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Compressed sensing quantum process tomography for superconducting quantum gates

Andrey V. Rodionov1, Andrzej Veitia1, R. Barends2, J. Kelly2, Daniel Sank2,
J. Wenner2, John M. Martinis2, Robert L. Kosut3, and Alexander N. Korotkov1

1Department of Electrical Engineering, University of California, Riverside, California 92521, USA
2Department of Physics, University of California, Santa Barbara, California 93106, USA

3SC Solutions, 1261 Oakmead Parkway, Sunnyvale, California 94085, USA
(Dated: July 4, 2014)

We apply the method of compressed sensing (CS) quantum process tomography (QPT) to characterize
quantum gates based on superconducting Xmon and phase qubits. Using experimental data for a two-qubit
controlled-Z gate, we obtain an estimate for the process matrix χ with reasonably high fidelity compared to full
QPT, but using a significantly reduced set of initial states and measurement configurations. We show that the
CS method still works when the amount of used data is so small that the standard QPT would have an underde-
termined system of equations. We also apply the CS method to the analysis of the three-qubit Toffoli gate with
numerically added noise, and similarly show that the methodworks well for a substantially reduced set of data.
For the CS calculations we use two different bases in which the process matrixχ is approximately sparse, and
show that the resulting estimates of the process matrices match each other with reasonably high fidelity. For
both two-qubit and three-qubit gates, we characterize the quantum process by not only its process matrix and
fidelity, but also by the corresponding standard deviation,defined via variation of the state fidelity for different
initial states.

PACS numbers: 03.65.Wj, 03.67.Lx, 85.25.Cp

I. INTRODUCTION

An important challenge in quantum information science
and quantum computing is the experimental realization of
high-fidelity quantum operations on multi-qubit systems.
Quantum process tomography (QPT) [1–3] is a procedure de-
vised to fully characterize a quantum operation. The role
of QPT in experimental characterization of quantum gates is
twofold. First, it allows us to quantify the quality of the gate;
that is, it tells us how close the actual and desired quantum
operations are. Second, QPT may aid in diagnosing and cor-
recting errors in the experimental operation [4–8]. The impor-
tance of QPT has led to extensive theoretical research on this
subject (e.g., [9–14]).

Although conceptually simple, QPT suffers from a funda-
mental drawback: the number of required experimental con-
figurations scales exponentially with the number of qubits
(e.g., [15]). AnN -qubit quantum operation can be repre-
sented by a4N × 4N process matrixχ [1] containing16N

independent real parameters (or16N − 4N parameters for
a trace-preserving operation) which can be determined ex-
perimentally by QPT. Therefore, even for few-qubit systems,
QPT involves collecting large amounts of tomographic data
and heavy classical postprocessing. To alleviate the problem
of exponential scaling of QPT resources, alternative methods
have been developed, e.g., randomized benchmarking [16–18]
and Monte Carlo process certification [19, 20]. These proto-
cols, however, find only the fidelity of an operation instead
of its full process matrix. Both randomized benchmarking
and Monte Carlo process certification have been demonstrated
experimentally for superconducting qubit gates (see [21–23]
and references therein). Although these protocols are efficient
tools for the verification of quantum gates, their limitation lies
in the fact that they do not provide any description of particu-
lar errors affecting a given process and therefore they cannot

be used to improve the performance of the gates.
Recently, a new approach to QPT which incorporates ideas

from signal processing theory has been proposed [24, 25].
The basic idea is to combine standard QPT with compressed
sensing (CS) theory [26–29], which asserts that sparse sig-
nals may be efficiently recovered even when heavily under-
sampled. As a result, compressed sensing quantum process
tomography (CS QPT) enables one to recover the process ma-
trix χ from far fewer experimental configurations than stan-
dard QPT. The method proposed in [24, 25] is hoped to pro-
vide an exponential speed-up over standard QPT. In partic-
ular, for ad-dimensional system the method is supposed to
require onlyO(s log d) experimental probabilities to produce
a good estimate of the process matrixχ, if χ is known to be
s-compressible [30] in some known basis. (For comparison,
standard QPT requires at leastd4 probabilities, whered = 2N

for N qubits.) Note that there are bases in which the pro-
cess matrix describing the target process (the desired unitary
operation) is maximally sparse, i.e. containing only one non-
zero element; for example, this is the case for the so-called
singular-value-decomposition (SVD) basis [24] and the Pauli-
error basis [8]. Therefore, if the actual process is close to
the ideal (target) process, then it is plausible to expect that its
process matrix is approximately sparse when written in such
a basis [25]. The CS QPT method was experimentally vali-
dated in Ref. [25] for a photonic two-qubit controlled-Z (CZ)
gate. In that experiment, sufficiently accurate estimates for the
process matrix were obtained via CS QPT using much fewer
experimental configurations than the standard QPT.

The CS idea also inspired another (quite different) algo-
rithm for quantum state tomography (QST) [31, 32], which
can be generalized to QPT [32, 33]. This matrix-completion
method of CS QST estimates the density matrices of nearly
pure (low rankr) d-dimensional quantum states from expec-
tation values of onlyO(rd poly log d) observables, instead
of d2 observables required for standard QST. It is important
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to mention that this method does not require any assumption
about the quantum state of a system, except that it must be a
low-rank state (in particular, we do not need to know the state
approximately). The CS QST method has been used to recon-
struct the quantum states of a 4-qubit photonic system [34]
and cesium atomic spins [35]. In Ref. [32] it has been shown
that using the Jamiołkowski process-state isomorphism [36]
the formalism of CS QST can also be applied to the QPT, re-
quiringO(rd2 poly log d) measured probabilities (wherer is
the rank of the Jamiołkowski state) to produce a good esti-
mate of the process matrixχ. Therefore there is crudely a
square-root speedup compared with standard QPT. Note that
this algorithm requires exponentially more resources thanthe
CS QPT method of Ref. [25], but it does not require to know
a particular basis in which the matrixχ is sparse. The perfor-
mance of these two methods has been compared in the recent
paper [33] for a simulated quantum system with dimension
d = 5; the reported result is that the method of Ref. [32]
works better for coherent errors, while the method of Ref. [25]
is better for incoherent errors.

In this paper we apply the method of Ref. [25] to the two-
qubit CZ gate realized with superconducting qubits. Using the
experimental results, we find that CS QPT works reasonably
well when the number of used experimental configurations is
up to∼7 times less than for standard QPT. Using simulations
for a three-qubit Toffoli gate, we find that the reduction fac-
tor is ∼40, compared with standard QPT. In the analysis we
calculate two fidelities: the fidelity of the CS QPT-estimated
process matrixχCS compared with the matrixχfull from the
full data set and compared withχideal for the ideal unitary
process. Besides calculating the fidelities, we also calculate
the standard deviation of the fidelity, defined via the variation
of the state fidelity for different initial states. We show that
this characteristic is also estimated reasonably well by using
the CS QPT.

Our paper is structured as follows. SectionII is a brief re-
view of standard QPT and CS QPT. In Sec.III we discuss
the set of measurement configurations used to collect QPT
data for superconducting qubits, and also briefly discuss our
way to compute the process matrixχ via compressed sensing.
In Sec.IV we present our numerical results for the CS QPT
of a superconducting two-qubit CZ gate. In this section we
also compare numerical results obtained by applying the CS
QPT method in two different operator bases, the Pauli-error
basis and the SVD basis. In Sec.V we study the CS QPT of
a simulated three-qubit Toffoli gate with numerically added
noise. Then in Sec.VI we use the process matrices obtained
via compressed sensing to estimate the standard deviation of
the state fidelity, with varying initial state. SectionVII is a
conclusion. In Appendices we discuss the Pauli-error basis
(Appendix A), SVD basis (Appendix B), and calculation of
the average square of the state fidelity (Appendix C).

II. METHODS OF QUANTUM PROCESS TOMOGRAPHY

A. Standard Quantum Process Tomography

The idea behind QPT is to reconstruct a quantum operation
ρin 7→ ρfin = E(ρin) from experimental data. The quantum
operation is a completely positive map, which for anN -qubit
system prepared in the state with density matrixρin can be
written as

E(ρin) =
d2

∑

α,β=1

χαβEαρ
inE†

β , (1)

whered = 2N is the dimension of the system,χ ∈ Cd2×d2

is the process matrix and{Eα ∈ Cd×d} is a chosen ba-
sis of operators. We assume that this basis is orthogonal,
〈Eα|Eβ〉 ≡ Tr(E†

αEβ) = Qδαβ, whereQ = d for the Pauli
basis and Pauli-error basis, whileQ = 1 for the SVD basis
(see Appendices A and B). Note that for a trace-preserving
operationTr(χ) = 1 if Q = d, while Tr(χ) = d if Q = 1.
In this paper we implicitly assume the usual normalization
Q = d, unless mentioned otherwise. The process matrixχ
is positive semidefinite (which implies being Hermitian), and
we also assume it to be trace-preserving,

χ ≥ 0 (positive semidefinite), (2)
d2

∑

α,β=1

χαβE
†
βEα = Id (trace preserving). (3)

These conditions ensure thatρfin = E(ρin) is a legitimate den-
sity matrix for an arbitrary (legitimate) input stateρin. The
condition (3) reduces the number of real independent parame-
ters inχ fromd4 to d4−d2. Hence, the number of parameters
needed to fully specify the mapE scales asO(16N ) with the
number of qubitsN . Note that the set of allowed process ma-
tricesχ defined by Eqs. (2) and (3) is convex [24, 37].

