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Compressed sensing quantum process tomography for supemducting quantum gates
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J. Wennet, John M. Martinig, Robert L. Kosut, and Alexander N. Korotkov
! Department of Electrical Engineering, University of California, Riverside, California 92521, USA
2Department of Physics, University of California, Santa Barbara, California 93106, USA
33C Solutions, 1261 Oakmead Parkway, Sunnyvale, California 94085, USA
(Dated: July 4, 2014)

We apply the method of compressed sensing (CS) quantum gzrdoenography (QPT) to characterize
quantum gates based on superconducting Xmon and phase.qulsiing experimental data for a two-qubit
controlled-Z gate, we obtain an estimate for the processixngtwith reasonably high fidelity compared to full
QPT, but using a significantly reduced set of initial stated measurement configurations. We show that the
CS method still works when the amount of used data is so shalthe standard QPT would have an underde-
termined system of equations. We also apply the CS methduktartalysis of the three-qubit Toffoli gate with
numerically added noise, and similarly show that the methorks well for a substantially reduced set of data.
For the CS calculations we use two different bases in whietptiocess matrix is approximately sparse, and
show that the resulting estimates of the process matricéshneach other with reasonably high fidelity. For
both two-qubit and three-qubit gates, we characterize tiamiym process by not only its process matrix and
fidelity, but also by the corresponding standard deviatitegfined via variation of the state fidelity for different
initial states.

PACS numbers: 03.65.Wj, 03.67.Lx, 85.25.Cp

I. INTRODUCTION be used to improve the performance of the gates.
Recently, a new approach to QPT which incorporates ideas
. . . . ____from signal processing theory has been proposed([24, 25].
An important chaIIe_nge. In quantum |nformat|on_ SCIENCETha hasic idea is to combine standard QPT with compressed
and quantum computing is the experimental realization ogensing (CS) theory [25-29], which asserts that sparse sig-
high-fidelity quantum operations on multi-qubit systems. ¢’ may he efficiently recovered even when heavily under-
Quantum process tomography (QPT)[1-3] is a procedure de's'ampled. As a result, compressed sensing quantum process

vised to_ fully characterize a qua_ntum operation. The rOIfatomography (CS QPT) enables one to recover the process ma-
of QPT in experimental characterization of quantum gates igy | “trom far fewer experimental configurations than stan-
twofold. First, it allows us to quantify the quality of thetga 4, § QPT. The method proposed inl[24, 25] is hoped to pro-
that is, it tells us how close the actual and desired quantun)ija an exponential speed-up over standard QPT. In partic-

ope_rations are. Shecond, QPT mlay aid i%agnosinr? a}nd COliar, for ad-dimensional system the method is supposed to
recting errors in the experimental operation J4-8]. Theomp require onlyO(s log d) experimental probabilities to produce

tance of QPT has led to extensive theoretical research sn thé good estimate of the process matyixif x is known to be

subject (e.g.[19=14)). s-compressible [30] in some known basis. (For comparison,
Although conceptually simple, QPT suffers from a funda-standard QPT requires at led$tprobabilities, wherd = 2V
mental drawback: the number of required experimental confor N qubits.) Note that there are bases in which the pro-
figurations scales exponentially with the number of qubitscess matrix describing the target process (the desiredrynit
(e.g., [15]). AnN-qubit quantum operation can be repre- operation) is maximally sparse, i.e. containing only ong-no
sented by alV x 4V process matrix [1] containing16Y  zero element; for example, this is the case for the so-called
independent real parameters (¥ — 4 parameters for singular-value-decomposition (SVD) basis [24] and theliPau
a trace-preserving operation) which can be determined eerror basis[[8]. Therefore, if the actual process is close to
perimentally by QPT. Therefore, even for few-qubit systemsthe ideal (target) process, then it is plausible to expeitith
QPT involves collecting large amounts of tomographic datgprocess matrix is approximately sparse when written in such
and heavy classical postprocessing. To alleviate the enobl a basis[[25]. The CS QPT method was experimentally vali-
of exponential scaling of QPT resources, alternative mizho dated in Ref.[[25] for a photonic two-qubit controlled-Z (CZ
have been developed, e.g., randomized benchmatking [16-18ate. In that experiment, sufficiently accurate estimatete
and Monte Carlo process certification[19] 20]. These protoprocess matrix were obtained via CS QPT using much fewer
cols, however, find only the fidelity of an operation insteadexperimental configurations than the standard QPT.
of its full process matrix. Both randomized benchmarking The CS idea also inspired another (quite different) algo-
and Monte Carlo process certification have been demongtrateithm for quantum state tomography (QST)![81] 32], which
experimentally for superconducting qubit gates (5ee[[21-2 can be generalized to QPIE[ 33]. This matrix-completion
and references therein). Although these protocols aréezffic method of CS QST estimates the density matrices of nearly
tools for the verification of quantum gates, their limitaties  pure (low rankr) d-dimensional quantum states from expec-
in the fact that they do not provide any description of partic tation values of onlyO(rd poly logd) observables, instead
lar errors affecting a given process and therefore theyaann of ¢> observables required for standard QST. It is important
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to mention that this method does not require any assumptionl. METHODS OF QUANTUM PROCESS TOMOGRAPHY
about the quantum state of a system, except that it must be a

low-rank state (in particular, we do not need to know theestat A.  Standard Quantum Process Tomography
approximately). The CS QST method has been used to recon-

struct the quantum states of a 4-qubit photonic sysfem [34] : : : .
. ) . ] . The idea behind QPT is to reconstruct a quantum operation
and cesium atomic spin$_[35]. In Réf. [32] it has been shown s i — £(y) from experimental data. The quantum

that using the Jamiotkowski process-state isomorphisnj [3 operation is a completely positive map, which for Arqubit

the formalism of CS QST can also be applied to the QPT, re- . . ) .
quiring O(rd? poly log d) measured probabilities (whereis system prepared in the state with density matix can be

the rank of the Jamiotkowski state) to produce a good estiyvntten as

mate of the process matrix. Therefore there is crudely a 22

square-root speedup compared with standard QPT. Note that E(p™) = Z XapEa o Ef, (1)
this algorithm requires exponentially more resources than f
CS QPT method of Ref._[25], but it does not require to know
a particular basis in which the matrixis sparse. The perfor- whered — 2% is the dimension of the systeny, € Cd®xd
mance of these tvvp methods has been compar_ed inthe rgcqgtthe process matrix anflE, € C?xd} is a,chosen ba-
paperlEB] for a simulated quantum system with dimensio is of operators. We assume that this basis is orthogonal,
d = 5; the reported result is that the method of Ref) [32] (Eu|Es) = Tr(ELEs) = Q b5, whereQ — d for the Paul
works better for coherent errors, while the method of Ré] [2 bagis gnd_PauIi-grrgr b_asis av[\B/’h'r@e -1 fo_r the SVD basis

is better for incoherent errors. (see Appendices A and B). Note that for a trace-preserving
operationTr(yx) = 1if Q = d, while Tr(x) = dif Q = 1.
In this paper we implicitly assume the usual normalization
@ = d, unless mentioned otherwise. The process matrix
In this paper we apply the method of Réf.|[25] to the two-is positive semidefinite (which implies being Hermitiamda

qubit CZ gate realized with superconducting qubits. Usheggt e also assume it to be trace-preserving,
experimental results, we find that CS QPT works reasonably

well when the number of used experimental configurations is X >0 (positive semidefinitg 2
up to~7 times less than for standard QPT. Using simulations

a,f=1

d2
for a three-qubit Toffoli gate, we find that the reduction-fac i -
; > . BB, =1 (T 3
tor is ~40, compared with standard QPT. In the analysis we a,@ZZI XabZp a  (trace preserving 3)

calculate two fidelities: the fidelity of the CS QPT-estinthte
process matrixccs compared with the matrixg,; from the
full data set and compared witfyq.. for the ideal unitary These conditions ensure théf = £(p'™") is a legitimate den-
process. Besides calculating the fidelities, we also caleul sity matrix for an arbitrary (legitimate) input stat&*. The
the standard deviation of the fidelity, defined via the vasiat  condition B) reduces the number of real independent parame-
of the state fidelity for different initial states. We shovath tersiny fromd* to d* — d?. Hence, the number of parameters
this characteristic is also estimated reasonably well liygus needed to fully specify the mapscales a£)(16") with the
the CS QPT. number of qubitsV. Note that the set of allowed process ma-

tricesy defined by Eqs@) and B) is convex[24] 37].

