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 Annals of Mathematics, 133 (1991), 1-35

 The generalized continuum hypothesis
 can fail everywhere

 By MATTHEW FOREMAN AND W. HUGH WOODIN

 1. Introduction

 In 1874, Cantor [Cl] showed that every set has cardinality strictly smaller
 than the cardinality of its power set. Cantor asked [C2] whether for infinite sets
 X there is a set Y of cardinality strictly between cardinality X and cardinality
 2X. The special case of X = Z (the integers) was Hilbert's first problem in his

 famous list [Hi] (the continuum hypothesis).

 In this paper we show that it is consistent with Zermelo-Frankel set theory
 with the full Axiom of Choice (modulo large cardinals) that for every set X there
 is a set Y such that the cardinality of Y lies strictly between the cardinality of X
 and the cardinality of the power set of X.

 It was previously shown in GCdel [G] that the generalized continuum
 hypothesis (G.C.H) was consistent; i.e., for every infinite cardinal X the cardinal
 successor to X was 2X. In 1963, Cohen [Co] showed that it was consistent that
 the continuum hypothesis failed. Easton [E] showed that subject to relatively
 mild restrictions (Kdnig's theorem) essentially arbitrary behavior of the power
 set operation could occur at regular cardinals.

 Singular cardinals presented a significantly more difficult matter. The first
 work on them was done by Prikry and Silver [P] and [Sil] who showed that the
 G.C.H. can fail at singular strong limit cardinals. Magidor [Ml] showed that it
 was consistent that it fail at the first singular strong limit and even that one
 could have the first failure of the G.C.H. at a singular strong limit.

 After Magidor's work it was generally believed that arbitrary behavior was
 possible. Silver, however, showed [Si] that if the G.C.H. holds below a singular
 cardinal K of uncountable cofinality then it holds at K. Galvin and Hajnal [G-H]
 showed that under more general conditions the behavior of the power set below
 a singular cardinal K of uncountable cofinality strongly affects the power set
 at K.

 These results are all "local" results. The consistent global behavior of the
 power set operation was not settled. We prove the following theorem.

 THEOREM. Let K be a supercompact cardinal with infinitely many inaccessi-
 ble cardinals above K. Then there is a partial ordering P such that in VP,
 VK = ZFC +for all A, 2A > A+.
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 In fact we can arrange, by our choice of partial orderings that VP l= K is

 mn(K)-supercompact. Solovay [So] has shown that if K iS supercompact then
 2 (K) = MW,(K)+; hence this is near best possible. Woodin extended this result to
 get:

 THEOREM (Woodin). If there is a supercompact cardinal then there is a

 model of ZFC in which 2K = K for each cardinal K.

 The general problem of the global behavior of the power set operation

 remains open although Shelah in [Shl], [Sh2] has shown that significant restric-

 tions hold even at cardinals of cofinality co.

 Mitchell [Mi] has extended Jensen's results showing that the failure of

 G.C.H. at a singular cardinal is a large cardinal property and Gittik [Gi] has

 obtained a good upper bound on the consistency strength of this property.

 We now outline the argument. The idea of this proof is to marry the
 techniques developed by Magidor [Ml] with a technique developed by Radin

 [R1] for adding a club set to a supercompact cardinal K and keeping K

 supercompact.

 We shall begin with a model in which K iS supercompact and in which for

 every n, =n(K) <:n(K) = 2n(K) and =n(K) is the nth weakly inaccessible cardinal
 past K. Such a model is easily obtained by the technique of Silver in [Sill from a
 model in which K is supercompact and in which there are infinitely many

 strongly inaccessible cardinals above K.

 Our final model is obtained from this model which for the moment we

 call V0, as follows. We generically add a closed unbounded subset,

 C - (Ka: a < K), of K. For this we use Radin forcing and so the powerset
 function in V0 at each Ka behaves locally as it does at K; i.e., for all n,

 =n(Ka) < n(Ka) = 2n(Ka) and =n(ka) is the nth weakly inaccessible cardinal past
 Ka. Further, V0[C] is a mild enough extension of V0 so that this remains true in

 VO[C].
 For each a let Aa = M4(Ka). At the same time we generically add Ka? 1

 subsets to Aa using the usual Cohen style conditions. Add (Aa, Ka+d) from V0.
 Since A< Aa = Aa these conditions are < Aa closed and satisfy the A+ chain
 condition. Hence cardinals are not collapsed.

 The final generic may be regarded as a sequence (Kaga: a< K) where for
 each a < K, ga C Add(Aa, Ka+ 1) is V0-generic.

 As is the case with Radin forcing, this forcing factors nicely in that for each
 limit ordinal a0 < K and for each n,

 Vo[KKaga: a< K)]

 = Vo[ K g ag < ao)][ ga X ... X ga][ Kaga: < a< K)]
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 The first stage is a generic extension of V0 for a version of the forcing defined at

 Kaso g0 X **... X g is Vo[KKg : a < a )]-generic and the third stage is a
 generic extension of V0[(KKgo: a < ao)][ga X ... Xgas] for the forcing de-
 fined in VO[IKaKga: a < aO)][ga X * X gal I (except that Add(Aa, Ka+1) is
 still computed in V1). The forcing for the first stage is K+-cc and all the new

 bounded subsets of Aao in Vo[<KaKg a: < K)] appear by the first stage. Thus it

 follows by induction that in VJ[(Kafga a < K)], the G.C.H. fails everywhere
 below K. Finally the entire forcing preserves the regularity of K; this follows
 by a master condition argument analogous to that for Radin forcing, and so

 Vo[<Kaga: a < K)] r K iS a model of ZFC in which the G.C.H. fails everywhere.
 The forcing we construct is a generalization of Radin forcing in the spirit

 that the forcing constructed by Magidor is a generalization of Prikry forcing. In

 defining the conditions, we modify the definition of the Radin measures to
 incorporate constraints for the ga's. As is the case in Magidor's construction we

 proceed by defining a 'supercompact' version of the forcing. The final notion of

 forcing is obtained by a projection of this forcing. Our situation differs from

 Magidor's in an essential fashion as we want to keep K regular. It is for this that
 we need to define explicitly the projected forcing (to allow a master condition

 argument) rather than to pass to an inner model as Magidor does.
 We give an outline by sections:

 In Section 2 we prove abstract lemmas about preservation of cardinals,

 mostly relying on an abstract characterization of the "Prikry property." We

 define what a strong factorization is and discuss master conditions. We show that

 the existence of a master condition at a cardinal K for an elementary embedding

 j with critical point K and a partial ordering P implies that K remains regular
 after forcing with P.

 In Section 3 we define the measure sequences used in the proof. These are

 analogues to the measure sequences used by Radin in his construction. Our

 measure sequences are further complicated by the need to compute the pro-

 jected forcing. Hence, they concentrate on more than just the sequences of
 shorter length. We make a fairly complicated inductive definition, stating and
 verifying the induction hypothesis as we go along. We define a projection map

 from our measure sequences to "projected" measure sequences.

 In Section 4 we define and prove some properties of the measure sequences

 that we will use. These are mostly normality properties of measures.

 In Section 5 we define the forcing notions we will use. Roughly a forcing

 condition is a finite sequence of 5-tuples each giving

 a) a point on the Radin sequence,
 b) a measure sequence and some sets of measure one to guide further

 sequences,
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 c) a condition in a partial order for adding lots of subsets of nn(y) where y
 is the cardinal of the point on the Radin sequence,

 d) a collection of restrictions on the addition of subsets of smaller cardinals.

 If we do Zn(K)-supercompact Radin forcing we automatically get that if A is

 a point on the Radin sequence then for each m < n, V l= Nm(A) = the mth

 weakly inaccessible cardinal above A and if a = nm(A), la <a = a. If A* is the
 next point on the Radin sequence above A then our partial ordering will add A*

 many Cohen subsets of =n(A). In our final model the power set operation is as
 follows:

 For m < n, m(A) = *m(A)V and n +1(A) = (A)*.
 In Section 6 we define the projected forcing and show that the map from

 measure sequences to projected measure sequences induces a (Boolean algebra)

 projection between the original forcing and the projected forcing.

 In Section 7 we show that there is a master condition for j and the

 projected forcing. From this, using the results of Section 2 we conclude that

 VK I= "ZFC + for all cardinals a, 2 > a+."

 In Section 8 we describe how to manipulate this proof to preserve the fact

 that K iS Mn(K)-supercompact.
 We have attempted to keep our notation within the standard notations.

 Some idiosyncrasies are as follows:

 We use the word measure for a countably complete non-principal ultrafil-

 ter. We use the phrase almost everywhere in conjunction with a measure ,u to

 mean "on a set in the filter u."

 If p, q are forcing conditions, we use p < q to mean that p gives more

 information than q. We use p 1Dp to mean p 1- so or p 1- so, and if p, q are
 forcing conditions in a partial ordering P and G is the canonical term for the

 generic object, we abbreviate p I- q c G by p I- q. We will use the abbrevia-

 tion "club" for closed and unbounded.

 Both Boolean algebra and partial ordering notation are used. If P is a partial

 ordering we write P/p for K{q E P: q < p}, < p), and similarly for B/p. Our
 partial orderings and Boolean algebras will be non-atomic. If i: P -* Q is
 order-preserving and one-to-one then i is a neat-embedding if whenever A c P
 is a maximal antichain i", A c Q is a maximal antichain in Q. We use the

 symbol V for Boolean join and A for meet.

 We use Add(K, A) for the partial ordering for adding A-many Cohen subsets

 of K. Specifically, a condition in Add(K, A) is a partial function p: K X A -) 2
 with domain having cardinality < K. The ordering is reverse inclusion. We

 assume that the reader is familiar with basic properties of this partial ordering

 (see [J]).
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 This work was done in 1979 while both authors were students at the

 University of California at Berkeley.

 2. Preliminaries

 In this section we introduce some abstract notions we will use in our proof

 to preserve cardinals and cofinalities.

 Definition (2.1). A partial ordering P is K-Prikry if and only if P = U a <, Fa

 where:

 i) Each F is K-closed (i.e., if KP p: /3 < 8 < K) C Fa is a decreasing

 sequence of conditions then there is a q c Fa, q < p,, for all 3 < 3).
 ii) If b E ~(P), p c Fa, then there is a q < p such that qljb and q e Fa.

 Examples (2.2). Partial orderings with the K-Prikry property are:

 a) P = Prikry forcing through a measurable cardinal A > K (see [P1). Here

 two conditions lie in the same Fa if and only if they have the same length.
 b) Any K-closed partial ordering.

 If P = U a <y, Fa is a Prikry then p refines q if and only if p < q and for

 some a, p, q E Fa. If < p,6: / < 8) is a decreasing sequence of elements of P
 then Kp,: /3 < 8) is a tower of refinements if and only if for some a,
 p8: /3 <8) C Fa.

 The following lemma is easy to see:

 LEMMA (2.3). If K is a regular and P is K-Prikry then forcing with P adds

 no new bounded subsets of K; i.e., ([K]<K)V = ([K]< K)VP.