The essential idea of standard QPT is to exploit the linear-
ity of the map (1) by preparing the qubits in different initial
states, applying the quantum gate, and then measuring a set
of observables until the collected data allows us to obtain the
process matrixχ through matrix inversion or other methods.
More precisely, if the qubits are prepared in the stateρink , then
the probability of finding them in the (measured) state|φi〉
after applying the gate is given by

Pik = Tr(ΠiE(ρink )) =
∑

α,β

Tr(ΠiEαρ
in
k E

†
β)χαβ , (4)

whereΠi = |φi〉 〈φi|. By preparing the qubits in one of the
linearly independent input states{ρin1 , . . . ρinNin

} and perform-
ing a series of projective measurements{Π1, . . . ,ΠNmeas

} on
the output states, one obtains a set ofm = NinNmeas proba-
bilities {Pik} which, using Eq. (4), may be written as

~P (χ) = Φ~χ, (5)
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where ~P (χ) ∈ Cm×1 and~χ ∈ Cd4×1 are vectorized forms
of {Pik} and χαβ , respectively. Them × d4 transforma-
tion matrixΦ has entries given byΦik,αβ = Tr(ΠiEαρ

in
k E

†
β).

In principle, for tomographically complete sets of
input states {ρin1 , . . . ρinNin

} and measurement operators
{Π1, . . . ,ΠNmeas

}, one could invert Eq. (5) and thus uniquely
find χ by using the experimental set of probabilities~P exp.
In practice, however, because of experimental uncertainties
present in ~P exp, the process matrix thus obtained may be
non-physical, that is, inconsistent with the conditions (2) and
(3). In standard QPT this problem is remedied by finding the
physical process matrix [satisfying (2) and (3)] that minimizes
(in some sense) the difference between the probabilities~P (χ)

and the experimental probabilities~P exp.

Two popular methods used to estimate a physical process
matrixχ compatible with the experimental data are the maxi-
mum likelihood (ML) method [38–40] (see also [41, 42]) and
the least-squares (LS) method [21, 43, 44]. The ML method
minimizes the cost function [38]

CML = −
∑

j
P exp
j lnPj(χ), (6)

where the indexj labels the measured probabilities, while
the LS method (often also called maximum likelihood) min-
imizes the difference between~P (χ) and ~P exp in theℓ2-norm
sense [45], so the minimized cost function is

CLS = ||~P (χ)− ~P exp||2ℓ2 =
∑

j
[P exp

j − Pj(χ)]
2. (7)

In both methods the conditions (2) and (3) should be satisfied
to ensure thatχ corresponds to a physical process. This can
be done in a number of ways, for example, using the Cholesky
decomposition, or Lagrange multipliers, or just stating the
conditions (2) and (3) as a constraint (if an appropriate soft-
ware package is used). The ML method (6) is natural when the
inaccuracy of~P exp is dominated by the statistical error due to
a limited number of experimental runs. However, this method
does not work well if a target probabilityPj is near zero, but
P exp
j is not near zero due to experimental imperfections (e.g.,

“dark counts”); this is because the cost function (6) is very
sensitive to changes inP exp

j whenPj(χ) ≈ 0. Therefore, the

LS method (7) is a better choice when the inaccuracy of~P exp

is not due to a limited number of experimental runs.
Note that other cost functions can also be used for mini-

mization in the procedure. For example, by replacinglnPj(χ)
in Eq. (6) with ln[Pj(χ)/P

exp
j ] (this obviously does not af-

fect optimization), then expanding the logarithm to secondor-
der, and using condition

∑

j Pj(χ) =
∑

j P
exp
j (which can-

cels the first-order term), we obtain [41]CML ≈ const +
∑

j [P
exp
j −Pj(χ)]

2/2P exp
j . This leads to another natural cost

function

C =
∑

j

[Pj(χ)− P exp
j ]2

P exp
j + a

, (8)

where we phenomenologically introduced an additional pa-
rametera, so that fora ≫ 1 the minimization reduces to the
LS method, while fora ≪ 1 it is close to the ML method
(the parametera characterizes the relative importance of non-
statistical and statistical errors). One more natural costfunc-
tion is similar to Eq. (8), but with P exp

j in the denominator
replaced byP exp

j (1− P exp
j ) (see [38]), which corresponds to

the binomial distribution variance.
In this paper we use the LS method (7) for the standard

QPT. In particular, we find the process matrixχfull for the full
data set~P exp

full by minimizing ||~P (χfull) − ~P exp
full||ℓ2 , subject to

conditions Eqs. (2) and (3). Note that such minimization is
a convex optimization problem and therefore computationally
tractable.

B. Compressed Sensing Quantum Process Tomography

If the number of available experimental probabilities is
smaller than the number of independent parameters in the pro-
cess matrix (i.e.m < d4−d2), then the set of linear equations
Eq. (5) for the process matrixχ becomes underdetermined.
Actually, the LS method may still formally work in this case
for some range ofm, but, as discussed in Secs.IV E andV, it
is less effective.

By using the ideas of compressed sensing [26–29], the
method of CS QPT requires a significantly smaller set of ex-
perimental data to produce a reasonably accurate estimate of
the process matrix. Let us formulate the problem mathemati-
cally as follows: we wish to find the physical process matrix
~χ0 satisfying the equation

~P exp = Φ~χ0 + ~z, (9)

where the vector~P exp ∈ Cm (withm < d4−d2) and the ma-
trix Φ ∈ Cm×d4

are given, while~z ∈ Cm is an unknown noise
vector, whose elements are assumed to be bounded (in the
root-mean-square sense) by a known limitε, ||~z||ℓ2/

√
m ≤ ε.

While this problem seems to be ill-posed since the available
information is both noisy and incomplete, in Ref. [26] it was
shown that if the vectorχ0 is sufficiently sparse and the ma-
trix Φ satisfies the restricted isometry property (RIP),χ0 can
be accurately estimated from Eq. (9). Note that the CS tech-
niques of Ref. [26] were developed in the context of signal
processing; to adapt [24] these techniques to QPT we also
need to include the positivity and trace-preservation condi-
tions, Eqs. (2) and (3).

The idea of CS QPT [25] is to minimize theℓ1-norm [45] of
~χ in a basis whereχ is assumed to be approximately sparse.
Mathematically, the method is solving the following convex
optimization problem:

minimize ||~χ||ℓ1 , (10)

subject to||~P (χ)− ~P exp||ℓ2
/√

m ≤ ε (11)

and conditions (2), (3).

As shown in Refs. [25, 28], a faithful reconstruction recovery
of an approximatelys-sparse process matrixχ0 via this opti-
mization is guaranteed (see below) if (i) the matrixΦ satisfies
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the RIP condition,

1− δs ≤
||Φ~χ1 − Φ~χ2||2ℓ2
||~χ1 − ~χ2||2ℓ2

≤ 1 + δs, (12)

for all s-sparse vectors (process matrices)~χ1 and~χ2, (ii) the
isometry constantδs is sufficiently small,δs <

√
2 − 1, and

(iii) the number of data points is sufficiently large,

m ≥ C0s log(d
4/s) = O(sN), (13)

whereC0 is a constant. Quantitatively, ifχCS is the solution
of the optimization problem [Eqs. (10) and (11)], then the es-
timation error||χCS − χ0||ℓ2 is bounded as

||χCS − χ0||ℓ2√
m

≤ C1||χ0(s)− χ0||ℓ1√
ms

+ C2 ε, (14)

whereχ0(s) is the bests-sparse approximation ofχ0, while
C1 andC2 are constants of the orderO(δs). Note that in the
noiseless case (ε = 0) the recovery is exact if the process
matrixχ0 is s-sparse. Also note that while the required num-
ber of data pointsm and the recovery accuracy depend on the
sparsitys, the method itself [Eqs. (10) and (11)] does not de-
pend ons, and therefores need not be known.

The inequality (13) and the first term in the inequality (14)
indicate that the CS QPT method is supposed to work well
only if the actual process matrixχ0 is sufficiently sparse.
Therefore, it is important to use an operator basis{Eα} [see
Eq. (1)], in which the ideal (desired) process matrixχideal is
maximally sparse, i.e., it contains only one nonzero element.
Then it is plausible to expect the actual process matrixχ0 to
be approximately sparse [25]. In this paper we will use two
bases in which the ideal process matrix is maximally sparse.
These are the so-called Pauli-error basis [8] and the SVD ba-
sis of the ideal unitary operation [24]. In the Pauli-error basis
{Eα}, the first elementE1 coincides with the desired unitary
U , while other elements are related via theN -qubit Pauli ma-
tricesP , so thatEα = UPα. In the SVD basisE1 = U/

√
d,

and other elements are obtained via a numerical SVD proce-
dure. More details about the Pauli-error and SVD bases are
discussed in Appendices A and B.