The essential idea of standard QPT is to exploit the linear-
ity of the map [[) by preparing the qubits in different initial
Our paper is structured as follows. Seciifiis a brief re- ~ States, applying the quantum gate, and then measuring a set

view of standard QPT and CS QPT. In SHE we discuss of observable_s until the colleqte_d datq allows us to obtaén t
the set of measurement configurations used to collect QPRrocess maitrix through matrix inversion or other methods.
data for superconducting qubits, and also briefly discuss ouMore precisely, if the qubits are prepared in the stgtethen
way to compute the process matgivia compressed sensing. the probability of finding them in the (measured) state)
In Sec[IVlwe present our numerical results for the CS QPT2fter applying the gate is given by
of a superconducting two-qubit CZ gate. In this section we ) '
also compare numerical results obtained by applying the CS P, = Tr(ILE(p})) = ZTI'(HiEap}gn DXas: (@)
QPT method in two different operator bases, the Pauli-error a8
basis and the SVD basis. In SB8we study the CS QPT of
a simulated three-qubit Toffoli gate with numerically adde wherell; = |#;) (¢:[. By preparing the qubits in one of the
noise. Then in Se®/T]we use the process matrices obtainedlinearly independentinput stat¢s'", . .. pii. } and perform-
via compressed sensing to estimate the standard devidtion &g a series of projective measuremefiis, .. ., Ily,,.,. } on
the state fidelity, with varying initial state. Sectifillis a  the output states, one obtains a setof= Ni, Nyeas Proba-
conclusion. In Appendices we discuss the Pauli-error basibilities { P;; } which, using Eq.4), may be written as
(Appendix A), SVD basis (Appendix B), and calculation of .
the average square of the state fidelity (Appendix C). P(x) = o, (5)



3

whereﬁ(x) € C™*1 andy € C**1 are vectorized forms where we phenomenologically introduced an additional pa-

of {Pix} and x.p, respectively. Then x d* transforma- rametera, so that fora > 1 the minimization reduces to the

tion matrix® has entries given b o5 = Tr(IL; E,pf? Ef,). LS method, while fora < 1 it is close to the ML method
(the parameted characterizes the relative importance of non-

{II,,...,My,...}, one could invert Eq[8) and thus uniquely ~replaced byP;*"(1 — P;*") (see[[38]), which corresponds to
find x by using the experimental set of probabilitié&®.  the binomial distribution variance.
In practice, however, because of experimental unceréginti N this paper we use the LS methdd) (or the standard
present inPe® the process matrix thus obtained may beQPT' In pze;lrglcular, we find the process mgt)glpgn for the full
4 =exX| . P = =exX| .

non-physical, that is, inconsistent with the conditid®sgnd ~ data set,;; by minimizing || P(xsun) — Pr.ylle,, subject to
@. In standard QPT this problem is remedied by finding theconditions Egs.) and @). Note that such minimization is
physical process matrix [satisfyin@} and )] that minimizes ~ & convex optimization problem and therefore computatignal
(in some sense) the difference between the probabilitig ~ ractable.
and the experimental probabilitiés*P,

) ) B. Compressed Sensing Quantum Process Tomography

Two popular methods used to estimate a physical process

matrix y compatible with the exE erimental data are the maxi-

A If the number of available experimental probabilities is
mum likelihood (ML) method [[36-40] (see algo [41] 42]) and : )
the least-squares (LS) methdd |[21) 43, 44]. The ML metho&mallerthan the number of independent parameters in the pro

C . cess matrix (i.em < d* —d?), then the set of linear equations
minimizes the cost function [38] Eqg. [ for the process matrix becomes underdetermined.
exp Actually, the LS method may still formally work in this case

Cur = - Zj Py In P;(x), 6 for some range ofn, but, as discussed in SefgElandVl it
is less effective.
where the indexj labels the measured probabilities, while By using the ideas of compressed sensind [[26-29], the
the LS method (often also called maximum likelihood) min- method of CS QPT requires a significantly smaller set of ex-
imizes the difference betwedp(y) and P? in the {,-norm  perimental data to produce a reasonably accurate estirhate o
sensel[45], so the minimized cost function is the process matrix. Let us formulate the problem mathemati-
cally as follows: we wish to find the physical process matrix
Cus = P00 = P23, = 3 [P = B0l (7)o satisfying the equation
. o P = &y, + 2, 9)
In both methods the conditiorig)(and B) should be satisfied ~
to ensure thaf corresponds to a physical process. This carwhere the vectoP** € C™ (with m < d* — d?) and the ma-
be done in a number of ways, for example, using the Cholesktrix ® € cmxd* are given, whileZ € C™ is an unknown noise
decomposition, or Lagrange multipliers, or just stating th vector, whose elements are assumed to be bounded (in the
conditions[@) and B) as a constraint (if an appropriate soft- root-mean-square sense) by a known limitz]|¢, /v/m < e.
ware package is used). The ML meth}lié naturalwhenthe While this problem seems to be ill-posed since the available
inaccuracy ofP**® is dominated by the statistical error due to information is both noisy and incomplete, in Ref.|[26] it was
a limited number of experimental runs. However, this methodshown that if the vectox, is sufficiently sparse and the ma-
does not work well if a target probabilit}; is near zero, but  trix ¢ satisfies the restricted isometry property (Ri),can
P& is not near zero due to experimental imperfections (e.g.be accurately estimated from E)( Note that the CS tech-
sdark counts”; this is because the cost functi) is very  niques of Ref.[[26] were developed in the context of signal
sensitive to changes iR when P (x) ~ 0. Therefore, the ~processing; to adapt [24] these techniques to QPT we also

LS method[f) is a better choice when the inaccuracﬁ‘ffcp need to include the positivity and trace-preservation ¢ond

: & . tions, Egs.[?) and B).
is not due to a limited number of experimental runs. - . L
Note that other cost functions can also be used for mini-, The idea of CS QPT[25] is to minimize thig-norm [45] of

o . X in a basis wherg is assumed to be approximately sparse.
mlézztloé)lr\]/vtirtﬁ E[cﬁiil;;%;g]r (a);]?smc?tl)?/,iggsrlip(;?eﬁsl%gl\f- Mathematically, the method is solving the following convex
) . J

fect optimization), then expanding the logarithm to second optimization problem:

der, and using conditioh_; P;(x) :gja%cxp (which can- minimize |[x|],, , (10)
cels the first-order term), we obtain [4C},; ~ const + . = = o

> [PPP = Py(x)]? /2P, This leads to another natural cost subject to]|[P(x) — P[], /v/m < & (11)
function and conditionsZ), @).

[Py (x) — POPJ2 As shown in Refs[[25, 28], a faithful reconstruction reagve
C= Z Jchp—']a (8)  of an approximately-sparse process matrig via this opti-
; P +a mization is guaranteed (see below) if (i) the matbisatisfies



the RIP condition,

X1 — PXall7,

1-0s < —
° X1 — XallZ,

<1+ ds, (12)

for all s-sparse vectors (process matricgs)and y-, (ii) the
isometry constand, is sufficiently smallg, < /2 — 1, and
(iii) the number of data points is sufficiently large,

m > Cpslog(d*/s) = O(sN), (13)
whereCj is a constant. Quantitatively, ifcs is the solution

of the optimization problem [Eq4I0) and [L1)], then the es-
timation error|[xcs — xoll,, is bounded as

lIxcs — xolle - Cillxo(s) = xolle,

Jm

wherexo(s) is the bests-sparse approximation ofy, while
C4 andC; are constants of the ordéx(d;). Note that in the

+ Cse, (14)

g

Ill.  STANDARD AND CS QPT OF MULTI-QUBIT
SUPERCONDUCTING GATES

There are several different ways to perform standard QPT
for an N-qubit quantum gate realized with superconducting
qubits [46558]. The differences are the following. First,
it can be performed using either,, = 4 initial states for
each qubit([47-50], e.g{[0),]1),(]0) + [1))/v2,(]0) +
i[1))/v/2}, or usingn;, = 6 initial states per qubit [51, 52],
{10y, (1), (o) £ [1))/v/2, (]0) £ i |1))/+/2}, so that the to-
tal number of initial states i&V;, = n¥. (It is tomograph-
ically sufficient to usen;, = 4, but the set of 6 initial
states is more symmetric, so it can reduce the effect of ex-
perimental imperfections.) Second, the final measurement
of the qubits can be realized in the computational basis af-
ter one out ofng = 3 rotations per qubit [47, 49], e.g.,

Runeas = {1, By */%, RE/*Y, orng, = 4 rotations[21L] 4€, 52],
.9, Rumeas = (LRI, Ry’* R7/*}, or ng = 6 rotations

[46,51,[58], €.9.Rumeas = {I, RT, R=™2 RE™/?). This
Yy Y

noisgless_cases(: 0) the recovery is _exact if the_process gives Nk = nf{ measurement “directions” in the Hilbert
matrix xo is s-sparse. Also note that while the required num-space. Third, it may be possible to measure the state of each

ber of data points» and the recovery accuracy depend on thequbit simultaneouslm

sparsitys, the method itself [Eqs[I0) and [[T)] does not de-
pend ons, and therefore need not be known.
The inequality[[3) and the first term in the inequalitf4)

