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Abstract

Geometry of maximum likelihood estimation in Gaussian graphical models

by

Caroline Uhler

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Bernd Sturmfels, Chair

Algebraic statistics exploits the use of algebraic techniques to develop new paradigms and
algorithms for data analysis. The development of computational algebra software provides
a powerful tool to analyze statistical models. In Part I of this thesis, we use methods
from computational algebra and algebraic geometry to study Gaussian graphical models.
Algebraic methods have proven to be useful for statistical theory and applications alike. We
describe a particular application to computational biology in Part II.

Part I of this thesis investigates geometric aspects of maximum likelihood estimation in
Gaussian graphical models. More generally, we study multivariate normal models that are
described by linear constraints on the inverse of the covariance matrix. Maximum likelihood
estimation for such models leads to the problem of maximizing the determinant function
over a spectrahedron, and to the problem of characterizing the image of the positive definite
cone under an arbitrary linear projection. In Chapter 2, we examine these problems at the
interface of statistics and optimization from the perspective of convex algebraic geometry and
characterize the cone of all sufficient statistics for which the maximum likelihood estimator
(MLE) exists. In Chapter 3, we develop an algebraic elimination criterion, which allows us
to find exact lower bounds on the number of observations needed to ensure that the MLE
exists with probability one. This is applied to bipartite graphs, grids and colored graphs. We
also present the first instance of a graph for which the MLE exists with probability one even
when the number of observations equals the treewidth. Computational algebra software can
be used to study graphs with a limited number of vertices and edges. In Chapter 4 we study
the problem of existence of the MLE from an asymptotic point of view by fixing a class of
graphs and letting the number of vertices grow to infinity. We prove that for very large
cycles already two observations are sufficient for the existence of the MLE with probability
one.

Part II of this thesis describes an application of algebraic statistics to association studies.
Rapid research progress in genotyping techniques have allowed large genome-wide association
studies. Existing methods often focus on determining associations between single loci and
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a specific phenotype. However, a particular phenotype is usually the result of complex
relationships between multiple loci and the environment. We develop a method for finding
interacting genes (i.e. epistasis) using Markov bases. We test our method on simulated data
and compare it to a two-stage logistic regression method and to a fully Bayesian method,
showing that we are able to detect the interacting loci when other methods fail to do so.
Finally, we apply our method to a genome-wide dog data set and identify epistasis associated
with canine hair length.
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Chapter 1

Introduction

In current statistical applications, we are often faced with problems involving a large
number of random variables, but only a small number of observations. This problem arises
for example when studying genetic networks: We seek a model potentially involving a vast
number of genes, while we are only given gene expression data of a few individuals. Gaussian
graphical models have frequently been used to study gene association networks, and the
maximum likelihood estimator (MLE) of the covariance matrix is computed to describe
the interaction between different genes (e.g. [62, 77]). So the following question is of great
interest from an applied as well as a theoretical point of view: What is the minimum number
of observations needed to guarantee the existence of the MLE in a Gaussian graphical model?
It is a well-known fact that the MLE exists with probability one if the number of observations
is at least as large as the number of variables. In the following chapters we examine the case
of fewer observations.

The goal of this first chapter is to provide an introduction to maximum likelihood esti-
mation in Gaussian graphical models and to explain the relation to positive definite matrix
completion problems. We will also introduce the necessary definitions and notations regard-
ing graphs and multivariate models used throughout Part I of this thesis. The statistical
theory of graphical models, which we describe briefly here, is more extensively elaborated
upon in the book [49]. More about positive definite matrix completion problems can be
found in Johnson’s survey article [42].

1.1 Graphs

Throughout Part I, a graph is a pair G = ([m], E), where [m] = {1, . . . ,m} is the set of
vertices and E ⊂ [m] × [m] is the set of undirected edges. For simplicity of notation we
assume, if not otherwise specified, that the edge set E contains all self-loops, i.e. (i, i) ∈ E
for all i ∈ [m].
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! ! ! !

Figure 1.1: 3× 3 grid (left) and minimal chordal cover (right).

A graph is complete if all pairs of vertices are joined by an edge. A maximal complete
subset (with respect to inclusion) is called a clique and the maximal clique size of a graph is
denoted by q. A graph is chordal (or decomposable) if every cycle of length n ≥ 4 possesses
a chord, i.e. any two non-consecutive vertices of the cycle are connected by an edge. For
any graph G = ([m], E) one can define a chordal cover G+ = ([m], E+), a chordal graph
satisfying E ⊂ E+. We denote its maximal clique size by q+. A minimal chordal cover of
G is a chordal cover with minimal maximal clique size. We denote a minimal chordal cover
of G by G∗ = ([m], E∗) and its clique size by q∗ = min(q+). The treewidth of a graph is one
less than q∗. Trees, for example, have treewidth one.

These graph theoretic concepts are illustrated by the example of the 3 × 3 grid in
Figure 1.1. The maximal clique size of the 3 × 3 grid is 2. A minimal chordal cover is
shown in Figure 1.1 (right). Its maximal clique size is 4. Consequently, the treewidth of the
3× 3 grid is 3. Note that more generally, the treewidth of an m×m grid is m (see e.g. [11]).

1.1.1 Colored graphs

In the following chapters we will also encounter colored graphs, which are a generalization
of the undirected graphs presented above. Let G = ([m], E) be an undirected graph which
does not contain any self-loops. Let the vertices of G be colored with p ≤ m different colors
leading to a partition of the vertices into p non-empty disjoint vertex color classes

V = V1 t V2 t · · · t Vp,

where all vertices in Vi have the same color. Similarly, coloring the edges E with q ≤ |E|
different colors partitions E into q non-empty disjoint edge color classes

E = E1 t E2 t · · · t Eq,

where all edges in Ej have the same color. A color class with a single element is called
atomic and a color class which is not atomic is called composite. When visualizing a colored
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Figure 1.2: Colored 4-cycles: middle and right graphs satisfy condition that any pair of edges
in the same color class connect the same vertex color classes; right graph is an RCOP graph.

graph, atomic color classes are displayed in black, whereas other colors are used for elements
of composite color classes. Examples are given in Figure 1.2.

We will be especially interested in colored graphs, where any pair of edges in the same
color class connect the same vertex color classes. The two graphs in Figure 1.2 (middle and
right) satisfy this condition, whereas the graph in Figure 1.2 (left) does not.

Let Aut(G) denote the group of automorphisms of a graph G (i.e. functions that map
edges to edges). A special class of colored graphs are generated by permutation symmetry
and called RCOP graphs. More precisely, a colored graph G on the underlying undirected
graph G is an RCOP graph if there is a subgroup Γ ⊂ Aut(G), whose vertex orbits are the
vertex color classes and whose edge orbits are the edge color classes. Clearly, RCOP graphs
satisfy the condition that any pair of edges in the same color class connect the same vertex
color classes. The graph in Figure 1.2 (right), for example, is an RCOP graph whose vertex
and edge coloring represents the vertex and edge orbits generated by the permutation matrix

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .

The graph in Figure 1.2 (middle), however, is not an RCOP graph, because the largest
subgroup of Aut(G) preserving the color symmetries consists only of the identity.

1.2 Cones

A (convex) cone in Rk is a subset C ⊂ Rk such that αx + βy ∈ C for any positive scalars
α, β and any x, y in C. We denote by Sm the vector space of real symmetric m×m matrices
and by Sm�0 the convex cone of positive semidefinite matrices. Its interior is the open cone
Sm�0 of positive definite matrices.
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Let C ⊂ Rk be a convex cone equipped with a scalar product 〈 , 〉. The dual cone to C
is the set

C∨ = {w ∈ Rk | 〈v, w〉 ≥ 0 for all v ∈ C}.

This is also a convex cone. If C is equal to its dual cone, C is called self-dual.
Let Sm be a convex cone in a vector space equipped with the trace inner product 〈A,B〉 :=

tr(A ·B). With respect to this inner product, the cone Sm�0 of positive semidefinite matrices
is a full-dimensional self-dual cone in Sm.

Let L be a linear subspace of Sm. We denote by L⊥ the orthogonal complement of L in
Sm. Using the fact that the full-dimensional cone Sm�0 is self-dual, general duality theory for
convex cones (see e.g. [10]) implies the following useful fact:

(Sm�0 ∩ L)∨ = (Sm�0 + L⊥)/L⊥. (1.1)

Finally, a spectrahedron is a special convex cone formed by intersecting the positive semidef-
inite cone with an affine linear subspace.

1.3 Positive definite matrix completion problem

A partial matrix is a matrix whose entries are specified only on a subset of its positions, and
a completion of a partial matrix is gotten by specifying the unspecified entries. Typically,
the diagonal entries are assumed to be specified. Matrix completion problems are concerned
with determining whether or not a completion of a partial matrix exists which satisfies some
prescribed properties. Positive definite matrix completion problems are among the most
studied matrix completion problems due to their occurrence in many applications.

For positive definite matrix completion problems it can be assumed without loss of gen-
erality that all diagonal entries are specified and that the specified entries are symmet-
ric. Hence, the pattern of a partial matrix of size m × m can be represented by a graph
G = ([m], E), where the edges correspond to the specified entries of the partial matrix. The
positive definite matrix completion problem is then defined as follows: Let G = ([m], E) be
the underlying graph. Given a partial symmetric matrix MG ∈ RE with specified entries at
all positions corresponding to edges in the graph G, i.e.

MG = (Mij | (i, j) ∈ E),

determine whether there is a positive definite matrix M̂ satisfying M̂G = MG. If this is the
case, we say that MG has a positive definite completion.

Clearly, if a partial matrix has a positive definite completion, then every specified prin-
cipal submatrix is positive definite. Hence, having a positive definite completion imposes
some obvious necessary conditions. However, these conditions are in general not sufficient
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as seen in the following example where the underlying graph is the 4-cycle:

MG =


1 0.9 ? −0.9

0.9 1 0.9 ?
? 0.9 1 0.9
−0.9 ? 0.9 1

 .

It can easily be checked that this partial matrix does not have a positive definite completion,
although it satisfies the obvious necessary conditions. This example leads to asking if there
are graphs for which the obvious necessary conditions are also sufficient for the existence
of a positive definite matrix completion. The following remarkable theorem proven in [35]
answers this question.

Theorem 1.3.1. For a graph G the following statements are equivalent:

i) A G-partial matrix MG ∈ RE has a positive definite completion if and only if all
submatrices corresponding to maximal cliques in MG are positive definite.

ii) G is chordal.

The proof in [35] is constructive and can be turned into an algorithm for finding a positive
definite completion.

Positive definite completions are not unique. However, if a partial matrix has a positive
definite completion, then there is a unique completion with maximum determinant. In
addition, this unique completion is characterized by having a zero entry in the inverse at
all unspecified positions (i.e. positions not corresponding to edges in the underlying graph).
The uniqueness is due to the fact that the determinant function is strictly log concave over
Sm�0 and the zero pattern in the inverse results from setting the partial derivatives of the
determinant function to zero (see [35] for more details). Finding the unique completion
which maximizes the determinant is a convex optimization problem and can be solved even
for very large instances for example using the Matlab software cvx [32].

1.3.1 Positive definite matrix completion problem on colored graphs

In the following, we generalize positive definite matrix completion problems to colored
graphs. The usual completion problem described above can be seen as a special case where
each color class is atomic, i.e. each vertex and each edge is colored with its own color.

We define the positive definite matrix completion problem for colored graphs as follows:
Let G = ([m], E) be the underlying colored graph with vertex color classes V1, . . . , Vp and
edge color classes E1, . . . , Eq. Given a matrix M ∈ Sm, let MG ∈ Rp+q be the partial matrix

MG =

∑
α∈V1

Mαα , . . . ,
∑
α∈Vp

Mαα ,
∑

(α,β)∈E1

Mαβ , . . . ,
∑

(α,β)∈Eq

Mαβ

 .
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We wish to determine whether there is a positive definite matrix M̂ satisfying M̂G = MG. If
this is the case, we say that MG has a positive definite completion.

Let G be the graph underlying the colored graph G including all self-loops. Note that if
MG has a positive definite completion, then MG also has a positive definite completion. So
adding a graph coloring makes the positive definite matrix completion problem easier.

Similar to the result in [35], if MG has a positive definite completion, then there is a
unique positive definite completion with maximal determinant:

Theorem 1.3.2. Let G = ([m], E) be a colored graph with vertex color classes V1, . . . , Vp
and edge color classes E1, . . . , Eq. Let MG ∈ Rp+q and suppose MG has a positive definite

completion. Then there is a unique positive definite completion M̂ with maximal determinant.
Furthermore, the unique completion M̂ is characterized by having a zero entry in the inverse
at all unspecified positions and constant entries at all positions corresponding to the same
color class, i.e.

(M̂−1)αβ = 0 for all (α, β) /∈ E,
(M̂−1)αα = (M̂−1)ββ for all α, β ∈ Vi, for all i ∈ {1, . . . , p},
(M̂−1)αβ = (M̂−1)γδ for all (α, β), (γ, δ) ∈ Ej, for all j ∈ {1, . . . , q}.