 To make the G.C.H. fail at many places one must do two things:

 First, add many subsets of many cardinals. Second, one must preserve a lot

 of cardinals in order to avoid re-creating the G.C.H. at some cardinal. In [El
 Easton developed a technique for doing this; namely his partial orderings were

 of the form (K c.c.) x (K-closed) for suitably many cardinals K. We generalize
 his technique with the following notion:

 We say that P strongly factors at K below p if and only if there is a K c.c.

 partial ordering Q and a K-Prikry partial ordering R with witness R = U a < y Fa
 such that:

 a) W({p' E P: p' < p}) has a dense set isomorphic to Q X R (identify
 Q X R with this dense subset).

 b) If be ({p'EP: p'<p}) and (q,r)EQXR with rEFa, then
 there is an r' < r, p' E Fa and a maximal antichain A C Q/q such that for all

 q'E A, (q', r') jb.
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 Example (2.4). If P/p - Q X R where Q is K-C.c. and R is K-closed then
 P/p strongly factors at K below p.

 LEMMA (2.5). Suppose K is a regular cardinal and P strongly factors at K

 below p; then p 1- p K is a cardinal. Further, if 9(Q X R) - (P/p) wit-
 nesses strong factoring at K, then VQ t= R adds no new bounded subsets of K.

 Proof. Since Q is K-C.C., it is enough to show the latter statement. Let r be
 a term for a subset of A < K. Let (q, r) E Q X R. By strong factorization we
 can build a tower of refinements of r, Kri: /3 < A) and maximal antichains

 KAJ: /3 < A) in Q/q so that for all q' E AP, (q', r.)II," E Tr." Since ri:
 ,/ < A) is a tower of refinements there is an r* ? ri for all /3 < A. Then

 (q, r*) IF- - = (/3: there is a q' C l A n GQ, (q', r*) H GE c

 where GQ is the generic object for Q. Thus (q, r*) H- r E VQ. E]

 Strong factorization allows us to preserve cardinals but we must use another
 technique to keep a cardinal K inaccessible. (This cardinal K will be where we
 cut off the universe.)

 Let j: V -* M be an elementary embedding with critical point K. Let P be
 a partial ordering and i: P -> j(P) be a neat embedding. If there is a condition
 m E j(P) such that for all p c P, 0 $ i(p) A m < j(p), then m is called a
 master condition for j, P, and i.

 Standard theory says that if we force with j(P)/m to get a generic filter
 H c j(P) and let G be the generic filter on P induced by i, then j can be
 extended to j: V[G] -* M[H]. Consequently, if m A i(p) $ 0 for all p E P.
 p IF- K is a regular cardinal.

 In our situation we will start with j a n + l(K)-supercompact embedding.
 We will build a K +-C.C. partial ordering P and a master condition m such that
 there is a dense collection of p E i(P)/m such that i(P)/p strongly factors at
 K+ with witness P X R and i the natural embedding of P into P X R.

 LEMMA (2.6). Letj, P. m, P X R be as above; if R = U a < Fa witnesses
 strong factorization and each Fa is nn+ (K)+-closed then VP l= K is Mn(K)-super-
 compact.

 Proof Enumerate the terms for subsets of [M (K)]< K in VP,

 Ka,: 8 < =n +(K)), and terms for regressive functions from [M (K)] <K into M (K),
 Kf>: /3 < an+ 1(K)).

 Since m is a master condition,

 m 1 j(P) "There is an elementary embedding : V[G] - M[H]"

 where H _ j(P)/m is generic and G c P is the generic object induced by the
 canonical embedding of P into j(P)/p = P X R for some p e H. Hence, for
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 each ( and each condition q < p, we can find a maximal antichain of conditions

 deciding the value I|j"M (K) E i=sr) I. Further, for each /3 < Mn+ (K) we can find
 a maximal antichain of conditions A Cj(P) below p such that for all p' E A

 there is a f E :n(K) such that p' - j(Af)( j"2n(K)) = (O).
 Thus we can build a tower of refinements in R, (r 6: < K2n+,(K)), such

 that for all 8, there is a maximal antichain A. c P such that for all p c A6,5
 (p, r6)II"j""n(K) E j(G-)" and for all p E A6,a there is a G c Mn(K) such that
 (p, r6) U- j(fd)(j"nn(K)) = j(e).

 Let G c P be generic and let r < Krs: 8 < nn+1(K)). It is easy to check
 that V[G] - {7'[GT : there is a p E G, (p, r) -j":n(K) ej(T])} is a K-complete,

 normal, fine ultrafilter on 9,'(*K)).

 We will be using the following notion of a projection map:

 Definition (2.7). An order-preserving map wr: P -) Q is called a projection
 map if and only if for all p E P there is a q < wr(p) such that for all q' < q
 there is a p' < p, iT(p') < q'.

 P1 1'

 Ql7w(p) ? q ? q' ?wr(p')

 The following proposition is standard:

 PROPOSITION (2.8). If wr: P -* Q is a projection map and G C P is generic,
 then w"G C Q is generic.

 It is also easy to check that if wT: P -3 Q is a projection map and b E W(Q)
 is a Boolean value and pu1b c w"G then -(p)llb.

 3. The measure sequences

 We now build the measure sequences used in the proof. We start with an

 easy lemma:

 LEMMA (3.1). Suppose j: V -- M is an elementary embedding with
 {j(a): a < A} c M. Suppose a E M and there is a function H c V such that

 a e j(dom H) and j(H)(a) = {j(a): a < A}. Let Na = {j(f )(a): f is a function
 in V and a E j(dom f)}; then:

 a) Na -< M and j: V - Na is an elementary embedding.
 b) Na is closed under A-sequences.

 Proof. a) is standard. We indicate the proof of b). Let {xa: a < A} C Na.
 Then there is a sequence of functions fa: a < A) E V such that for all a < A,
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 j(fa)(a) = Xa* Let
 F: U{domfa: a < A} n dom H -V

 be defined by F(b) = {fa(b): a E H(b)}. Then j(F)(a) = {xa: a < A}. El

 Let j: V -) M be a (2A)+-supercompact embedding with K = crit(j) and
 A = *,OK). We will inductively define a sequence K Ma: a < A1) for some
 Al < (2(K))+ such that MO = j"*3(K) and each Mi, i > 0, will be a measure on:

 ( -4<(n3(K)) X R(K) <) X R(K) <
 We will write A* = 23(K) in what follows and call such a sequence a

 measure sequence.

 We will simultaneously be defining a sequence of functions

 K go: 0 < a < A1) where for each /3, dom g,3 = AP is a set of measure one for
 M. and go: AP -) ReK.

 Having arrived at a, we will have KMe: A < a) and Kgo: 0 </3 < a)
 defined. We define a measure Ma as follows:

 Ma (X) = 1 if and only if (Mo, KMe: 0 < / < a), (go: 0 </3 < a)) E j(X).

 It is easy to check that, in M, the sequence (MO, KMe: 1 < a)) E
 i(K)(jn3(K)) X R(j(K)) <j(K)) and Kgo: / < a)) E R(j(K)) <J(K). Hence, Ma is
 a measure on sn3(K) X R(K)<' X R(K)<K.

 We now'proceed to make the definitions needed to define ga. For nota-
 tional simplicity we write M for KM,3: /3' </3) and g<,3 for Kg,3: /3' <,B).

 Similarly if (A,: /3' < B) is a sequence of sets we write A<,. If (if) is a
 sequence of measures u = Kup: /3' <,B) and functions f<(3 = Kf6: 8 <13),

 then we say that the length of (u, f) is /3- =(u) 1(f). If K' < A' are cardinals
 we will abuse notation and write 4,,A') for those elements x of 4,,(A') such
 that x n K' C K'. This is a set of measure one for any supercompact measure on

 9,,,(A'). If x, ye K,(A') we write x -< y if x c y and o.t. x < y n K'. If u is a
 measure sequence with u0 c- ,A') then K- = uO n K and A = o.t. uO. If $v
 are measure sequences and uZ < i0 we get a natural map i0 t0: Au - An. This

 naturally induces a map iu 4,K: ,j(Au) -,, (A ). Hence, there is a natural
 map

 ij ,: (J K(Au) X R(U)<Ku X R(U)<Ku) -*( (AV) X R(V)<Kv X R(F)<Kv)

 when i , is the identity on RK . If u -< v0, we can let u* = i -Au and ii* be
 u with u0 replaced by u *. This allows us to speak about ui being in a set of
 measure one for Vi. Clearly u* depends on v0 but in practice the appropriate vie

 will be clear from context. Similarly if u 0 E 4,(A*) we get a function

 uj: A -A* and

 i : (6, <(Au) X R(KU) <Ku X R(KU) Ku) (9,K(A*) X R(K)<K X R(K<K)).
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 If u, v are measure sequences we write u -< v if and only if u0 -< v0 and

 iuo~luo)) < l(VO).
 Let < be a well-ordering of H((2A)?).

 LEMMA 3.2. Let M<a be a sequence of measures defined as above. Then

 there is a sequence of sets of measure one A <for M<a such that:
 a) If (UY, h) E A.3 then uO E 9,(A*) and up is a measure sequence on
 (,~~~#~j<AK_)<x (Au) X R(Ku)<Ku) X R(Ku)<KC and h is a sequence offunctions defined on

 sets of up measure one.

 b) If (iu, h) E A,3 then l(ui) < Au and iu(l(ui-i)) = /3.
 c) If /3' +3 thenA 3n A 3=0.

 d) If (up, h) E A.3 then (H(Z4(sup(uO))), E , (u, h), < IH(=4(sup uo)))
 (Hm(:4(sup j"A*)), E ,(M<P3, g<P3), a )m and j(u?) -< M<P.

 Proof. Note that b) c) and d) a). We prove d) as the proof of b) is

 easier and similar.

 Let A.3 be the collection of (u, h) with the desired properties. Then
 (M<13, g<03) E j(A.3) since (H(:4(sup j"A*)), E , (M<P, g<, < )-
 (H(j(M4(sup j"A*)))M, E, j(M<P3, g<P3), j( a)). Hence, M3(A3) = 1. U

 Note that by c) we can consider g <a as a single function with domain

 U A <a Also, d) implies that (u, h) 8 A3 is built by the same process as
 (M< 3, g <X3) was, since the portion of j we use is in H(24(sup j"A*))M.

 Since (69'(:3(K)) X R(K) <K) X R(K) <K can be canonically identified with a
 subset of 6kj:3(K)) x R(K), we do so from now on.

 The functions K ga: a < A1) will take values in particular partial orderings.
 In our situation the function ga on a sequence (up h) will have a value in
 Add(M4(Ku), K); however in other applications, ga may take values in other
 partial orderings such as COl(K 14, K) (see [F]).

 Let i: V -) M' be the ultrapower by the measure MP3. Then g.3 represents
 an element of Add(*4(K), i(K)) in M'.

 We note that M' is the transitive collapse of the model N<M K g a> C M, as
 in Lemma 3.1. Hence M' is closed under A*-sequences since MO = j"A* (i.e. the
 function H in Lemma 3.1 is H((u, h) = ud).

 We put a partial ordering on the collection of functions h defined on Ma

 sets of measure one, A, such that for (u, k) c A, h(u, k) c Add(n4(Ku), K). We
 let h ?<ae h' if and only if for Ma-measure one worth of (ui, ), h(u, k) <
 h'(u, k).