.49, so that the probabiifier

all 2V outcomes are measured, or it may be technically possi-
ble to measure the probability for only one state ($ay,0))

or a weighed sum of the probabilitiés [48] 50, 51]. Therefore

indicate that the CS QPT method is supposed to work welthe number of measured probabilities for each configuration

only if the actual process matrixo is sufficiently sparse.
Therefore, it is important to use an operator bddis, } [see
Eqg. @], in which the ideal (desired) process matfixica iS

is either Ny = 2V (with 2 — 1 independent probabili-
ties, since their sum is equal 1) 8f,,,, = 1. Note that if
Nprob, = 2%, then usinger = 6 rotations per qubit formally

maximally sparse, i.e., it contains only one nonzero elémengives the same probabilities as fog = 3, and in an experi-

Then it is plausible to expect the actual process matsixo
be approximately spars

ment this formal symmetry can be used to improve the accu-

25]. In this paper we will use tworacy of the results. In contrast, in the case wién., = 1,

bases in which the ideal process matrix is maximally sparsehe use ofng = 4 or ng = 6 are natural for the complete
These are the so-called Pauli-error basis [8] and the SVD baemography.

sis of the ideal unitary operation [24]. In the Pauli-errasts

Thus, the number of measurement configurations (includ-

{E,}, the first element; coincides with the desired unitary ing input state and rotations) in standard QPTMS,ns =

U, while other elements are related via tNequbit Pauli ma-
tricesP, so thatE, = UP,. Inthe SVD basis?; = U/4d,

NinNr = niin¥, while the total number of probabilities in
the data set i9/ = McontNprob. This number of probabili-

and other elements are obtained via a numerical SVD proceies can be as large dd = 72" for n;, = 6, ng = 6, and

dure. More details about the Pauli-error and SVD bases arg/,,,,;, = 2V (with 72V

discussed in Appendices A and B.

— 36" independent probabilities).
Since onlyl6" — 4" independent probabilities are necessary

As mentioned previously, the method of CS QPT involvesfor the standard QPT, a natural choice for a shorter expetime

the RIP condition[T2) for the transformation matri®. In
Ref. [25] it was shown that if the transformation matfixin
Eqg. @ is constructed from randomly selected input staigs
and random measurementis, then® obeys the RIP condi-
tion with high probability. Notice that once a ba$ig, } and
a tomographically complete (or overcomplete) &g, I1;}
have been chosen, the matiy, corresponding to the full

iSnin = 4, nr = 3, andNp,on = 2V; thenM = 24V, with
24N — 12V independent probabilities. .., = 1 due to
the limitations of the measurement technique, then theralatu
choices arey;,, = 4 andng = 4, giving M = 16" orn;, = 4
andngr = 6, giving M = 24",

In this paper we focus on the casg, = 4, ng = 3, and
Nprob = 2. Then for a two-qubit quantum gate there are

data set is fully defined, since it does not depend on the ex/, . = 12 = 144 measurement configurations affl =
perimental outcomes. Therefore, the mentioned abovetresul4N — 576 probabilities (432 of them independent). For a

of Ref. [25] tells us that if we build a matri&,, by randomly
selectingm rows from®yy,, then®,,, is very likely to satisfy

the RIP condition. Hence, the submatd, < (Cde4,

three-qubit gate there ae..,; = 1728 configurations and
M = 13824 probabilities (12096 of them independent).
The main experimental data used in this paper are for the

together with the corresponding set of experimental oum two-qubit CZ gate realized with Xmon qubits [54]. The data
P®P ¢ C™ can be used to produce an estimate of the processere obtained witm;, = 6, ng = 6, and Ny, = 2N,

matrix via the/;-minimization procedurdl0 and [L1).

However, since the main emphasis of this paper is analysis



of the QPT with a reduced data set, we started by reducin§ince0 < F' < 1, we refer tol — F' as the infidelity.

the data set ta, = 4 andng = 3 by using only the cor-  After calculatingys. for the full data set, we can calculate
responding probabilities and removing other data. We willits fidelity compared to the process mathixi.; of the de-
refer to these data as “full data” (with/..,s = 144 and  sired ideal unitary operatioy, = Frun = F(Xtull, Xideal)-

M = 24~ = 576). For testing the CS method we randomly This is the main number used to characterize the qualityef th
choosemcont < Meone configurations, with corresponding quantum operation.

m = dmeont €Xperimental probabilities3¢reons Of them in- Then we calculate the compressed-sensing process matrix
dependent). S|nqe the process malyixs characterized by yos by solving the/;-minimization problem described by
16" — 4% = 240 independent parameters, the power of theggs. {{g) and [LT), using the reduced data set. It is obtained
CS method is most evident whem.o.s < 80, so that the sys-  from the full data set by randomly selecting.o.: configura-
tem of equationsd) is underdetermined. [For a three-qubit tions out of the full numbed..n; configurations. We use the
gate the system of equations becomes underdetermined fﬁae"ty F(xcs, xsan) to quantify how well the process matrix
Meont < (167 —4%)/(2Y — 1) = 576.] _ ycs approximates the matrixsu obtained from full tomo-
The data used for the analysis here were taken on a differegfaphic data. Additionally, we calculate the process figleli
device from the one used in Ref. [55]. For the device used herp(XCS’Xidcal) betweenycs and the ideal operation, to see
the qubits were coupled via a bus, and the entangling gate by closely it estimates the process fideliy, obtained us-
tween qubits A and B was implemented with three muItiqubiting the full data set.
operations; 1) swap state from qubit B to bus,.2) CZ gate be- Since both the least-squares and ¢h@orm minimization
tween qubit A and bus, 3) swap back to qubit B. The swap, o ¢,nyex optimization problends [44] 61], they can be effi-
was done with the resonant Strauch gate [56], by detuning N&ently solved numerically. We used two ways for MATLAB-
frequency of qubit A with a square pulse. Generating a squargaseq nymerical calculations: (1) using the package CVX
pulse is experimentally challenging, moreover this gateda ], which calls the convex solver SeDuML [63]; or (2) us-

single optimum in pulse amplitude and time. We also note tha] g the package YALMIP{[@4], which calls the convex solver

the qubit frequency control was not optimized for imperfec-SDPT3 [65]. In ;
. ) e : ) . In general, we have found that for our particu-
tions in the control wiring, as described in RELI[57] (sewal lar realization of computation, CVX with the solver SeDuMi

Fig. S4 in Supplementary Information 6f[55]). The combina- < hetter than the combination YALMIP-SDPT3 (more
tion of device, non-optimal control, and multiple operagp details are below)

leads to the experimental process fidelty = 0.91 of the
CZ gate used for the analysis here to be significantly less tha

the randomized benchmarking fidelifg s = 0.994 reported

in [@]. Moreover, QPT necessarily includes state prepara- IV. RESULTS FOR TWO-QUBIT CZ GATE
tion and measurement (SPAM) errars|[18], while randomized
benchmarking does not suffer from these errors. This is why
we intentionally used the data for a not-well-optimized CZ

gate so that the gate error dominates over the SPAM error xplained above, the full data set consists\bf— 576 mea-

(.Not_e that we use corr_ection for the imperfect measurement, o4 probabilities (432 of them independent), corresjpand
fidelity [46]; however, it does not remove the measuremenf "y " "o T T ) configurations with 4 oroba-
con - - 7

errors completely.) It should also be mentioned that in theoilities (3 of them independent) for each configurationse Th

i _ —N
:‘tijdeeal‘iltcaifeéu_ }; Xse_d Eé geF ;}3)h; (Ile:szthar:'t?l(e)z trr;;\?l(?oFr’r;rizeé'S method using the full data set produces the process matrix
bencri/markir?gfidelity ghtly Xfull which ha§ the process fideliﬂ(xfun,Xideal) = 0.907
For the full d ’ f' lcul h . relative to the ideal CZ operation. Note that our full data se
or the full data set, we first calculate the process maltrixg actually a subset of an even larger data set (as explained
Xtan DY using the least-squares method described at the end gf y,o previous section), and thematrix calculated from the
SecllIAl For that we use three different operator bajsgs}: initial set corresponds to the process fidelity of 0.928difte

the Pauli basis, the Pauh-e_rror ba5|s., and the SVD basie. Thference gives a crude estimate of the overall accuracy of the
pre-computed transformation matidxin Eq. (5) depends on procedure

the choice of the basis, thus giving a basis-dependentfesul . . . .
vrun. We then check that the results essentially coincide by The CS method calculations were mainly done in the Pauli-

convertingy¢,1 between the bases and calculating the fidelityerror basis, using the CVX-SeDuMi combination for the
between the corresponding matrices (the infidelity is fotand
be less than0~"). The fidelity between two process matrices

@ andy. is defined as the square of the Uhimann fidelity [58,
]

In this section we present results for the experimental CZ
ate realized with superconducting Xmon quidits [54, 55]. As

norm minimization. This is what is implicitly assumed inghi
section, unless specified otherwise. Note that the CS-rdetho
optimization is very different from the LS method. Therefor
even for the full data set we would expect the process matrix
xcs to be different fromyy,;. Moreover,xcs depends on