Proof. Let MG be a partial matrix which has a positive definite completion. Then the set

C :=

Z ∈ Sm�0

∣∣∣∣∑
α∈Vi

Zαα =
∑
α∈Vi

Mαα,
∑

(α,β)∈Ej

Zαβ =
∑

(α,β)∈Ej

Mαβ, i = 1, . . . p, j = 1, . . . q


is convex (a spectrahedron) and compact. The determinant function is log concave on C and
therefore attains a unique maximum in C. Since the maximum is attained in the interior of
C, it is uniquely characterized by

det(Z) > 0 and
∂

∂Zkl
Λ(Z, κ, λ) = 0 for all (k, l) ∈ [m]× [m],

where Λ(Z, κ, λ) is the Lagrange function

Λ(Z, κ, λ) = det(Z)−
p∑
i=1

κi

(∑
α∈Vi

Zαα −
∑
α∈Vi

Mαα

)
−

q∑
j=1

λj

 ∑
(α,β)∈Ej

Zαβ −
∑

(α,β)∈Ej

Mαβ

 .

Computing the partial derivatives of the Lagrange function shows that M̂ is characterized
by zero entries in the inverse at all unspecified positions and constant entries at all positions
corresponding to the same color class.
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1.4 Multivariate normal models

A random vector X ∈ Rm is distributed according to the multivariate normal distribution
N (µ,Σ) with parameters µ ∈ Rm and Σ ∈ Sm�0 if it has the density function

fµ,Σ(x) = (2π)−m/2(det Σ)−1/2 exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
, x ∈ Rm.

A multivariate normal model is a statistical model consisting of multivariate normal distri-
butions:

PΘ = {N (µ,Σ) | θ = (µ,Σ) ∈ Θ},

where Θ ⊆ Rm × Sm�0.
Ignoring the normalizing constant, the log-likelihood function for a Gaussian model on n

observations X1, . . . , Xn is

l(µ,Σ) = −n
2

log det Σ− 1

2
tr

(
Σ−1

n∑
i=1

(Xi − µ)(Xi − µ)T

)
.

In this thesis, we focus on the estimation of the covariance matrix Σ. We make no
assumptions on the mean vector µ and always use the sample mean

X̄ =
1

n

n∑
i=1

Xi

as estimate for µ. Thus, we are precisely in the situation of [25, Prop. 2.1.12] and the
log-likelihood function simplifies to

l(Σ) = −n
2

log det Σ− n

2
tr
(
S Σ−1

)
, (1.2)

where

S =
1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)T

is the sample covariance matrix.
The inverse K = Σ−1 of a covariance matrix Σ is also positive definite and known as the

concentration matrix. When parametrizing a multivariate normal model, it is often more
convenient to use K instead of Σ. The log-likelihood function in terms of K is

l(K) =
n

2
log det(K)− n

2
〈S,K〉. (1.3)

This is a strictly concave function on the cone Sm�0.



CHAPTER 1 9

1.4.1 Conditional independence

For multivariate normal distributions, independence relations are represented by zeros in
the covariance matrix and conditional independence relations by zeros in the concentration
matrix (see e.g. [49]). Assume that Y ∈ Rm is distributed according to the multivariate
normal distribution N (µ,Σ). Then

i) Yi ⊥⊥ Yj ⇐⇒ Σij = 0
ii) Yi ⊥⊥ Yj | YV \{i,j} ⇐⇒ Kij = 0

In the following chapters, we will study multivariate normal models with linear restric-
tions on the entries of the concentration matrix. In order to interpret the entries of the
concentration matrix, the following fact about multivariate normal distributions is particu-
larly helpful: Let Y be distributed as N (µ,Σ). Dividing the variables into two disjoint sets
A,B, the conditional distribution of YA given YB = yB is N (µA|B,ΣA|B), where

µA|B = µA + ΣABΣ−1
BB(yB − µB) and ΣA|B = ΣAA − ΣABΣ−1

BBΣBA.

Note that ΣA|B is the Schur complement of ΣAA, and therefore ΣA|B = K−1
AA. Using this fact,

it follows easily that the diagonal elements of the concentration matrix K are the reciprocals
of the conditional variances, i.e.

Kii =
1

Var(Yi | YV \{i})
.

The conditional covariances are also represented by the concentration matrix, namely

Cov(Yi, Yj | YV \{i,j}) =
−kij

kiikjj − k2
ij

.

Similarly, we can compute the partial correlation coefficients

ρij|V \{i,j} =
Cov(Yi, Yj | YV \{i,j})√

Var(Yi | YV \{i,j})Var(Yj | YV \{i,j})
=
−kij√
kiikjj

.

Hence, if we scale the concentration matrix to have all ones on the diagonal, the off-diagonal
entries can be interpreted as the negative partial correlation coefficients.

1.5 Gaussian graphical models

Gaussian graphical models were introduced by Dempster [22] under the name of covari-
ance selection models. Subsequently, the graphical representation of these models gained
in importance. Lauritzen [49] and Whittaker [74] give introductions to graphical models in
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general and discuss the connection between graph and probability distribution for Gaussian
graphical models.

A Gaussian graphical model is a graphical interaction model for the multivariate normal
distribution. It is determined by assuming conditional independence of selected pairs of
variables given all the remaining variables. More precisely, if G = ([m], E) is a graph and
Y a random vector taking values in Rm, the Gaussian graphical model for Y on G is given
by assuming that Y follows a multivariate normal distribution which satisfies the pairwise
Markov property, i.e.

Yi ⊥⊥ Yj | YV \{i,j} for all (i, j) /∈ E.

As seen in Subsection 1.4.1, this is equivalent to assuming zeros in the concentration
matrix at all entries not corresponding to edges in the graph, i.e.

Kij = 0 for all (i, j) /∈ E.

Thus, for Gaussian graphical models the log-likelihood function given in (1.3) simplifies to

l(K) =
n

2

log det(K)−
∑

(i,j)∈E

SijKij

 .

and the minimal sufficient statistics are given by the partial sample covariance matrix SG.

1.5.1 Maximum likelihood estimation

The partial sample covariance matrix SG plays an important role when studying the existence
of the MLE. Dempster [22] first characterized the MLE for Gaussian graphical models:

Theorem 1.5.1. In the Gaussian graphical model on G, the MLE of the covariance matrix
Σ exists if and only if the partial sample covariance matrix SG can be completed to a positive
definite matrix. Then the MLE Σ̂ is the unique completion satisfying (Σ̂−1)ij = 0 for all
(i, j) /∈ E.

Subsequently, the theory of exponential families has been developed. Gaussian graphical
models are regular exponential families. The statistical theory of exponential families, as
presented for example by Brown [13] or Barndorff-Nielsen [7], is a strong tool to establish
existence and uniqueness of the MLE and generalizes Theorem 1.5.1. In regular exponential
families, the MLE exists if and only if the sufficient statistic lies in the interior of its convex
support. In that case the MLE is uniquely determined by the sufficient statistic t(x), or
more precisely by the equation

t(x) = E(t(X)). (1.4)

From Dempster’s result (Theorem 1.5.1) it follows that checking existence of the MLE
in Gaussian graphical models is a special matrix completion problem with an additional
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rank constraint given by the number of observations. By combining Theorem 1.5.1 and
Theorem 1.3.1 we get the following result about the existence of the MLE in Gaussian
graphical models (see also [15]).

Corollary 1.5.2. If n ≥ q∗ the MLE exists with probability 1. If n < q the MLE does not
exist.

Note that the probability statement in this corollary is with respect to the underlying
multivariate normal distribution N (0,Σ), where Σ is unknown. However, because the mul-
tivariate normal distribution is continuous, the probability 1 statement does not depend
on the value of Σ. The MLE exists with probability 1 means that the MLE exists for all
sufficient statistics except possibly on a lower dimensional subspace.

Chordal graphs have q∗ = q. Therefore, existence of the MLE depends on the number
of observations only. For non-chordal graphs, however, there is a gap q ≤ n < q∗, in which
existence of the MLE is not well understood. Cycles are the only non-chordal graphs, which
have been studied [8, 9, 15]. In Chapter 2, we will give a geometric description of the convex
support of the sufficient statistics. In Chapter 3, we will discuss the connection to the
minimum number of samples needed to ensure existence of the MLE and extend the results
on cycles to bipartite graphs K2,m and small grids.

1.5.2 Colored Gaussian graphical models

For some applications, symmetries in the underlying Gaussian graphical model can be as-
sumed. These symmetry restrictions can be represented by a graph coloring, where edges,
or vertices, respectively, have the same coloring if the corresponding elements of the concen-
tration matrix are equal. Such models have been introduced in [39].

Formally, if G = ([m], E) is a colored graph with underlying graph G and Y a random
vector taking values in Rm, the colored Gaussian graphical model for Y on G is given by
assuming that Y follows a multivariate normal distribution N (µ,Σ) satisfying

(Σ−1)αβ = 0 for all (α, β) /∈ E,
(Σ−1)αα = (Σ−1)ββ for all α, β ∈ Vi for all i ∈ {1, . . . , p},
(Σ−1)αβ = (Σ−1)γδ for all (α, β), (γ, δ) ∈ Ej for all j ∈ {1, . . . , q}.

If the underlying graph satisfies a permutation symmetry (i.e. it is an RCOP graph), we call
the corresponding colored Gaussian graphical model an RCOP model (see [39]).

We can easily generalize Dempster’s result (Theorem 1.5.1) to colored Gaussian graphical
models using regular exponential family theory and Theorem 1.3.2 (see also [39]):

Theorem 1.5.3. In the colored Gaussian graphical model on G, the MLE of the covariance
matrix Σ exists if and only if the partial sample covariance matrix SG has a positive definite
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completion. Then the MLE Σ̂ is the unique completion satisfying

(Σ̂−1)αβ = 0 for all (α, β) /∈ E,
(Σ̂−1)αα = (Σ̂−1)ββ for all α, β ∈ Vi, for all i ∈ {1, . . . , p},
(Σ̂−1)αβ = (Σ̂−1)γδ for all (α, β), (γ, δ) ∈ Ej, for all j ∈ {1, . . . , q}.

In Chapters 2 and 3 we will discuss various instances of colored Gaussian graphical models.
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Chapter 2

Multivariate Gaussians and convex
algebraic geometry

In this chapter, we study multivariate normal models that are described by linear con-
straints on the inverse of the covariance matrix (i.e. linear concentration models). Gaussian
graphical models and colored Gaussian graphical models are examples of such models. In
this chapter we give a geometric description of the set of all sufficient statistics for which the
MLE exists.

Maximum likelihood estimation for linear concentration models leads to the problem of
maximizing the determinant function over a spectrahedron, and to the problem of charac-
terizing the image of the positive definite cone under an arbitrary linear projection. These
problems at the interface of statistics and optimization are here examined from the perspec-
tive of convex algebraic geometry.

This chapter is joint work with Bernd Sturmfels. The content of this chapter has been
published in the Annals of the Institute of Statistical Mathematics 62 (2010) 603 - 638 un-
der the title ”Multivariate Gaussians, semidefinite matrix completion, and convex algebraic
geometry”. We made minor changes throughout for consistency with other chapters and
added Subsection 2.2.1. Subsection 2.2.1 is part of a paper with title ”Geometry of max-
imum likelihood estimation in Gaussian graphical models”, which has been submitted for
publication.

2.1 Introduction

Every positive definite m × m-matrix Σ is the covariance matrix of a multivariate normal
distribution on Rm. Its inverse matrix K = Σ−1, the concentration matrix, is also positive
definite. In this chapter, we study statistical models for multivariate normal distributions
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on Rm, where the concentration matrix can be written as a linear combination

K = λ1K1 + λ2K2 + · · ·+ λdKd (2.1)

of some fixed linearly independent symmetric matrices K1, K2, . . . , Kd. Here, λ1, λ2, . . . , λd
are unknown real coefficients. It is assumed that K is positive definite for some choice
of λ1, λ2, . . . , λd. Such statistical models, which we call linear concentration models, were
introduced in [5].

Let L be a linear subspace of Sm. Then the set of all concentration matrices in the
corresponding linear concentration model is a convex cone

KL = L ∩ Sm�0.

By taking the inverse of every matrix in KL, we get the set of all covariance matrices in the
model. This set is denoted by K−1

L . This is an algebraic variety intersected with the positive
definite cone Sm�0.

Note that Gaussian graphical models and colored Gaussian graphical models are special
cases where the linear subspace L is defined by the underlying graph. Let G = ([m], E) be
a graph (resp. G = ([m], E) a colored graph). The corresponding linear subspaces, which we
denote by LG (resp. LG) are defined by

K ∈ LG ⇐⇒ Kij = 0 for all (i, j) /∈ E

for Gaussian graphical models, and

K ∈ LG ⇐⇒


Kαβ = 0 for all (α, β) /∈ E,
Kαα = Kββ for all α, β ∈ Vi, for all i ∈ {1, . . . , p},
Kαβ = Kγδ for all (α, β), (γ, δ) ∈ Ej, for all j ∈ {1, . . . , q}

for colored Gaussian graphical models. The corresponding set of concentration matrices is de-
noted by KG (resp. KG) and the corresponding set of covariance matrices by K−1

G (resp. K−1
G ).

