
UC Riverside
UC Riverside Previously Published Works

Title
Performance analysis of the matrix pair method for blind channel identification

Permalink
https://escholarship.org/uc/item/6q16w3t8

Journal
IEEE Transactions on Information Theory, 43(4)

ISSN
0018-9448

Authors
Hua, Yingbo
Qiu, Wanzhi

Publication Date
1997-07-01
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6q16w3t8
https://escholarship.org
http://www.cdlib.org/


IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 4, JULY 1997 1245

Performance Analysis of the Matrix Pair
Method for Blind Channel Identification

Wanzhi Qiu,Member, IEEE, and Yingbo Hua,Senior Member, IEEE

Abstract—We study the estimation variance performance of the
matrix pair (MP) method for estimating the impulse responses of
multiple FIR channels driven by an unknown input sequence.
A first-order perturbation analysis of the large-data-size perfor-
mance of the MP method is presented and an explicit expression
for the estimation variance is derived. Both the theoretical and
simulation results are used to investigate the statistical perfor-
mance of the MP method and a number of new insights are
revealed.

Index Terms—Asymptotic analysis, blind identification, matrix
pair method.

I. INTRODUCTION

BLIND channel identification is useful in communications
as it does not require a training sequence to equalize

a channel and hence it could save the channel bandwidth.
Most blind channel identification schemes begin by sampling
the channel output at the baud rate to produce a stationary
channel output sequence for processing. Consequently, higher
order statistics (HOS) is required either explicitly or implicitly
to identify a possibly nonminimum phase channel. Due to the
large number of data samples and large amount of computation
required to estimate HOS, their applications may be limited in
fast changing environments, such as in mobile communica-
tions, where the channel has to be estimated within a short
period of time.

The work by Tong–Xu–Kailath [1] appears to be a major
breakthrough in the attempt to achieve fast blind channel
identification. It is demonstrated in [1] that when sampled
at a rate higher than the baud (symbol) rate, the output of
a data communication channel can be described as that of
a multichannel system which is driven by a sequence of
unknown input symbols. This multichannel model allows the
second-order statistics (SOS) to be sufficient to uniquely (up
to a constant) estimate the system impulse response without
knowing its input under a mild condition [1]. This result is
believed to have inspired all the subsequent development in
identifying a channel without using higher order statistics (see
[2]–[12], for example).
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The method developed by Tong–Xu–Kailath [1] exploits
a pair (“matrix pair”) of covariance matrices of the channel
outputs and hence will be referred to as the matrix pair
(MP) method. The MP method is the first dedicated algorithm
for solving the blind channel identification problem where
only SOS is used. It first demonstrated achieving satisfactory
blind channel identification by using only a few hundred data
samples. However, the estimation variance performance of
this method has not been analyzed in depth before. In this
paper, we provide an asymptotic (large-data-size) analysis
of the MP method. In particular, we derive the asymptotic
estimation variance of the MP method based on the first-order
perturbation theory. We then investigate, using both theoret-
ical and simulation results, the dependence of its estimation
variance performance on the signal-to-noise ratio (SNR), the
data size, the channel condition, the number of channels, and
processing window length. The rest of this paper is organized
as follows. Section II summarizes the MP method for easy
reference. Section III derives the estimation variance of the
MP method. Section IV presents numerical examples which
verify the theoretical results and show some new insights into
the MP method. Section V gives the conclusions.

II. THE MP METHOD

As shown in [1], when a higher sampling rate (compared
to the baud rate) is used at the output, a data communication
system can be described as the following multichannel FIR
system:

(1)

where is the output of the th channel, the
impulse response of the th channel, the common input
to the channels, the maximum order of these channels,

the data size, and the (zero-mean) white noise.
The outputs of system (1) can be expressed in the following

vector form by choosing a processing window of baud
intervals as in [1]:

(2)

where

(3)

0018–9448/97$10.00 1997 IEEE



1246 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 4, JULY 1997

with denoting the transpose, andis a generalized Sylvester
matrix defined by

...
...

...
...

...

(4)

with

The noise vector is defined in the same way as .
The channel impulse response vector is defined by

(5)

and the objective of blind channel identification is to obtain
only from the received data . For unique identification
(up to a constant scalar), it is required by the MP method that
the following conditions be satisfied [1], [6], [7]:

A1 Polynomials do not share any common root,
where

Note that this immediately implies .
A2 The matrix has more rows than columns, i.e.,

.
A3 The noise samples are (zero-mean) white with variance

.
A4 The input symbol is a (zero-mean) white se-

quence.

It is assumed in [1] that has unit variance (without
loss of generality); this leads to

(6)

where denotes the expectation, the complex conjugate
transpose, and

if and
otherwise.

Similarly

(7)

where is defined in the same way as except for the
dimension.