 LEMMA 3.3. Suppose :4(K) is regular and (h8: < y < :3(K)) is a se-

 quence offunctions as above such that if 8 < 8' then h8, <ae h8. Then there is a
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 function h defined on a set A of measure one for Ma such thatfor all (i,k) e A,
 h(U, k) E Add(*4(Ku), K) and for all 8 < y, h < h6.

 Proof: We note that the functions ha represent a descending sequence of

 elements p8 = [hJ] E Add(M4(K), i(K))M that lies in M'. Since Add(:4(K), i(K))
 is :24(K)-closed in M' there is a p E Add(:4(K), i(K))M' such that for all 8,

 p < p6. Let h be any function that represents p in M'. Then since p < p,8,
 h <a.e. h E

 We restrict our attention to a special collection of measure sequences:

 Let

 = (Ku, h): (u, h) has properties a), b), d) of Lemma 3.2>

 Let

 +1= ((u, h): for all 0 < 8 < 1(u){(v*,f): (vf) E Ua}

 is of u. measure one>

 Then for all i, and all /3 < a, M,(Uia) = 1. Let

 Ua = (ni Ef.uia) U {(M< ., g < ): 3 < a).

 For /3 < a, M,,(Ua) = 1 and for all (up, h) E Ua, all 0 < 8 < 1(u1) u6({(V*, f):
 (Wie f) E Ua1) = 1. From now on we will assume all of our measure sequences
 lie in Us.

 We note that Up c Up' for /3 </3'. In the sequel we neglect this depen-

 dence on a. Our final U.0 will actually be U'1.
 By using Lemma 3.2, for each a = (W, h) e U.0, we get a notion U00(a) by

 this same process. It is easy to check that U..(a) = {(v*, f ): (, f ) E U' and
 vO -< u0}.

 We need to define a projection map Ir from pairs (u', W) where U' is a

 measure sequence on 4K(A.) X R(Ku) and h has as domain sets A of U'
 measure one to pairs (W, Y) where W' is a measure sequence on RK and Y7 is
 a sequence of filters on some Boolean algebras (Q(wi, ,): /3 < (iW)).

 If 10u) = 1 then wr(u) = KU.
 Suppose wr has been defined for all pairs 07, ) with K- < Ku. Let UJ =

 {'-(vi, g): (W5, go) E U.0 and K-3 < K,}. We will let wT(i, h) = (w*(u), Tr(g)),
 where 7r*(ui) = (KT*(u,3): K 1(<u)) and 7r*(h) = (Kr*(h8): 3 < KI(u)). Let
 7r*(t0) = KU. If l(u) = y and 0 < / < y, define the measure wT*(u.) on sets
 X -U1 r[ RKU by wT*(u,)(X) = 1 if and only if u({(v, g): wr(v, g) e X}) = 1
 (i.e., u1(3Gr-'(X)) = 1). By standard arguments each rr*(u.) is a measure. It is
 also easy to check that each W*(Up,) is a measure on R < KU
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 For the measure sequence 'i<>, and each B < y, let Q(w*(i),,/) =

 {e: e is a function defined on a set of measure one B for w*(uQ,) and for each
 a E B, e(a) e 9(Add(n4(Ka), (Ku)))} be the ultraproduct. We identify functions
 in Q(w*(G),,/3) that are equal on sets of 7*(up)-measure one and define the
 Boolean operations in the natural way.

 Let u < , be a measure sequence defined on U.c. For each sequence A <, of

 sets of measure one for u < . and functions h < , with dom h= A 3 for 3 < y
 and h(a) E 97(Add(n4(Ka)), (Ku)), and each /3 < y, let

 b(u, h, AX, )(c) = V (ho(a): a e A. and 7(a) = c}.

 Let

 = {b(i?, hX ,/): A is a sequence of measure one sets for

 Then 9h generates a filter on Q(7*(u), 3).

 We let w*(h) = Sh and rr*(h) = Kr*(hd): /3 < 1(U)) = '9ih-

 CLAIM 3.4. Letf C Q(wT*(M<a+1) ,3) and h be a function with domain B

 of MP9 measure one such that for all (v, k) E B, h(v, k) E Add(24(K ), K). Then
 there is a function g <ae h with domain A c B, MO(A) = 1, such that either

 1) b(M<a+ , g, A, /3) <f in Q(wr*(M< a+1), /3), or
 2) b(M< a + 1, g, A, /) A f = 0 in Q(Frr*(M < a + 1), 3).

 (We ignore coordinates except /3.)

 Proof. Let f c Q(W *(M<a+1), /3). Let f' have domain {(v7, k): rr(v k) e
 dom f} by f'(v, k) = f(w(vi, )). Consider T = {a: f'(a) A h(a) 0 0 in

 9(Add(n4(Ka),(K)))}. If T c M,,, then for a c T let g(a) ?f'(a) A h(a),
 g(a) E Add(:4(Ka), (K)). Clearly b(M<a+l, g, T, /3) <f in Q(r*(M<a+l), /3).
 If T 0- M. then T* = wr-'(dom f) n T E M,3 and for all a E T*,
 f'(a) A h(a) = 0. Hence, b(M< a+1, h, T*,/8) Af= 0 in Q(7TF*(M< a+i),/).

 COROLLARY 3.5. For each function h defined on a set B of Ma-measure one

 such thatfor all (v,) e B, h(v, k) E Add(.4(K,)K), there is afunction g ae h
 with domain A a e Ma such that g is an ultrafilter on Q(G(r *(M < a + 1') a).

 Proof Since IU: I = K, we know IQ(rT*(M<a+ 1), a)I = 2K. By Lemmas
 3.3. and 3.4, we can build a sequence of functions Kh8: 8 < 2K), each h8

 defined on a set of Ma-measure one such that:
 1) For all a E dom h8, h8(a) E Add(n4(Ka), K).

 2) If 8 < 5' then h, <a.e. h.
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 3) If f E Q(w*(M< a+1), a), then for some A E Ma and some 8,
 b(M<a+l, h,, A, a) <f in Q(M<a+,, a) or b(M<a+ , h8, A, a) Af=0.
 By Lemma 3.3, there is a function ga <a.e. ha6 for all 8 < 2 K. By 3), for all
 f E Q(7T*(M< a+1), a), there is a set A E Ma such that either
 b(M<a+, a A,a) < f or b(M<a+1, ga,A,a) Af = O. Hence, Yg is an
 ultrafilter on QOT(M < a + 1), a).

 Letting ga be as in Corollary 3.5, we complete the definition of (Ma, ga)
 which allows us to build inductively the sequence (M < a, g < for all a < A*.

 We continue the definition until we find AO < A1 such that rr(MA) =
 wr(MAl). Since each measure Tr(Ma) is a measure on R(K), there is a pair

 (AO, A1) such that ir(MA,) = rr(MAk) and A1 < (22)+?< A*.
 Note that if ( b8: 8 < y), y < K, is a descending sequence of elements of

 D91 then thereisa b E , b<b, in Q(W7(M<a+1), a). This is because the
 measure Ma is K-complete. For each 8 we can find an A, of Ma-measure one
 so that b(M< a,, ga, A,8, a) < b8. Letting A = fn Y<,A, we get
 b(M < ai + 1, g, A, a) < bk for all 8 < y.

 Finally, by the definition of rr(M<a), if 8 < a, B c UW and A = 7-10),
 then the following are equivalent:

 a) B has wr(M,)-measure one;
 b) A has M8-measure one;

 c) KM<5, g<5) ej(A);
 d) rr(M < 5) g <d GE j(B).

 By 3.2, every (U, h) e U.0 has this property when j is replaced by a supercom-
 pact embedding constructing (U, W) that agrees with i - on the ordinals.

 4. Some properties of the measure sequences

 Suppose (AP: /3 < a) = A<a is a sequence of sets of M<a-measure one
 (i.e., Ma(Aa) = 1). Suppose 0 < ,l < a and

 p: (6,)(A*) X R (K) )X R(K) K(,(A*) X R(K) X R(K))

 is a partial function such that for all (x, y, z), M13(p(x, y, z)) = 1. We define the

 diagonal intersection Ap to be {(w, vi, gW): for all (x, y, z) such that x -< w and
 Y,z E R(Kw), if p(x, y, z) is defined then (w, i7, go) E p(x, y, z)}.

 LEMMA (4.1). Let p be as above. Then MP(Ap) = 1.

 Proof. We must see that (M< 3, g<P3) E j(Ap). So we have to check that
 for all (x, y, z) E M, if M l "x <j"A* and y, z E R(K)" then (M<P, g<P) E
 j(p)(x, y, Z).
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 Since KX <K, x = j(X') for some x' E 31(A*). Hence, j(p(x', y, z)) =
 j(p)(j(x'), j(y), j(z)) = j(p)(x, y, z). But p(x', y, z) is of M.-measure one; hence
 (M < 0, g < p) E j(p(x', y, z)). Thus (M < 3, g < p) E j(p)(x, y, z). Hence,
 (M<3, g<0) E Aj(p) =j(Ap). U

 We will often consider sequences = Kpp,: /3' </3) where each p, is a
 function as above. We let A'I be the sequence of sets K Ap,: /B' < B). So Aj-p is

 a sequence of sets of measure one for M< 3.

 We note that by Lemma 3.2, if (ui, h) is in U.r then u' is closed under
 diagonal intersections.

 Finally, if (x, y, z), (w, v, g) e 4YK(A*) X R(K) X R(K) , we write
 (x,yz) < (w,v, g) if x -< w and y,z E R(Kw).

 Recall that if (u, h) E U.0 there is a map

 iu: 9Au(AU) X R(KU)<U X R(KU) U yK(A*) X R(K) X R(K)

 LEMMA (4.2). There are sets KC,3: 18 < a) = C< a of M<a-measure one
 such that for all (u?, h) E C. there are sets K D6: 8 < 1(u)) of ui-measure one
 such that:

 i) For all a E D6, h6(a) ? gj (6)(iu(a)) in Add(14(Ka), K).
 ii) If (u, h) E U' then iT*(h) is a sequence of ultrafilters on Q(T(u),

 Proof. Let KA.: /3 < a) be as in Lemma 3.2. By 3.2 d), ii) holds for all
 (u, h) ' A/. If (u, h) e A/ and 8 <I(u) let D6(i, h) be the collection of all a
 such that h6(a) ? gju(,)(iu(a)). For 8 < 13, j(D)6(M<,O, g<,p) = (a: g6(a) >
 j(g)j(,)(j(a))}, since iM<, computed in M is j r (O,(A*) X R(K)<K X R(K)<K).
 But for all a E A8, gj(a) E Add(n4(Ka), K); hence gj(a) = j(gj(a)) =
 j( g )j(,)( j( a)).

 Thus for all 8 < 3, j(D)j(M< p, g<p) has M,,-measure one. Hence
 (M<p, g<p) E j({(u, he): for all 8 < I(), D6(u, h) has u6-measure one}). Tak-
 ing C. = {(u, h): for all 8 < I(u), D6(u) has u6-measure one} we have proved
 the claim. El

 5. The forcing

 We now define our first forcing notion.

 As described in the introduction, we start with a model V with a 1,,,(K)-
 supercompact embedding j: V -> M with critical point K such that for all
 n e wo, njk) is weakly inaccessible.