2 the noise parameter [see Eq.[[T)], which to some extent
) ; (15)  is arbitrary. To clarify the role of the parameterwe will

first discuss the CS method applied to the full data set, with

so that it reduces t&'(x1, x2) = Tr(x1x2) [60] when atleast  varyinge, and then discuss the CS QPT for a reduced data set,
one of the process matrices corresponds to a unitary operati using either near-optimal or non-optimal valueg of

1/2 1/2
F(x1,x2) = (Tr 1 xe xt/
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. . FIG. 2: (color online) The CS method results using a reduced d
FIG. 1. (cqlor onh_ne) The CS QPT procedure, applle_d to the fu set with randomly chosem..s configurations. The red (upper)
data.set., with varying noise parameteiThe red (upper) line ;hows line shows the fidelity”(ycs, yri1) between the CS-estimated pro-
the fidelity #"(xcs, xrun) between the process matrpos obtained  cosq matrixy o and the matrixyrn obtained from the full data
using the compressed-sensing method and the nmjxobtalned set. The blue (lower) line shows the estimated process tfideli
using Fhe !east-squares met_hod. The blue (onver) line sltlt_uwpro- Fy, = F(xcs, Xideal). The procedure of randomly choosing.ons
cess f'_del'tyF(?‘cs’Xideal)’ i.e., compared with the matrixiqeal out of 144 configurations is repeated 50 times; the errorsiars the
of the ideal unitary process. The vertical dashed browndme-  c5|qjated standard deviations. The noise parameter0.002015
sponds to the noise levelp: = [|Pi7 — PXtunlle, /VM = 9-0199 is chosen slightly above,,;. The calculations are carried out in
obtained in the LS procedure. The inset shaws, = ||P) —  the Pauli-error basis using CVX-SeDuMi. The experimenédhdire
®Xcsl|e, /v/M as a function ok (green line); for comparison, the for the CZ gate realized with Xmon qubits; the process figatt
dashed line shows the expected straight ling,, = . The numer-  F(xfull, Xideal) = 0.907.
ical calculations have been carried out in the Pauli-erasiusing

CVX-SeDuMi package.
is quite close ta. The CVX-SeDuMi package does not solve

the optimization problem for values of the noise parameter
below the optimal value,p.
Finding a proper value of to be used in the CS method
) ) ) is not a trivial problem, since for the reduced data set we
_ We start with calculating the process matkix.s by SOlv-  cannot finde,,; in the way we used. Therefore, the value
ing the (,-minimization problem, Eqs[IQ and [, using  of - should be estimated either from some prior informa-
the full data set and varying the noise parametdihe result-  tjon about the noise level in the system or by trying to solve
ing matrix is compared with the LS resuff.; and with the — he ¢, -minimization problem with varying value of. Note
iQeaI matriXyiqea. Figuredl shows the corres_ponding fideli- 4 -t the noise |evdu3cxp — B ¥iteall|e, /M defined by the
ties F'(xcs, xrun) and F(xcs; Xideat) @S functions of. We  ijaa) process is not a good estimate=gf;; in particular for
see thalycs coincides withqun [S0 thatF(xos, xiun) =11~ our full data it is 0.035, which is significantly higher than
at the optimal value,,e = 0.0199. This is exactly the ot = 0.0199.
noise level corresponding to the LS procedufid?> — ’
OXrunt||e,/V'M = 0.0199. With ¢ increasing above this level,
the relative fidelity betweegcs andyy, decreases, but it re- B. Reduced data set, near-optimat
mains above 0.95 far < 0.028. Correspondingly, the process
fidelity reported byxcs, i.e. F'(xcs, Xidea1), @lS0 changes. It oy we apply the CS method to a reduced data set, by ran-
starts With F'(xcs, Xideal) = F(Xfun; Xideal) = 0.907 for  gomiv choosingneons out of Moo = 144 configurations,
e = 0.0199, then increases with increasiagthen remains hiie'ysing all 4 probabilities for each configuration. (Tée
flat aboves = 0.025, and then decreasesat> 0.032. We  tqrq the number of used probabilitiesis = 41mcons instead
note that for another set of experimental data (fora CZ gate r of M = 4M,.¢ in the full data set.) For the noise levelve
alized with phase qubits) there was no increasing pa_rt of thi ;g6 4 value slightly larger tham,, [25]. If a value too close
curve, and the dependence Bfxcs, Xidcal) ON € remained 4, Eopt IS Used, then the optimization procedure often does not
practically flat for a wide range af, one more set of experi- finq 5 solution: this happens when we choose configurations
mental data for phase qubits again had the increasing part Qi 5 relatively large level of noise in the measured proba-
this curve. bility values. For the figures presented in this subsectien w
To check how close the result 6f-optimization [0 is to  useds = 0.02015, which for the full data set corresponds to
the upper bound of the conditidii), we calculate the numer- the fidelity of 0.995 compared witls,;; and to the process
ical valueeum = ||PoP — ®xcs)le,/v/M as a function of ~ fidelity of 0.910 (see Fidl).
. The result is shown in the inset of Fil.we see that, Figurel2 shows the fidelitied"(xcs, xsun) (Upper line) and

A. Full data set, varying e



F(xcs, Xideal) (lower line) versus the numbei.,,¢ of used
configurations. For each value of..,,; we repeat the proce- o4
dure 50 times, choosing different random configurationg Th .
error bars in FigZ show the standard deviations ) calcu- '
lated using these 50 numerical experiments, while the akntr  ©
points correspond to the average values. m
We see that the upper (red) line starts with fidelity

F(xcs, xran) = 0.995 for the full data setsiconr = 144)

and decreases with decreasing,,s. It is important that this
decrease is not very strong, so that we can reconstructéhe pr 004
cess matrix reasonably accurately, using only a smallitract ,
of the QPT data. We emphasize that the system of equation
(B in the standard QPT procedure becomes underdetermine
atmeonr < 80; nevertheless, the CS method reconstrygts -
quite well form.ons = 40 and still gives reasonable results

for meont = 20. In particular, forme.,r between 40 and
80, the reconstruction fidelit¥’ (xcs, xru1) changes between
0.96 and 0.98. 004
The lower (blue) line in Figl2 shows that the process fi- o0
delity F, = F(xcs, Xideal) Can also be found quite accu-
rately, using onlymeons 2 40 configurations (the line re-
mains practically flat), and the CS method still works rea-
sonably well down tom..ns = 20. Even though the blue

line remains practically flat down tou..,s ~ 40, the error

bars grow, which means that in a particular experiment withr g 3: (color online) (a) The process matrix.; based on the
substantially reduced set of QPT data, the estimated pBocefu|l data set (144 configurations) and (b,c) the CS-estithatatrices
fidelity 7, may noticeably differ from the actual value. Itis ycs using a reduced data set: 72 configurations (b) and 36 configu-
interesting that the error bars become very large at approxrations (c). The process matrices are shown in the Pauwli-basis.
mately the same valuer(...; ~ 20), for which the average The main element;;,1r (process fidelity) is off the scale and there-
values for the red and blue lines become unacceptably low. foreis cut; its heightis 0.907, 0.918, and 0.899 for the =@, (b),
Figurel@ shows examples of the CS estimated process m __(r;dl_(c), respectively. fA” ct)1ther peaks c_haractelnzimmgnbns_. The |
trices yos fOr meonr — 72 (Middle panel) andneons — 36 idelity F'(xcs, xrun) for the matrices in panels (b) and (c) is equa

. . to 0.981 and 0.968, respectively. The middle and lower pansé

(lower panel), together with the fu_II—data process mWMl the data set, corresponding to underdetermined systengsiafiens.
(upper panel). The process matrices are drawn in the Pauli-
error basis to display the process imperfections morelglear
ce thatthe €5 esimated process matrces are difirent rol /-l gate because experimental imperfectiofcaf

= o ; the measurement error relatively less in this case than for a
the full-data matrix; however the positions of the main meak higher-fidelity gate
are reproduced exactly, and their heights are also repeaduc Th It. how that C7 at lized with su-
rather well (for a small number of selected configuratioms th us, our resufts snow that for a gate realized with su
peaks sometimes appear at wrong positions). It is inteigsti per_(I:_ondL:cptmg qu'tiCS QPT :c:an red:cjge the numger_cmjs”ed
to see that the CS procedure suppressed the height of min PT C;nn dI%ur?él(;n:ac¥0$?);(i ?:o?ﬁt(;rr(e) d w?%rr:ﬁgr'cerlrevgﬁoléjat
peaks. Note that both presentgds are based on the data hi ’hth pt f " f F;h tandard OPT b
sets corresponding to underdetermined system of equationsW Ich the System ot equations for the standar Q ecomes

. underdetemined.

The computer resources needed for the calculation of re-
sults presented in Fig. 2 are not demanding. The calcukation
require about 30 MB of computer memory and 2—4 seconds
time for a modest PC per individual calculation (smallereim C. Reduced data set, nonoptimat
for smaller number of configurations).