As mentioned previously, the method of CS QPT involves
the RIP condition (12) for the transformation matrixΦ. In
Ref. [25] it was shown that if the transformation matrixΦ in
Eq. (5) is constructed from randomly selected input statesρink
and random measurementsΠi, thenΦ obeys the RIP condi-
tion with high probability. Notice that once a basis{Eα} and
a tomographically complete (or overcomplete) set{ρink ,Πi}
have been chosen, the matrixΦfull corresponding to the full
data set is fully defined, since it does not depend on the ex-
perimental outcomes. Therefore, the mentioned above result
of Ref. [25] tells us that if we build a matrixΦm by randomly
selectingm rows fromΦfull , thenΦm is very likely to satisfy
the RIP condition. Hence, the submatrixΦm ∈ C

m×d4

,
together with the corresponding set of experimental outcomes
~P exp ∈ C

m can be used to produce an estimate of the process
matrix via theℓ1-minimization procedure (10) and (11).

III. STANDARD AND CS QPT OF MULTI-QUBIT
SUPERCONDUCTING GATES

There are several different ways to perform standard QPT
for anN -qubit quantum gate realized with superconducting
qubits [46–53]. The differences are the following. First,
it can be performed using eithernin = 4 initial states for
each qubit [47–50], e.g.,{|0〉 , |1〉 , (|0〉 + |1〉)/

√
2, (|0〉 +

i |1〉)/
√
2}, or usingnin = 6 initial states per qubit [51, 52],

{|0〉 , |1〉 , (|0〉 ± |1〉)/
√
2, (|0〉 ± i |1〉)/

√
2}, so that the to-

tal number of initial states isNin = nN
in. (It is tomograph-

ically sufficient to usenin = 4, but the set of 6 initial
states is more symmetric, so it can reduce the effect of ex-
perimental imperfections.) Second, the final measurement
of the qubits can be realized in the computational basis af-
ter one out ofnR = 3 rotations per qubit [47, 49], e.g.,
Rmeas = {I, R−π/2

y , R
π/2
x }, ornR = 4 rotations [21, 48, 52],

e.g., Rmeas = {I, Rπ
y , R

π/2
y , R

π/2
x }, or nR = 6 rotations

[46, 51, 53], e.g.,Rmeas = {I, Rπ
y , R

±π/2
y , R

±π/2
x }. This

givesNR = nN
R measurement “directions” in the Hilbert

space. Third, it may be possible to measure the state of each
qubit simultaneously [46, 47, 49], so that the probabilities for
all 2N outcomes are measured, or it may be technically possi-
ble to measure the probability for only one state (say,|0...0〉)
or a weighed sum of the probabilities [48, 50, 51]. Therefore,
the number of measured probabilities for each configuration
is eitherNprob = 2N (with 2N − 1 independent probabili-
ties, since their sum is equal 1) orNprob = 1. Note that if
Nprob = 2N , then usingnR = 6 rotations per qubit formally
gives the same probabilities as fornR = 3, and in an experi-
ment this formal symmetry can be used to improve the accu-
racy of the results. In contrast, in the case whenNprob = 1,
the use ofnR = 4 or nR = 6 are natural for the complete
tomography.

Thus, the number of measurement configurations (includ-
ing input state and rotations) in standard QPT isMconf =
NinNR = nN

inn
N
R , while the total number of probabilities in

the data set isM = MconfNprob. This number of probabili-
ties can be as large asM = 72N for nin = 6, nR = 6, and
Nprob = 2N (with 72N − 36N independent probabilities).
Since only16N − 4N independent probabilities are necessary
for the standard QPT, a natural choice for a shorter experiment
is nin = 4, nR = 3, andNprob = 2N ; thenM = 24N , with
24N − 12N independent probabilities. IfNprob = 1 due to
the limitations of the measurement technique, then the natural
choices arenin = 4 andnR = 4, givingM = 16N ornin = 4
andnR = 6, givingM = 24N .

In this paper we focus on the casenin = 4, nR = 3, and
Nprob = 2N . Then for a two-qubit quantum gate there are
Mconf = 12N = 144 measurement configurations andM =
24N = 576 probabilities (432 of them independent). For a
three-qubit gate there areMconf = 1728 configurations and
M = 13824 probabilities (12096 of them independent).

The main experimental data used in this paper are for the
two-qubit CZ gate realized with Xmon qubits [54]. The data
were obtained withnin = 6, nR = 6, andNprob = 2N .
However, since the main emphasis of this paper is analysis
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of the QPT with a reduced data set, we started by reducing
the data set tonin = 4 andnR = 3 by using only the cor-
responding probabilities and removing other data. We will
refer to these data as “full data” (withMconf = 144 and
M = 24N = 576). For testing the CS method we randomly
choosemconf ≤ Mconf configurations, with corresponding
m = 4mconf experimental probabilities (3mconf of them in-
dependent). Since the process matrixχ is characterized by
16N − 4N = 240 independent parameters, the power of the
CS method is most evident whenmconf < 80, so that the sys-
tem of equations (5) is underdetermined. [For a three-qubit
gate the system of equations becomes underdetermined for
mconf < (16N − 4N)/(2N − 1) = 576.]

The data used for the analysis here were taken on a different
device from the one used in Ref. [55]. For the device used here
the qubits were coupled via a bus, and the entangling gate be-
tween qubits A and B was implemented with three multiqubit
operations: 1) swap state from qubit B to bus, 2) CZ gate be-
tween qubit A and bus, 3) swap back to qubit B. The swap
was done with the resonant Strauch gate [56], by detuning the
frequency of qubit A with a square pulse. Generating a square
pulse is experimentally challenging, moreover this gate has a
single optimum in pulse amplitude and time. We also note that
the qubit frequency control was not optimized for imperfec-
tions in the control wiring, as described in Ref. [57] (see also
Fig. S4 in Supplementary Information of [55]). The combina-
tion of device, non-optimal control, and multiple operations,
leads to the experimental process fidelityFχ = 0.91 of the
CZ gate used for the analysis here to be significantly less than
the randomized benchmarking fidelityFRB = 0.994 reported
in [55]. Moreover, QPT necessarily includes state prepara-
tion and measurement (SPAM) errors [18], while randomized
benchmarking does not suffer from these errors. This is why
we intentionally used the data for a not-well-optimized CZ
gate so that the gate error dominates over the SPAM errors.
(Note that we use correction for the imperfect measurement
fidelity [46]; however, it does not remove the measurement
errors completely.) It should also be mentioned that in the
ideal case1 − Fχ = (1 − FRB) × (1 + 2−N), so the QPT
fidelity is supposed to be slightly less than the randomized
benchmarking fidelity.

For the full data set, we first calculate the process matrix
χfull by using the least-squares method described at the end of
Sec.II A . For that we use three different operator bases{Eα}:
the Pauli basis, the Pauli-error basis, and the SVD basis. The
pre-computed transformation matrixΦ in Eq. (5) depends on
the choice of the basis, thus giving a basis-dependent result for
χfull. We then check that the results essentially coincide by
convertingχfull between the bases and calculating the fidelity
between the corresponding matrices (the infidelity is foundto
be less than10−7). The fidelity between two process matrices
χ1 andχ2 is defined as the square of the Uhlmann fidelity [58,
59],

F (χ1, χ2) =
(

Tr

√

χ
1/2
1 χ2 χ

1/2
1

)2

, (15)

so that it reduces toF (χ1, χ2) = Tr(χ1χ2) [60] when at least
one of the process matrices corresponds to a unitary operation.

Since0 ≤ F ≤ 1, we refer to1− F as the infidelity.
After calculatingχfull for the full data set, we can calculate

its fidelity compared to the process matrixχideal of the de-
sired ideal unitary operation,Fχ = Ffull = F (χfull, χideal).
This is the main number used to characterize the quality of the
quantum operation.

Then we calculate the compressed-sensing process matrix
χCS by solving theℓ1-minimization problem described by
Eqs. (10) and (11), using the reduced data set. It is obtained
from the full data set by randomly selectingmconf configura-
tions out of the full numberMconf configurations. We use the
fidelity F (χCS, χfull) to quantify how well the process matrix
χCS approximates the matrixχfull obtained from full tomo-
graphic data. Additionally, we calculate the process fidelity
F (χCS, χideal) betweenχCS and the ideal operation, to see
how closely it estimates the process fidelityFfull, obtained us-
ing the full data set.