See Figure 2.2 later in this chapter for a geometric representation of these sets.
Given a basis K1, . . . , Kd of the subspace L as in (2.1), the basic statistical problem is

to estimate the parameters λ1, . . . , λd when n observations X1, . . . , Xn are drawn from a
multivariate normal distribution N (µ,Σ), whose covariance matrix Σ = K−1 is in the model
K−1
L . The n observations Xi and their mean X̄ are summarized in the sample covariance

matrix

S =
1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)T ∈ Sm�0.

In our model, we make no assumptions on the mean vector µ, and we always use the sample
mean X̄ as estimate for µ. Thus, we are precisely in the situation (1.2), and the log-likelihood
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function for the linear concentration model (2.1) equals

log det(K)− 〈S,K〉 = log det

( d∑
j=1

λjKj

)
−

d∑
j=1

λj〈S,Kj〉 (2.2)

times the constant n/2. This is a strictly concave function on the relatively open cone KL.
Linear concentration models are regular exponential families, where the scalars λ1, . . . , λd
are the canonical parameters and 〈S,K1〉, . . . , 〈S,Kd〉 are the sufficient statistics of the ex-
ponential family (2.1). Therefore, if a maximum (i.e. the MLE) exists, it is attained by a
unique matrix K̂ in Sm�0 ∩ L. Its inverse Σ̂ = K̂−1 is uniquely determined by the equations
(1.4), which in this case are

〈Σ̂, Kj〉 = 〈S,Kj〉 for j = 1, 2, . . . , d. (2.3)

Given a sample covariance matrix S, we define the spectrahedron

fiberL(S) =
{

Σ ∈ Sm�0 | 〈Σ, K〉 = 〈S,K〉 for all K ∈ L
}
.

For a Gaussian graphical model with underlying graph G this spectrahedron consists of all
positive definite completions of SG and is denoted

fiberG(S) = {Σ ∈ Sm�0 | ΣG = SG} .

For a colored Gaussian graphical model with underlying graph G the corresponding spectra-
hedron is defined analogously and denoted by fiberG(S). With this notion, Theorem 1.5.1
can easily be generalized to linear concentration models and has the following geometric
interpretation (which is also explained later in Figure 2.2).

Theorem 2.1.1. For a linear concentration model defined by L the MLEs Σ̂ and K̂ exist
for a given sample covariance matrix S if and only if fiberL(S) is non-empty, in which case
fiberL(S) intersects K−1

L in exactly one point, namely the MLE Σ̂.

Note that if rank(S) < m then it can happen that the fiber is empty, in which case
the MLE does not exist for (L, S). Work of [15] and [9] addresses this issue for Gaussian
graphical models where the underlying graph is a cycle; see Section 2.4 below for a geometric
approach.

Our motivating statistical problem is to identify conditions on the pair (L, S) that ensure
the existence of the MLE. This will involve studying the geometry of the semi-algebraic set
K−1
L and of the algebraic function S 7→ Σ̂ which takes a sample covariance matrix to its

MLE in K−1
L .

Example 2.1.2. We illustrate the concepts introduced so far by way of a small explicit
example whose geometry is visualized in Figure 2.1. Let m = d = 3 and let L be the real
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vector space spanned by

K1 =

1 0 0
0 1 1
0 1 1

 , K2 =

1 0 1
0 1 0
1 0 1

 and K3 =

1 1 0
1 1 0
0 0 1

 .

The linear concentration model (2.1) consists of all positive definite matrices of the form

K =

λ1 + λ2 + λ3 λ3 λ2

λ3 λ1 + λ2 + λ3 λ1

λ2 λ1 λ1 + λ2 + λ3

 . (2.4)

Given a sample covariance matrix S = (sij), the sufficient statistics are

t1 = trace(S) + 2s23 , t2 = trace(S) + 2s13 , t3 = trace(S) + 2s12.

If S ∈ S3
�0 then fiberL(S) is an open 3-dimensional convex body whose boundary is a cubic

surface. This is the spectrahedron shown on the left in Figure 2.1. The MLE Σ̂ is the
unique matrix of maximum determinant in the spectrahedron fiberL(S). Here is an explicit
algebraic formula for the MLE Σ̂ = (ŝij): First, the matrix entry ŝ33 is determined (e.g. using
Cardano’s formula) from the equation

0 = 240 ŝ4
33 + (−32t1 − 32t2 − 192t3)ŝ3

33 + (−8t21 + 16t1t2 + 16t1t3 − 8t22 + 16t2t3 + 32t23)ŝ2
33

+(8t31 − 8t21t2 − 8t1t
2
2 + 8t32)ŝ33 − 4t31t3 − 6t21t

2
2 + 4t21t

2
3 + 4t1t

3
2 + 4t1t

2
2t3 + 4t21t2t3 − t42

−4t32t3 + 4t22t
2
3 − 8t1t2t

2
3 − t41 + 4t31t2.

Next, we read off ŝ23 from

−24(t21 − 2t1t2 + t22 − t23)ŝ23 = 120ŝ3
33 − (16t1 + 16t2 + 36t3)ŝ

2
33 + (2t21 − 4t1t2 + 2t22 − 8t23)ŝ33

−6t31 + 18t21t2 + t21t3 − 18t1t
2
2 − 2t1t2t3 + 10t1t

2
3 + 6t32 + t22t3

−2t2t
2
3 − 4t33.

Then we read off ŝ22 from

−24 (t1 − t2) ŝ22 = 60ŝ2
33 + (4t1 − 20t2 − 24t3)ŝ33 + 24(t1 − t2 − t3)ŝ23 − 11t21

+10t1t2 + 10t1t3 + t22 − 2t2t3 − 4t23.

Finally, we obtain the first row of Σ̂ as follows:

ŝ13 = ŝ23 − t1/2 + t2/2, ŝ12 = ŝ23 − t1/2 + t3/2, ŝ11 = t1 − ŝ33 − 2ŝ23 − ŝ22.
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Figure 2.1: Three figures, taken from [58], illustrate Example 2.1.2. These figures show the
spectrahedron fiberL(S) (left), a cross section of the spectrahedral cone KL (middle), and a
cross section of its dual cone CL (right).

The MLE Σ̂ = (ŝij) is an algebraic function of degree 4 in the sufficient statistics
(t1, t2, t3). In short, the model (2.4) has ML degree 4. We identify our model with the
subvariety L−1 of projective space P5 that is parametrized by this algebraic function. The
ideal of polynomials vanishing on L−1 equals

PL = 〈 s2
13 − s2

23 − s11s33 + s22s33 , s
2
12 − s11s22 − s2

23 + s22s33 ,

s12s13 − s13s22 − s11s23 + s12s23 + s13s23 + s2
23 − s12s33 − s22s33 ,

s11s13−s13s22−s11s23+s22s23−s11s33−2s12s33−s13s33−s22s33−s23s33+s2
33,

s11s12−s11s22−s12s22−2s13s22+s2
22−s11s23−s22s23−s12s33−s22s33+s23s33,

s2
11 − 2s11s22 − 4s13s22 + s2

22 − 4s11s23 − 2s11s33 − 4s12s33−2s22s33+s2
33 〉.

The domain of the maximum likelihood map (t1, t2, t3) 7→ Σ̂ is the cone of sufficient statistics
CL in R3. The polynomial HL which vanishes on the boundary of this convex cone has degree
six. It equals

HL = t61 − 6t51t2 + 19t41t
2
2 − 28t31t

3
2 + 19t21t

4
2 − 6t1t

5
2 + t62 − 6t51t3 + 14t41t2t3 − 24t31t

2
2t3

−24t21t
3
2t3 + 14t1t

4
2t3 − 6t52t3 + 19t41t

2
3 − 24t31t2t

2
3 + 106t21t

2
2t

2
3 − 24t1t

3
2t

2
3 + 19t42t

2
3

−28t31t
3
3 − 24t21t2t

3
3 − 24t1t

2
2t

3
3 − 28t32t

3
3 + 19t21t

4
3 + 14t1t2t

4
3 + 19t22t

4
3 − 6t1t

5
3 − 6t2t

5
3 + t63.

The sextic curve {HL = 0} in P2 is shown on the right in Figure 2.1. This sextic is the dual
curve which parametrizes all tangent lines to the cubic curve {det(K) = 0}, which is shown
in the middle of Figure 2.1. The cone over the convex region enclosed by the red part of
that cubic curve is the set KL = S3

�0 ∩ L of concentration matrices in our model (2.1).

This chapter is organized as follows. In Section 2.2, we formally define the objects CL,
PL and HL, which already appeared in Example 2.1.2. We give a geometric description
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of the problem and derive three guiding questions that constitute the main thread of this
chapter. These questions are answered for generic linear spaces L in Subsection 2.2.3. In
Section 2.3 we answer our three questions for diagonal concentration models, using results
from geometric combinatorics. Section 2.4 deals with Gaussian graphical models, which are
the most prominent linear concentration models. We resolve our three questions for chordal
graphs, then for chordless cycles, and finally for wheels and all graphs with five or less
vertices. We conclude this chapter with a study of colored Gaussian graphical models in
Section 2.5.

2.2 Linear sections, projections and duality

Convex algebraic geometry is concerned with the geometry of real algebraic varieties and
semi-algebraic sets that arise in convex optimization, especially in semidefinite programming.
A fundamental problem is to study convex sets that arise as linear sections and projections
of the cone of positive definite matrices Sm�0. This problem arises naturally when studying
maximum likelihood estimation in linear concentration models for Gaussian random vari-
ables. In particular, the issue of estimating a covariance matrix from the sufficient statistics
can be seen as an extension of the familiar semidefinite matrix completion problem (see
Section 1.5 and [9, 35]). In what follows, we develop an algebraic and geometric framework
for systematically addressing such problems.

2.2.1 Geometry of maximum likelihood estimation in linear con-
centration models

As before, we fix a linear subspace L in the real vector space Sm of symmetric m × m-
matrices, and we fix a basis {K1, . . . , Kd} of L. The cone of concentration matrices is the
relatively open cone

KL = L ∩ Sm�0.

We assume throughout that KL is non-empty. Using the basis K1, . . . , Kd of L, we can
identify KL with

KL =

{
(λ1, . . . , λd) ∈ Rd

∣∣∣∣∣
d∑
i=1

λiKi is positive definite

}
. (2.5)

This is a non-empty open convex cone in Rd. The orthogonal complement L⊥ of L is a
subspace of dimension

(
m+1

2

)
− d in Sm, so that Sm/L⊥ ' Rd, and we can consider the

canonical map
πL : Sm → Sm/L⊥.
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This is precisely the linear map which takes a sample covariance matrix S to its canonical
sufficient statistics. For example, for a Gaussian graphical model with underlying graph G,
this map takes a sample covariance matrix S to the partial sample covariance matrix SG.
The chosen basis of L allows us to identify this map with

πL : Sm → Rd, S 7→
(
〈S,K1〉, . . . , 〈S,Kd〉

)
. (2.6)

Applying Theorem 2.1.1, we can describe the set of all sufficient statistics, for which the
MLE exists. We denote this set by CL. It is the image of the positive-definite cone Sm�0 under
the map πL. So CL is also a convex cone and shown in dark orange in Figure 2.2. We call
CL the cone of sufficient statistics. For Gaussian graphical models (resp. colored Gaussian
graphical models) we denote the projection by πG (resp. πG) and the image of the positive
definite cone by CG (resp. CG).

The following result explains the duality between the two red curves in Figure 2.1 and is
described in Figure 2.2 for Gaussian graphical models.

!!!"#$%#&'(&)"#*+(&')$%,-!!!!!!!!!!!!!!!!!!!!!!".(')(#$%*+(&')$%,-!!!!!!!!

"#$%#&'("#$%#&'(

Figure 2.2: Geometry of maximum likelihood estimation in Gaussian graphical models. The
cone KG consists of all concentration matrices in the model and K−1

G is the corresponding
set of covariance matrices. The cone of sufficient statistics CG is defined as the projection of
Sm�0 onto the edge set of G. It is dual and homeomorphic to KG. Given a sample covariance
matrix S, fiberG(S) consists of all positive definite completions of the G-partial matrix SG,
and it intersects K−1

G in at most one point, namely the MLE Σ̂.
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Proposition 2.2.1. The cone of sufficient statistics is the dual cone to the cone of concen-
tration matrices. The basis-free version of this duality states

CL =
{
S ∈ Sm/L⊥ | 〈S,K〉 > 0 for all K ∈ KL

}
. (2.7)

The basis-dependent version of this duality, in terms of (2.5) and (2.6), states

CL =

{
(t1, . . . , td) ∈ Rd

∣∣∣∣∣
d∑
i=1

tiλi > 0 for all (λ1, . . . , λd) ∈ KL

}
. (2.8)

Proof. Let K∨L denote the right-hand side of (2.7) and let M =
(
m+1

2

)
. Using the fact that

the M -dimensional convex cone Sm�0 is self-dual, equation (1.1) implies

K∨L = (Sm�0 ∩ L)∨ = (Sm�0 + L⊥)/L⊥ = CL.