Besides the presented results, we have also performed anal-As mentioned above, in a QPT experiment with a reduced
ysis for the CS QPT of two CZ gates based on phase qubitslata set, there is no straightforward way to find the near-
The results are qualitatively similar, except the procesdify ~ optimal value of the noise parametefwhich we find here
for phase-qubit gates was significantly lower: 0.62 and 0.51from the full data set). Therefore, itis important to cheokh
The results for one of these gates are presented illFgom-  well the CS method works when a nonoptimal value 6§
paring with Figl2, we see that CS QPT works better for this used. Figur® shows the results similar to those in H&jbut
lower-fidelity gate. In particular, the blue line in Fig.is  with several values of the noise parametefz,,, = 1.01,
practically flat down tom..,: ~ 20 and the error bars are 1.2,1.4, 1.6, and 1.8. The upper panel shows the fidelity be-
quite small. We think that the CS QPT works better for atween the matrix cs and the full-data matrix¢,;; the lower

Im (a)
04 00 Atull, 144 conf.

Im(y) (c)
044 Xcs, 36 conf.

77 1
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FIG. 4: (color online) Similar to Fig12, but for the CZ gate re )
alized with superconducting phase qubits. The processitfidel 0.95 : . . ]
F(Xtunl, Xidea1) = 0.51 is much lower than that for the Xmon qubit ~ — JI—<::;—1
gate. As we see, CS QPT works significantly better for thiselew g 0.9¢r ./o_\_{__}_{._a
fidelity gate than for the better gate presented in[Hig. 2. = 0.8 ]
S —— &= 1.0de0p;
T 0.8C —e— =12y |]
panel shows the process fideliBy(xcs, Xideal)- We see that F(xcs, Xidea) | —o— €= Ldegpt
the fidelity of they matrix estimationF'(xcs, xtu1), becomes 0.7% —o— &=1.6eopt
monotonously worse with increasirag while the estimated 0.7¢ ‘ ‘ ‘ | —e—&=18%0p
process fidelity,F'(xcs, Xideal), May become larger when a ) 20 40 60 80 100 120 140
nonoptimak is used. Meont

Similar results (not presented here) for the CZ gate based
on phase qubits (see Fig) have shown significantly better

. . . . FIG. 5: | li Fidelit ai1) of th -
tolerance to a nonoptimal choice gf in particular, even for (color online) (a) Fidelity” (xcs, xrun) of the process ma

trix estimation and (b) the estimated process fidelify cs, Xideal)

e = 3eopt, the process fidelity practically coincides with the
blue line in Fig[4 (obtained fore ~ &,,;). We believe the
lower gate fidelity for phase qubits is responsible for tleis r

~
~

as functions of the data set size for several values of theenga-
rametere used in the CS optimizatior/eopt = 1.01, 1.2, 1.4, 1.6,
and 1.8. Error bars show the standard deviations calculesieg 50

random selections of reduced data sets. The red lines asaihe as
the lines in FigLD.

ative insensitivity to the choice ef

D. Comparison between Pauli-error and SVD bases
error basis. As we see, the results obtained in the two bases

So far for the CS method we have used the Pauli-error basigre close to each other, though the SVD basis seems to work
in which the process matrix is expected to be approximately @ little better at small data sizesycons ~ 20. The visual
sparse because the ideal process matiix.; contains only comparison ofy-matrices obtained in these bases (as in Fig.
one non-zero elementiqe.i 17,77 = 1. However, there are an [3 not presented here) also shows that they are quite similar.
infinite number of the Operator bases with this property: forlt should be noted that the calculations in the SVD basis are
example, the SVD basis (see Appendix B) suggested in Ref§omewhat faster{2 seconds per point) and require less mem-
[24] and [25]. The process matrix is different in the Pauli- Ory (~6 MB) than the calculations in the Pauli-error basis.
error and SVD bases, therefore the CS optimization shouldhis is because the matrixdefined in Eq.[§) for the CZ gate
produce different results. To compare the resu|t5, we do th@ontains about half the number of non-zero elements in the
CS optimization in the SVD basis, then convert the resultingSVD basis than in the Pauli-error basis.
matrix y into the Pauli-error basis, and calculate the fidelity ~All results presented here are obtained using the CVX-
F(xcs—svp, xcs) between the transformed process matrixSeDuMi package. The results for the CZ gate obtained us-
and the matrixycs obtained using optimization in the Pauli- ing the YALMIP-SDPT3 package are similar when the same
error basis directly. value ofe is used. Surprisingly, in our realization of com-

The greenline in FigelshowsF (xcs_svp, xcs) asafunc-  putation, the YALMIP-SDPT3 package still finds reasonable
tion of the selected size of the data set for the CZ gate eshliz solutions wher is significantly smaller than,,; (even when
with Xmon qubits, similar to FigZ (the same: is used). We ¢ is zero or negative), so that the problem cannot have a so-
also show the fidelity between the SVD-basis-obtained matrilution; apparently in this case the solver increases theeval
xcs—svp and the full-data matrix,; as well as the ideal of  until a solution is found. This may seem to be a good
process matrixyideal. FOr comparison we also include the feature of YALMIP-SDPT3. However, using< e, should
lines shown in Fig2 (dashed lines), obtained using the Pauli- decrease the accuracy of the result (see the next subsection
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S v = = less well) in a significantly underdetermined regime. Nigive
0.95 b we would expect that in this case EB) ¢an be satisfied ex-
'“ . ] actly, and there are many exact solutions correspondiritgto t
0.9¢ ¥ 3 null space of the selected part of the matbix However, nu-
2 ] merical results show that in reality E@) (cannot be satisfied
g 0.85r = ] exactly unless the selected data set is very small. Themésiso
= F(XC& svo.Xcs) ] that the matrixy has to be positive, and the (corrected) exper-
0.8C (Xcs-svp.xtull) ] . - SN .
e F(xos,xtul) 1 imental probab|I|t|e_s can be close to the limits of the pbgki
0.75 F(Ycs-svDs Xidea) ] range or even outside it.
-=+== F(xcs,Xidea) ] The problem is that the experimental probabilities are not

directly obtained from the experiment, but are corrected fo
imperfect measurement fidelity [46]. As a result, they may
Meont become larger than one or smaller than zero. This happens
fairly often for high fidelity gates because for an ideal @per
FIG. 6: (color online) Comparison between the CS results obtion the measurement results are often zeros and ones, so the
tained in the SVD and Pauli-error bases. The green line showexperimental probabilities should also be close to zeramer o
the relative fidelity/"(xcs-svp, xcs) as a function of the number  Any additional deviation due to imperfect correction foeth
Mmeont Of randomly selected configurations. We also show the fi-measurement fidelity may then push the probabilities oetsid
delities F'(xcs—svp, xrun) (brown line), F'(xcs, xrun) (red dashed ¢ the physical range. It is obvious that in this case . (

line), and process fidelitieB (xcs—svp, Xideal) (Magenta line) and " : h
Flxes, videat) (blue dashed line). The dashed lines have beencannot be satisfied exactly for any physigalTo resolve this

shown in Fig[R2. The results using the SVD basis are somewbat m problem one could consider rescaling the probab_ilities:'cms
accurate than those for the Pauli-error basis whep,; < 40. instances, so that they are exactly_ one or zero instead of ly-
ing outside the range. However, this also does not help much

because a probability of one means that the resulting state i

O7C I I ]
0 20 40 60 80 100 120 140

1.0C |
pure, so this strongly reduces the number of free parameters
098 1 . in the process matrix. As aresult, EqH) cannot be satisfied
2 i exactly, and the LS minimization is formally possible even i
b i Y yp
s 0-9C i~ i the underdetermined case.
T ogs | 1 Another reason why EdB) may be impossible to satisfy in
= i the underdetermined case, is that the randomly selectesl row
i —= FOyisoxmn)
§ 0.8¢t i . F()(in)('f:” )| of the matrix® can be linearly dependent. Then mathemat-
> i _ e F()aL:sﬁxlf :"’; ically some linear relations between the experimental @rob
L 078§ underdetermine e Flres X_: )| bilities must be satisfied, while in reality they are obvigus
0.7¢ 4 ‘ ‘ ! : o not satisfied exactly.
©0 20 40 60 80 100 120 140 These reasons make the LS minimization a mathematically
Meont possible procedure even in the underdetermined regime- How

ever, as we see from Fig in this case the procedure works
FIG. 7: (color online) Comparison between the results olegiby less well than the compressed sensing, estimating the ggoce

the LS and CS methods. The solid lines are for the LS methed, thmatri_x and process fidelity Wit.h a 'OW_er accuracy. Simildr ca
dashed lines (same as in Fig. 2) are for the CS method. The CQUIat'()nS for the CZ gate realized with phase qubits (not pre
method is more accurate for a substantially reduced data set sented here) also show that the LS method does not work well
at relatively smallm..n¢. The advantage of the compressed
sensing in comparison with the LS minimization becomes
Moreover, YALMIP-SDPT3 does not work well for the Tof- €ven stronger for the three-qubit Toffoli gate considerettie
foli gate discussed in Seffl Thus we conclude that CvX- next section. Note though that when the selected data set is
SeDuMi package is better than YALMIP-SDPT3 package forlarge enough to give an overdetermined system of equations

our CS calculations. (Note that this finding may be specific to®). the LS method works better than the CS method. There-
our system.) fore, the compressed sensing is beneficial only for a substan

tially reduced (underdetermined) data set, which is eyaict
desired regime of operation.