Since both the least-squares and theℓ1-norm minimization
are convex optimization problems [24, 61], they can be effi-
ciently solved numerically. We used two ways for MATLAB-
based numerical calculations: (1) using the package CVX
[62], which calls the convex solver SeDuMi [63]; or (2) us-
ing the package YALMIP [64], which calls the convex solver
SDPT3 [65]. In general, we have found that for our particu-
lar realization of computation, CVX with the solver SeDuMi
works better than the combination YALMIP-SDPT3 (more
details are below).

IV. RESULTS FOR TWO-QUBIT CZ GATE

In this section we present results for the experimental CZ
gate realized with superconducting Xmon qubits [54, 55]. As
explained above, the full data set consists ofM = 576 mea-
sured probabilities (432 of them independent), corresponding
to Mconf = 42 × 32 = 144 configurations, with 4 proba-
bilities (3 of them independent) for each configurations. The
LS method using the full data set produces the process matrix
χfull, which has the process fidelityF (χfull, χideal) = 0.907
relative to the ideal CZ operation. Note that our full data set
is actually a subset of an even larger data set (as explained
in the previous section), and theχ matrix calculated from the
initial set corresponds to the process fidelity of 0.928; thedif-
ference gives a crude estimate of the overall accuracy of the
procedure.

The CS method calculations were mainly done in the Pauli-
error basis, using the CVX-SeDuMi combination for theℓ1-
norm minimization. This is what is implicitly assumed in this
section, unless specified otherwise. Note that the CS-method
optimization is very different from the LS method. Therefore,
even for the full data set we would expect the process matrix
χCS to be different fromχfull. Moreover,χCS depends on
the noise parameterε [see Eq. (11)], which to some extent
is arbitrary. To clarify the role of the parameterε, we will
first discuss the CS method applied to the full data set, with
varyingε, and then discuss the CS QPT for a reduced data set,
using either near-optimal or non-optimal values ofε.
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FIG. 1: (color online) The CS QPT procedure, applied to the full
data set, with varying noise parameterε. The red (upper) line shows
the fidelityF (χCS, χfull) between the process matrixχCS obtained
using the compressed-sensing method and the matrixχfull obtained
using the least-squares method. The blue (lower) line showsthe pro-
cess fidelityF (χCS, χideal), i.e., compared with the matrixχideal

of the ideal unitary process. The vertical dashed brown linecorre-
sponds to the noise levelεopt = ||~P exp

full −Φ~χfull||ℓ2/
√
M = 0.0199

obtained in the LS procedure. The inset showsεnum = ||~P exp

full −
Φ~χCS||ℓ2/

√
M as a function ofε (green line); for comparison, the

dashed line shows the expected straight line,εnum = ε. The numer-
ical calculations have been carried out in the Pauli-error basis using
CVX-SeDuMi package.

A. Full data set, varying ε

We start with calculating the process matrixχCS by solv-
ing the ℓ1-minimization problem, Eqs. (10) and (11), using
the full data set and varying the noise parameterε. The result-
ing matrix is compared with the LS resultχfull and with the
ideal matrixχideal. Figure1 shows the corresponding fideli-
tiesF (χCS, χfull) andF (χCS, χideal) as functions ofε. We
see thatχCS coincides withχfull [so thatF (χCS, χfull) = 1]
at the optimal valueεopt = 0.0199. This is exactly the
noise level corresponding to the LS procedure,||~P exp

full −
Φ~χfull||ℓ2/

√
M = 0.0199. With ε increasing above this level,

the relative fidelity betweenχCS andχfull decreases, but it re-
mains above 0.95 forε < 0.028. Correspondingly, the process
fidelity reported byχCS, i.e.F (χCS, χideal), also changes. It
starts withF (χCS, χideal) = F (χfull, χideal) = 0.907 for
ε = 0.0199, then increases with increasingε, then remains
flat aboveε = 0.025, and then decreases atε > 0.032. We
note that for another set of experimental data (for a CZ gate re-
alized with phase qubits) there was no increasing part of this
curve, and the dependence ofF (χCS, χideal) on ε remained
practically flat for a wide range ofε; one more set of experi-
mental data for phase qubits again had the increasing part of
this curve.

To check how close the result ofℓ1-optimization (10) is to
the upper bound of the condition (11), we calculate the numer-
ical valueεnum = ||~P exp

full − Φ~χCS||ℓ2/
√
M as a function of

ε. The result is shown in the inset of Fig.1, we see thatεnum
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FIG. 2: (color online) The CS method results using a reduced data
set with randomly chosenmconf configurations. The red (upper)
line shows the fidelityF (χCS, χfull) between the CS-estimated pro-
cess matrixχCS and the matrixχfull obtained from the full data
set. The blue (lower) line shows the estimated process fidelity
Fχ = F (χCS, χideal). The procedure of randomly choosingmconf

out of 144 configurations is repeated 50 times; the error barsshow the
calculated standard deviations. The noise parameterε = 0.002015
is chosen slightly aboveεopt. The calculations are carried out in
the Pauli-error basis using CVX-SeDuMi. The experimental data are
for the CZ gate realized with Xmon qubits; the process fidelity is
F (χfull, χideal) = 0.907.

is quite close toε. The CVX-SeDuMi package does not solve
the optimization problem for values of the noise parameterε
below the optimal valueεopt.

Finding a proper value ofε to be used in the CS method
is not a trivial problem, since for the reduced data set we
cannot findεopt in the way we used. Therefore, the value
of ε should be estimated either from some prior informa-
tion about the noise level in the system or by trying to solve
the ℓ1-minimization problem with varying value ofε. Note
that the noise level||~P exp − Φ~χideal||ℓ2/

√
M defined by the

ideal process is not a good estimate ofεopt; in particular for
our full data it is 0.035, which is significantly higher than
εopt = 0.0199.

B. Reduced data set, near-optimalε

Now we apply the CS method to a reduced data set, by ran-
domly choosingmconf out of Mconf = 144 configurations,
while using all 4 probabilities for each configuration. (There-
fore the number of used probabilities ism = 4mconf instead
of M = 4Mconf in the full data set.) For the noise levelε we
use a value slightly larger thanεopt [25]. If a value too close
to εopt is used, then the optimization procedure often does not
find a solution; this happens when we choose configurations
with a relatively large level of noise in the measured proba-
bility values. For the figures presented in this subsection we
usedε = 0.02015, which for the full data set corresponds to
the fidelity of 0.995 compared withχfull and to the process
fidelity of 0.910 (see Fig.1).

Figure2 shows the fidelitiesF (χCS, χfull) (upper line) and
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F (χCS, χideal) (lower line) versus the numbermconf of used
configurations. For each value ofmconf we repeat the proce-
dure 50 times, choosing different random configurations. The
error bars in Fig.2 show the standard deviations (±σ) calcu-
lated using these 50 numerical experiments, while the central
points correspond to the average values.

We see that the upper (red) line starts with fidelity
F (χCS, χfull) = 0.995 for the full data set (mconf = 144)
and decreases with decreasingmconf . It is important that this
decrease is not very strong, so that we can reconstruct the pro-
cess matrix reasonably accurately, using only a small fraction
of the QPT data. We emphasize that the system of equations
(5) in the standard QPT procedure becomes underdetermined
atmconf < 80; nevertheless, the CS method reconstructsχfull

quite well formconf & 40 and still gives reasonable results
for mconf & 20. In particular, formconf between 40 and
80, the reconstruction fidelityF (χCS, χfull) changes between
0.96 and 0.98.

The lower (blue) line in Fig.2 shows that the process fi-
delity Fχ = F (χCS, χideal) can also be found quite accu-
rately, using onlymconf & 40 configurations (the line re-
mains practically flat), and the CS method still works rea-
sonably well down tomconf & 20. Even though the blue
line remains practically flat down tomconf ≃ 40, the error
bars grow, which means that in a particular experiment with
substantially reduced set of QPT data, the estimated process
fidelity Fχ may noticeably differ from the actual value. It is
interesting that the error bars become very large at approxi-
mately the same value (mconf ≃ 20), for which the average
values for the red and blue lines become unacceptably low.

Figure3 shows examples of the CS estimated process ma-
tricesχCS for mconf = 72 (middle panel) andmconf = 36
(lower panel), together with the full-data process matrixχfull

(upper panel). The process matrices are drawn in the Pauli-
error basis to display the process imperfections more clearly.
The peakχII,II is off the scale and is cut arbitrarily. We
see that the CS estimated process matrices are different from
the full-data matrix; however the positions of the main peaks
are reproduced exactly, and their heights are also reproduced
rather well (for a small number of selected configurations the
peaks sometimes appear at wrong positions). It is interesting
to see that the CS procedure suppressed the height of minor
peaks. Note that both presentedχCS are based on the data
sets corresponding to underdetermined system of equations.

The computer resources needed for the calculation of re-
sults presented in Fig. 2 are not demanding. The calculations
require about 30 MB of computer memory and 2–4 seconds
time for a modest PC per individual calculation (smaller time
for smaller number of configurations).