To derive (2.8) from (2.7), we pick any basis U1, . . . , UM of Sm whose first d elements serve as
the dual basis to K1, . . . , Kd, and whose last

(
m+1

2

)
− d elements span L⊥. Hence 〈Ui, Kj〉 =

δij for all i, j. Every matrix U in Sm has a unique representation U =
∑M

i=1 tiUi, and its

image under the map (2.6) equals πL(U) = (t1, . . . , td). For any matrix K =
∑d

j=1 λjKj

in L we have 〈U,K〉 =
∑d

i=1 tiλi, and this expression is positive for all K ∈ KL if and only
if (t1, . . . , td) lies in CL.

It can be shown that both the cone KL of concentration matrices and its dual, the cone
CL of sufficient statistics, are well-behaved in the following sense. Their topological closures
are closed convex cones that are dual to each other, and they are obtained by respectively
intersecting and projecting the closed cone Sm�0 of positive semidefinite matrices. In symbols,
these closed semi-algebraic cones satisfy

KL = L ∩ Sm�0 and CL = πL(Sm�0). (2.9)

One of our objectives will be to explore the geometry of their boundaries

∂KL := KL\KL and ∂CL := CL\CL.

These are convex algebraic hypersurfaces in Rd, as seen in Example 2.1.2. The statistical
theory of exponential families implies the following corollary concerning the geometry of
their interiors:

Corollary 2.2.2. The map K 7→ T = πL(K−1) is a homeomorphism between the dual pair
of open cones KL and CL. The inverse map T 7→ K takes the sufficient statistics to the
MLE of the concentration matrix. Here, K−1 is the unique maximizer of the determinant
over the spectrahedron π−1

L (T ) ∩ Sm�0.
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The geometry of maximum likelihood estimation in linear concentration models described
so far is summarized in Figure 2.2 for the special case of Gaussian graphical models. The
geometric picture for linear concentration models is totally analogous.

2.2.2 Derivation of three guiding questions

One natural first step in studying this picture is to simplify it by passing to the complex
numbers C. This allows us to relax various inequalities over the real numbers R and to
work with varieties over the algebraically closed field C. We thus identify our model L−1

with its Zariski closure in the (
(
m+1

2

)
− 1)-dimensional complex projective space P(Sm). Let

PL denote the homogeneous prime ideal of all polynomials in R[Σ] = R[s11, s12, . . . , smm]
that vanish on L−1. One way to compute PL is to eliminate the entries of an indeterminate
symmetric m×m-matrix K from the following system of equations:

Σ ·K = Idm , K ∈ L. (2.10)

The fact that the ideal in (2.10) is prime can be seen using Proposition 23 (b) in [29].
Given a sample covariance matrix S, its maximum likelihood estimate Σ̂ can be computed

algebraically, as in Example 2.1.2. We do this by solving the following zero-dimensional
system of polynomial equations:

Σ ·K = Idm , K ∈ L , Σ− S ∈ L⊥. (2.11)

In this chapter we focus on the systems (2.10) and (2.11). Specifically, for various classes
of linear concentration models L, we seek to answer the following three guiding questions.
Example 2.1.2 served to introduce these three questions. Many more examples will be
featured throughout our discussion.

Question 1. What can be said about the geometry of the (d−1)-dimensional projective
variety L−1? What is the degree of this variety, and what are the minimal generators of its
prime ideal PL?

Question 2. The map taking a sample covariance matrix S to its maximum likelihood
estimate Σ̂ is an algebraic function. Its degree is the ML degree of the model L. See [25,
Def. 2.1.4]. The ML degree represents the algebraic complexity of the problem of finding
the MLE. Can we find a formula for the ML degree? Which models L have their ML degree
equal to 1?

Question 3. The Zariski closure of the boundary ∂CL of the cone of sufficient statistics CL
is a hypersurface in the complex projective space Pd−1. What is the defining polynomial HL
of this hypersurface?
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2.2.3 Generic linear concentration models

In this subsection we examine the case when L is a generic subspace of dimension d in Sm.
Here “generic” is understood in the sense of algebraic geometry. In terms of the model
representation (2.1), this means that the matrices K1, . . . , Kd were chosen at random. This
is precisely the hypothesis made by [58], and one of our goals is to explain the connection of
Questions 1, 2 and 3 to that paper.

To begin with, we establish the result that the two notions of degree coincide in the
generic case.

Theorem 2.2.3. The ML degree of the model (2.1) defined by a generic linear subspace L
of dimension d in Sm equals the degree of the projective variety L−1. That degree is denoted
φ(m, d) and it satisfies

φ(m, d) = φ

(
m,

(
m+ 1

2

)
+ 1− d

)
. (2.12)

We calculated the ML degree φ(m, d) of the generic model L for all matrix sizes up to
m = 6 (Table 2.1). This table was computed with the software Macaulay2 [33] using the
commutative algebra techniques discussed in the proof of Theorem 2.2.3. At this point,
readers from statistics are advised to skip the algebraic technicalities in the rest of this
section and to go straight to Section 2.4 on Gaussian graphical models.

Table 2.1: ML-degree of generic model for all matrices up to size m = 6.

d 1 2 3 4 5 6 7 8 9 10 11 12 13 · · ·
φ(3, d) 1 2 4 4 2 1
φ(4, d) 1 3 9 17 21 21 17 9 3 1
φ(5, d) 1 4 16 44 86 137 188 212 188 137 86 44 16 · · ·
φ(6, d) 1 5 25 90 240 528 1016 1696 2396 2886 3054 2886 2396 · · ·

The last three entries in each row of Table 2.1 follow from Bézout’s Theorem because PL
is a complete intersection when the codimension of L−1 in P(Sm) is at most two. Using the
duality relation (2.12), we conclude

φ(m, d) = (m− 1)d−1 for d = 1, 2, 3.

When L−1 has codimension 3, it is the complete intersection defined by three generic linear
combinations of the comaximal minors. From this complete intersection we must remove the
variety of m ×m-symmetric matrices of rank ≤ m − 2, which has also codimension 3 and
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has degree
(
m+1

3

)
. Hence:

φ(m, 4) = (m− 1)3 −
(
m+ 1

3

)
=

1

6
(5m− 3)(m− 1)(m− 2).

When d is larger than 4, this approach leads to a problem in residual intersection theory. A
formula due to [64], rederived in recent work by [17] on this subject, implies that

φ(m, 5) =
1

12
(m− 1)(m− 2)(7m2 − 19m+ 6).

For any fixed dimension d, our ML degree φ(m, d) seems to be a polynomial function of
degree d − 1 in m, but it gets progressively more challenging to compute explicit formulas
for these polynomials.

Proof of Theorem 2.2.3. Let I be the ideal in the polynomial ring R[Σ] = R[s11, s12, . . . , smm]
that is generated by the (m−1) × (m−1)-minors of the symmetric m×m-matrix Σ = (sij).
[46] proved that the Rees algebra R(I) of the ideal I is equal to the symmetric algebra of
I. Identifying the generators of I with the entries of another symmetric matrix of unknowns
K = (kij), we represent this Rees algebra asR(I) = R[Σ, K]/J where the ideal J is obtained
by eliminating the unknown t from the matrix equation Σ ·K = t · Idm. The presentation
ideal J = 〈Σ · K − t Idm〉 ∩ R[Σ, K] is prime and it is homogeneous with respect to the
natural N2-grading on the polynomial ring R[Σ, K]. Its variety V (J) in PM−1 × PM−1 is
the closure of the set of pairs of symmetric matrices that are inverse to each other. Here
M =

(
m+1

2

)
. Both the dimension and the codimension of V (J) are equal to M − 1.

We now make use of the notion of multidegree introduced in the text book [57]. Namely,
we consider the bidegree of the Rees algebraR(I) = R[Σ, K]/J with respect to its N2-grading.
This bidegree is a homogeneous polynomial in two variables x and y of degree M − 1. Using
notation as in [57, Def. 8.45] and [58, Thm. 10], we claim that

C
(
R(I);x, y

)
=

M∑
d=1

φ(m, d)xM−d yd−1. (2.13)

Indeed, the coefficient of xM−d yd−1 in the expansion of C
(
R(I);x, y

)
equals the cardinality

of the finite variety V (J) ∩ (M×L), where L is a generic plane of dimension d− 1 in the
second factor PM−1 and M is a generic plane of dimension M − d in the first factor PM−1.
We now takeM to be the specific plane which is spanned by the image of L⊥ and one extra
generic point S, representing a random sample covariance matrix. Thus our finite variety is
precisely the same as the one described by the affine equations in (2.11), and we conclude
that its cardinality equals the ML degree φ(m, d).

Note that V (J) ∩ (PM−1 × L) can be identified with the variety V (PL) in PM−1. The
argument in the previous paragraph relied on the fact that PL is Cohen-Macaulay, which
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allowed us to chose any subspace M for our intersection count provided it is disjoint from
V (PL) in PM−1. This proves that φ(m, d) coincides with the degree of V (PL). The Cohen-
Macaulay property of PL follows from a result of [38] together with the aforementioned work
of [46] which shows that the ideal I has sliding depth. Finally, the duality (2.12) is obvious
for the coefficients of the bidegree (2.13) of the Rees algebra R(I) since its presentation ideal
J is symmetric under swapping K and Σ.

We now come to our third question, which is to determine the Zariski closure V (HL) of
the boundary of the cone CL = K∨L. Let us assume now that L is any d-dimensional lin-
ear subspace of Sm, not necessarily generic. The Zariski closure of ∂KL is the hypersurface
{det(K) = 0} given by the vanishing of the determinant of K =

∑d
i=1 λiKi. This determi-

nant is a polynomial of degree d in λ1, . . . , λd. Our task is to compute the dual variety in the
sense of projective algebraic geometry of each irreducible component of this hypersurface.
See [58, §5] for basics on projective duality. We also need to compute the dual variety for
its singular locus, and for the singular locus of the singular locus, etc.

Each singularity stratum encountered along the way needs to be decomposed into irre-
ducible components, whose duals need to be examined. If such a component has a real point
that lies in ∂KL and if its dual variety is a hypersurface then that hypersurface appears
in HL. How to run this procedure in practice is shown in Example 2.4.10. For now, we
summarize the construction informally as follows.

Proposition 2.2.4. Each irreducible hypersurface in the Zariski closure of ∂CL is the pro-
jectively dual variety to some irreducible component of the hypersurface {det(K) = 0}, or
it is dual to some irreducible variety further down in the singularity stratification of the
hypersurface {det(K) = 0} ⊂ Pd−1.

The singularity stratification of {det(K) = 0} can be computed by applying primary
decomposition to the ideal of p×p-minors of K for 1 ≤ p ≤ m. If I is any minimal prime of
such a determinantal ideal then its dual variety is computed as follows. Let c = codim(I) and
consider the Jacobian matrix of I. The rows of the Jacobian matrix are the derivatives of the
generators of I with respect to the unknowns λ1, . . . , λd. Let J be the ideal generated by I and
the c×c-minors of the matrix formed by augmenting the Jacobian matrix by the extra row
(t1, t2, . . . , td). We saturate J by the c×c-minors of the Jacobian, and thereafter we compute
the elimination ideal J ∩ R[t1, t2, . . . , td]. If this elimination ideal is principal, we retain its
generator. The desired polynomial HL is the product of these principal generators, as I runs
over all such minimal primes whose variety has a real point on the convex hypersurface ∂KL.

Proposition 2.2.4 is visualized in Figure 2.5 later in this chapter. Let us now apply this
result in the case when the subspace L is generic of dimension d. The ideal of p×p-minors of
K defines a subvariety of Pd−1, which is irreducible whenever it is positive-dimensional (by
Bertini’s Theorem, e.g. in [37]). It is known from [58, Prop. 5] that the dual variety to that
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determinantal variety is a hypersurface if and only if(
m− p+ 2

2

)
≤ d− 1 and

(
p

2

)
≤
(
m+ 1

2

)
− d+ 1. (2.14)

Assuming that these inequalities hold, the dual hypersurface is defined by an irreducible
homogeneous polynomial whose degree we denote by δ(d−1,m, p−1). This notation is con-
sistent with [58] where this number is called the algebraic degree of semidefinite programming
(SDP).

Corollary 2.2.5. For a generic d-dimensional subspace L of Sm, the polynomial HL is the
product of irreducible polynomials of degree δ(d− 1,m, p− 1). That number is the algebraic
degree of semidefinite programming. Here p runs over integers that satisfy (2.14) and ∂KL
contains a matrix of rank p− 1.