E. Comparison with least-squares minimization

Besides using the CS method for reduced data sets, we also V- THREE-QUBIT CS QPT FOR TOFFOLI GATE
used the LS minimization [with constrain{®)(and B)] for

the same reduced sets. Solid lines in Fghow the result- In this section we apply the compressed sensing method
ing fidelity F'(xLs, xfun) compared with the full-data process to simulated tomographic data corresponding to a threé-qub
matrix and the estimated process fidelityxrs, Yideal)- Toffoli gate [i 6. 67]. As discussed in SHB. the

Somewhat surprisingly, the LS method still works (thoughprocess matrix of a three-qubit gate contai6$— 4> = 4032
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independent real parameters, while the full QPT requires _ 1.0

Meons = 123 = 1728 measurement configurations yielding  §

a total of M = 123 x 23 = 13824 experimental probabili- ;i 0.98- 1
ties, if we usen;, = 4 initial states andhg = 3 measurement 3

rotations per qubit, with all qubits measured indepengentl § 0.96;

If we work with a partial data set, the system of equations —_

(B becomes underdetermined if the numbeyr,,.; of used % 0.94 1
configurations is less that032/7 = 576. In such a regime fj) e Fireston

the traditional maximum likelihood or LS methods are not ex- £ 092 _._F(Xciji;‘eao :
pected to provide a good estimate of the process matrix. Inx’

this section we demonstrate that for our simulated Toffaleg 0.9 5 500 1000 1500
the compressed sensing method works well even for a much

smaller number of configurations,..,; < 576. Meonf

For the analysis we have simulated experimental data cor-
responding to a noisy Toffoli gate by adding truncated GausFIG. 8: (color online) CS QPT for a simulated Toffoli gate.cRime:
sian noise with a small amplitude to eachff = 13824  fidelity F'(xcs, xrun) of the process matrix estimation, blue line: the
ideal measurement probabilitiggd?e®!, We assumed the set ©stimated process fidelit (xcs, Xidea1), both as functions of the

of experimental probabilities in EqB) to be of the form data set size, expressed as the numbegy,s of randomly selected
PP _ pideal | AP whereAP: are random numbers sam- configurations. The full QPT corresponds to 1728 configareti
i — 44 71 )

f : :
pled from the normal distribution with zero mean and a small-5|-|;ée system of equations becomes underdetermined whepy <

standard deviatios. By choosing different values of the stan-
dard deviatiorr we can change the process fidelity of the sim-

ulated Toffoli gate: a smaller value of makes the process 10 R
fidelity closer to 1. After adding the Gaussian noisé; to Soed . 1~ ]
the ideal probabilities®/4°!, we check whether the resulting 2 ~ 't C§\ S =

simulated probabilitie®” are in the intervalo, 1]. If a P7® : 0 %;ﬁﬂﬁ g S e S
happens to be outside the intery@l 1], we repeat the pro- T it

exp

cedure until the conditio®®,™ € [0, 1] is satisfied. Finally,

we renormalize each set Bf 8 probabilities corresponding to 3_-2 0'943 —— Flxis.xmn)
the same measurement configuration so that these probabili- .2 *E(XLS'Xidea') ]
tiesadd up td. g underdetermine - FEXCS,X-M”)I)

Thus the simulated imperfect quantum process is defined 0.9 ‘ - XCs Xidea |
by M = 13824 probabilities, corresponding t .o, = 1728 0 500 1000 150C
configurations; the process fidelity for a particular reagiian Meont

(used here) witlr = 0.01 is F\, = F (Xtull; Xideal) = 0.959.
We then test efficiency of the compressed sensing method

rc?)rrl?eosrggn?j?rl]zcsrog;:necggfrr?atll);zés C;:J'%gﬁggﬂibﬂi?wﬂﬁ tt::g CS and LS methods for th_e simulated Toffoli gate. Solid liawesfor
; 7 A the LS method, dashed lines (the same as in[Fig. 8) are for $he C
full-data matrixy run by calculat|r_lg the f'del'nF(XCSz Xtull)- method. In the underdetermined regime the CS-method searst
We also calculate the process fidelly xcs, Xideal) GIVEN DY mych better than the LS-method results.
XcCs-

The red line in Figl8 shows the fidelity (xcs, Xta1) @s
a function of the numbem...¢ of randomly selected config- thatycs can be used efficiently to estimate the actual process
urations. The value of is chosen to be practically equal to fidelity.
Eopt = ||(POP — ®xran)||e,/VM = 0.01146 (the relative Figure[@ shows similar results calculated using the LS
difference is less tham0—3). The ¢;-minimization is done method (for comparison the lines from F§.are shown by
using the CVX-SeDuMi package. The error bars are calcudashed lines). We see that the LS method still works in the
lated by repeating the procedure of random selection 7 timesinderdetermined regimen(...; < 576); however, it works
We see a reasonably high fideliy( xcs, xrun) Of the recon-  significantly worse than the CS method. As an example, for
structed process matrix even for small numbers of selectegh..,.s = 40 the fidelity of the process matrix estimation using
configurations. For examplé;(xcs, xru1) = 0.95 for only  the LS method iF'(xLs, xfun) = 0.86, which is significantly
meont = 40 configurations, which represents a reduction byless thanF'(xcs, xfuu) = 0.95 for the CS method. Simi-
more than a factor of 40 compared with the full QPT and apAarly, for m..ns = 40 the process fidelity obtained via the CS
proximately a factor of 15 compared with the threshold of themethod,F (xcs, Xidea) = 0.96 is close to the full-data value
underdetermined system of equations. of 0.959, while the LS-method valu&,(xLs, Xideal) = 0.85,

The blue line in Fig.B shows the process fidelity is quite different.
F(xcs, Xideal) Calculated by the CS method. We see that it Besides using the Pauli-error basis for the results shown in
remains practically flat down tew..,s = 40, which means Fig.[8 we have also performed the calculations using the SVD

~

b
I¥IG. 9: (color online) Comparison between the calculatiossg
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basis. The results (not shown) are very close to those if8Fig. 0.30—

and the relative fidelity" (xcs—svp, xcs) is above 0.98 for 025 1
meont > 200 and above 0.95 fom..nr > 40. We have also B ]
performed the calculations using non-optimal values of the| 7 029 —1-Fy
noise parameter. In comparison with the results for CZ gate | i — ARy ]

shown in Fig[, the results for the Toffoli gate (not shown) are = 0.15 1
more sensitive to the variation ef In particular, the fidelity u’ ; ]

F(xcs, xrun) is about 0.93 foe = 1.2¢,,, (not significantly <010 \}\I . . . 1

depending omn.cons for meons > 40) and the process fidelity 0.05- T+ b ]

F(xcs, Xideal) fOr e = 1.2e,p is approximately 0.93 instead E & S .

of the actual vall_Je 0.96. _ _ o 0.0 20 4‘0 éo éo 160 1‘20 1“10
Compared with the two-qubit case, it takes signifi-

cantly more computing time and memory to solve the Meonf

minimization problem for three qubits. In particular, oal-c

culations in the Pauli-error basis took about 8 hours pemtpoi FIG. 10: (color online) Blue (upper) line: average statedelity

on a personal computer fot..,s ~ 1500 and about 1.5 hours 1 — Fs: for the CS-estimated process matfixs as a function of
per point formeens =~ 40; this is three orders of magnitude the selected data set size for the experimental CZ gateliftleiss

longer than for two qubits. The amount of used computefinearly related to the blue line in Figl 2). Brown (lowerd: the
memory was 3—-10 GB, which is two orders of magnitudeStandard deviation of the state fidelityF., defined via variation of

. . - the initial state, Eq.[{16), using the sarges. The error bars are
larger than for two qubits. (The calculations in the SVD ba- ; ° -
sis for the Toffoli gate took 1-3 hours per point an@ GB computed by repeating the procedure 50 times with differ@miom

. . selections of used configurations.
of memory.) Such a strong scaling of required computer re-

sources with the number of qubits seems to be the limiting

factor in extending the CS QPT beyond three qubits, unless a

more efficient algorithm is found. (Note that LS calculagon fortunately, the minimum state fidelity is hard to find compu-

required similar amount of memory, but the computation timetationally even when the process matgixs known. Another

was much shorter.) natural characteristic is the standard deviation of thedta

The presented results have been obtained using the CVdelity,

SeDuMi package. We also attempted to use the YALMIP-

SDPT3 package. However, in our realization of computation —

the calculation results were very unreliable fag,,; < 200 AFy =\ F% —F ", (16)

using the SVD basis, and even worse when the Pauli-error

basis was used. Therefore we decided to use only the CVX- — .

