimates 
change (increase) in a similar way from calibration to evalua- 
tion period. However, the multicriteria estimate B provides 
smaller overall bias. Figure 7 shows the percent bias and vari- 
ance statistics broken out for each of the 36 individual water 

years. The three columns show the statistics plotted against the 
mean annual flow (as a measure of "wetness") for the three 
parameter sets B (Figures 7a and 7b), D (Figures 7c and 7d), 
and E (Figures 7e and 7f). Figure 8 shows the frequency plots 
for each statistic. On the average, the percent bias for wet years 
tends to be similar for all three parameter sets, while the 
percent bias for dry and average years tends to be larger (more 

positively biased) for the single-criterion estimate D (Figures 
7a, 7c, and 7e). This difference in the statistical tendencies can 
be seen clearly in the percent bias frequency plot (Figure 8). 
Further, the annual RMSE statistic tends to increase with 
annual wetness for all three parameter sets (Figures 7b, 7d, 
and 7f), but the statistical tendency is similar (on average) for 
the B and D parameter sets and significantly better than the E 
parameter set. In general, we can conclude that the multicri- 
teria estimate B provides statistically similar distributions of 
annual error variance as estimate D but with smaller overall 

bias. 

4.5. Comments About "Equifinality" 

It has been suggested [e.g., see Beven and Binley, 1992] that 
many models are overparameterized resulting in "equifinality" 
of model performance associated with widely different values 
for the model parameters (where we understand equifinality to 
mean essentially indistinguishable model behaviors). Figure 9 
shows a frequency plot of the overall calibration period RMSE 
for all 500 parameter estimates belonging to the Pareto solu- 
tion set. The plot shows that about 90% of the points have very 
similar overall RMSE values, seemingly supporting the argu- 
ment for equifinality. However, Figures 3a-3c clearly show that 
these same points do not appear to be similar when examined 
in terms of their abilities to simulate different portions of the 
hydrograph, clearly indicating that the points cannot be con- 
sidered to be equifinal. 

We argue therefore that any single overall statistic which 
aggregates model performance errors over a large range of 
hydrologic behaviors is a relatively weak test of model perfor- 
mance. One cannot therefore conclude equifinality by recourse 
to such a test. Furthermore, one should be particularly careful 
not to infer erroneous conclusions about parameter identifi- 
ability without recourse to examination of a number of differ- 
ent measures, each emphasizing a different important aspect 
of model behavior. 
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5. Conclusions •s 

There is an increase in the level of effort involved in obtain- 24 
ing progressively more refined estimates for the parameters of 
hydrologic models. Level two parameter estimates (that ac- 23 
count for parameter interactions and model performance 
trade-offs) are particularly difficult to obtain by manual meth- 22 
ods, requiring extensive training as well as considerable expe- ---21 
rience with the specific model. This expertise is difficult to E 
transfer from person to person and model to model. ,,, 2o 

This paper explores the relationship between the manual • 
rr19 

and automatic procedures for model calibration and presents a 
two-step automatic multicriteria approach for obtaining level 18 
two parameter estimates. The approach combines the 
strengths of manual and automatic methods by emulating the 17 
evaluation techniques and strategies used in manual calibra- 
tion. By solving the resulting multicriteria optimization prob- 
lem with a computerized global search procedure algorithm, 
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Figure 8. Frequency plots for each statistic shown in Figure 
7: (a) percent bias and (b) RMSE. Lines correspond to best 
multicriteria solution B (solid line), SCE RMSE solution D 
(solid line with plus symbols), and SCE log RMSE solution E 
(solid line with squares). 
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Figure 9. Frequency plot of RMSE over calibration period 
for all 500 Pareto solutions. Marked points correspond to ex- 
treme points in trade-off analysis (solutions A and C) and the 
"best" multicriteria solution B. The dashed line highlights the 
90% of the 500 Pareto solutions which have very similar RMSE 
values. 

the time and effort required to estimate the parameter range 
representing the trade-offs in the performance of the model 
are dramatically reduced. As a result, the attention of the 
hydrologist can be redirected from the tedious effort of man- 
ually searching for the "good" region to the more productive 
task of evaluating solutions from within the region found with 
the use of the automatic search algorithm. Finally, a simple 
strategy, modeled on manual procedures, is suggested as an aid 
to the hydrologist in analysis and elimination of the solutions 
within the trade-off range. 

A case study using the SAC-SMA model was used to dem- 
onstrate the performance of the new approach. The results 
indicate that parameter sets selected from within the Pareto 
region tend to provide consistent and reliable model forecasts. 
Further, the properties of the Pareto region provide informa- 
tion useful for evaluating the limitations of the various com- 
ponents of the watershed model, thereby pointing toward po- 
tential structural improvements. The approach provides a 
stronger test of model performance than methods that use a 
single overall statistic to aggregate model errors over a large 
range of hydrologic behaviors. 

Research aimed at further development of the approach is 
ongoing. This includes more sophisticated partitioning 
schemes (selection of criteria), evaluation of the sensitivity of 
the results to the number of criteria, methods to improve 
selection of preferred solutions from the Pareto region, and 
uses of the approach for evaluating the appropriate levels of 
model structural complexity. The results of this work will be 
reported in due course. As always, we invite dialog with others 
interested in these topics. 
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