2.3 Diagonal matrices, matroids and polytopes

This section concerns the case when L is a d-dimensional space consisting only of diagonal
matrices in Sm. Here, the set L−1

�0 of covariance matrices in the model also consists of
diagonal matrices only, and we may restrict our considerations to the space Rm of diagonal
matrices in Sm. Thus, throughout this section, our ambient space is Rm, and we identify
Rm with its dual vector space via the standard inner product 〈u, v〉 =

∑m
i=1 uivi. We fix any

d×m-matrix A whose row space equals L, and we assume that L ∩ Rm
>0 6= ∅. We consider

the induced projection of the open positive orthant

π : Rm
>0 → Rd , x 7→ Ax. (2.15)

Since L = rowspace(A) contains a strictly positive vector, the image of π is a pointed
polyhedral cone, namely CL = pos(A) is the cone spanned by the columns of A. Each fiber
of π is a bounded convex polytope, and maximum likelihood estimation amounts to finding
a distinguished point x̂ in that fiber.

The problem of characterizing the existence of the MLE in this situation amounts to
a standard problem of geometric combinatorics (see e.g. [80]), namely, to computing the
facet description of the convex polyhedral cone spanned by the columns of A. For a given
vector t ∈ Rd of sufficient statistics, the maximum likelihood estimate exists in this diagonal
concentration model if and only if t lies in the interior of the cone pos(A). This happens if
and only if all facet inequalities are strict for t.

This situation is reminiscent of Birch’s Theorem for toric models in algebraic statistics
[59, Theorem 1.10], and, indeed, the combinatorial set-up for deciding the existence of the
MLE is identical to that for toric models. For a statistical perspective see [27]. However,
the algebraic structure here is not that of toric models, described in [59, §1.2.2], but that of
the linear models in [59, §1.2.1].
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Our model here is not toric but it is the coordinatewise reciprocal of an open polyhedral
cone:

L−1
>0 =

{
u ∈ Rm

>0 | u−1 = (u−1
1 , u−1

2 , . . . , u−1
m ) ∈ L

}
.

As in Section 2, we view its Zariski closure L−1 as a subvariety in complex projective space:

L−1 =
{
u ∈ Pm−1 | u−1 = (u−1

1 , u−1
2 , . . . , u−1

m ) ∈ L
}
.

Maximum likelihood estimation means intersecting the variety L−1 with the fibers of π.

Example 2.3.1. Let m = 4, d = 2 and take L to be the row space of the matrix

A =

(
3 2 1 0
0 1 2 3

)
.

The corresponding statistical model consists of all multivariate normal distributions on R4

whose concentration matrix has the diagonal form

K =


3λ1 0 0 0
0 2λ1 + λ2 0 0
0 0 λ1 + 2λ2 0
0 0 0 3λ2

 .

Our variety L−1 is the curve in P3 parametrized by the inverse diagonal matrices which we
write as K−1 = diag(x1, x2, x3, x4). The prime ideal PL of this curve is generated by three
quadratic equations:

x2x3 − 2x2x4 + x3x4 = 2x1x3 − 3x1x4 + x3x4 = x1x2 − 3x1x4 + 2x2x4 = 0.

Consider any sample covariance matrix S = (sij), with sufficient statistics

t1 = 3s11 + 2s22 + s33 > 0 and t2 = s22 + 2s33 + 3s44 > 0.

The MLE for these sufficient statistics is the unique positive solution x̂ of the three quadratic
equations above, together with the two linear equations

3x1 + 2x2 + x3 = t1 and x2 + 2x3 + 3x4 = t2.

We find that x̂ is an algebraic function of degree 3 in the sufficient statistics (t1, t2), so the
ML degree of the model K equals 3. This is consistent with formula (2.16) below, since(

4−1
2−1

)
= 3.

We now present the solutions to our three guiding problems for arbitrary d-dimensional
subspaces L of the space Rm of m×m-diagonal matrices. The degree of the projective
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variety L−1 and its prime ideal PL are known from work of [69] and its refinements due to
[61]. Namely, the degree of L−1 equals the beta-invariant1, of the rank m − d matroid on
[m] = {1, 2, . . . ,m} associated with L. We denote this beta-invariant by β(L). For matroid
basics see [73].

The beta-invariant β(L) is known to equal the number of bounded regions in the (m−d)-
dimensional hyperplane arrangement (cf. [78]) obtained by intersecting the affine space u+L⊥
with the m coordinate hyperplanes {xi = 0}. Here u can be any generic vector in Rm

>0. One
of these regions, namely the one containing u, is precisely the fiber of π. If L is a generic d-
dimensional linear subspace of Rm, meaning that the above matroid is the uniform matroid,
then the beta-invariant equals

β(L) =

(
m− 1

d− 1

)
. (2.16)

For non-generic subspaces L, this binomial coefficient is always an upper bound for β(L).

Theorem 2.3.2. ([61, 69]) The degree of the projective variety L−1 equals the beta-invariant
β(L). Its prime ideal PL is generated by the homogeneous polynomials∑

i∈supp(v)

vi ·
∏
j 6=i

xj (2.17)

where v runs over all non-zero vectors of minimal support in L⊥.

For experts in combinatorial commutative algebra, we note that [61] actually proves the
following stronger results. The homogeneous polynomials (2.17) form a universal Gröbner
basis of PL. The initial monomial ideal of PL with respect to any term order is the Stanley-
Reisner ideal of the corresponding broken circuit complex of the matroid of L. Hence the
Hilbert series of PL is the rational function obtained by dividing the h-polynomial h(t) of the
broken circuit complex by (1−t)d. In particular, the degree of PL is the number h(1) = β(L)
of broken circuit bases [73, §7].

We next consider Question 2 in the diagonal case. The maximum likelihood map takes
each vector t in the cone of sufficient statistics CL = pos(A) to a point of its fiber, namely:

x̂ = argmax
{ m∑
i=1

log(xi) | x ∈ Rm
>0 and Ax = t

}
. (2.18)

This is the unique point in the polytope π−1(t) = {x ∈ Rm
>0 and Ax = t} which maximizes

the product x1x2 · · ·xn of the coordinates. It is also the unique point in π−1(t) that lies in
the reciprocal linear variety L−1. In the linear programming literature, the point x̂ is known
as the analytic center of the polytope π−1(t). In Section 2 we discussed the extension of
this concept from linear programming to semidefinite programming: the analytic center of a

1Note that the beta-invariant is called Moebius invariant in [20].
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spectrahedron is the unique point Σ̂ at which the determinant function attains its maximum.
For an applied perspective see [70].

For any linear subspace L in Sm, the algebraic degree of the maximum likelihood map
t 7→ Σ̂ is always less than or equal to the degree of the projective variety L−1. We saw
in Theorem 2.2.3 that these degrees are equal for generic L. We next show that the same
conclusion holds for diagonal subspaces L.

Corollary 2.3.3. The ML degree of any diagonal linear concentration model L ⊂ Rm ⊂
Sm is equal to the beta-invariant β(L) of the corresponding matroid of rank m − d on
{1, 2, . . . ,m}.

Proof. The beta-invariant β(L) counts the bounded regions in the arrangement of hyper-
planes arising from the given facet description of the polytope π−1(t). Varchenko’s Formula
for linear models, derived in [59, Theorem 1.5], states that the optimization problem (2.18)
has precisely one real critical point in each bounded region, and that there are no other
complex critical points.

A fundamental question regarding the ML degree of any class of algebraic statistical
models is to characterize those models which have ML degree one. These are the models
whose maximum likelihood estimator is a rational function in the sufficient statistics [25,
§2.1]. In the context here, we have the following characterization of matroids whose beta-
invariant β(L) equals one.

Corollary 2.3.4. The ML degree β(L) of a diagonal linear concentration model L is equal
to one if and only if the matroid of L is the graphic matroid of a series-parallel graph.

Proof. The equivalence of series-parallel and β = 1 first appeared in [14, Theorem 7.6].

We now come to Question 3 which concerns the duality of convex cones in Proposition
2.2.1. In the diagonal case, the geometric view on this duality is as follows. The cone of suf-
ficient statistics equals CL = pos(A) and its convex dual is the cone KL = rowspace(A) ∩ L.
Both cones are convex, polyhedral, pointed, and have dimension d. By passing to their cross
sections with suitable affine hyperplanes, we can regard the two cones CL and KL as a dual
pair of (d− 1)-dimensional convex polytopes.

The hypersurface {det(K) = 0} is a union of m hyperplanes. The strata in its singularity
stratification, discussed towards the end of Section 2, correspond to the various faces F of the
polytope KL. The dual variety to a face F is the complementary face of the dual polytope
CL, and hence the codimension of that dual variety equals one if and only if F is a vertex
(= 0-dimensional face) of KL. This confirms that the polynomial HL sought in Question 3
is the product of all facet-definining linear forms of CL.

Corollary 2.2.2 furnishes a homeomorphism u 7→ Au−1 from the interior of the polytope
KL onto the interior of its dual polytope CL. The inverse to the rational function u 7→ Au−1

is an algebraic function whose degree is the beta-invariant β(L). This homeomorphism is
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the natural generalization, from simplices to arbitrary polytopes, of the classical Cremona
transformation of projective geometry. We close this section with a nice 3-dimensional
example which illustrates this homeomorphism.

Example 2.3.5 (How to morph a cube into an octahedron). Fix m = 8, d = 4, and L the
row space of

A =


1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1
1 1 1 1 1 1

 .

We identify the cone KL = rowspace(A) ∩ R6
>0 with {λ ∈ R4 : λ · A > 0}. This is the

cone over the 3-cube, which is obtained by setting λ4 = 1. The dual cone CL = pos(A) is
spanned by the six columns of the matrix A. It is the cone over the octahedron, which is
likewise obtained by setting t4 = 1.

We write the homeomorphism u 7→ Au−1 between these two four-dimensional cones in
terms of the coordinates of λ and t. Explicitly, the equation t = A · (λA)−1 translates into
the scalar equations:

t1 =
1

λ4 + λ1

− 1

λ4 − λ1

,

t2 =
1

λ4 + λ2

− 1

λ4 − λ2

,

t3 =
1

λ4 + λ3

− 1

λ4 − λ3

,

t4 =
1

λ4 + λ1

+
1

λ4 − λ1

+
1

λ4 + λ2

+
1

λ4 − λ2

+
1

λ4 + λ3

+
1

λ4 − λ3

.

Substituting λ4 = 1, we get the bijection (λ1, λ2, λ3) 7→ (t1/t4, t2/t4, t3/t4) between the open
cube (−1,+1)3 and the open octahedron { t ∈ R3 : |t1| + |t2| + |t3| < 1}. The inverse map
t 7→ λ is an algebraic function of degree β(L) = 7. That the ML degree of this model is 7 can
be seen as follows. The fibers π−1(t) are the convex polygons which can be obtained from
a regular hexagon by parallel displacement of its six edges. The corresponding arrangement
of six lines has 7 bounded regions.

2.4 Gaussian graphical models

A Gaussian graphical model arises when the subspace L of Sm is defined by the vanishing of
some off-diagonal entries of the concentration matrix K. We fix a graph G = ([m], E) with
vertex set [m] = {1, 2, . . . ,m} and whose edge set E is assumed to contain all self-loops. A
basis for L is the set {Kij | (i, j) ∈ E} of matrices Kij with a single 1-entry in position (i, j)
and 0-entries in all other positions. As noted earlier, we shall use the notation KG, CG, PG for



CHAPTER 2 30

the objects KL, CL, PL, respectively. Given a sample covariance matrix S, the set fiberG(S)
consists of all positive definite matrices Σ ∈ Sm�0 with

Σij = Sij for all (i, j) ∈ E.

The cone of concentration matrices KG is important for semidefinite matrix completion
problems. Its closure was denoted PG by [47, 48]. The dual cone CG consists of all partial
matrices T ∈ RE with entries in positions (i, j) ∈ E, which can be completed to a positive
definite matrix. So as noted already in Subsection 1.5.1, maximum likelihood estimation in
Gaussian graphical models corresponds to the classical positive definite matrix completion
problem [8, 9, 35, 47], and the ML degree of a Gaussian graphical model is the algebraic
complexity of the corresponding positive definite matrix completion problem. In this section
we investigate our three guiding questions, first for chordal graphs, next for the chordless
m-cycle Cm, then for all graphs with five or less vertices, and finally for the m-wheel Wm.

2.4.1 Chordal graphs

A graph G is chordal if every induced m-cycle in G for m ≥ 4 has a chord. Theorem 1.3.1
due to [35] fully resolves Question 3 when G is chordal. Namely, a partial matrix T ∈ RE

lies in the cone CG if and only if all principal minors TCC indexed by cliques C in G are
positive definite. The “only if” direction in this statement is true for all graphs G, but the
“if” direction holds only when G is chordal. This result is equivalent to the characterization
of chordal graphs as those that have sparsity order equal to one, i.e., all extreme rays of KG
are matrices of rank one. We refer to [3] and [48] for details. From this characterization of
chordal graphs in terms of sparsity order, we infer the following description of the Zariski
closure of the boundary of CG.

Proposition 2.4.1. For a chordal graph G, the defining polynomial HG of ∂CG is equal to

HG =
∏

C maximal
clique of G

det(TCC).