With the above notations, one can write

(8)

(9)

where denotes the identity matrix.
It is the covariance property shown in (8) and (9) that
Tong–Xu–Kailath exploited to estimate (up to an unknown
constant scalar ) from and . The impulse
response vector can be easily extracted once is available.
For easy reference, the MP method is summarized as follows.

Step 1. Compute the eigendecomposition of , i.e.,

where

are the eigenvalues of , and contain orthonor-
mal eigenvectors corresponding to and , respectively.
Range and range are referred to as the signal and
noise subspaces, respectively.

Step 2. Form

(10)

where

(11)

(12)

Then compute , the left singular vector corresponding to
the smallest singular value of .

Step 3. Form an estimate of (up to a constant scalar )
by

where

and extract the estimate of by (as suggested in [1])

(13)

where denotes the th column of , and an
matrix defined as (see (4)).

III. A NALYSIS OF THE MP METHOD

In practice, only finite data samples are available ,
and the covariance matrices and must be estimated

(14)

(15)

where , and denotes the estimate.
The finite data effect and the additive noise will result

in an error in the estimate of. In this section, we derive
the asymptotic estimation variance of the MP method using
the first-order approximations. Our derivation development is
orientated by the fact that the estimate ofis extracted from
the estimate of the matrix which is formed from certain
estimated eigenvalues and eigenvectors. Accordingly, we first
show some standard perturbation results on the eigenvalues
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and eigenvectors, which lay a foundation for our derivation
of the estimation variance. We then derive the perturbation
expressions for the columns of . Finally, we formulate the
perturbation on and present the estimation variance. In
the following, we will denote a (first-order) perturbation by
preceding the corresponding quantity byand use the symbol

to denote an equality in which the higher order terms are
neglected. We assume that the noise samples are
complex-Gaussian [15].

Assuming that the dominant eigenvalues of (i.e.,
) are distinct, from [14, pp. 293–295] we

have

(16)

and

(17)

where denotes the pseudoinverse.
We now derive the perturbation on theth column of

(18)

where

(19)

We obtain from (18) that

(20)

where, from (19), we have

(21)
and we can show in Appendix I that

(22)

Since, due to (10)

(23)

and, due to the fact that is diagonal

and (24)

by substituting (21)–(24) into (20), one can show that for

(25)

and for

(26)

where , and the matrices and
as well as the vectors are given in

Appendix II.
Next, using (16) and (17), we can further relate to the

perturbations of the covariance matrices by

(27)

where

For

(28)

For

(29)

where the matrices and the vectors are given in Ap-
pendix III, and their dependence onis not shown explicitly
for notational simplicity. See Appendix III for the derivation
of (27).

Finally, considering (13), we obtain the perturbation ex-
pression for as

(30)
where

Before proceeding to Theorem 1, we introduce a lemma
which is useful in the derivation of the estimation variance.

Lemma 1: Suppose that the input sequence is
independent and identically distributed (i.i.d.) with zero-
mean, unit-variance and finite fourth-order moments and the
noise is circular-Gaussian, the random variable

, are jointly
asymptotically normal with zero mean and covariance

(31)
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where

(32)

(33)

(34)

denotes the set of integers,the circular conjugate, and
the th element of matrix .

The proof of Lemma 1 is by direct application of [16,
Theorem 14, p 228] (also see [8]). Note that the right-hand
side of (31) involves only a finite number of terms due to the
fact that when .

Theorem 1: The variance of the large-data-size estimate of
is given by

(35)

where the scalars and are independent of and and
are given by

with denoting “the trace of” and

Proof: Due to (5) and (30)

Denoting by the th element of vector and using
Lemma 1, we have

(36)

The conclusion follows by plugging (32)–(34) into (36).
Note that for large data size, it is much more economical

to evaluate this theoretical variance than to run a Monte Carlo
simulation. Hence, this expression could also be valuable in
practical design.

IV. PERFORMANCE EVALUATION

This section investigates the statistical performance of the
MP method using both theoretical and simulation results.

The asymptotic estimation variance of the MP method is
shown as in (35) to be a quadratic function in terms of the
noise variance . It is not surprising to note that there is a
“constant” term in (35), which implies that, when is finite,
we cannot obtain an exact estimate even when the noise is
absent . This is due to the fact that, even when
the noise is absent, an infinite number of data samples are
still required to obtain the exact covariance matrices and

and, consequently, the eigenvalues and eigenvectors to
form the channel estimate. This “constant” term, i.e., , tells
us what estimation variance can be achieved at high SNR.