 As in the model for our argument, [Ml], we will build a "big" partial
 ordering P that does considerable damage to V. In particular it makes K singular.
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 We then pass to an inner model V' C VP such that in V', K iS inaccessible and

 the G.C.H. fails everywhere below K. Unlike [Ml] we explicitly compute the

 regular subordering PW P such that V' = V'P, We will use this knowledge
 about P7 to show that P' has a master condition.

 A suitable 5-tuple for KM<Ia, gI) is of the form K(uf)Aks) where
 (u, f ) c UQ, A is a sequence of sets of measure one for ip. The sequence k is a
 sequence of functions such that for 8 < (i), k8,: A, -> R(K), and for each
 b c A, k 8(b) c Add(84(Kb), Ku), and kj(b) ? fJA(b). Finally s c
 Add(84(K), K). We say that a suitable 5-tuple ((v, d)Bks) is addable to the

 suitable 5-tuple ((u, h)Afrs*) if and only if:
 a) vt -< up so that i -- is defined. As before we let vt = image i' Av and vt*

 be vt with vo replaced by v*:
 b) (j7*, d) c A ,where y =iv(l(t)).
 c) If a c Be then i --(a) c A where y = i--(8).

 d) If a c B8 then kj(a) < f,(i --(a)) in Add(=4(Ka), KV) where y = i --(8).
 e) s < f,,( v d) where y = i (l(i3)).

 We note that neither s* nor h was mentioned in a)-e); hence we can define:
 ((vJii d)Biks) is addable to the 4-tuple ((h, A)X, f) if and only if a)-e) hold.

 If t1 = ((iZfi)AXkCs1) and t2 = ((u2, f2)2A 2s2) then t2 shrinks t1 if
 and only if (i1, f1) = (i2, f2), for all 8 < 1( 't), (A2)8 _ (A1)8, and (k2)8 ?

 (kC), everywhere in A2 and s2 < si in Add(=4(Ku , K)).
 Using Lemma 3.2, for each a C UQ, we get a natural definition for a 5-tuple

 suitable for a. Namely we require that (i, 9 )c UQa and A is a sequence of sets
 of measure one for ui, etc.

 Similarly for suitable five tuples t1 and t2 for a, we get the notion that t1 is
 addable to t2.

 We now note that if t = ((ui, f)Axks) is a suitable 5-tuple, (, h) C U.,
 -< U0 and (m, h-) c- A,,8 some 8 < l(i), then there is a canonical candidate
 for a suitable 5-tuple expanding (vi T,) that is addable to t. We assume that:

 i) A8 n A8, = 0 for 8 # 8'.
 ii) vo -< uo and (W*, h) c A8 where iU(l(t)) = 8.
 iii) There are sets of measure one K D,: y < (1)) for vi such that i'' u,

 D, c A, and for all a c D,,, h,,(a) ? ka(i- (a)) where 8 = i- -(y).
 We define the canonical (maximal) expansion of (W, h) to a suitable 5-tuple

 addable to t to be s = K(v, h)AX'k's') where for y < (t),

 = {a c dom iv, u: i-, -(a) E A8, 8 = ivu(y) and h,(a) ? kjivu(a))}.
 For y < () and a c A', we let kVa) = k8(ivu(a)), 8 = ivu(y) and s =
 k8(Gv, h-)) where 8 = ivu(l(V)).
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 LEMMA (5.1). Let t = ((u, f)Aks) be a suitable 5-tuple. Then there is a
 sequence of sets A* shrinking A such that for all (v, h) E A*, 8 < l(u), (vi, h)
 can be expanded to a suitable 5-tuple addable to t. Further we can shrink t to a

 t*= u f ), A**ks ) so that any (v, h) E A** can be expanded to a 5-tuple
 addable to t**.

 Proof: Lemma (3.2), we can shrink A to A' so that i) and ii) hold in the
 conditions for (v, h) to have a canonical expansion. By Lemma (4.2) we can

 shrink A' to A* so that iii) holds. Then, if (v, h) E A* the canonical expansion of

 (v, h) is defined and hence we can expand (v, h) to a suitable 5-tuple addable
 to t.

 To build t**, we construct an co-sequence (Al: i e co) so that for any (ie, h)
 if (o*, Ih) E A"' then the canonical expansion of (v, h) is addable to t' =
 K(ufYAVks). Let Xr = flA. Then for any (ah), if(vth) EAC then

 the canonical expansion of(t, h) is addable to th, = K(t, h)XtCs) . k

 We also note that addability is a transitive relation since if v < w < u then
 i =i qoi vvu w mu vw*

 LEMMA (5.2). Let to = <(vk, I)XC's') be addable to t = KOZ, 7)X s)).
 Suppose i--(l(V)) = 8. For /3 > 8 and for u13-almost all (h, I'), t* is addable to

 the canonical expansion of (w', Oe).

 Proof. By Lemma 3.2, d) it is enough to verify this in M when t=

 KKM<a, g<O)Aks) for some Aks. For /3 > 8, t is addable to the canonical

 expansion of Me,-almost all (w, h') if and only if t* is addable (in M) to the
 canonical expansion of (M< , g <) with respect to j(t). Let K(M<, g <,1)B 1 t

 be this canonical expansion. Then for all y < /3, A, C B and for all a c Ay,
 _,(a) <I,(a). By hypothesis, t* is addable to <(M< g< )Aks), hence addable

 to ((M , g< 13)A < Jk <,es) and thus addable to K(M ' g< 3)B It). El

 Putting 5.1 and 5.2 together, we get for each suitable 5-tuple t=

 K(u, 7)A ks), there is a sequence of ui measure one sets A' such that if

 (Via h) c A, and (we,) C A', 8 < 8 and v0 -< w0, then the canonical expansion
 of (vt h) is addable to the canonical expansion of (we, g). Hence for (vi` h),

 (w, g) C U l3<l(u)A ,, if v -< we then the canonical expansion of(vi h) is addable
 to the canonical expansion of (we, g).

 For each a C U., we define a partial ordering Pa. An element of Pa will be a
 sequence of suitable five-tuples and a four-tuple.

 If ad= (s, h) then p c Pa if and only if there is a sequence of suit-

 able 5-tuples for a, tj, . *, tn, with tj = K((, fti)Aikis) and p =
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 Kt * t (W. WA k) such that:
 a) (u)0 -< (ui+1)0, (u)0 e E K(AW);
 b) A is a sequence of sets of measure one for w;
 c) k is a sequence of functions where for each 8 < lI(w) the domain of ken

 is A. and for all b c A8, k5(b) e Add(=4(Kb), K/,,);
 d) si E Add(*M*4(K-),K-).

 We will write Ki for K-.

 If p, q Pa' p = (tl ... tu, (i ')X) and q =(s1 *-- s1,(3,g) )
 then p < q if and only if p can be derived from q by

 1) adding 5-tuples t with (si)o -< (t)0 -< (si+1)0 and t addable to si+1,
 2) adding t's addable to s1,

 3) adding t's with (sj)0 -< (t)0 with t addable to K(w, h)A, k),
 4) shrinking the 5-tuples si,

 5) A c B and for all a c A, 8 < l(W), k8,(a) < k,(a).
 It is easy to verify that this is a partial ordering. In particular transitivity

 follows easily from the transitivity of addability.

 This partial ordering is not separative as defined. We now describe canoni-
 cal representatives of each equivalence class in the separative quotient. Let

 p = Kto1 *n(i) h)AXk) be a condition where tj = < For1 < i
 < n, 8 < l(u ), let

 (Bs)^= { g): (Vig )0 < (v)O and sL e Add(=4(Ki -), Ka)) n (Ai)8
 We claim that (BJ)6 is of (ui),-measure one.

 Consider a < Al and M< a. For all 8' < a, Mb is a K-complete measure on
 sequences (v, g) that is fine with respect to the first coordinate (0)0. Hence for
 all x c K(A*) and all y < K, {(v'5, g): x c (t)0 and y < KAil is M,-measure one.
 Since ui C UOO by Lemma 3.2, Bs is of (ui),-measure one. Let

 B8 = ((vi, g) e AJ(J)0 -< (M)O and s E Add(=4(Kn), Kv)).

 Then B8 is w,-measure one similarly.
 Let t = ((u-i, h)Bkisi). Let p'= Kt' t (&,h)MB). Then p and p'

 are in the same class in the separative quotient and p' is a canonical representa-
 tive. In the rest of the proof we will frequently tacitly assume we are working
 with the canonical representatives of elements of Pa) the p"s. It is easy to check
 that the canonical representative of an equivalence class is the minimal element
 of that class.

 The length of a condition p, l(p), is the number of 5-tuples occurring in p.
 We say that p refines q if and only if p < q and l(p) = l(q).

 If p = Kt * t W,(W, A)Xk) then (t. . . , tn) is the lower part of p and
 ((We, h)AI, k) is the upper part of p.
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 We will now start a sequence of lemmas showing that Pa strongly factors at
 many places.

 LEMMA (5.3). Suppose p E P(h) , l(p) = n, 1 < i < n, and l(i+ 1) = 1.

 Then there is a condition p' E P(-, f) and a condition p" E P(w, h) such that

 P( h/P - (-i t)/PI X Add('4K) wil/iXP h)/P

 Proof. We may assume that p is a canonical representative of its class. For

 j < i and ti = K(ui,f)XAJks) we have (J1)0 -< (ui)0. Hence irg is defined
 with respect to ui?. Let tj = K(u, fAkjsj) and let p' - Kt.
 thyl( i, fi)Aiki. >Let p" = <ti+1 * * tn(,)XiC).We can define a map

 ~D (- (Ui g)/PI x Add(=4(Ki), Ki +1) ISi x P h)lp " Pf B, h /Ip

 that simply concentrates conditions and changes the first coordinates of the
 measure sequences. Explicitly: p takes the triple

 ( tl t (ui fi Atkit ), St, (ttt ... tttd h)Bttktt)

 to the condition

 (ttl ... ttm(if )tktst~tl ttt~d h ttt)

 where tt is tl#, but with (u#)o changed to i" .(u#)0. Note that ttt =
 K(iuf+1, fi?1)Atit ?1kP 1t~t) since l( i+1) = 1 (so nothing can be added to ti+1).

 It is easy to see that 'p is order-preserving and maps onto P<, hg>/P. ElI

 We will frequently have maps similar to the p in the previous proof. The
 maps are essentially concatenation with trivial changes to make the result a
 condition in the appropriate partial ordering. In the following we will use the
 notation K ) for this map. So, for example if 'p is as above we would write
 pp(q, s, q#) as Kqsq#). If we have the similar map

 (p:( P(- f)/p' x Add(=4(Ki), Ki+?)) x P< h>/p" -

 that has as its domain pairs of conditions (one in the product of P(-y f)/p' and
 Add(34(Ki), Ki+1), the other in P< l>/p"), we would write 'p(q, q') = Kq, q').
 Using Lemma 5.3 as justification we will tend not to distinguish carefully
 between measure sequences changed only in the first coordinate, as in t# and tt
 above, for example.

 The following lemma is an approximation to the strong factorization prop-
 erty.