We now turn to Question 2 regarding the ML degree of a Gaussian graphical model G.
This number is here simply denoted by ML-degree(G). Every chordal graph is a clique sum
of complete graphs. We shall prove that the ML degree is multiplicative with respective to
taking clique sums.

Lemma 2.4.2. Let G be a clique sum of n graphs G1, . . . , Gn. Then the following equality
holds:

ML-degree (G) =
n∏
i=1

ML-degree (Gi).
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Proof. We first prove this statement for n = 2. Let G be a graph which can be decomposed
in disjoint subsets (A,B,C) of the vertex set V , such that C is a clique and separates A
from B. Let G[W ] denote the induced subgraph on a vertex subset W ⊂ V . So, we wish to
prove:

ML-degree (G) = ML-degree (G[A∪C]) ·ML-degree (G[B∪C]). (2.19)

Given a generic matrix S ∈ Sm, we fix Σ ∈ Sm with entries Σij = Sij for (i, j) ∈ E and
unknowns Σij = zij for (i, j) /∈ E. The ML degree of G is the number of complex solutions
to the equations

(Σ−1)ij = 0 for all (i, j) /∈ E. (2.20)

Let K = Σ−1 and denote by K1 = (Σ[A∪C])
−1 (respectively, K2 = (Σ[B∪C])

−1) the inverse of
the submatrix of Σ corresponding to the induced subgraph on A ∪ C (respectively, B ∪ C).
Using Schur complements, we can see that these matrices are related by the following block
structure:

K =

K1
AA K1

AC 0
K1
CA KCC K2

CB

0 K2
BC K2

BB

 , K1 =

(
K1
AA K1

AC

K1
CA K1

CC

)
, K2 =

(
K2
CC K2

CB

K2
BC K2

BB

)
.

This block structure reveals that, when solving the system (2.20), one can solve for the
variables zij corresponding to missing edges in the subgraph A ∪ C independently from the
variables over B ∪ C and A ∪ B. This implies the equation (2.19). Induction yields the
theorem for n ≥ 3.

The following theorem characterizes chordal graphs in terms of their ML degree. It
extends the equivalence of parts (iii) and (iv) in [25, Thm. 3.3.5] from discrete to Gaussian
models.

Theorem 2.4.3. A graph G is chordal if and only if ML-degree(G) = 1.

Proof. The only-if-direction follows from Lemma 2.4.2 since every chordal graph is a clique
sum of complete graphs, and a complete graph trivially has ML degree one. For the if-
direction suppose that G is a graph that is not chordal. Then G contains the chordless cycle
Cm as an induced subgraph for some m ≥ 4. It is easy to see that the ML degree of any
graph is bounded below by that of any induced subgraph. Hence what we must prove is
that the chordless cycle Cm has strictly positive ML degree. This is precisely the content of
Lemma 2.4.7 below.

We now come to Question 1 which concerns the homogeneous prime ideal PG that defines
the Gaussian graphical model as a subvariety of P(Sm). Fix a symmetric m×m-matrix of
unknowns Σ = (sij) and let Σij denote the comaximal minor obtained by deleting the ith
row and the jth column from Σ. We shall define several ideals in R[Σ] that approximate PG.
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The first is the saturation

P ′G = (I : J∞) where I = 〈 det(Σij) | (i, j) ∈ E 〉 and J = 〈det(Σ)〉. (2.21)

This ideal is contained in the desired prime ideal, i.e. P ′G ⊆ PG. The two ideals have the
same radical, but it might happen that they are not equal. One disadvantage of the ideal
P ′G is that the saturation step (2.21) is computationally expensive and terminates only for
very small graphs.

A natural question is whether the prime ideal PG can be constructed easily from the
prime ideals PG1 and PG2 when G is a clique sum of two smaller graphs G1 and G2. As in
the proof of Lemma 2.4.2, we partition [m] = A∪B ∪C, where G1 is the induced subgraph
on A ∪ C, and G2 is the induced subgraph on B ∪ C. If |C| = c then we say that G is a
c-clique sum of G1 and G2.

The following ideal is contained in PG and defines the same algebraic variety in the open
cone Sm�0:

PG1 + PG2 +
〈

(c+1)×(c+1)-minors of ΣA∪C,B∪C
〉
. (2.22)

One might guess that (2.22) is equal to PG, at least up to radical, but this fails for c ≥ 2.
Indeed we shall see in Example 2.4.5 that the variety of (2.22) can have extraneous compo-
nents on the boundary Sm�0\Sm�0 of the semidefinite cone. We do conjecture, however, that
this equality holds for c ≤ 1. This is easy to prove for c = 0 when G is disconnected and is
the disjoint union of G1 and G2. The case c = 1 is considerably more delicate. At present, we
do not have a proof that (2.22) is prime for c = 1, but we believe that even a lexicographic
Gröbner basis for PG can be built by taking the union of such Gröbner basis for PG1 and
PG2 with the 2× 2-minors of ΣA∪C,B∪C . This conjecture would imply the following.

Conjecture 2.4.4. The prime ideal PG of an undirected Gaussian graphical model is gen-
erated in degree ≤ 2 if and only if each connected component of the graph G is a 1-clique
sum of complete graphs. In this case, PG has a Gröbner basis consisting of entries of Σ and
2× 2-minors of Σ.

This conjecture is an extension of the results and conjectures for (directed) trees in [66,
§5]. Formulas for the degree of PG when G is a tree are found in [66, Corollaries 5.5 and 5.6].
The “only if” direction in the first sentence of Conjecture 2.4.4 can be shown as follows. If
G is not chordal then it contains an m-cycle (m ≥ 4) as an induced subgraph, and, this
gives rise to cubic generators for PG, as seen in Subsection 4.2 below. If G is chordal but
is not a 1-clique sum of complete graphs, then its decomposition involves a c-clique sum
for some c ≥ 2, and the right hand side of (2.22) contributes a minor of size c + 1 ≥ 3 to
the minimal generators of PG. The algebraic structure of chordal graphical models is more
delicate in the Gaussian case then in the discrete case, and there is no Gaussian analogue to
the characterizations of chordality in (i) and (ii) of [25, Theorem 3.3.5]. This is highlighted
by the following example which was suggested to us by Seth Sullivant.
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Example 2.4.5. Let G be the graph on m = 7 vertices consisting of the triangles {i, 6, 7}
for i = 1, 2, 3, 4, 5. Then G is chordal because it is the 2-clique sum of these five triangles.
The ideal PG is minimally generated by 105 cubics and one quintic. The cubics are spanned
by the 3 × 3-minors of the matrices ΣA∪C,B∪C where C = {6, 7} and {A,B} runs over all
unordered partitions of {1, 2, 3, 4, 5}. These minors do not suffice to define the variety V (PG)
set-theoretically. For instance, they vanish whenever the last two rows and columns of Σ are
zero. The additional quintic generator of PG equals

s12s13s24s35s45 − s12s13s25s34s45 − s12s14s23s35s45 + s12s14s25s34s35

+s12s15s23s34s45 − s12s15s24s34s35 + s13s14s23s25s45 − s13s14s24s25s35

−s13s15s23s24s45 + s13s15s24s25s34 + s14s15s23s24s35 − s14s15s23s25s34.

This polynomial is the pentad which is relevant for factor analysis [25, Example 4.2.8].

Given an undirected graph G on [m], we define its Sullivant-Talaska ideal STG to be the
ideal in R[Σ] that is generated by the following collection of minors of Σ. For any submatrix
ΣA,B we include in STG all c × c-minors of ΣA,B provided c is the smallest cardinality of a
set C of vertices that separates A from B in G. Here, A,B and C need not be disjoint, and
separation means that any path from a node in A to a node in B must pass through a node
in C. In [67] it is shown that the generators of STG are precisely those subdeterminants
of Σ that lie in PG, and both ideals cut out the same variety in the positive definite cone
Sm�0. However, generally their varieties differ on the boundary of that cone, even for chordal
graphs G, as seen in Example 2.4.5. In our experiments, we found that STG can often be
computed quite fast, and it frequently coincides with the desired prime ideal PG.

2.4.2 The chordless m-cycle

We next discuss Questions 1, 2, and 3 for the simplest non-chordal graph, namely, the m-cycle
Cm. Its Sullivant-Talaska ideal STCm is generated by the 3×3-minors of the submatrices ΣA,B

where A = {i, i+1, . . . , j−1, j}, B = {j, j+1, . . . , i−1, i}, and |i− j| ≥ 2. Here {A,B} runs
over all diagonals in the m-gon, and indices are understood modulo m. We conjecture that

PCm = STCm . (2.23)

We computed the ideal PCm in Singular for small m. Table 2.2 lists the results. In all
cases in this table, the minimal generators consist of cubics only, which is consistent with
the conjecture (2.23). For the degree of the Gaussian m-cycle we conjecture the following
formula.
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Table 2.2: Dimension, degree, ML-degree, and degree and number of minimal generators of
the ideal PCm for m ≤ 8.

m 3 4 5 6 7 8
dimension d 6 8 10 12 14 16
degree 1 9 57 312 1578 7599
ML-degree 1 5 17 49 129 321
minimal generators (degree:number) 0 3:2 3 :15 3:63 3:196 3:504

Conjecture 2.4.6. The degree of the projective variety V (PCm) associated with the m-cycle
equals

m+ 2

4

(
2m

m

)
− 3 · 22m−3.

Regarding Question 2, the following formula was conjectured in [25, §7.4]:

ML-degree(Cm) = (m− 3) · 2m−2 + 1, for m ≥ 3. (2.24)

This quantity is an algebraic complexity measure for the following matrix completion prob-
lem. Given real numbers xi between −1 and +1, fill up the partially specified symmetric
m×m-matrix 

1 x1 ? ? · · · ? xm
x1 1 x2 ? · · · ? ?

? x2 1 x3 ?
. . . ?

? ? x3 1 x4
. . .

...
...

...
. . . . . . . . . ?

? ? ? ? xm−2 1 xm−1

xm ? ? ? ? xm−1 1


(2.25)

to make it positive definite. We seek the unique fill-up that maximizes the determinant. The
solution to this convex optimization problem is an algebraic function of x1, x2, . . . , xm whose
degree equals ML-degree(Cm). We do not know how to prove (2.24) for m ≥ 9. Even the
following lemma is not easy.

Lemma 2.4.7. The ML-degree of the cycle Cm is strictly larger than 1 for m ≥ 4.

Sketch of Proof. We consider the special case of (2.25) when all of the parameters are equal:

x := x1 = x2 = · · · = xm. (2.26)

Since the logarithm of the determinant is a concave function, the solution to our optimization
problem is fixed under the symmetry group of the m-gon, i.e., it is a symmetric circulant



CHAPTER 2 35

matrix Σm. Hence there are only bm−2
2
c distinct values for the question marks in (2.25), one

for each of the symmetry class of long diagonals in the m-gon. We denote these unknowns
by s1, s2, . . . , sbm−2

2
c where si is the unknown on the i-th circular off-diagonal. For instance,

for m = 7, the circulant matrix we seek has two unknown entries s1 and s2 and is of the
following form:

Σ7 =



1 x s1 s2 s2 s1 x
x 1 x s1 s2 s2 s1

s1 x 1 x s1 s2 s2

s2 s1 x 1 x s1 s2

s2 s2 s1 x 1 x s1

s1 s2 s2 s1 x 1 x
x s1 s2 s2 s1 x 1


The key observation is that the determinant of the circular symmetric matrix Σm factors
into a product of m linear factors with real coefficients, one for each mth root of unity. For
example,

det(Σ7) =
∏

w:w7=1

(
1 + (w + w6) · x+ (w2 + w5) · s1 + (w3 + w4) · s2

)
.

Thus, for fixed x, our problem is to maximize a product of linear forms. By analyzing
the critical equations, obtained by taking logarithmic derivatives of det(Σm), we can show
that the optimal solution (ŝ1, ŝ2, . . . , ŝbm−2

2
c) is not a rational function in x. For example,

when m = 7, the solution (ŝ1, ŝ2) is an algebraic function of degree 3 in x. Its explicit
representation is

ŝ1 =
x2 + ŝ2x− ŝ2

2 − ŝ2

1− x
and ŝ3

2 + (1− 2x)ŝ2
2 + (−x2 + x− 1)ŝ2 + x3 = 0

So the ML degree for this special symmetric case is 3, giving a lower bound for the ML
degree of C7. A similar computation using Singular [21] shows that the ML degree for the
symmetric case is bm

2
c for 4 ≤ m ≤ 12 giving a lower bound on the ML degree for m-cycles

with 4 ≤ m ≤ 12. A general proof for m > 13 is still open.

We now come to our third problem, namely to giving an algebraic description of the cone
of sufficient statistics, denoted Cm := CCm . This is a full-dimensional open convex cone in
R2m. The coordinates on R2m are s11, s22, . . . , smm and x1 = s12, x2 = s23, . . . , xm = sm1.
We consider

C ′m := Cm ∩
{
s11 = s22 = · · · = smm = 1

}
.