SeDuMi package for the 3-qubit CS procedure. g wheref = I[Tr(pact“a‘pide_a‘)]? dithin)/ [ dlin) is the av-
erage square of the state fidelity. The advantag& Bf; in

comparison WithFy; i, is that /2 and AFy; can be calcu-

lated fromy in a straightforward wayl [70, 71]. Our way of

calculatingF2 is described in Appendix C [see EECI0)].

As shown in previous sections, the process matriges We have analyzed numerically how well the CS QPT esti-
obtained via the CS method allow us to estimate reliably thénatesAFy; from the reduced data set, using the previously
process fidelityF, = F(, xideal) Of @ gate using just a small calculated process matricggs for the experimental CZ gate
fraction of the full experimental data. WhilE, is the most ~and the simulated Toffoli gate (considered in SBgsandV).
widely used characteristic of an experimental gate acgurac The results are presented in Fiil and[l1 We show the
it is not the only one. An equivalent characteristic (usuall average state infidelity, — F5;, and the standard deviation
used in randomized benchmarking) is the average state fRf the state fidelity AFy;, as functions of the number of se-
delity, defined asy, = [ Tr(pactuaipideal) dtin)/ [ djtn), lected configurationsy.cons. The random selection of used
where the integration is over the initial pure staies,) (us- ~ configurations is repeated 50 times for Hid] (7 times for
ing the Haar measure; it is often assumed thays,) = 1), Fig.[LD), the error bars show the statistical variation, while the
while the stateSiea and paciwa are the ideal and actual dots show the average values.
final states for the initial state);,). The average state fi-  As seen from Figfldand1], the CS method estimates rea-
delity F; is sometimes called the “gate fidelity” [18] and sonably well not only the average state fidelfy (which is
can be naturally measured in the randomized benchmarkingquivalent toF’, presented in Fig&and8), but also its stan-
(Frp = Fy); itis linearly related [[68, 69] to the process fi- dard deviatiomA F;. It is interesting to note thak Fy; is sig-
delity, Fyy = (Fyd+1)/(d+ 1), whered = 2% is the Hilbert  nificantly smaller than the infidelity — F.;, which means that
space dimension. the state fidelityTr(pacualPideal) dO€S NOt vary significantly

Besides the average state fidelity, an obviously importantor different initial states [the ratid\ Fy; /(1 — Fy;) is espe-
characteristic of a gate operation is the worst-case state fcially small for the simulated Toffoli gate, though this niasy
delity Fy min, Which is minimized over the initial state. Un- because of our particular way of simulation].

VI. STANDARD DEVIATION OF STATE FIDELITY
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0.1 not possible, so its value should be chosen from an estimate
of the inaccuracy of the experimental probabilities. Weehav
0.0 shown that the CS method tolerates some inaccuraey(yb
P to ~60% for the results shown in Fi); however, finding a
} 00 proper way of choosing is still an open issue.
— We have also compared the performance of the CS method
|_<]._‘7’ 0.0 with the least squares optimization. Somewhat surprigjngl

the LS method can still be applied when the systems of equa-
tions [B) is underdetermined (unless the data set size is too
small). This is because the condition of a process matrixgei
physical (positive, trace-preserving) usually makessfatig
Eqgs. B) impossible. However, even though the LS method
Meonf formally works, it gives a less accurate estimateyothan
the CS method in the significantly underdetermined regime
FIG. 11: (color online) The same as in Aig] 10, but for the $ated  (although it does give a better estimate in the overdetexchin
Toffoli gate. The random selection of configurations is stpd 7 regime). The advantage of the CS method over the LS method
times for each point. The results for the standard deviatidf; are is more pronounced for the Toffoli gate (F@).
multiplied by the factor of 5 for clarity. Thus the CS QPT is useful for two-qubit and three-qubit
guantum gates based on superconducting qubits. The method
offers a very significant reduction of the needed amount of
VIl. CONCLUSION experimental data. However, the scaling of the required-com
puting resources with the number of qubits seems to be pro-
%‘bitive: in our calculations it took three orders of magiali¢
t

0 500 100C 150C

In this paper we have numerically analyzed the efficiency o d tw d ¢ itud for th
compressed sensing quantum process tomography (CS QPPJ'9¢" ag.t ? or Ier? t‘? rr][ﬁgnlfu (:Wmoreb_rpengoryha;)r €
[@, 25] applied to superconducting qubits (we did not con- ree-qubit-gate caicuiation than for two qubits. sucha-sc

sider the CS method of Ref 32]). We have used expelnd Of computing resources seems to be a limiting factorén th
imental data for two-qubit Cgtgates r]galized with Xmon a?]dapphcatmn of our implementation of the CS method for QPT

phase qubits, and simulated data for the three-qubit Joffol©f four or more qubits. Therefore, the development of more

gate with numerically added noise. We have shown that C§fficient numerical algorithms for the CS QPT is an important

QPT permits a reasonably high fidelity estimation of the pro—taSk for future research.

cess matrix from a substantially reduced data set compared t
the full QPT. In particular, for the CZ gate (F@). the amount

of data can be reduced by a factor~of compared to the full
QPT (which is a factor of-4 compared to the threshold of un-

derdetermined system of equations). For the Toffoli gaigs (F _ 1€ authors thank Yuri Bogdanov, Steven Flammia, Justin
B) the data reduction factor is40 compared to the full QPT Dressel, and Eyob Sete for useful discussions. We also thank

(~15 compared to the threshold of underdeterminacy). Matteo Mariantoni for being involved in this work at its earl

. S ._stage. The research was funded by the Office of the Director
In our analysis we have primarily used two characteris- . : .
. , SR . of National Intelligence (ODNI), Intelligence Advanced-Re
tics. The first characteristic is the comparison between the

CS-obtained process matrixss and the matrixcs obtained Search Projects Activity (IARPA), through the Army Reséarc
> RS TR S full & Office Grant No. W911NF-10-1-0334. All statements of fact,
from the full data set; this comparison is quantitativelyree

sented by the fidelity?( ). The second characteris- opinion, or conclusions contained herein are those of the au
= y XCS, Xtull): - . thors and should not be construed as representing the bfficia
tic is how well the CS method estimates the process fidelit

F., i.e., how closeF( wtear) S 10 the full-data value Yiews or policies of IARPA, the ODNI, or the U.S. Govern-
X0 1S \XCS5 Xideal e ment. We also acknowledge support from the ARO MURI
F(xtun, Xideal)- Besides these two characteristics, we hav

also calculated the standard deviation of the state fidAlfy; “Grant No. W911NF-11-1-0268.
[Eq. 8] and checked how well the CS method estimates
AFy from a reduced data set (FigE] and[II). Our com-
pressed sensing method depends on the choice of the basis, in
which the process matrix should be approximately sparsk, an
also depends on the choice of the noise paramefsee Eq.
(ID]. We have used two bases: the Pauli-error basis and t
SVD basis. The results obtained in both bases are similar t hd o f a th
each other, though the SVD basis required less computzhtiona Lel’.tgjs start with description of a quantum procéds the
resources. The issue of choosing propeas not trivial. In auli basis{ P},

our calculations we have used a value slightly larger than th d?

noise level calculated from the full data set. However, in an Pt E(p) = Z Xaﬂpapi“P;7 (A1)
experiment with a reduced data set this way of choosiigy o, B=1
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Appendix A: Pauli-error basis

In this Appendix we discuss the definition of the Pauli-error
asis used in this paper. The detailed theory of the QPT in the
auli-error basis is presented in Réf. [8].
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where for generalit is not necessarily Hermitian (to include equal to one, while other elements are zero. The numbering
the modified Pauli basis, in whicH = —ic,). Recall that corresponds to the vectorized form obtained by stacking the
d = 2" is the dimension of the Hilbert space fr qubits. columns: fora = (d — 1)i + j the matrix is(E2*);, =

In order to compare the proceSsvith a desired unitary ro-  §,,0,;,. For a desired unitary rotatioli, the process matrix
tationU [i.e. with the mag/(p™™) = Up™UT], letus formally ~ x™#* in the natural basis can be obtained by expandinig
apply the inverse unitary/ ! = U after the proces§. The  the natural basid/ = Y u,E"*, and then constructing the
resulting composed process outer product,

E=U"oE (A2) Xof = tatl. (B1)

characterizes the error: # is close to the desiret!, then ~ For example, for the ideal CZ gate the componeats
£ is close to the identity (memory) operation. The procesgire(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0, 1), andx"*" has 16
matrix Y of € in the Pauli basis is what we call in this paper non-zero elements, equal tol. Note thaty"*" is a rank-1
the process matrix in the Pauli-error basis. matrix with Tr(x"*) = 3= [ua|* = d.
The process matrix obviously satisfies the relation We then apply numerical procedure of the SVD decompo-
sition, which diagonalizes the matri®®t for the desired uni-
T T tary process,
- in —1 in
aZﬁXaﬁpap 7),8 U aZﬁXaﬁ,Pap 7),8 U, (A3) Xnat _ leag:(d, 0,..., O)VT, (BZ)

whereV is a unitaryd? x d? matrix and the only non-zero
eigenvalue is equal t@ becausélr(y***) = d. The columns