 LEMMA (5.4). Suppose b c ,(P<4 h>), p, P', si are as in Lemma 5.3 with
 i = n. Then there are a maximal antichain A C P(-,h )/p' X Add(=4(K ), Kw)/sn
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 and a condition p" E P(- h) with no lower part such that
 1) Kp'sn p") refines p.

 2) For all q E A, <qp") 11 b
 (i.e. p" decides b "up to lower parts").

 Proof. We first construct an upper part

 <(we, h)Ak << ((W, h)A k)

 such that for any lower part q*, if (q*(wh3)Ak *) is a condition in P, and
 q*(wh)Atk) < p A <(we, WA*kw and there are B, g such that
 < q*(jg)B )>| b then < q (w,| b.

 To do this: Enumerate the lower parts K q,: a < 3(K )). Build a sequence
 of sets of measure one (Aa: a < *3(Kw)), AW-measure one for ie, and an
 a.e.-decreasing sequence of functions K ka a < *Kw)).

 At stage /3: Let k' be a sequence of functions K(k')8: 8 < I(w)) defined on
 w8 sets of measure one such that

 a) (kiC)j((u, h)) E Add(=4(Ku), Kw),

 b) for all a < ,3, (kg3)8 ? (k)8 a.e. in w8.
 Such a k' exists by Lemma 3.3.

 If Kq(i3q , TA)XiC) < p A K(we h)Ak' ) and there are a sequence of sets B
 of w-measure one and functions g defined on ws-measure one, g ? kg a.e.,
 (g)J(a) E Add(=4(Ka), Kw), < (3), and Kq,3(w, h)Bg)lI b, let A= B and
 ki= . Otherwise, A,3 = A and = k .

 It is easy to verify by induction that for all /3, a E dom(k 3), we have
 (kC)(a) E Add(=4(Ka), Kw) and the ki ,'s are a descending sequence modulo sets
 of measure one in w.

 Let k* be a function sequence such that for all 8 < I(w), and all /3 <

 =3(Kw), dom( *),8 is of w-measure one, (Ck)(a) E Add(=4(Ku), Kw) and k* <
 (mod w).

 Let pl be defined by p(qP3)8 = (A<3)8 f (a: (k)8)(a) < (k,3)8(a)}. Let A* =
 Ajp. By Lemma 4.1, A* is a sequence of sets of we-measure one.

 For all /3, if Kq,,3(i, h)Atkj*) < p A K(w, h)A*k*) then: Kq,,3(l, h)A X**)

 <Kq3(w, A)Ak3>. Thus, if some q,3(Pw, OB 11 b then Kq3(iw, W)AXk3i3) 11 b
 so that <qP3(w, h)A*k *) b. Hence K(w, h)A*k *) is as desired.

 Now build a k** ? k* such that for all /3 < M3(Kw) and 8 < l(w) and
 b'= + b, if {up f ): for some cks, <(uJ7cks ) is addable to K((W, hA*k and
 KqP3K(u,f)cks)(w,h)A k* 1 b'} is (w`)-measure one then

 , f )for someck, u f K c kk **(, f is addable to (w, h)A*k
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 and

 (qua((u f c- kk (u`)g )w) h Atk8 ) 1 b'

 is (wi)8-measure one. Do this by constructing a decreasing sequence of functions

 below k*, (go: /3 < =3(Kw)). At stage /3: let be < -a.e.-ga for all a < /3. For
 each (ui, f) e dom(0), choose (g)j(, f ) < ()j(u, f) so that if s <
 (Q)d( ,f), b'V b and there are 5 k such that K(i, f)icks) is addable to
 K(ie, )A~*A ) and < qo(iu, f )cks)( w, h)A*') - b', then

 <q(~ ck go ,uf )w, h A*g1 e

 With kC* ? -a.e. qevery works as desired.

 Let A** = A*. Define KAt*: i c w) by induction. At stage i + 1: for each
 /3 < 83(Kw) and 8 < l(w') choose a ('),-measure one set p(q.)6 c A* consist-
 ing of (u1, f) for which there are ca, k such that <(iu f )c kk**(u, f )) is addable

 to K(wi, h)A* *k**, k8*(jf) ?< o(i, f ), and such that if b' = +b and there
 is some (u, f ) c peq.), with c, k such that <(u, f )c kk ( u', f )) is addable to

 K(we, i)Ai. *ki*) and KqjfK(ii !)ck**(1Zj))(i, g)Awh Mik) v- b', then every
 (up,7) e p(q.) has this property. Let AM* = l Ap. Let A**= niEA wA*'

 If b' = +b and (upf) e (A**), and there are F, k and s such that
 <(up f)cks) are addable to K(we, h)A**k**) with Kqp3(iu, fJ)cks)
 ( we, h)A Ok I 8 1F- b', then for every (1u, f) c (At*)8 there are ca, k such that

 K(u,f)ckk**(uf)) is addable to ((wgh)A**k**) and

 (qu (u )c kk t8uj )w) h A*e8 ) b b'

 We claim that KpS'(jW, )AX** **) suffices for the lemma (i.e., p" =
 ((w, h)A* k88)

 Otherwise there is a p* < (p', sn) for all q' < p* if (q'q"(w, h)AX**k**)
 decides b, with q' e P(U> lp'XAdd(=,(Kn),KW)/s,. Then q" has non-zero
 length. Take q'q" of minimal length with < q'q"(w, h)XA***) I1- b' for b' = + b.

 For some /3, q'q" = Kqu3(uf)Bgs). By choice of k** and A** we may assume
 that s = (ki**)6( u,f) where (uip) e (A**), for some 8, and for all (j,7Y) e
 (At *),, there are ca k such that

 (qu >I8 f -c- kk U'(, fi )(w, h-) A*e8 b .

 Define JYub, f) = the k that works and (u f) = the co that works.

 By Lemma 3.2, (0)0 = iZ Aw comes from a =3(Kw)-supercompact embed-
 ding i: V -> N that constructs we. For a < 8, let Ba = {(v, f ) e A**: the
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 canonical expansion of (v, f ) is addable to

 (W- r 5, h r a i(e) W r 5, h r a i(,)r(W r 5, h r a))

 By Lemma 5.1, B a has (i3)aa-measure one. Note that i(G?)(w' ' 8, ) c
 A** r 8 coordinatewise and i(&Xi)(w 8, h 8 a) < k** 8 pointwise, since

 (( ,h r ~()W P h r ~()W r h r ~~8)W r h )

 is addable to i(K(w, h)A**k**)). Thus, for a c i(O)(wi, w)a i(a) c (A**)
 so that a c (X**)a, and further, i()X)(w r 8, h r 8)(a) < i(k**)(i(a)) = k *(a)

 For each (, c e Ba,

 H(v', 1) = ((u',f ): the canonical expansion of (vi, K) is addable to

 has (e)8 measure one. Let B8 = AH n (A**),. Then for a < 8, if ( v, 1) e Bao
 (u, f) c B8 and v -< u7, then the canonical expansion of (v, T is addable to
 ((u, f)?(uf)J(uf)). For a > 8, let Ba = {(v, 1): 8 c (F)0} n At*.

 Let k' 8 = i(J)f)(w 8 5) and for a > 8(k')a, = (k**)a.
 By shrinking B further we may assume that for all (u, h) c B8,, y < l(u),

 and all (v, 1) c '(u, h),,, Jy(u, h) (v, 1) 2 (kC)ju (7)(iGu(v 1)). Then
 <qa> (w, ()k' < q**(w, )X ). So Kq,(i, h)MC') l b. Hence there are

 q', q", q' < qp6 and < q'q"(iw , h)B k ) 1- -' b'. Let q', q" be arbitrary, satisfying
 these conditions. Suppose q" = Kt; t'), t, = K(u,, h,)A ks,.

 Let i be minimal with (u', h,) e Ba a ? 8. If no such i exists let
 i=r+1.

 Case 1. If (u,, h,) e B8 then

 8 q'q "(wh) Bk'
 <, (q3(u', h')-e(u', h')X'(u', hr)kr(urhr))woBk')

 since the canonical expansion of each (u , h'), m < i, is addable to

 K(u', h,)4(uh')JXK(uh,)) and t' refines this canonical expansion.
 But the inequality (* * ) is a contradiction since the left-hand side forces

 b' and, because (u', h,) e B8, the right-hand side forces b'.

 Case 2. Assume otherwise; we treat the case i < r. If i = r + 1, it is

 similar and easier. Consider K(u'I)A k's2'). Since 8 e (u'j)0 for some /3 < 1W),
 iu,, J3) = 8.

 Let (u#,h#)e(X)3 with (u, h*) = iua, w(u#, h#) and (ui1)0 <
 and such that the canonical expansion t of (u#, h#) is addable to t. Then
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 (u*, h*) e B8 and t is addable to K(wih) BC'). Let q+ be the result of adding t
 to Kq'q"(w, h) B ). Then for q + we are back in case one, a contradiction. Thus
 p" = <(iw, h)A**, k** satisfies the lemma. E

 LEMMA (5.5). Letp = 1 ... * tmU, h')AXk) c P(-,g), ti = K(ui, h )A kisi). Let b c ~(P( h)). Let pd = Kt1 . .-i) c P(ui hi). Then there
 are refinements t' tr, and A' C A k' < k and a maximal antichain

 i?1' -a.e.

 T C P(-,, -)Ip > X Add(OKi), Ki+ )/Si such that for all (q, s) c T,
 <qsti 1 *** tn(Uh)A'k')II b (i.e., ti1 ... t A, k can be refined so that b can
 be decided up to the part below ti and si).

 Proof. By induction on 0 < j < n-1, we prove it for i = n-j. For j = 0
 this is Lemma 5.3. Assume true for n-j = i + 1. We prove it for n - (j + 1)
 - 1K

 By the induction hypothesis we can find t' ... t A', k' such that there is
 a maximal antichain

 -rCP<(uj+j, hj+j)>/(ti. ti (ui+ 1Ah+1 lAi+ lki+ 1 X Add(*4Ki+ 1)r Ki+2)

 such that for all (q, t) c T', Kqtt'2,. . tn(ui, h)X'i') A I b.

 Sinc IP(+h)I = =3(Ki+1) and Add(84(Ki+1, Ki+2)) is *4(Kij1)-closed
 we can find an s* and a maximal antichain

 T* C P(- g+1)/ ti t( Q 1, hg A ).? k? )
 such that for all q c T*, K qst*2 t' (ui, h)A', C') II b.

 In V(PK( i +1h.+1)>), let

 b= V (q e T*: (qs*t'2 t (u h)X' A') < b}

 Then b t t?u thA1 k + ) By Lemma 5.3 we can find
 a maximal antichain T C P(ui, hi)/Kt . ti1(ui), hi)i, ki) x
 Add(=4(Ki), Ki+ )/si and A" A kX < k such that for all (q, s) e i?1 -i?1' i?1 -a.e. i?1

 T, Kqs(ui+ 1, hi+ )Ai+ 1, k'+ 1) 11 bP. Let t>+ 1 = K(ui1, hi+ )A>+lk?+ls*). Then

 t>1 refines t Let (q s) e T. Then u h A k+) b* so that
 <KqsKOZ 1, h1)Ai+ 1, kiC s*) tk2 tu(i, h)A'k')II b. Hence <tr1
 tnu, h)A ') works for the lemma. l

 PROPOSITION (5.6). Let p = Ktl ... t n( ?)AXk) e P(g h) be as above.
 a) Suppose l(ui+,) = 1. Let A e [=3(Ki)+, Ki+ ). Then P(g h)/p strongly

 factors at A.
 b) Suppose that A e [=3(Ki)+, Ki~l). Then there is a p' < p such that

 P(gh)/p' factors at A.
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 Proof: a) By Lemma 5.3,

 P(u, h)/p P(U i hi| (ti. tiI luihi AAk

 x d( 4(Ki), Ki + I)Si X P(u, h/ (ti +I .. * * t(-h) k

 Since =4(Ki) is a regular limit A with IA<AI = A, Add(24(Ki), Ki+1) is
 =4(Ki) -C.C.