This is a full-dimensional open bounded spectrahedron in Rm. It consists of all (x1, . . . , xm)
such that (2.25) can be filled up to a positive definite matrix. The 2×2-minors of (2.25) imply
that C ′m lies in the cube (−1, 1)m = {|xi| < 1}. The issue is to identify further constraints.
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We note that any description of the m-dimensional spectrahedron C ′m leads to a description
of the 2m-dimensional cone Cm because a vector s ∈ R2m lies in Cm if and only if the vector
x ∈ Rm with the following coordinates lies in C ′m:

xi =
sij√
siisjj

for i = 1, 2, . . . ,m (2.27)

The article [9] gave a beautiful polyhedral description of the spectrahedron C ′m. The idea is to
replace each xi by its arc-cosine, that is, to substitute xi = cos(φi) into (2.25). Remarkably,
the image of the spectrahedron C ′m under this transformation is a convex polytope. Explicit
linear inequalities in the angle coordinates φi describing the facets of this polytope are given
in [9].

To answer Question 3, we take the cosine-image of any of these facets and compute its
Zariski closure. This leads to the following trigonometry problem. Determine the unique
(up to scaling) irreducible polynomial Γ′m which is obtained by rationalizing the equation

x1 = cos

( m∑
i=2

arccos(xi)

)
. (2.28)

We call Γ′m the m-th cycle polynomial. Interestingly, Γ′m is invariant under all permutations
of the m variables x1, x2, . . . , xm. We also define the homogeneous m-th cycle polynomial
Γm to be the numerator of the image of Γ′m under the substitution (2.27). The first cycle
polynomials arise for m = 3:

Γ′3 = det

 1 x1 x3

x1 1 x2

x3 x2 1

 and Γ3 = det

s11 s12 s13

s12 s22 s23

s13 s23 s33

 .

The polyhedral characterization of Cm given in [9] translates into the following theorem.

Theorem 2.4.8. The Zariski closure of the boundary of the cone Cm, m ≥ 4, is defined by
the polynomial

HCm(sij) = Γm(sij) · (s11s22 − s2
12) · (s22s33 − s2

23) · · · (smms11 − s2
1m).

To compute the cycle polynomial Γ′m, we iteratively apply the sum formula for the cosine,

cos(a+ b) = cos(a) · cos(b)− sin(a) · sin(b),

and we then use the following relation to write (2.28) as an algebraic expression in x1, . . . , xn:

sin
(
arccos(xi)

)
=
√

1− x2
i .
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Finally, we eliminate the square roots (e.g. by using resultants) to get the polynomial Γ′m.
For example, the cycle polynomial for the square (m = 4) has degree 6 and has 19 terms:

Γ′4 = 4
∑
i<j<k

x2
ix

2
jx

2
k − 4x1x2x3x4

∑
i

x2
i +

∑
i

x4
i − 2

∑
i<j

x2
ix

2
j + 8x1x2x3x4.

By substituting (2.27) into this expression and taking the numerator, we obtain the homo-
geneous cycle polynomial Γ4 which has degree 8. Table 2.3 summarizes what we know about
the expansions of these cycle polynomials. Note that Γ′m and Γm have different degrees but
the same number of terms. The degree of the m-th cycle polynomial Γ′m grows roughly like
2m, but we do not know an exact formula. However, for the homogeneous cycle polynomial
Γm we predict the following behavior.

Conjecture 2.4.9. The degree of the homogeneous m-th cycle polynomial Γm equals m·2m−3.

There is another way of defining and computing the cycle polynomial Γm, without any
reference to trigonometry or semidefinite programming. Consider the prime ideal generated
by the 3 × 3-minors of the generic symmetric m×m-matrix Σ = (sij). Then 〈Γm〉 is the
principal ideal obtained by eliminating all unknowns sij with |i−j| ≥ 2. Thus, geometrically,
vanishing of the homogeneous polynomial Γm characterizes partial matrices on the m-cycle
Cm that can be completed to a matrix of rank ≤ 2. Similarly, vanishing of Γ′m characterizes
partial matrices (2.25) that can be completed to rank ≤ 2.

Independently of the work of [9], a solution to the problem of characterizing the cone Cm
appeared in the same year in the statistics literature, namely by [15]. The cone Cm is the
set of partial sample covariance matrices on the m-cycle for which the MLE exists.

Table 2.3: Degree and number of terms of cycle polynomials for m ≤ 11.

m 3 4 5 6 7 8 9 10 11
degree(Γ′m) 3 6 15 30 70 140 315 630 1260
degree(Γm) 3 8 20 48 112 256 576 1280 2816
# of terms 5 19 339 19449 ? ? ? ? ?

2.4.3 Small graphs, suspensions and wheels

We next examine Questions 1, 2 and 3 for all graphs with at most five vertices. In this
analysis we can restrict ourselves to connected graphs only. Indeed, if G is the disjoint union
of two graphs G1 and G2, then the prime ideal PG is obtained from PG1 and PG2 as in
(2.22) with c = 0, the ML-degrees multiply by Lemma 2.4.2, and the two dual cones both
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decompose as direct products:

CG = CG1 × CG2 and KG = KG1 ×KG2 .

Chordal graphs were dealt with in Section 2.4.1. We now consider connected non-chordal
graphs with m ≤ 5 vertices. There are seven such graphs, and in Table 2.4 we summarize
our findings for these seven graphs. In the first two rows of Table 2.4 we find the 4-cycle
and the 5-cycle which were discussed in Subsection 2.4.2. As an illustration we examine in
detail the graph in the second-to-last row of Table 2.4.

Table 2.4: Our three guiding questions for all non-chordal graphs with m ≤ 5 vertices. Col-
umn 4 reports the degrees of the minimal generators together with the number of occurrence
(degree:number). The last column lists the degrees of the irreducible factors of the polyno-
mial HG that define the Zariski closure of the boundary of CG. For each factor we report in
lowercase the rank of the concentration matrices defining its dual irreducible component in
the boundary of KG.

Graph G dim d deg PG mingens PG ML-deg deg HG

8 9 3:2 5 4 · 21 + 82

10 57 3:15 17 5 · 21 + 203

10 30 2:6, 3:4 5 5 · 21 + 82

11 31 3:10 5 3 · 21 + 31 + 82

11 56 3:7, 4:1 7 6 · 21 + 3 · 82

12 24 3:4, 4:1 5 2 · 21 + 2 · 31 + 102

13 16 4:2 5 4 · 31 + 122
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Figure 2.3: A Gaussian graphical model on five vertices and seven edges having dimension
d = 12.

Example 2.4.10. The graph in Figure 2.3 defines the Gaussian graphical model with con-
centration matrix

K =


λ1 λ6 0 λ9 λ10

λ6 λ2 λ7 0 λ11

0 λ7 λ3 λ8 λ12

λ9 0 λ8 λ4 0
λ10 λ11 λ12 0 λ5

 .

We wish to describe the boundary of the cone CG by identifying the irreducible factors in its
defining polynomial HG. We first use the Matlab software cvx [32], which is specialized in
convex optimization, to find the ranks of all concentration matrices K that are extreme rays
in the boundary of KG. Using cvx, we maximize random linear functions over the compact
spectrahedron KG ∩ {trace(K) = 1}, and we record the ranks of the optimal matrices. We
found the possible matrix ranks to be 1 and 2, which agrees with the constraints 2 ≤ p ≤ 3
seen in (2.14) for generic subspaces L with m = 5 and d = 12.

We next ran the software Singular [21] to compute the minimal primes of the ideals
of p × p-minors of K for p = 2 and p = 3, and thereafter we computed their dual ideals
in R[t1, t2, . . . , t12] using Macaulay2 [33]. The latter step was done using the procedure
with Jacobian matrices described in Subsection 2.2.3. We only retained dual ideals that are
principal. Their generators are the candidates for factors of HG.

The variety of rank one matrices K has four irreducible components. Two of those
components correspond to the edges (3, 4) and (1, 4) in Figure 2.3. Their dual ideals are
generated by the quadrics

p1 = 4t3t4 − t28 and p2 = 4t1t4 − t29.

The other two irreducible components of the variety of rank one concentration matrices
correspond to the 3-cycles (1, 2, 5) and (2, 3, 5) in the graph. Their dual ideals are generated
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by the cubics

p3 = 4t1t2t5− t5t26− t2t210 + t6t10t11− t1t211 and p4 = 4t2t3t5− t5t27− t3t211 + t7t11t12− t2t212.

The variety of rank two matrices K has two irreducible components. One corresponds to the
chordless 4-cycle (1, 2, 3, 4) in the graph and its dual ideal is generated by p5 = Γ4, which is
of degree 8. The other component consists of rank two matrices K for which rows 2 and 5
are linearly dependent. The polynomial p6 that defines the dual ideal consists of 175 terms
and has degree 10.

The polynomial HG is the product of those principal generators pi whose hypersurface
meets ∂CG. We again used cvx to check which of the six components actually contribute
extreme rays in ∂KG. We found only one of the six components to be missing, namely the
one corresponding to the chordless 4-cycle (1, 2, 3, 4). This means that p5 is not a factor of
HG, and we conclude that

HG = p1p2p3p4p6 and deg(HG) = 2 · 21 + 2 · 31 + 102. (2.29)

Concerning Question 1 we note that the ideal PG is minimally generated by the four 3×3-
minors of Σ1235,134 and the determinant of Σ1245,2345, and for Question 2 we note that the
ML degree is five because the MLE can be derived from the MLE of the 4-cycle obtained by
contracting the edge (2, 5).

The graph in the last row of Table 2.4 is the wheel W4. It is obtained from the cycle C4

in the first row by connecting all four vertices to a new fifth vertex. We see in Table 2.4 that
the ML degree 5 is the same for both graphs, the two cubic generators of PC4 correspond
to the two quartic generators of PW4 , and there is a similar correspondence between the
irreducible factors of the dual polynomials HC4 and HW4 . In the remainder of this section
we shall offer an explanation for these observations.

Let G = (V,E) be an undirected graph and G∗ = (V ∗, E∗) its suspension graph with
an additional completely connected vertex 0. The graph G∗ has vertex set V ∗ = V ∪ {0}
and edge set E∗ = E ∪ {(0, v) | v ∈ V }. The m-wheel Wm is the suspension graph of the
m-cycle Cm; in symbols, Wm = (Cm)∗. We shall compare the Gaussian graphical models for
the graph G and its suspension graph G∗.

Theorem 2.4.11. The ML degree of a Gaussian graphical model with underlying graph G
equals the ML degree of a Gaussian graphical model whose underlying graph is the suspension
graph G∗. In symbols,

ML-degree(G) = ML-degree(G∗).

Proof. Let V = [m] and let S∗ ∈ Sm+1
�0 be a sample covariance matrix on G∗, where the

first row and column correspond to the additional vertex 0. We denote by S ′ the lower right
m×m submatrix of S∗ corresponding to the vertex set V and by S the Schur complement
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of S∗ at S∗00:

S = S ′ − 1

S∗00

(S∗01, . . . , S
∗
0m)T (S∗01, . . . , S

∗
0m). (2.30)

Then S ∈ Sm�0 is a sample covariance matrix on G. Let Σ̂ be the MLE for S on the graph

G. We claim that the MLE Σ̂∗ for S∗ on the suspension graph G∗ is given by

Σ̂∗ =


S∗00 S∗01 · · · S∗0m
S∗01
... Σ̂ + S ′ − S

S∗0m

 .
Clearly, Σ̂∗ is positive definite and satisfies Σ̂∗ij = S∗ij for all (i, j) ∈ E∗. The inverse of

the covariance matrix Σ̂∗ can be computed by using the inversion formula based on Schur
complements:

(Σ̂∗)−1 =

[
1
S∗00

+ (S∗01, . . . , S
∗
0m)(Σ̂)−1(S∗01, . . . , S

∗
0m)T 1

S∗00
(S∗01, . . . , S

∗
0m)(Σ̂)−1

1
S∗00

(Σ̂)−1(S∗01, . . . , S
∗
0m)T (Σ̂)−1

]
.

Since the lower right block equals (Σ̂)−1, its entries are indeed zero in all positions (i, j) /∈ E∗.
We have shown that the MLE Σ̂∗ is a rational function of the MLE Σ̂. This shows

ML-degree(G∗) ≤ ML-degree(G).

The reverse inequality is also true since we can compute the MLE on G for any S ∈ Sm�0

by computing the MLE on G∗ for its extension S∗ ∈ Sm+1
�0 with S∗00 = 1 and S∗0j = 0 for

j ∈ [m].

We next address the question of how the boundary of the cone CG∗ can be expressed
in terms of the boundary of CG. We use coordinates tij for both Sm and its subspace RE,
and we use the coordinates uij for both Sm+1 and its subspace RE∗ . The Schur complement
(2.30) defines a rational map from Sm+1 to Sm which restricts to a rational map from RE∗

to RE. The formula is

tij = uij −
u0iu0j

u00

for 1 ≤ i ≤ j ≤ m. (2.31)

A partial matrix (uij) on G∗ can be completed to a positive definite (m+ 1)×(m+ 1)-matrix
if and only if the partial matrix (tij) on G given by this formula can be completed to a
positive definite m×m-matrix. The rational map (2.31) takes the boundary of the cone CG∗
onto the boundary of the cone CG. For our algebraic question, we can derive the following
conclusion:
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Proposition 2.4.12. The polynomial HG∗(uij) equals the numerator of the Laurent polyno-
mial obtained from HG(tij) by the substitution (2.31), and the same holds for each irreducible
factor.