Besides the presented results, we have also performed anal-
ysis for the CS QPT of two CZ gates based on phase qubits.
The results are qualitatively similar, except the process fidelity
for phase-qubit gates was significantly lower: 0.62 and 0.51.
The results for one of these gates are presented in Fig.4. Com-
paring with Fig.2, we see that CS QPT works better for this
lower-fidelity gate. In particular, the blue line in Fig.4 is
practically flat down tomconf ≃ 20 and the error bars are
quite small. We think that the CS QPT works better for a
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FIG. 3: (color online) (a) The process matrixχfull based on the
full data set (144 configurations) and (b,c) the CS-estimated matrices
χCS using a reduced data set: 72 configurations (b) and 36 configu-
rations (c). The process matrices are shown in the Pauli-error basis.
The main elementχII,II (process fidelity) is off the scale and there-
fore is cut; its height is 0.907, 0.918, and 0.899 for the panels (a), (b),
and (c), respectively. All other peaks characterize imperfections. The
fidelity F (χCS, χfull) for the matrices in panels (b) and (c) is equal
to 0.981 and 0.968, respectively. The middle and lower panels use
the data set, corresponding to underdetermined systems of equations.

lower-fidelity gate because experimental imperfections affect
the measurement error relatively less in this case than for a
higher-fidelity gate.

Thus, our results show that for a CZ gate realized with su-
perconducting qubits CS QPT can reduce the number of used
QPT configurations by up to a factor of 7 compared with full
QPT, and up to a factor of 4 compared with the threshold at
which the system of equations for the standard QPT becomes
underdetemined.

C. Reduced data set, nonoptimalε

As mentioned above, in a QPT experiment with a reduced
data set, there is no straightforward way to find the near-
optimal value of the noise parameterε (which we find here
from the full data set). Therefore, it is important to check how
well the CS method works when a nonoptimal value ofε is
used. Figure5 shows the results similar to those in Fig.2, but
with several values of the noise parameter:ε/εopt = 1.01,
1.2, 1.4, 1.6, and 1.8. The upper panel shows the fidelity be-
tween the matrixχCS and the full-data matrixχfull; the lower
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FIG. 4: (color online) Similar to Fig. 2, but for the CZ gate re-
alized with superconducting phase qubits. The process fidelity
F (χfull, χideal) = 0.51 is much lower than that for the Xmon qubit
gate. As we see, CS QPT works significantly better for this lower-
fidelity gate than for the better gate presented in Fig. 2.

panel shows the process fidelityF (χCS, χideal). We see that
the fidelity of theχmatrix estimation,F (χCS, χfull), becomes
monotonously worse with increasingε, while the estimated
process fidelity,F (χCS, χideal), may become larger when a
nonoptimalε is used.

Similar results (not presented here) for the CZ gate based
on phase qubits (see Fig.4) have shown significantly better
tolerance to a nonoptimal choice ofε; in particular, even for
ε = 3εopt the process fidelity practically coincides with the
blue line in Fig.4 (obtained forε ≈ εopt). We believe the
lower gate fidelity for phase qubits is responsible for this rel-
ative insensitivity to the choice ofε.

D. Comparison between Pauli-error and SVD bases

So far for the CS method we have used the Pauli-error basis,
in which the process matrixχ is expected to be approximately
sparse because the ideal process matrixχideal contains only
one non-zero element,χideal,II,II = 1. However, there are an
infinite number of the operator bases with this property: for
example, the SVD basis (see Appendix B) suggested in Refs.
[24] and [25]. The process matrix is different in the Pauli-
error and SVD bases, therefore the CS optimization should
produce different results. To compare the results, we do the
CS optimization in the SVD basis, then convert the resulting
matrix χ into the Pauli-error basis, and calculate the fidelity
F (χCS−SVD, χCS) between the transformed process matrix
and the matrixχCS obtained using optimization in the Pauli-
error basis directly.

The green line in Fig.6showsF (χCS−SVD, χCS) as a func-
tion of the selected size of the data set for the CZ gate realized
with Xmon qubits, similar to Fig.2 (the sameε is used). We
also show the fidelity between the SVD-basis-obtained matrix
χCS−SVD and the full-data matrixχfull as well as the ideal
process matrixχideal. For comparison we also include the
lines shown in Fig.2 (dashed lines), obtained using the Pauli-
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FIG. 5: (color online) (a) FidelityF (χCS, χfull) of the process ma-
trix estimation and (b) the estimated process fidelityF (χCS, χideal)
as functions of the data set size for several values of the noise pa-
rameterε used in the CS optimization:ε/εopt = 1.01, 1.2, 1.4, 1.6,
and 1.8. Error bars show the standard deviations calculatedusing 50
random selections of reduced data sets. The red lines are thesame as
the lines in Fig. 2.

error basis. As we see, the results obtained in the two bases
are close to each other, though the SVD basis seems to work
a little better at small data sizes,mconf ≃ 20. The visual
comparison ofχ-matrices obtained in these bases (as in Fig.
3, not presented here) also shows that they are quite similar.
It should be noted that the calculations in the SVD basis are
somewhat faster (∼2 seconds per point) and require less mem-
ory (∼6 MB) than the calculations in the Pauli-error basis.
This is because the matrixΦ defined in Eq. (5) for the CZ gate
contains about half the number of non-zero elements in the
SVD basis than in the Pauli-error basis.

All results presented here are obtained using the CVX-
SeDuMi package. The results for the CZ gate obtained us-
ing the YALMIP-SDPT3 package are similar when the same
value of ε is used. Surprisingly, in our realization of com-
putation, the YALMIP-SDPT3 package still finds reasonable
solutions whenε is significantly smaller thanεopt (even when
ε is zero or negative), so that the problem cannot have a so-
lution; apparently in this case the solver increases the value
of ε until a solution is found. This may seem to be a good
feature of YALMIP-SDPT3. However, usingε < εopt should
decrease the accuracy of the result (see the next subsection).
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FIG. 6: (color online) Comparison between the CS results ob-
tained in the SVD and Pauli-error bases. The green line shows
the relative fidelityF (χCS−SVD, χCS) as a function of the number
mconf of randomly selected configurations. We also show the fi-
delitiesF (χCS−SVD, χfull) (brown line),F (χCS, χfull) (red dashed
line), and process fidelitiesF (χCS−SVD, χideal) (magenta line) and
F (χCS, χideal) (blue dashed line). The dashed lines have been
shown in Fig. 2. The results using the SVD basis are somewhat more
accurate than those for the Pauli-error basis whenmconf < 40.
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underdetermined

FIG. 7: (color online) Comparison between the results obtained by
the LS and CS methods. The solid lines are for the LS method, the
dashed lines (same as in Fig. 2) are for the CS method. The CS
method is more accurate for a substantially reduced data set.

Moreover, YALMIP-SDPT3 does not work well for the Tof-
foli gate discussed in Sec.V. Thus we conclude that CVX-
SeDuMi package is better than YALMIP-SDPT3 package for
our CS calculations. (Note that this finding may be specific to
our system.)

E. Comparison with least-squares minimization

Besides using the CS method for reduced data sets, we also
used the LS minimization [with constraints (2) and (3)] for
the same reduced sets. Solid lines in Fig.7 show the result-
ing fidelityF (χLS, χfull) compared with the full-data process
matrix and the estimated process fidelityF (χLS, χideal).

Somewhat surprisingly, the LS method still works (though

less well) in a significantly underdetermined regime. Naively,
we would expect that in this case Eq. (5) can be satisfied ex-
actly, and there are many exact solutions corresponding to the
null space of the selected part of the matrixΦ. However, nu-
merical results show that in reality Eq. (5) cannot be satisfied
exactly unless the selected data set is very small. The reason is
that the matrixχ has to be positive, and the (corrected) exper-
imental probabilities can be close to the limits of the physical
range or even outside it.

The problem is that the experimental probabilities are not
directly obtained from the experiment, but are corrected for
imperfect measurement fidelity [46]. As a result, they may
become larger than one or smaller than zero. This happens
fairly often for high fidelity gates because for an ideal opera-
tion the measurement results are often zeros and ones, so the
experimental probabilities should also be close to zero or one.
Any additional deviation due to imperfect correction for the
measurement fidelity may then push the probabilities outside
of the physical range. It is obvious that in this case Eq. (5)
cannot be satisfied exactly for any physicalχ. To resolve this
problem one could consider rescaling the probabilities in such
instances, so that they are exactly one or zero instead of ly-
ing outside the range. However, this also does not help much
because a probability of one means that the resulting state is
pure, so this strongly reduces the number of free parameters
in the process matrixχ. As a result, Eq. (5) cannot be satisfied
exactly, and the LS minimization is formally possible even in
the underdetermined case.

Another reason why Eq. (5) may be impossible to satisfy in
the underdetermined case, is that the randomly selected rows
of the matrixΦ can be linearly dependent. Then mathemat-
ically some linear relations between the experimental proba-
bilities must be satisfied, while in reality they are obviously
not satisfied exactly.