 For A E [=3(Ki) , *4(Ki)], let

 Em~ C Add(=4(Ki), <i + 1) x P(-, h/ti + I ... tn(u)k)-

 be the collection of conditions of length m.

 Then K<9m: m E co) is a witness to the A-Prikry property of R, since each

 m is 84(KK)-closed and by Lemma 5.4 decides all Boolean values.
 Since I P(-uI (K), Q =f ) is :3+ (Ki)-c.c. Then Lemma 5.5 implies

 that Q x R is a witness to strong factoring at A.

 If A E [24(Ki)+, K+1 ) then

 Q =(Ui 1i tI ti-I uihiAi i X Add(P*K.)/ Ki+()

 is A-c.c. and R = P(U)/ ti + 1, tn(i)Xuih CA k) is A-Prikry by the analogous (<m:
 m E Cl) (q E Fm if and only if the length of q is m). Now Lemma 5.5 says this
 is a strong factoring.

 b) If l(ui+1) = 1 we are done by a). Otherwise, we can get p' < p by
 adding a suitable 5-tuple t such that A < Kt < Ki+1 and 1(ut) = 1. Then p'
 works by a). D

 Definition (5.7). Let G c P(ag, h) be generic. Then K is on the Radin
 sequence for G if and only if for some p E G, p = Kt1 t(u, A)Xk),

 K = Ku. It is easy to check that the Radin sequence for G is closed and
 unbounded in Ku.

 PROPOSITION (5.8). a) K is a limit point on the Radin sequence for G C P(- -
 if and only if there is a E G, p = (tl ... t(U, hn)Xk), K = Ku and l(u) > 1.

 b) If r E VP<" '> is a term for a subset of a, p = Kt1 *.. t(U ,)AXk) and
 a < Ku. Then -r e V (i h)/Kt. t 1(ui, h )Aik,)

 C) P(-, h) does not collapse cardinals in the intervals [=3(Ki) +, Ki 1) where
 Ki, Kj+j are successive points in the Radin sequence.

 d) If K is a limit point of the Radin sequence then in Vp('; i), K is a strong
 limit cardinal.

 Proof. a) If l(ui) = 1 and p = (t1 t,1tu * t A(i, k)X) then there
 is no 5-tuple addable to ti; hence there is no element of the Radin sequence in
 (Ki-1, Ki).
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 If 1(ui) > 1 then for all p = Kt1 ..h A. t (ig)Xk) there is a
 suitable 5-tuple t such that p' = t. titti... tn(i, hn)X) is a condition
 and p' < p. Hence Ki is a limit point of the Radin sequence.

 b) Without loss of generality, by Proposition 5.6 we can strongly factor

 P< -, h>Ip at A E (a, Ku). Hence by Lemma 2.5,

 T E PO, h (t... ti - , _ ui, hi Aiki

 c) This follows immediately from Proposition 5.6 and a).

 d) follows immediately from a) and b) when we note that I P( h) =3(Ki).
 Now 5.8 tells us that we have the G.C.H. failing in all intervals (=3(Ki), Ki+1)

 where Ki and Ki+1 are successive points on the Radin sequence. Unfortunately,
 this forcing collapses all cardinals in the interval (K, * =3(K)) to K if K is a limit
 point in the Radin sequence. This recreates the G.C.H. at K. Another problem is
 that we have not ensured that there is a regular limit point on the Radin
 sequence.

 To perform both of these tasks it is necessary to look at a smaller
 "projected" forcing. This is treated in the next section.

 Finally, we note that in other applications, we may want to collapse
 successor points on the Radin sequence (see e.g., [F]). Proposition 5.8 still
 guarantees that limit points are preserved.

 In the situation in this paper it is easy to argue that successor points are
 preserved.

 By Lemma 5.8 a), b), if K iS a successor point on the Radin sequence
 and r C a < K, then r c VQ where Q is the forcing below K. But Q -

 P(v)- I)q x Add(=4(K-), K)/S where K- is the predecessor of K in the Radin
 sequence. Since Q does not collapse cardinals, K remains a cardinal.

 6. The projected forcing

 At this point, we have constructed partial orders P(u h ) that produce
 (among other things):

 1) A closed unbounded set in O 3(KU)), C = {(iV)o V is in some 5-tuple

 in the generic object} such that if x, y c C, KX < Ky then x -< y.
 2) A bunch of subsets of 34(Kv) for v's in some 5-tuple of the generic

 object.

 By 1), at each Kv, a limit point on the Radin sequence, we have collapsed
 *3(KV), but by 2) we have made the G.C.H. fail in the interval between =4(Kv)
 and Kv* where Kv* is the next point on the Radin sequence.
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 Pictorially:

 in V in Vpu<a'h<a

 Ku

 KV*

 234(Kv) = K *
 84(KV)~~~~~~~~~~

 =,(Kv)

 *2(Kv) cardinality KV

 *Kv)

 If we could arrange not to collapse cardinals in the interval [Kv, M4(Kv)] we
 would have the G.C.H. failing in the interval (Km, Ku) where Kw is the first point
 on the Radin sequence. This is because the G.C.H. fails between Kv and M4(KV)
 in the ground model. Adding Kw many Cohen reals would then make the G.C.H.
 fail everywhere below Ku.

 To prevent this collapsing we want to "throw away" the sequence of

 elements in O' (=3(Ku)) but keep the Radin sequence and the sequence of sets
 added by the various Add(=4(KJ), Kv*)'S.

 With this in mind we now define the projected forcing.

 Recall that in Section 3 we define a map i-T: UO -> U,. A suitable 5-tuple t
 for the projected forcing is of the form:

 t= (w. )Bbs

 where

 i) (WU F) UOO7-

 ii) B is a sequence of sets of measure one for W'.

 iii) WY,: (B) ,,-4V,

 (g),((w*, F*)) e -6(Add(=4(Kw*), Kw)); hence (b)e E Q( , y).

 iv) (g), E a,.

 v) s E Add(=4(Kw), K).
 We note that there is a canonical map

 -Tr:(suitable 5-tuples for P<, -} {- (suitable 5-tuples for the projected forcing)

 given by: 7T((V, h)Aks) = K-rr(, W)iT"Xs) where (b),= b(v7, k, A, y) e
 t~6(Q(iT*(V), If t1 = ((Will, El)xb1s1) and t2 = K(w2, S2)Bb2s2) then t1
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 is addable to t2 if and only if for some y < l1( 2),

 1) y, 1) E (BTy,

 2) S1 < (g2)Y(w-1, 1).
 3) There is an increasing function e: l(W1) > l(W2) such that for all

 ( < l( W`1), At C Be(() and for all a c A,, (bl),(a) < (b2)e(()(a) in
 Add(=4(Ka), Kw )

 Analogously we can define when a 5-tuple is addable to K(we, FBb.

 It is an easy consequence of the definitions that if t1 and t2 are suitable

 5-tuples for P(- ) and t1 is addable to t2 then -r(tl) is addable to ir(t2).
 Consequently, from Lemma 5.1:

 LEMMA (6.1). Let t = K(w, F)Bbs) be a suitable 5-tuple for the projected
 forcing. Then there is a sequence of sets B1* of w-rmeasure one such that for all
 (we', a') c (B**),,, y < 1(i), there is a suitable 5-tuple K(wi', 9')B'br's')
 addable to K(w, 9/)Bgbs5).

 And from Lemma 5.2:

 LEMMA (6.2). Let t = K('Th )4gs) be suitable for the projected forcing.
 Then there is a sequence of sets of measure one B** such that if a < /3 < l(w)

 and (w', a') e ( B**)a , there are a set of measure one for (jj3),, (B *), and an
 expansion to a 5-tuple t' = K(w', Y')W'', s') such thatfor all (w#, #) e (B*)
 there is an expansion t# = K(w#, y#)B#b# s#) such that t' is addable to t
 and t# is addable to t.

 Proof: Without loss of generality, t = 7r(iu, h )AXs). Let B8 = T(A**) as
 in Lemma 5.1. Let (w'i, A') e (B**)a. Then there is (U', hr) e (AX*), Tr(', h')
 - (wi, A'). Let t' = iT (the canonical expansion of (W', h')). Then by Lemma
 6.2, (iX-almost all (v, k), the canonical expansion of (W7, R) is addable to the

 canonical expansion of (v, k). Hence for (,)X almost all (w#, 9f#), there is an
 expansion of (w#, Y#), t# so that t' is addable to t#.

 If t = ((we, h)Bg8) and t' = K(we, Bh)'b*'s') we say t' shrinks t if and only
 if B, c B. for all y < I) and s' < s.

 Let (w, 9) e U.,'. We define the projected forcing P(4 "w)
 A condition p c P(e A) is a finite sequence of suitable 5-tuples and a

 4-tuple. Now p = Kt1 ... t ti = (i, ?)Bib si , where
 a) Kti < Kt i < j,
 b) si E Adid(*4(K ), Ki~1),
 c) B is a sequence of sets of measure one for we,
 d (b C- VW )ad()C -
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 If p, q E 'P(7-) - = ...** t,(wr )b) (tl lw )''
 then p < q if and only if p can be obtained from q by

 1) adding suitable 5-tuples t such that Kt < Kt < KtI with t addable to
 ?i+1'

 2) adding suitable 5-tuples t with Kt < Kt1 with t addable to t1,

 3) adding suitable 5-tuples t with Kt; < Kt with t addable to ((we, wB'b '),

 4) shrinking some t' or B' or b'.

 Again we get a non-separative partial ordering. We choose representatives

 of the equivalence classes in the obvious way.

 Again p refines q if and only if p < q and l(p) = l(q), and if p =

 Kt* tn(w 9 )Bb') then the lower part of p is t1,..., tn. The upper part of
 p is ((w F)Bb).

 Remark (6.3). Any two conditions p, q E P(J 5T) with the same lower part
 are compatible. Hence, P(7T ) has the K+ -chain condition.

 This is true since if p = .t . t n(i, F)BAb1), q
 Kt1 ... tn(w, -Y 2 2). Then (b1),, and (g2),, both lie in the same filter on

 Q(W, y), hence are (O)Y-almost everywhere compatible. Choose c so that (c)_, <

 by) A (b2),, and C so that (C), c (B1X,, n (B2),,2 Then r = Kt1 ... tn(w, h)
 Cc) < p A q.

 For (up h) E U. we define a map ir: P(-) P-(-P -) by

 -IT ( tl tn( u h A k >)=<7~l Jt)Tu h rA )rk

 Then -rn is clearly order-preserving since whenever t is addable to t', Fr(t) is
 addable to IT(t').