We now present a numerical Monte Carlo study which
verifies our theoretical work and shows more insights into the
performance of the MP method. As mentioned in Section II,
the estimate of is unique up to a constant scalar . In the
simulation, we remove this angular ambiguity by replacing,
the estimate of the eigenvector( successively
in Step 1), and in Step 2) by where is given
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Fig. 1. Performance of the MP method versus SNR whereN = 600, L = 1, W = 5, and� = 0:2.

by

This minimization yields

The performance of the MP method in simulation is measured
by the mean-square error in decibels

MSE dB

where denotes the estimate of in the th run.
independent runs are conducted for each simulation scenario,
and both the input sequence and the noise sequence are
independently chosen at each run. Accordingly, the theoretical
performance is calculated by using Theorem 1 and

MSE dB

We also need to define the SNR as follows (see [11]):

SNR dB

The following two-channel system used in [8] is
considered for Figs. 1–3

(37)

(38)

where is used to control the distance between the roots
of and . For small , the system becomes ill-
conditioned and a relatively large estimation error is expected
(see conditionA1 in Section II). In all cases to be shown,

the channel coefficients will be scaled such that and
the input sequence is-QAM scaled by .
Unless otherwise stated, , SNR dB, ,
and .

Fig. 1 shows the performance of the MP method against the
SNR. It is seen in this case that, after 20 dB, the curve becomes
nearly flat. This is due to the finite data effect discussed above
which cannot be cured by increasing the SNR.

Fig. 2 shows the performance of the MP method against the
data size . It is shown that, as expected, a better estimate can
be achieved by using more data samples. It is also shown that
the (asymptotic) theoretical expression of the MSE is valid
even for a data size as small as 100.

Fig. 3 shows the performance of the MP method against
the channel condition . Consistent with our previous dis-
cussion, the MSE increases as the zeros of the two channels
become closer. This implies that the MP method fails for very
poor channel conditions.

Fig. 4 shows the performance of the MP method against the
number of channels . For , we consider the two-
channel system (37) and (38). For , we consider the
three-channel system (37), (38), and

where is set to be and in four cases,
respectively. It is shown that adding different channels has
different effects on the estimation error. This is due to the fact
that, in the multichannel model, a larger means a higher
sampling rate, implying that more information is utilized from
the channel output to carry out the identification and a better
estimate is expected. On the other hand, a largerresults in a
larger number of unknowns and more closely distributed zeros
of the channels, which tends to increase the estimation error.

Fig. 5 shows the performance of the MP method against
the processing window length . Two two-channel systems
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Fig. 2. Performance of the MP method versusN where SNR= 20 dB, L = 1, W = 5, and� = 0:2.

Fig. 3. Performance of the MP method versus� where SNR= 20 dB, N = 600, L = 1, andW = 5.

are considered where system 1 consists of (37) and (38), and
system 2 consists of the following two channels:

It is observed that the effect of changing depends on the
particular system to be identified.

V. CONCLUDING REMARKS

We have analyzed the statistical performance of the MP
method for blind identification of multiple FIR channels. In
particular, we have obtained a closed-form expression for the
large-data-size estimation variance, and further investigated

how the SNR, the data size, the channel condition, the number
of channels, and the processing window length affect the
estimation accuracy. The explicit formula of the estimation
variance and the insights revealed can be helpful for the
identification system designers.

APPENDIX I
PROOF OF (22)

As shown in [1], is unitary and

Since is the eigenvector corresponding to the single eigen-
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Fig. 4. Performance of the MP method versusM where SNR= 20 dB, N = 600, L = 1, andW = 5.

Fig. 5. Performance of the MP method versusW where SNR= 20 dB andN = 600.

value (i.e., ) of , from [14, pp. 293–295], we have

In the last equation, we used the fact that . Noting
that completes the proof.

APPENDIX II
DEFINITIONS OF DETERMINISTIC MATRICES

AND VECTORS IN (25) AND (26)

Because and is unitary [1], it is very easy
to verify that

Using , and denoting by the th column of
, after some straightforward but tedious rearrangement,

one can show that
For :
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For :

APPENDIX III
PROOF OF (27)

Let us evaluate the terms in (25) and (26) one by one. Using
(16), we can show that

(39)

where

is the th column of and the th entry of

. By assuming that the noise variance is estimated by the
average of the estimated less-dominant eigenvalues of

(i.e., ), we have

where is the vector with as the th entry and
’s elsewhere.
Using (17) one can rewrite the second term in (26) as

(40)

where

is the th column of , and .
Using (17) one can show

(41)

where

is the th entry of vector .
Using (12), we rewrite the fourth term in (26) by

(42)

where

Similarly, we show

(43)

where
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For : By summing up (39), (42), and (43), we get
the following summation:

(44)

Furthermore, the summation of (40), (41), and (44) gives

where

(45)

Note that (45) immediately leads to (29).
For : The summation of (39), (41), and (43) gives

where

(46)

Noting that (28) is the immediate results of (46) completes
the proof.
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