These reasons make the LS minimization a mathematically
possible procedure even in the underdetermined regime. How-
ever, as we see from Fig.7, in this case the procedure works
less well than the compressed sensing, estimating the process
matrix and process fidelity with a lower accuracy. Similar cal-
culations for the CZ gate realized with phase qubits (not pre-
sented here) also show that the LS method does not work well
at relatively smallmconf . The advantage of the compressed
sensing in comparison with the LS minimization becomes
even stronger for the three-qubit Toffoli gate considered in the
next section. Note though that when the selected data set is
large enough to give an overdetermined system of equations
(5), the LS method works better than the CS method. There-
fore, the compressed sensing is beneficial only for a substan-
tially reduced (underdetermined) data set, which is exactly the
desired regime of operation.

V. THREE-QUBIT CS QPT FOR TOFFOLI GATE

In this section we apply the compressed sensing method
to simulated tomographic data corresponding to a three-qubit
Toffoli gate [1, 46, 50, 66, 67]. As discussed in Sec.III , the
process matrix of a three-qubit gate contains163−43 = 4032
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independent real parameters, while the full QPT requires
Mconf = 123 = 1728 measurement configurations yielding
a total ofM = 123 × 23 = 13824 experimental probabili-
ties, if we usenin = 4 initial states andnR = 3 measurement
rotations per qubit, with all qubits measured independently.
If we work with a partial data set, the system of equations
(5) becomes underdetermined if the numbermconf of used
configurations is less than4032/7 = 576. In such a regime
the traditional maximum likelihood or LS methods are not ex-
pected to provide a good estimate of the process matrix. In
this section we demonstrate that for our simulated Toffoli gate
the compressed sensing method works well even for a much
smaller number of configurations,mconf ≪ 576.

For the analysis we have simulated experimental data cor-
responding to a noisy Toffoli gate by adding truncated Gaus-
sian noise with a small amplitude to each ofM = 13824
ideal measurement probabilitiesP ideal

i . We assumed the set
of experimental probabilities in Eq. (5) to be of the form
P exp
i = P ideal

i + ∆Pi, where∆Pi are random numbers sam-
pled from the normal distribution with zero mean and a small
standard deviationσ. By choosing different values of the stan-
dard deviationσ we can change the process fidelity of the sim-
ulated Toffoli gate: a smaller value ofσ makes the process
fidelity closer to 1. After adding the Gaussian noise∆Pi to
the ideal probabilitiesP ideal

i , we check whether the resulting
simulated probabilitiesP exp

i are in the interval[0, 1]. If a P exp
i

happens to be outside the interval[0, 1], we repeat the pro-
cedure until the conditionP exp

i ∈ [0, 1] is satisfied. Finally,
we renormalize each set of 8 probabilities corresponding to
the same measurement configuration so that these probabili-
ties add up to1.

Thus the simulated imperfect quantum process is defined
byM = 13824 probabilities, corresponding toMconf = 1728
configurations; the process fidelity for a particular realization
(used here) withσ = 0.01 is Fχ = F (χfull, χideal) = 0.959.
We then test efficiency of the compressed sensing method by
randomly selectingmconf ≤ 1728 configurations, finding the
corresponding process matrixχCS, and comparing it with the
full-data matrixχfull by calculating the fidelityF (χCS, χfull).
We also calculate the process fidelityF (χCS, χideal) given by
χCS.

The red line in Fig.8 shows the fidelityF (χCS, χfull) as
a function of the numbermconf of randomly selected config-
urations. The value ofε is chosen to be practically equal to
εopt = ||(~P exp

full − Φ~χfull)||ℓ2/
√
M = 0.01146 (the relative

difference is less than10−3). The ℓ1-minimization is done
using the CVX-SeDuMi package. The error bars are calcu-
lated by repeating the procedure of random selection 7 times.
We see a reasonably high fidelityF (χCS, χfull) of the recon-
structed process matrix even for small numbers of selected
configurations. For example,F (χCS, χfull) = 0.95 for only
mconf = 40 configurations, which represents a reduction by
more than a factor of 40 compared with the full QPT and ap-
proximately a factor of 15 compared with the threshold of the
underdetermined system of equations.

The blue line in Fig. 8 shows the process fidelity
F (χCS, χideal) calculated by the CS method. We see that it
remains practically flat down tomconf & 40, which means
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FIG. 9: (color online) Comparison between the calculationsusing
CS and LS methods for the simulated Toffoli gate. Solid linesare for
the LS method, dashed lines (the same as in Fig. 8) are for the CS
method. In the underdetermined regime the CS-method results are
much better than the LS-method results.

thatχCS can be used efficiently to estimate the actual process
fidelity.

Figure 9 shows similar results calculated using the LS
method (for comparison the lines from Fig.8 are shown by
dashed lines). We see that the LS method still works in the
underdetermined regime (mconf < 576); however, it works
significantly worse than the CS method. As an example, for
mconf = 40 the fidelity of the process matrix estimation using
the LS method isF (χLS, χfull) = 0.86, which is significantly
less thanF (χCS, χfull) = 0.95 for the CS method. Simi-
larly, formconf = 40 the process fidelity obtained via the CS
method,F (χCS, χideal) = 0.96 is close to the full-data value
of 0.959, while the LS-method value,F (χLS, χideal) = 0.85,
is quite different.

Besides using the Pauli-error basis for the results shown in
Fig.8, we have also performed the calculations using the SVD
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basis. The results (not shown) are very close to those in Fig.8,
and the relative fidelityF (χCS−SVD, χCS) is above 0.98 for
mconf > 200 and above 0.95 formconf > 40. We have also
performed the calculations using non-optimal values of the
noise parameterε. In comparison with the results for CZ gate
shown in Fig.5, the results for the Toffoli gate (not shown) are
more sensitive to the variation ofε. In particular, the fidelity
F (χCS, χfull) is about 0.93 forε = 1.2εopt (not significantly
depending onmconf for mconf > 40) and the process fidelity
F (χCS, χideal) for ε = 1.2εopt is approximately 0.93 instead
of the actual value 0.96.

Compared with the two-qubit case, it takes signifi-
cantly more computing time and memory to solve theℓ1-
minimization problem for three qubits. In particular, our cal-
culations in the Pauli-error basis took about 8 hours per point
on a personal computer formconf ≃ 1500 and about 1.5 hours
per point formconf ≃ 40; this is three orders of magnitude
longer than for two qubits. The amount of used computer
memory was 3–10 GB, which is two orders of magnitude
larger than for two qubits. (The calculations in the SVD ba-
sis for the Toffoli gate took 1–3 hours per point and∼2 GB
of memory.) Such a strong scaling of required computer re-
sources with the number of qubits seems to be the limiting
factor in extending the CS QPT beyond three qubits, unless a
more efficient algorithm is found. (Note that LS calculations
required similar amount of memory, but the computation time
was much shorter.)

The presented results have been obtained using the CVX-
SeDuMi package. We also attempted to use the YALMIP-
SDPT3 package. However, in our realization of computation
the calculation results were very unreliable formconf < 200
using the SVD basis, and even worse when the Pauli-error
basis was used. Therefore we decided to use only the CVX-
SeDuMi package for the 3-qubit CS procedure.

VI. STANDARD DEVIATION OF STATE FIDELITY

As shown in previous sections, the process matricesχCS

obtained via the CS method allow us to estimate reliably the
process fidelityFχ = F (χ, χideal) of a gate using just a small
fraction of the full experimental data. WhileFχ is the most
widely used characteristic of an experimental gate accuracy,
it is not the only one. An equivalent characteristic (usually
used in randomized benchmarking) is the average state fi-
delity, defined asFst =

∫
Tr(ρactualρideal) d|ψin〉/

∫
d|ψin〉,

where the integration is over the initial pure states|ψin〉 (us-
ing the Haar measure; it is often assumed that

∫
d|ψin〉 = 1),

while the statesρideal and ρactual are the ideal and actual
final states for the initial state|ψin〉. The average state fi-
delity Fst is sometimes called the “gate fidelity” [18] and
can be naturally measured in the randomized benchmarking
(FRB = Fst); it is linearly related [68, 69] to the process fi-
delity,Fst = (Fχd+1)/(d+1), whered = 2N is the Hilbert
space dimension.