 We now show the main lemma of this section.

 LEMMA (6.3) (Projection Lemma). Let p E P(J g)- (U- U) E UQ. Then there
 is a q < 1r7(p) such that for all q' < q there is a p' < p, 1r(p') < q'. (Hence or is
 a projection map.) Further, q is a refinement of rr(p) and i-r(p') refines q'.

 Proof: We first remark that it is enough to show this for conditions p with
 no lower part. To see this, let p = K t1 ... tn(i, i )X i)) be a canonical repre-

 sentative of its class in the separative quotient, and ti = K(ui, himikisi).
 Assume the lemma for conditions with no lower part. Then for all (v, g) E (Ai)y,,
 (uido -< v and si-L E Add(34(Ki-1, K v)).

 Let qi = ((Ui), 7T(hi))B ) enforce the lemma for Pr* hi and the condi-
 tion ((Ui, i), Xh , k), and let q* work for P(J h) below Tr(ui, h)Ak). Then it is

 easy to see that the condition q = Kq sIq2S2 ... qnSnq*) works for P(- )
 below p. Hence we assume p = <((p h)A kXC.



 THE GENERALIZED CONTINUUM HYPOTHESIS 27

 We build sequences of sets KA> l(A): n e w), An>l(u) a sequence of
 u-measure one sets.

 Let A = A. By 5.2, we may assume by shrinking if necessary that if

 (vig3) E U AO<(u) then the canonical expansion of (v, g) is addable to
 ((u, h)Abk_). Suppose we have A . For each (w, 7) E U y<(u )-r(An,),
 choose a set T(- ,) C U <1()A, with IT( 5)1< KU such that:

 a) For all (v, g) E T( -), 1-r(v, g) = (w, fl.
 b) For all (v, g) E U Y, <I(UA if 7T(V, g) = ( w, F), then k < (4)(i v) ? <

 V {k < *(u)(v*, g*): (j>, g*) E T(w -)} in 6(Add(=4(Kj), Ku)). (Here k < z()(v,
 - kt(V, g) where y is the unique ordinal (v, g) E A.)

 We note we can find such a T( , by the Ku-chain condition of
 Add(=4(Kw), KU).

 Now choose a sequence of u-measure one sets A<n+1 such that for all
 (w, F) E -7-(A <(J)), and all (v, g) E U A <jljJ), if KW < K- then for all Kv', g')
 E T(_ , (v')O -< (v)0. (Such a set is guaranteed to exist by Lemma 4.1.)

 Now let A*< ,(-) = nfAn< 1(_) (coordinatewise intersection).
 Let q = 7((ui, h)A*k). We claim q is as desired.

 Let q' = K< -* tr7-(ui, h)Bfb'), q' < q, t' = K(Wi_, F)B b Si).
 We find a sequence (Wi, g) such that:
 a) (v`)O (V-+<)o,
 b) IT(vo, g) = (wi ),
 c) k < l(U)(Vi, g) A Si # 0.
 By induction on j, 0 < j < n - 1, we choose < vj).

 For j = 0, we arbitrarily choose K g E) e A*< l(d) such that -7-(V, g) =
 (tWin, ~) and C(v5, g) A Sn #0. Such a choice is possible since s <
 b(u, k, A* , 3) for some /3, (w, F) E 1-(A*){. Since (V3, g) e A*<1(u), (V3, g)
 GE A <n~

 At stage n j + 1) we assume we have chosen (W _P _j ) E U An7/j),
 7('n-P 9n-:) = -jr n-j)- Since (Wn3(j?1), 'n-(j+1)) E -(A (W))
 (Wn Ej=-)' n-(j+ 1)) e 7(AT l!Jl)). Hence, for all (v, g) E T(W

 (v)O < (-Vn-<)O

 By the transitivity of addability, there is an expansion of (W7n_(j+1),

 ) = K(Wn- (j? 1)'r n(+l))B~bts*) is addable to (U, h)-A*rk
 such that t'(Jql) refines t . Hence for some y < l(u), (wi1 ) E 7( A)^y nd - ^(jw g+ l) n - ( j + 1))=bu, k -F 7) n _g+lt-j+ 1 ) 2GsE
 ( Sn-(j+?)-

 But b( u, k,I A*,y Y)0in-(j+ 1), n-+ = V {kI/(, g): (vi, g) e (A*), and
 1)'~g) (W-(j?))}. Hence b(ui, kA*, y)(i$( ?1I)'_(j )) <

 V Hnk( ceg): s(j g) e T(wV k (j, + ): ( ) T))) T

 Hence sn_(j+l) < Vfk(v, g): (v g" ) E- T(wz1w. X}
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 Thus we can find a (vr(`?1), g-(V1)) eT( such that
 Ovn-(j+1) gn- (j+1)) A Sn-(j+l) # 0. This completes the inductive choice of
 (Vig), 1 <i < n.

 By our assumption of A0, the canonical expansion of (Wi, g) to a suitable

 5-tuple is addable to <(u, h)Ak ) Let t* be the canonical expansion of (Wi, g
 Let p# = Kt#t# ... t#(i, )A k). Then p# < p. It suffices for the lemma to

 show that we can refine p# to p' such that Ir(p') < q'.

 First note that if t# = K(vi, gi)A k*sif) then si = k , gi). Let si <
 s As si, Si e LAQdJ4(KVt), KV)+1 Since i, gi) = 5 i, 1) and F is a se-
 quence of ultrafilters on KQ(tWi, ,B): 8 < l(twi)) and ki <a e g., b(i, ki, Ai) e
 i..

 Hence for each -y < l(wi), (a: b(Vi, i, i, oy)(a) A (b,,( a) # O} is ,
 measure one. Again, since k ?ae and 9I = Fi is a sequence of ultrafilters,
 we can find a sequence of vi-measure one A# so that for all y < l(O) and all

 a e Ai ),,

 b(Fi, >i, A# 'y)(a) < b(v, kiC, Xi, y)(a) A b

 Let A'. c A be such that wr(A' ) < B. Let t* = ((i, g)XiCis). Then by
 construction r(t0) shrinks t'.

 Let A' C A be such that w(A') c B' and b(u, k, A') ? b'. Let t* =

 K(vi, gi)~A, s). Then t* refines t#; hence p' = (t< ... t*(u, h)AX'k) < p. Since
 wr(t0) shrinks t,, wr(p') < q' as desired. LI

 Hence, forcing with P(- -) induces, via wT, a generic object on P7(- g-. Since
 for every condition q in P(ug-) there is a p E P(- h) such that wr(p) < q, we
 have:

 COROLLARY (6.4). When G _ Pr( -) is any generic ultrafilter, there is a
 generic ultrafilter H _ P(-g ) such that wr"H = G.

 We now argue that P(Jagh) does not collapse any cardinals. We do this by
 showing that P(7,z ) strongly factors at every K not in the Radin sequence. The
 following lemma and its proof are exactly as in Lemma 5.3.

 PROPOSITION (6.5). Let q E P(, )

 q = tl *... t Bl((wi ) i bis)ti?1 *** t (W, Y)Bb) and i(wii+)= 1
 Then

 wher q* is arefinementoft t/(w, t1(wi, 9tB ), bib)i

 Add(-14(Ki), Ki+ l)Si X P(' -)Iq*

 where q* is a refinement of ( t i+ * ... tn(w, 9')Bb).
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 We now show that this is a witness to strong-factorization.

 PROPOSITION (6.6). Let

 q= Kt ... tn(w, F)Bg) e P 1) i(w-i,) = 1, A E [K>, Ki+?).
 Then P(7t s)/q# strongly factors at A.

 Proof: Let q < q#. Let c be a boolean value in P(j,). Choose(uh) C UO
 such that wr(u, h) = (wi, F). Then q ? w(p) for some p E P(- - and wr(p)
 refines q. Say p = (t t(,)Ak), tt = (i)hAikSi), , r(t') = ti. By
 Lemma 5.3,

 P(UG h)/P- P(ugi hi)/(l t .. tfu, h)Aik)

 X Add (14(Ki ), Ki + l)Isi X P(U?) h-)Ip

 where p* refines (ti1. t'(u, h)Xk). Let b be the Boolean value in
 6(P(- - ), b = tic E wr"GII where G C P( h) is a term for the generic ultrafilter
 and wT:P hP ) P7. - is the projection map.

 By Lemma 5.5, there are a refinement p' < p*, p' E P(Jg), and a dense set
 T c P(J .)/Kt t>1(ui , hi)Aiki) X Add( 4(Ki), Ki~1)/si such that for all
 (p", s) E T, ( p"sp')II b.

 For each P" e P(Jg. hgt)/Ktl ti(uiY, hAki), let -rr*(p") < r(p") be such
 that for all q* < w*(p") there is a p# < p", w(p#) < q*.

 Let

 T' C P h h)/w((tA * * ty1(uy, hj)Ajkj)) X Add(14(Ki), K + )/Si

 be T' = {(Kwr*(p"), s): (p", s) c T}. Since wr is a projection map, T' is a dense
 set and so contains a maximal antichain. Let q' = w(p'). Then for all ( q", s) E
 T', q"sq') II c.

 Hence we have shown that given any q < q# we can refine the part of q
 above t , say by q', and find a maximal antichain T' of parts below ti+ 1 such that
 for all (q", s) E T', (q"sq') 11 c (this is analogous to Lemma 5.5 for the
 projected forcing).

 Case 1. A E [.4(Ki)+, Ki+1]. Then

 P(',7j ; q# ~ P(,7? )(l i; ~i )i Ad(14(Ki), Ki +1)]

 X P(, /Kti+1 * ... tn(W, flB b)

 and

 Pwt t)( ... t1( i9 t Bib X Add(4(QKi)) Ki+1)
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 is A-c.c. When F, = {q' E P(J y)/I(ti,, * tn(w, F)Bb): l(q') = l} each F1
 is closed under descending A-sequences. Hence P(7, Y) strongly factors at A.

 Case 2. A E (Ki, .4(Ki)]. We associate the product forcing the other way:

 P(', 71z' q# P(, 7? g/tl ... tlw i, t Bi b)

 XtAdd(-4(Ki), Ki+l)/Si X P(j )/Kt , w FBb

 Then P(j,5Z, is A-c.c. Let F = {(s, r): I(r) = 1}. We claim that for any Boolean
 value c and any (s, r) E , there are (s', r') < (s, r), (s', r') C Y, and a
 maximal antichain A c PjB i )/t . . ti_(ifwi, 3 )Bibi) such that for all q E
 A, (qs'r')II c.

 By the discussion above we can find r' < r in P(W, ) and a maximal
 antichain T',

 T _ P~wgti/ (t..**. ti - 1 I, ~ i))> Ad(-4 ( Ki), K i + 1) IS

 such that for all (q, s') c T', (q, s') || c. Since IP(i -)I < 14(Ki) and
 Add(.4(Ki), Ki+1) is .4(Ki)-closed there are an s' E Add(i4(Ki), Ki+1) and a
 maximal antichain A C Pj7. 5)/Kt1 ti w(i, S?)Bibi) such that for all q c
 A, (q, s') is below some element of T'. Then (s', r') works for the claim. Hence
 P(J> ) strongly factors at A. L

 Let G c P(J[ 5Z-) be generic. We define the Radin sequence for G to be
 {K: there are a p = (t* tn(w) ,)Bb) E G and an i < n, K = Ki}. Then as
 before this is a closed unbounded subset of KW.