Yas(UPL)P™UP:) =3 vasPap™Pi.  (A4)  of thus obtained transformation matrix are the vectorized
QZB plUP)A"(UPs) Z ? g forms of thus introduced SVD-basis matridg$"?,

which can be rewritten as

a,f
Therefore the error matrix is formally the process matrix of d* ,
the original magt, expressed in the operator basis ESVP = " Vo B (B3)
B=1
E,=UP,. (A5)

Note that the notatio used in Appendix A has a different

This is the Pauli-error basis used in our paper. (Anothei-obvy Meaning. . _
ous way to define the error basis is to Use = P, U [8]; The matrices of the SVD basis introduced via EB&)(@nd
however, we do not use this second definition here.) ThdB3) have the different normalization compared with the Pauli
Pauli-error basis matricgs,, have the same normalization as Pasis,
the Pauli matrices,
Te(Eg PTERYP) = dap. (B4)
_ t _
(Ea|Bp) = Tr(EeEp) = ddap. (A8) " correspondingly, the normalization of the process matrix
SVD ; . SVD __ _ ;
The matrices; andy (in the Pauli and Pauli-error bases) are X in the SVD bg5|s IS = d (for atrace presDervmg
related via unitary transformation process). For the ideal unitary process the matfiX® has
’ one non-zero (top left) element, which is equalfd. For an
¥ =VxVT, Vg = Te(PLUTPs)/d. (A7)  imperfect realization of the desired unitary operation tthe
’ ( 5)/ left element is related to the process fidelity gy ® = F d.
The matrixy has a number of convenient propertigs [8]. It ~Note that when the numerical SVD procedUB2) is ap-
has only one large element, which is at the upper left corplied tox*** of ideal CZ and/or Toffoli gates, many (most) of
ner and corresponds to the process fidelityy = F, =  theresulting SVD-basis matricé% V" coincide with the ma-
F(x, Xidea1)- All other non-zero elements af describe im- trices of the natural basig”?'. Since these matrices contain
perfections. In particular, the imaginary elements in #fe | only one non-zero element, the matrixin Eq. §) is sim-
column (or upper row) characterize unitary imperfecticass ( pler_(has more zero elements) than for the Pauli or Pauirerr
suming the standard non-modified Pauli basis), other offbasis. (The number of non-zero elementsboin the SVD
diagonal elements are due to decoherence, and the diagorsis is crudely twice less for the CZ gate and 4 times less for
elements correspond to the error probabilities in the Paulithe Toffoli gate.) As the result, from the computationalrgoi
twirling approximation. of view it is easier to use the SVD basis than the Pauli-error
basis: less memory and less computational time are needed.

Appendix B: SVD basis
Appendix C: Average square of state fidelity
The SVD basis used in this paper is introduced following
Ref. ], Let us start with the so-called natural basis#ard In this subsection we present a detailﬂ derivation of an ex-
matrices, which consists of matrice§>*, having one element  plicit formula for the squared state fidelify?, averaged over
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all pure initial states, for a quantum operation, represgiita  (The operator”, acts on the wavefunction &fN qubits by
Kraus operators. We follow the same steps as in Ref. [71]permutingk blocks, each containingy qubits.)

where a closed-form expression fBf in terms of the pro- | view of the above discussion, we see thatittremoment
cess matrixy was presented. Although our approach is nOtF_sli = Fj d¢ can be expressed as a sur(®#)! terms cor-
new, we show it here for completeness. responding to the elements By, [note thatk in Egs. ICH

_ We begin by writing the quantum operation 8&s= U/ o and is now replaced witf2]
£ [see EQq.[A2)], wherel{ corresponds to the ideal (desired) ' '

unitary operation, while the map accounts for the errors in

the actual gate. Let Z Z Tr[(An, ® Ajn ®...An, ® Ajlk)pa]
- Tk M1k oESok
E(p) = AnpAl c1 st = -
(p) = > AnpAl (C1) ¢ (EFTY (2]
" (C7)

be the operator-sum representatiorfof/vhere{An}‘ff:l are For example, the average state fidelRy is determined by
Kraus operators satisfying the trace-preservation cimdit the sum ovesy,

>, Al A, = L. The Kraus operators can be easily obtained

from the process matrix.s describing the operatiafi. Note 1

that by diagonalizing, i.e.,x = VDV, where V is unitary Te(A, @ Af IIp) = ) Z Te(A, @ Al Py)

andD = diagA1, Ae, ...) with A,, > 0, we can express the o€S2
Kraus operators in EqIQD) as A4, = VA, U, EoaVan, _1 il A o AT ol ,
whereU is the desired unitary. 2 U; ; (1] An @ A, (i), 0(i2))
Now, the state fidelity”, (assuming a pure initial state)) ) 2
can be written in terms ofA4,,} as follows: = —(Tr(A,) Tr(Al)) + Tr(A, Al)), (C8)
2 —_——
F¢ = <¢| g(¢) |¢> _ Z <¢| A, |¢> <¢| Ajz |¢> ) (CZ) identity transposition

n

Notice that by using the identityr(A @ B) = Tr(A) Tr(B),
one can rewrite the above expressionfgras

Fy =Y Tr[(A, @ AL)(9) (1)), (C3) Fy = ﬁ (Z | Tr(An)[* + d) . (©9

which yields the well-known result [69]

where the notatioty) (6| = [6) (8| ® |¢) (¢] ... ® |¢) (¢]

Y Inorder to expresE_S% in terms of Kraus operators, it is con-
means that the state is copiednidentical Hilbert spaces. Vvenient to write each element of the grofipas a product of

Similarly, one can express the squared state fidelity as disjoint cycles. The 24 elements of the permutation grdiips
can be grouped as follows (we use the so-called cycle natatio
Fj =) (0l Aul@) (] AL 9) (9] Am |9) (#] Af, |9) for permutations):
n,m e Identity (1 element): (1)(2)(3)(4) (this notation means
= ZTr [(An @ Al @ A, @ A6 (|0) <¢|®4)]. (c4) that no change of position occurs for all numbers in the se-
o guence 1234);

R e Transpositions (6 elements): (12), (13), (14), (23), (24),
In order to compute the average state_ﬁdeﬂ;y = [ Fsdo, and (34) (this notations means that only two specified number
the average square of the state fidelity = qu% d¢, and  in the sequence are exchanged);

higher powers ofy, (we assume the normalized integration .
OWE o ) e 3-cycles (8 elements): (123), (132), (124), (142), (134),
ﬁ*\ve:égﬁllrli_%gl pure state d = 1), one can use the follow (143), (234), and (243) [here the notation (123) means the
9 permutation +»2—3—1, while the remaining number does
not changey;

1
[16) 01 0 = s, o= 23 o (C8)

( o ) ' e Products of transpositions (3 elements): (12)(34),

(13)(24), and (14)(23) (two pairs of numbers exchange);

Hereo is an element of the permutation groﬂp(thek! per- e 4-cycles (6 elements): (1234), (1243), (1324), (1342),
mutations Oﬂ€®2bJeCt5) and the operaté}, is the representa- (1423) “and (1432) [here (1234) means the permutation
tionofociNnH® =H®...H,ie, 1-2334-1].

F This classification simplifies keeping track of the terms

Pr(|o1) ®h2) .. @|01)) = [Po)) @ |Po@) - - @ |Poy) . No = 2pm Tt [(An ® A, ® A ® Af) Py in Eq. D).
(C6)  The corresponding contributions to the som, s N, are
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the following: (We used the trace-preservation conditipl), AT A, = I).
. Substituting the above terms in E@€4) (with & = 2), we
Identity: finally obtain the average square of the state fidelity,
(D 1Te(Aa) %)%, — 1 ( .
n F2 = d® +3d
Transpositions: d(d +1)(d+2)(d +3) )
2 2
203 | Tr(An)? +2 3 Tr(An AL,) Tr(A]) Tr(A,) F2(4+2) ) TP + (2 I TAw)

+ 3 (Tr(An Aw) Te(A]) Te(A],) + hec). + ) (I Te(AnAn)® + | Tr(A, A1)

3-C);cles: +2> Tr(AnAn ALAL) + ) Tr(A, Al A Af)

DI Tr(An)? +2 ) (Tr(AnAj Am) Tr(A],) + hec). +2 3" Tr(4, Af,) Tr(Al) T:Clm)

n,m

Products of transpositions:
+2) " Re[Tr(A, Ap,) Tr(Al) Tr(Af,)]

&+ (| Tr(AnAm)|? + | Tr(A, AL)[?).

o At
scyclos: +4 " Re[Tr(An AL AT,) Tr(An)]). (C10)
3d+Y Tr(A, Al An AlL) +2)  Tr(A, A, AL Af). -

n,m nym This is the formula we used in this paper to calculBte
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