Besides the average state fidelity, an obviously important
characteristic of a gate operation is the worst-case state fi-
delity Fst,min, which is minimized over the initial state. Un-
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FIG. 10: (color online) Blue (upper) line: average state infidelity
1 − Fst for the CS-estimated process matrixχCS as a function of
the selected data set size for the experimental CZ gate (thisline is
linearly related to the blue line in Fig. 2). Brown (lower) line: the
standard deviation of the state fidelity∆Fst, defined via variation of
the initial state, Eq. (16), using the sameχCS. The error bars are
computed by repeating the procedure 50 times with differentrandom
selections of used configurations.

fortunately, the minimum state fidelity is hard to find compu-
tationally even when the process matrixχ is known. Another
natural characteristic is the standard deviation of the state fi-
delity,

∆Fst =

√

F 2
st − Fst

2
, (16)

whereF 2
st =

∫
[Tr(ρactualρideal)]

2 d|ψin〉/
∫
d|ψin〉 is the av-

erage square of the state fidelity. The advantage of∆Fst in
comparison withFst,min is thatF 2

st and∆Fst can be calcu-
lated fromχ in a straightforward way [70, 71]. Our way of
calculatingF 2

st is described in Appendix C [see Eq. (C10)].

We have analyzed numerically how well the CS QPT esti-
mates∆Fst from the reduced data set, using the previously
calculated process matricesχCS for the experimental CZ gate
and the simulated Toffoli gate (considered in Secs.IV andV).
The results are presented in Figs.10 and 11. We show the
average state infidelity,1 − Fst, and the standard deviation
of the state fidelity,∆Fst, as functions of the number of se-
lected configurations,mconf . The random selection of used
configurations is repeated 50 times for Fig.10 (7 times for
Fig.11), the error bars show the statistical variation, while the
dots show the average values.

As seen from Figs.10and11, the CS method estimates rea-
sonably well not only the average state fidelityFst (which is
equivalent toFχ presented in Figs.2 and8), but also its stan-
dard deviation∆Fst. It is interesting to note that∆Fst is sig-
nificantly smaller than the infidelity1−Fst, which means that
the state fidelityTr(ρacualρideal) does not vary significantly
for different initial states [the ratio∆Fst/(1 − Fst) is espe-
cially small for the simulated Toffoli gate, though this maybe
because of our particular way of simulation].
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VII. CONCLUSION

In this paper we have numerically analyzed the efficiency of
compressed sensing quantum process tomography (CS QPT)
[24, 25] applied to superconducting qubits (we did not con-
sider the CS method of Refs. [31, 32]). We have used exper-
imental data for two-qubit CZ gates realized with Xmon and
phase qubits, and simulated data for the three-qubit Toffoli
gate with numerically added noise. We have shown that CS
QPT permits a reasonably high fidelity estimation of the pro-
cess matrix from a substantially reduced data set compared to
the full QPT. In particular, for the CZ gate (Fig.2) the amount
of data can be reduced by a factor of∼7 compared to the full
QPT (which is a factor of∼4 compared to the threshold of un-
derdetermined system of equations). For the Toffoli gate (Fig.
8) the data reduction factor is∼40 compared to the full QPT
(∼15 compared to the threshold of underdeterminacy).

In our analysis we have primarily used two characteris-
tics. The first characteristic is the comparison between the
CS-obtained process matrixχCS and the matrixχfull obtained
from the full data set; this comparison is quantitatively repre-
sented by the fidelityF (χCS, χfull). The second characteris-
tic is how well the CS method estimates the process fidelity
Fχ, i.e., how closeF (χCS, χideal) is to the full-data value
F (χfull, χideal). Besides these two characteristics, we have
also calculated the standard deviation of the state fidelity∆Fst

[Eq. (16)] and checked how well the CS method estimates
∆Fst from a reduced data set (Figs.10 and11). Our com-
pressed sensing method depends on the choice of the basis, in
which the process matrix should be approximately sparse, and
also depends on the choice of the noise parameterε [see Eq.
(11)]. We have used two bases: the Pauli-error basis and the
SVD basis. The results obtained in both bases are similar to
each other, though the SVD basis required less computational
resources. The issue of choosing properε is not trivial. In
our calculations we have used a value slightly larger than the
noise level calculated from the full data set. However, in an
experiment with a reduced data set this way of choosingε is

not possible, so its value should be chosen from an estimate
of the inaccuracy of the experimental probabilities. We have
shown that the CS method tolerates some inaccuracy ofε (up
to ∼60% for the results shown in Fig.5); however, finding a
proper way of choosingε is still an open issue.

We have also compared the performance of the CS method
with the least squares optimization. Somewhat surprisingly,
the LS method can still be applied when the systems of equa-
tions (5) is underdetermined (unless the data set size is too
small). This is because the condition of a process matrix being
physical (positive, trace-preserving) usually makes satisfying
Eqs. (5) impossible. However, even though the LS method
formally works, it gives a less accurate estimate ofχ than
the CS method in the significantly underdetermined regime
(although it does give a better estimate in the overdetermined
regime). The advantage of the CS method over the LS method
is more pronounced for the Toffoli gate (Fig.9).

Thus the CS QPT is useful for two-qubit and three-qubit
quantum gates based on superconducting qubits. The method
offers a very significant reduction of the needed amount of
experimental data. However, the scaling of the required com-
puting resources with the number of qubits seems to be pro-
hibitive: in our calculations it took three orders of magnitude
longer and two orders of magnitude more memory for the
three-qubit-gate calculation than for two qubits. Such a scal-
ing of computing resources seems to be a limiting factor in the
application of our implementation of the CS method for QPT
of four or more qubits. Therefore, the development of more
efficient numerical algorithms for the CS QPT is an important
task for future research.
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Appendix A: Pauli-error basis

In this Appendix we discuss the definition of the Pauli-error
basis used in this paper. The detailed theory of the QPT in the
Pauli-error basis is presented in Ref. [8].

Let us start with description of a quantum processE in the
Pauli basis{Pα},

ρin 7→ E(ρin) =
d2

∑

α,β=1

χαβPαρ
inP†

β, (A1)
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where for generalityP is not necessarily Hermitian (to include
the modified Pauli basis, in whichY = −iσy). Recall that
d = 2N is the dimension of the Hilbert space forN qubits.

In order to compare the processE with a desired unitary ro-
tationU [i.e. with the mapU(ρin) = UρinU †], let us formally
apply the inverse unitaryU−1 = U † after the processE . The
resulting composed process

Ẽ = U−1 ◦ E (A2)

characterizes the error: ifE is close to the desiredU , then
Ẽ is close to the identity (memory) operation. The process
matrix χ̃ of Ẽ in the Pauli basis is what we call in this paper
the process matrix in the Pauli-error basis.

The process matrix̃χ obviously satisfies the relation

∑

α,β

χ̃αβPαρ
inP†

β = U−1




∑

α,β

χαβPαρ
inP†

β



U, (A3)

which can be rewritten as
∑

α,β

χ̃αβ(UPα)ρ
in(UPβ)

† =
∑

α,β

χαβPαρ
inP†

β . (A4)

Therefore the error matrix̃χ is formally the process matrix of
the original mapE , expressed in the operator basis

Eα = UPα. (A5)

This is the Pauli-error basis used in our paper. (Another obvi-
ous way to define the error basis is to useEα = PαU [8];
however, we do not use this second definition here.) The
Pauli-error basis matricesEα have the same normalization as
the Pauli matrices,

〈Eα|Eβ〉 = Tr(E†
αEβ) = d δαβ . (A6)

The matricesχ andχ̃ (in the Pauli and Pauli-error bases) are
related via unitary transformation,

χ̃ = V χV †, Vαβ = Tr(P†
αU

†Pβ)/d. (A7)

The matrixχ̃ has a number of convenient properties [8]. It
has only one large element, which is at the upper left cor-
ner and corresponds to the process fidelity,χ̃II = Fχ =
F (χ, χideal). All other non-zero elements of̃χ describe im-
perfections. In particular, the imaginary elements in the left
column (or upper row) characterize unitary imperfections (as-
suming the standard non-modified Pauli basis), other off-
diagonal elements are due to decoherence, and the diagonal
elements correspond to the error probabilities in the Pauli-
twirling approximation.

Appendix B: SVD basis

The SVD basis used in this paper is introduced following
Ref. [24]. Let us start with the so-called natural basis ford×d
matrices, which consists of matricesEnat

α , having one element

equal to one, while other elements are zero. The numbering
corresponds to the vectorized form obtained by stacking the
columns: forα = (d − 1)i + j the matrix is(Enat

α )lk =
δilδjk. For a desired unitary rotationU , the process matrix
χnat in the natural basis can be obtained by expandingU in
the natural basis,U =

∑

α uαE
nat
α , and then constructing the

outer product,

χnat
αβ = uαu

∗
β. (B1)

For example, for the ideal CZ gate the componentsuα
are(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,−1), andχnat has 16
non-zero elements, equal to±1. Note thatχnat is a rank-1
matrix withTr(χnat) =

∑

α |uα|2 = d.
We then apply numerical procedure of the SVD decompo-

sition, which diagonalizes the matrixχnat for the desired uni-
tary process,

χnat = V diag(d, 0, . . . , 0)V †, (B2)

whereV is a unitaryd2 × d2 matrix and the only non-zero
eigenvalue is equal tod becauseTr(χnat) = d. The columns
of thus obtained transformation matrixV are the vectorized
forms of thus introduced SVD-basis matricesESVD

α ,

ESVD
α =

d2

∑

β=1

VβαE
nat
β . (B3)

Note that the notationV used in Appendix A has a different
meaning.