 The following is analogous to 5.8.

 PROPOSITION (6.7). Let (w, F) C U:, l(0w) > 1, and let p =
 (t, ... t (W) -) Bb ) E- P(7j 1;

 a) If A E (Ki, Ki+1) then there is a p' < p such that P(# )/p' strongly
 factors at A. If l(wi+1) = 1 then P(W )/p stronglyfactors at all A E (Ki, Ki +).

 b) If r Ec- V'' is a term for a subset of a, p = (t1 tn(w) Y)Ak
 and a < Ki, then r EX VQ where Q = P(j, )/(tl ... ti (wi), 5)Bibi)

 c) If K is a limit point on the Radins sequence then in V' -, K is a strong
 limit cardinal. Further, KW is a strong limit cardinal.

 d) P(7 Y,) does not collapse cardinals.

 Proof. a) By 6.1 we can choose p' < p such that if t' = (w', 5'B'b', s') is
 the first 5-tuple in p' above ti then KW, > A and l( w") = 1. Then P(jZ g-)/p
 strongly factors at A by Proposition 6.6.

 b) and c) follow immediately from Proposition 5.8 and the projection
 lemma.
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 d) Let A be a cardinal in V. If A < KW, choose a p EPJ=- ), P9 =

 (t1 ... tn(w, F)Bb) such that A < Kn. Then, if A = Kp, l(wi) > 1, A is a
 strong limit cardinal by c). Otherwise, there is a p' ? p such that P(j? 5-)/p
 strongly factors at A. Hence A is preserved.

 If A > KW, we know that P(w -) is KZ+-c.c.; hence, A is preserved.
 We now have:

 THEOREM (6.8). Let (wi, F) E U:. Let G X H C P( X 9, x Add(w), K1) be
 generic where K1 is the first element of the Radin sequence. Then V[G X H] w

 is a strong limit and the G.C.H fails up to Kw.

 Proof We can view the forcing as first forcing with P(jj ) followed by
 adding K1 Cohen reals. Hence, if A is a cardinal in V, A remains a cardinal in

 V[G X H].

 We must show that 2A > A+.

 Case 1. A E [K,.14(K)) where K is a point on the Radin sequence. Then

 V l= 2A > A+ and hence V[G * H] 2A > A+.

 Case 2. A E [84(K), K') where K is a point on the Radin sequence and K' iS

 the next point on the Radin sequence.

 Let p = (t1 * ti ti+1 * tn() <)Bb) E C where Ki <A and Ki~1
 = K'. Then, by Proposition 6.5, Add(*4(Kj), Ki+?)/si is a regular subordering of
 P(', -)Ip. Since P(', -) does not collapse cardinals, 2A ? Ki~ > A+.

 Case 3. A < K1, and K1 is the first point on the Radin sequence. Then,

 since H adds K1 many Cohen reals, 2A >2 K1 > A+. LI

 Hence at this stage we can kill the G.C.H. at many places. It only remains

 to see that for appropriately chosen (w~, ), Pj7 Y) leaves Kw regular.

 7. The master condition

 Let j be our original embedding from Section 3. Let K = crit(j) and let

 (M<A1) g < Al) be the measure sequence defined there.
 Our final forcing notion will be P,7(M g < A1) From Section 6, to get a model

 V' I="ZFC + G.C.H. fails everywhere" it suffices to show that PM g< )

 leaves K regular. Then, if G X H c Pr(M<Al1g<Al) X Add(w, K1) is generic, V[G]
 = "K is inaccessible" and hence: V,[G X H] I= ZFC + the G.C.H. fails every-
 where.
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 By the results of Section 2, it suffices to show that P'(MA g has a master

 condition m. Let P = P M7r g<A)

 We first note what j does to conditions p E P. If p E P then p =

 ( t1 tnG~, F)B b ) where (W', F) = '(M<A, g<A). Each t1 E R(K) so that

 j(p) = Kt1 ... t j(iw, F)j(B)j(b)) Ej(P).
 Since the measures j(i) are j(K)-complete and j is .j,(K)-supercompact

 we can find a sequence of sets B *j(A1) of j(w)-measure one so that for all B of

 w-measure one, j(B) D B* coordinate-wise. Further, since (j0,) is closed
 under descending <j(K) sequences for all -y < j(A1), there is a b E j(F)

 such that for all b E i, j(b) ? P*. Thus for all p = (t ... t (W, F Bb)),
 j(p) ? (t1 tn jGW, 5)B*b*)).

 By the remarks at the end of Section 3 for all B of WA,-measure one,
 (<AW <A1) o j(B). Hence for all b E A defined -set of measure
 one (w<A, CA-) E dom j(b). Since Add(.4(K), j(A)) is 84(K)-directed closed

 and there are at most 2K many b E 5A and FA is a filter, there is an
 S Add(n4(K), j(K)) such that s* ? j(b)(w, F) for all b E FA .

 LEMMA (7.1). Let ((w 4F)Bb) c P be a condition with no lower part.

 Then ((wg, F)Bbs*) is addable to j((w, 9}b').

 Proof Since j((w, _)B'b) = Kj(w, 57)jB jb), j((B),) cj(B).( ). Fur-
 ther, for all a E ( (b),,(a) E R(K), so that (b) (a) = j(bW,(a)) = j(b)j(,)(a).
 Hence j is the witness that clause 3) of the definition of addability holds.

 Clause 1) holds because (w<Al I< Al) c j(B)j(Ao) and 2) holds since so <
 A *)j(Ao)(w F). M

 Let B, b be such that ((W, F)B b) satisfies the conditions of Lemmas
 6.1 and 6.2. We force below r = ((w', )B b) c P. Let m =

 (((We Y)Bbs )j(w, F)B*b*). Then m < j(r) by Lemma 7.1.

 LEMMA (7.2). Let p E P/r. Then j(p) A m = 0.

 Proof Let p = (tj ... t n(wi, F)B'b'). Then B' C B and b' < b a.e. and,
 by Lemma 7.1, ((', ,F)B'b's*) is addable to Kj(w, F)j(B')j(b')). Hence

 P= (t ... tn( , S*)j(w W)jC )j(P )) < j(p).

 By shrinking j(B') to Be and A(V') to P we get a condition below both m and
 j(p) sincep < K(+,) B).
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 Let

 i: P/r j(P) by i(Kti * t(wi F3 L)fb))

 = (tI ... tn(w, F)lB'b's*ji(w, F)B*b*).

 Then i is clearly order-preserving, and sends maximal antichains to maximal

 antichains.

 LEMMA (7.3). m is a master condition for j, P/r and i.

 Proof Let p < r in P, p = (t ... tn(w) F)B'b'). Then there are suit-
 able 5-tuples t1 ... t' such that tj refines t' and each t' is addable to
 ((w, F)Bb). Hence (t' * tX((Wi, 9)B'bjs*)j(w * F *b*) < m. So

 Ktl ... tn ((W. I ) I'Ps* )j(w, )f** ) = i(p) < m.

 Hence i: P/r ->j(P)/m and i(p) A m = i(p).
 It suffices to see that i(p) < j(p). By Lemma 7.1, ((w', F) Bbsg ) is

 addable to j(iw, S_)j(B')j(b')). Hence

 q = (t1 ... tn((i, F)B'b'sg*)j(, F),j(B')j(b')) <j(p)

 and i(p) refines q. El

 We have shown our main theorem:

 THEOREM. Suppose "ZFC + there is a supercompact cardinal with infinitely
 many strongly inaccessible cardinals as above" is consistent. Then so is "ZFC +
 for all K, 2K > K?

 8. Miscellaneous remarks

 In [So], Solovay showed that if K iS A-supercompact where A > K is a
 singular strong limit cardinal, then 2A = A+. Hence, supercompact cardinals
 imply that there is a proper class of instances of the G.C.H. We now explore
 how much supercompactness we can preserve.

 We first note that if i, P, m, are as in Section 7 then by Proposition 6.6 and
 6.7 for all A < .4(K) there is a dense set of p < m in j(P) such that j(P)/p =
 P X R and P X R is a strong factorization at A. Further, the embedding i sends
 P to the first coordinate of P X R. (R = Add(14(K), K*)/S* X j(P)/p* for some
 K*, p*.)

 Hence, by Lemma (2.6), K iS .3(K)-supercompact.
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 The limitation on further supercompactness is the closure of Add(14(K), K*).
 We can maintain ln(K)-supercompactness by making our basic forcing notion

 Add(.n +?l(K,), K) instead of Add(.4(K.), K). Then all proofs work as before, and
 densely often in j(P)/m, and for each A < n+ l(K) there is a strong factoriza-
 tion at A. Hence by 2.6 we get An(K)-supercompactness.

 A by-product of this proof is the development of the "super-compact" Radin

 forcing. This forcing adds a new closed unbounded subset of 9,K(A). We briefly
 sketch its development.

 Let j: V -> M be a 22A -supercompact embedding with critical point K. We
 define a sequence of measures as follows.

 Let MO = j"A. Let Ma concentrate on ( Mp: /3 < a) = M< a. Then each
 measure is a measure on 9,1(A) X R(K).

 Since there are only 22A such measures we get A0 < A1 such that MA= MA1.
 Such a A1 is a repeat point.

 We get a set like UOO in an analogous way; i.e., there is a set U such that:
 1) For each m' C U, m8(U) = 1 for all 8 < 1(m).
 2) For all m' E U there is a 8 < A1 such that (H(22A),ajM<8)

 H(22A m) , m )
 3) M8(U) = I for all 8 < A1.

 A suitable pair is a pair (M, A) such that A is a sequence of sets of
 measure one for m'.

 A pair K m, X) is addable to K io, B) if and only if

 1) Mo<no so imn is defined.
 2) m E B., for some y < l(n).

 3) There is a function e: l(mi) l(n ) such that imn[A /] c B4,1).
 An element p of the forcing P is a finite sequence ti tn of suitable pairs

 and (M< A' A < A1) where A < Al is a sequence of sets of measure one for M< A,
 p = (t tn M<AlA <Al) so that if ti = .(mi Ai), (i)0 < i+)o

 For p, q c P, q C p if q can be obtained from p by shrinking sets of
 measure one and adding new pairs.

 One shows that the "Prikry Property" for P is exactly analogous to Lemmas
 5.4 and 5.5, except there are no s's, g's or k's to worry about. Then strong
 factorization at y's between A(a) and a' where a and a' are successive points
 on the Radin sequence is even easier as one does not have to worry about the
 closure of the Add(5, By) partial orderings.

 Hence, if K started supercompact then forcing with P keeps K supercom-
 pact, although it does collapse A to have cardinality K.

 The second author has simplified the construction in this manuscript so that
 we do not need to build the ga's as we did in Section 3 but can simply define
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 gju, f) as a function of u0. We present the more complicated construction in
 this paper because it is more general; in particular it works in the context of [F].

 The second author has also reduced the consistency strength of "ZFC + VK,

 2K > K+ and "ZFC + VK, 2K = K++" to that of a 92(K)-hypermeasurable.
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