The matrices of the SVD basis introduced via Eqs. (B2) and
(B3) have the different normalization compared with the Pauli
basis,

Tr(ESVD†
α ESVD

β ) = δαβ. (B4)

Correspondingly, the normalization of the process matrix
χSVD in the SVD basis isTrχSVD = d (for a trace-preserving
process). For the ideal unitary process the matrixχSVD has
one non-zero (top left) element, which is equal to

√
d. For an

imperfect realization of the desired unitary operation thetop
left element is related to the process fidelity asχSVD

11 = Fχd.
Note that when the numerical SVD procedure (B2) is ap-

plied toχnat of ideal CZ and/or Toffoli gates, many (most) of
the resulting SVD-basis matricesESVD

α coincide with the ma-
trices of the natural basisEnat

α . Since these matrices contain
only one non-zero element, the matrixΦ in Eq. (5) is sim-
pler (has more zero elements) than for the Pauli or Pauli-error
basis. (The number of non-zero elements ofΦ in the SVD
basis is crudely twice less for the CZ gate and 4 times less for
the Toffoli gate.) As the result, from the computational point
of view it is easier to use the SVD basis than the Pauli-error
basis: less memory and less computational time are needed.

Appendix C: Average square of state fidelity

In this subsection we present a detailed derivation of an ex-
plicit formula for the squared state fidelityF 2

st, averaged over
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all pure initial states, for a quantum operation, represented via
Kraus operators. We follow the same steps as in Ref. [71],
where a closed-form expression forF 2

st in terms of the pro-
cess matrixχ was presented. Although our approach is not
new, we show it here for completeness.

We begin by writing the quantum operation asE = U ◦
Ẽ [see Eq. (A2)], whereU corresponds to the ideal (desired)
unitary operation, while the map̃E accounts for the errors in
the actual gate. Let

Ẽ(ρ) =
∑

n

AnρA
†
n (C1)

be the operator-sum representation ofẼ , where{An}d
2

n=1 are
Kraus operators satisfying the trace-preservation condition
∑

nA
†
nAn = I. The Kraus operators can be easily obtained

from the process matrixχαβ describing the operationE . Note
that by diagonalizingχ, i.e.,χ = V DV †, where V is unitary
andD = diag(λ1, λ2, . . .) with λn ≥ 0, we can express the
Kraus operators in Eq. (C1) asAn =

√
λn U

†
∑

αEαVαn,
whereU is the desired unitary.

Now, the state fidelityFφ (assuming a pure initial state|φ〉)
can be written in terms of{An} as follows:

Fφ ≡ 〈φ| Ẽ(φ) |φ〉 =
∑

n

〈φ|An |φ〉 〈φ|A†
n |φ〉 . (C2)

Notice that by using the identityTr(A⊗B) = Tr(A)Tr(B),
one can rewrite the above expression forFφ as

Fφ =
∑

n

Tr [(An ⊗A†
n)(|φ〉 〈φ|⊗2)], (C3)

where the notation|φ〉 〈φ|⊗k ≡ |φ〉 〈φ| ⊗ |φ〉 〈φ| . . .⊗ |φ〉 〈φ|
︸ ︷︷ ︸

k

means that the state is copied ink identical Hilbert spaces.
Similarly, one can express the squared state fidelity as

F 2
φ =

∑

n,m

〈φ|An |φ〉 〈φ|A†
n |φ〉 〈φ|Am |φ〉 〈φ|A†

m |φ〉

=
∑

n,m

Tr
[
(An ⊗A†

n ⊗Am ⊗A†
m)(|φ〉 〈φ|⊗4

)
]
. (C4)

In order to compute the average state fidelityFst =
∫
Fφ dφ,

the average square of the state fidelityF 2
st =

∫
F 2
φ dφ, and

higher powers ofFst (we assume the normalized integration
over the initial pure states,

∫
dφ = 1), one can use the follow-

ing result [72]
∫

|φ〉 〈φ|⊗k
dφ =

1
(
k+d−1
d−1

) Πk, Πk ≡ 1

k!

∑

σ∈Sk

Pσ. (C5)

Hereσ is an element of the permutation groupSk (thek! per-
mutations ofk objects) and the operatorPσ is the representa-
tion of σ in H⊗k = H⊗ . . .H

︸ ︷︷ ︸

k

, i.e.,

Pσ(|φ1〉 ⊗ |φ2〉 . . .⊗ |φk〉) = |φσ(1)〉 ⊗ |φσ(2)〉 . . .⊗ |φσ(k)〉 .
(C6)

(The operatorPσ acts on the wavefunction ofkN qubits by
permutingk blocks, each containingN qubits.)

In view of the above discussion, we see that thekth moment
F k
st ≡

∫
F k
φ dφ can be expressed as a sum of(2k)! terms cor-

responding to the elements inS2k [note thatk in Eqs. (C5)
and (C6) is now replaced with2k],

F k
st =

∑

n1...nk

∑

σ∈S2k

Tr[(An1
⊗A†

n1
⊗ . . . Ank

⊗A†
nk
)Pσ]

(
2k+d−1

d−1

)
(2k)!

.

(C7)
For example, the average state fidelityFst is determined by
the sum overS2,

Tr(An ⊗A†
n Π2) =

1

2

∑

σ∈S2

Tr(An ⊗A†
nPσ)

=
1

2

∑

σ∈S2

∑

i1,i2

〈i1, i2|An ⊗A†
n |σ(i1), σ(i2)〉

=
1

2
(Tr(An)Tr(A

†
n)

︸ ︷︷ ︸

identity

) + Tr(AnA
†
n)

︸ ︷︷ ︸

transposition

), (C8)

which yields the well-known result [69]

Fst =
1

d(d + 1)

(
∑

n

|Tr(An)|2 + d

)

. (C9)

In order to expressF 2
st in terms of Kraus operators, it is con-

venient to write each element of the groupS4 as a product of
disjoint cycles. The 24 elements of the permutation groupsS4

can be grouped as follows (we use the so-called cycle notation
for permutations):

• Identity (1 element): (1)(2)(3)(4) (this notation means
that no change of position occurs for all numbers in the se-
quence 1234);

• Transpositions (6 elements): (12), (13), (14), (23), (24),
and (34) (this notations means that only two specified numbers
in the sequence are exchanged);

• 3-cycles (8 elements): (123), (132), (124), (142), (134),
(143), (234), and (243) [here the notation (123) means the
permutation 1→2→3→1, while the remaining number does
not change];

• Products of transpositions (3 elements): (12)(34),
(13)(24), and (14)(23) (two pairs of numbers exchange);

• 4-cycles (6 elements): (1234), (1243), (1324), (1342),
(1423), and (1432) [here (1234) means the permutation
1→2→3→4→1].

This classification simplifies keeping track of the terms
Nσ ≡ ∑

n,mTr
[(
An ⊗ A†

n ⊗ Am ⊗ A†
m

)
Pσ

]
in Eq. (C7).

The corresponding contributions to the sum
∑

σ∈S4
Nσ are
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the following:

Identity:
(∑

n

|Tr(An

)
|2)2.

Transpositions:

2d
∑

n

|Tr(An)|2 + 2
∑

n,m

Tr(AnA
†
m)Tr(A†

n)Tr(Am)

+
∑

n,m

(Tr(AnAm)Tr(A†
n)Tr(A

†
m) + h.c).

3-cycles:

4
∑

n

|Tr(An)|2 + 2
∑

n,m

(Tr(AnA
†
nAm)Tr(A†

m) + h.c).

Products of transpositions:

d2 +
∑

n,m

(|Tr(AnAm)|2 + |Tr(AnA
†
m)|2).

4-cycles:

3d+
∑

n,m

Tr(AnA
†
nAmA

†
m) + 2

∑

n,m

Tr(AnAmA
†
nA

†
m).

(We used the trace-preservation condition
∑

nA
†
nAn = I).

Substituting the above terms in Eq. (C7) (with k = 2), we
finally obtain the average square of the state fidelity,

F 2
st =

1

d(d+ 1)(d+ 2)(d+ 3)

(

d2 + 3d

+2(d+ 2)
∑

n

|Tr(An)|2 +
(∑

n

|Tr(An)|2
)2

+
∑

n,m

(
|Tr(AnAm)|2 + |Tr(AnA

†
m)|2

)

+2
∑

n,m

Tr(AnAmA
†
nA

†
m) +

∑

n,m

Tr(AnA
†
nAmA

†
m)

+2
∑

n,m

Tr(AnA
†
m)Tr(A†

n)Tr(Am)

+2
∑

n,m

Re[Tr(AnAm)Tr(A†
n)Tr(A

†
m)]

+4
∑

n,m

Re[Tr(AnA
†
nA

†
m)Tr(Am)]

)

. (C10)

This is the formula we used in this paper to calculateF 2
st.
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