Example 2.4.13. The polynomialHW4(u00, u01, u02, u03, u04, u11, u22, u33, u44, u12, u23, u34, u14)
for the 4-wheel W4 has as its main factor an irreducible polynomial of degree 12 which is the
sum of 813 terms. It is obtained from the homogeneous cycle polynomial Γ4 by the substitu-
tion (2.31). Recall that the homogeneous cycle polynomial Γ4(t11, t22, t33, t44, t12, t23, t34, t14)
has only degree 8 and is the sum of 19 terms.

We briefly discuss an issue raised by Question 1, namely, how to construct the prime
ideal PG∗ from the prime ideal PG. Again, we can use the transformation (2.31) to turn
every generator of PG into a Laurent polynomial whose numerator lies in PG∗ . However, the
resulting polynomials will usually not suffice to generate PG∗ . This happens already for the
5-cycle G = C5 and the 5-wheel G∗ = W5. The ideal PC5 is generated by 15 linearly indepen-
dent cubics arising as 3×3-minors of the matrices Σ132,1345, Σ243,2451, Σ354,3512, Σ415,4123 and
Σ521,5234, while PW5 is generated by 20 linearly independent quartics arising as 4×4-minors of
Σ0132,01345, Σ0243,02451, Σ0354,03512, Σ0415,04123 and Σ0521,05234. Table 2.5 summarizes what we
know about the Gaussian wheels Wm.

Table 2.5: Dimension, degree, ML-degree, and degree and number of minimal generators for
Wm with m ≤ 6.

m 3 4 5 6
dimension d 10 13 16 19
degree 1 16 198 2264
ML-degree 1 5 17 49
minimal generators (degree:number) 0 4 :2 4 :20 4:108

2.5 Colored Gaussian graphical models

We now add a graph coloring to the setup and study colored Gaussian graphical models.
These were briefly described in Subsection 1.5.2 and introduced by [39], who called them
RCON-models. In the underlying graph G, the vertices are colored with p different colors
and the edges are colored with q different colors:

V = V1 t V2 t · · · t Vp, p ≤ |V |,
E = E1 t E2 t · · · t Eq, q ≤ |E|.
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Figure 2.4: Colored Gaussian graphical model for Frets’ heads: Li, Bi denote the length and
breadth of the head of son i.

We denote the uncolored graph by G and the colored graph by G. Note that in this section
the graph G does not contain any self-loops. The vertices play the same role as the self-
loops in Section 2.4. In addition to the restrictions given by the missing edges in the graph,
the entries of the concentration matrix K are now also restricted by equating entries in K
according to the edge and vertex colorings. To be precise, the linear space L of Sm associated
with a colored graph G on m = |V | nodes is defined by the following linear equations:

• For any pair of nodes α, β that do not form an edge we set kαβ = 0 as before.

• For any pair of nodes α, β in a common color class Vi we set kαα = kββ.

• For any pair of edges (α, β), (γ, δ) in a common color class Ej we set kαβ = kγδ.

The dimension of the model G is d = p + q. Note again that, for any sample covariance
matrix S,

πG(S) ∈ CG implies πG(S) ∈ CG.

Thus, introducing a graph coloring on G relaxes the question of existence of the MLE.
In this section we shall examine Questions 1, 2 and 3 for various colorings G of the 4-cycle

G = C4. We begin with a statistical application of colored Gaussian graphical models.

Example 2.5.1 (Frets’ heads). We revisit the heredity study of head dimensions reported
in [53] and known as Frets’ heads. The data reported in this study consists of the length and
breadth of the heads of 25 pairs of first and second sons. Because of the symmetry between
the two sons, it makes sense to try to fit the colored Gaussian graphical model given in
Figure 2.4.

This model has d = 5 degrees of freedom and it consists of all concentration matrices of
the form

K =


λ1 λ3 0 λ4

λ3 λ1 λ4 0
0 λ4 λ2 λ5

λ4 0 λ5 λ2

 .
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In Figure 2.4, the first random variable is denoted L1, the second L2, the third B2, and the
fourth B1. Given a sample covariance matrix S = (sij), the five sufficient statistics for this
model are

t1 = s11 + s22, t2 = s33 + s44, t3 = 2s12, t4 = 2(s23 + s14), t5 = 2s34. (2.32)

The ideal of polynomials vanishing on K−1 is generated by four linear forms and one cubic
in the sij:

PG = 〈 s11 − s22 , s33 − s44 , s23 − s14 , s13 − s24 ,

s2
23s24 − s3

24 − s22s23s34 + s12s24s34 − s12s23s44 + s22s24s44 〉.

Note that the four linear constraints on the sample covariance matrix seen in PG are also valid
constraints on the concentration matrix. Models with this property are called RCOP-models
and were studied by [39, 41].

The data reported in the Frets’ heads study results in the following sufficient statistics:

t1 = 188.256, t2 = 95.408, t3 = 133.750, t4 = 210.062, t5 = 67.302.

Substituting these values into (2.32) and solving the equations on V (PG), we find the MLE
for this data:

Σ̂ =


94.1280 66.8750 44.3082 52.5155
66.8750 94.1280 52.5155 44.3082
44.3082 52.5155 47.7040 33.6510
52.5155 44.3082 33.6510 47.7040

 .

Both the degree and the ML-degree of this colored Gaussian graphical model is 3, which
answers Questions 1 and 2. It remains to describe the boundary of the cone CG and to
determine its defining polynomial HG. The variety of rank one concentration matrices has
four irreducible components:

〈k2, k4, k5, k1 + k3〉, 〈k2, k4, k5, k1 − k3〉, 〈k1, k3, k4, k2 + k5〉, 〈k1, k3, k4, k2 − k5〉.

These are points in P4 and the ideals of their dual hyperplanes are 〈t1 − t3〉, 〈t1 + t3〉, 〈t2 −
t5〉, 〈t2 + t5〉. The variety of rank two concentration matrices is irreducible. Its prime ideal
and the dual thereof are

〈k2k3 + k1k5, k1k2 − k2
4 + k3k5, k3k

2
4 + k2

1k5 − k2
3k5〉

〈4t22t23 − 4t1t2t
2
4 + t44 + 8t1t2t3t5 − 4t3t

2
4t5 + 4t21t

2
5〉.

This suggests that the hypersurface ∂CG is given by the polynomial

HG = (t1− t3)(t1 + t3)(t2− t5)(t2 + t5)(4t22t
2
3−4t1t2t

2
4 + t44 +8t1t2t3t5−4t3t

2
4t5 +4t21t

2
5). (2.33)
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Using cvx as in Example 2.4.10 we checked that all five factors meet ∂CG, so (2.33) is indeed
correct.

We performed a similar analysis for all colored Gaussian graphical models on the 4-cycle
C4, which have the property that edges in the same color class connect the same vertex
color classes. The results are presented in Table 2.6, 2.7 and 2.8. These models are of
special interest because they are invariant under rescaling of variables in the same vertex
color class. Such models were introduced and studied by [39]. For models with an additional
permutation property (these are the RCOP-models), we explicitly list the polynomial HG.
A census of these models appears in Table 2.8.

Example 2.5.2. We can gain a different perspective on the proof of Lemma 2.4.7 by consid-
ering colored Gaussian graphical models. Under the assumption (2.26) that all parameters
in the partial matrix (2.25) are equal to some fixed value x, the MLE K̂ for the concentration
matrix has the same structure. Namely, all diagonal entries of K̂ are equal, and all non-zero
off-diagonal entries of K̂ are equal. This means that we can perform our MLE computation
for the colored Gaussian graphical model with the chordless m-cycle as the underlying graph,
where all vertices and all edges have the same color:

K =



λ1 λ2 0 0 · · · λ2

λ2 λ1 λ2 0 · · · 0
0 λ2 λ1 λ2 · · · 0
...

...
. . . . . . . . . 0

0 0 0 λ2 λ1 λ2

λ2 0 0 0 λ2 λ1


. (2.34)

In contrast to the approach in the proof of Lemma 2.4.7, in this representation we only need
to solve a system of two polynomial equations in two unknowns, regardless of the cycle size
m. The equations are

(K−1)11 = 1 and (K−1)12 = x.

By clearing denominators we obtain two polynomial equations in the unknowns λ1 and
λ2. We need to express these in terms of the parameter x, but there are many extraneous
solutions. The ML degree is the algebraic degree of the special solution (λ̂1(x), λ̂2(x)) which
makes (2.34) positive definite.

Example 2.5.3. Let G be the colored triangle with the same color for all three vertices and
three distinct colors for the edges. This is an RCOP model with m = 3 and d = 4. The
corresponding subspace L of S3 consists of all concentration matrices

K =

λ4 λ1 λ2

λ1 λ4 λ3

λ2 λ3 λ4

 .
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Figure 2.5: The cross section of the cone of sufficient statistics in Example 2.5.3 is the red
convex body shown in the left figure. It is dual to Cayley’s cubic surface, which is shown in
yellow in the right figure and also in Figure 2.1 on the left.

This linear space L is generic enough so as to exhibit the geometric behavior described in
Subsection 2.2. The four-dimensional cone KL is the cone over the 3-dimensional spectrahe-
dron bounded by Cayley’s cubic surface as shown on the right in Figure 2.5. Its dual CL is
the cone over the 3-dimensional convex body shown on the left in Figure 2.5. The boundary
of this convex body consists of four flat 2-dimensional circular faces (shown in black) and
four curved surfaces whose common Zariski closure is a quartic Steiner surface. Figure 2.5
was made with surfex [40], a software package for visualizing algebraic surfaces.

Here, the inequalities (2.14) state 2 ≤ p ≤ 3, and the algebraic degree of semidefinite
programming is δ(3, 3, 2) = δ(3, 3, 1) = 4. We find that HL is a polynomial of degree 8 which
factors into four linear forms and one quartic:

HL = (t1−t2+t3−t4)(t1+t2−t3−t4)(t1−t2−t3+t4)(t1+t2+t3+t4)(t21t
2
2+t21t

2
3+t22t

2
3−2t1t2t3t4).

By Theorem 2.2.3, both the degree and the ML degree of this model are also equal to
φ(3, 4) = 4.
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Table 2.6: Results on Questions 1, 2, and 3 for all colored Gaussian graphical models with
some symmetry restrictions (namely, edges in the same color class connect the same vertex
color classes) on the 4-cycle.

Graph K dim d degree mingens PG ML-degree deg HL

1)

! !

" "!

" "!

!


λ1 λ2 0 λ2
λ2 λ1 λ3 0
0 λ3 λ1 λ2
λ2 0 λ2 λ1

 3 5 1:4, 2:5 5 22 + 23 + 23

2)

! !

" ""!

"" "!

!


λ1 λ3 0 λ3
λ3 λ2 λ4 0
0 λ4 λ1 λ3
λ3 0 λ3 λ2

 4 11 1:1, 2:10 5 22 + 43

3)

! !

" "!

" "
"

! "


λ1 λ2 0 λ2
λ2 λ1 λ3 0
0 λ3 λ1 λ3
λ2 0 λ3 λ1

 3 4 1:4, 2:6 2 23

4)

! !

" "!

"
"

! "


λ1 λ3 0 λ3
λ3 λ1 λ4 0
0 λ4 λ2 λ4
λ3 0 λ4 λ1

 4 6 1:3, 2:4 3 22 + 43

5)

! !

"" "!

" ""
"

! "


λ1 λ3 0 λ3
λ3 λ2 λ4 0
0 λ4 λ1 λ4
λ3 0 λ4 λ2

 4 8 1:3, 2:2, 3:4 2 23

6)

! !

" "!

" "

!


λ1 λ2 0 λ2
λ2 λ1 λ3 0
0 λ3 λ1 λ4
λ2 0 λ4 λ1

 4 11 1:1, 2:10, 3:1 6 22 + 22 + 43

7)

! !

" "!

"

!


λ1 λ3 0 λ3
λ3 λ1 λ4 0
0 λ4 λ2 λ5
λ3 0 λ5 λ1

 5 13 2:8, 3:3 3 42 + 43

8)

! !

"" "!

" ""

!


λ1 λ3 0 λ3
λ3 λ2 λ4 0
0 λ4 λ1 λ5
λ3 0 λ5 λ2

 5 21 2:5, 3:10 6 22 + 22 + 43

9)

! !

"!

"

!


λ1 λ4 0 λ4
λ4 λ2 λ5 0
0 λ5 λ3 λ6
λ4 0 λ6 λ2

 6 15 2:5, 3:1 3 22 + 32

10)

! !

" "

" "

! !


λ1 λ2 0 λ3
λ2 λ1 λ3 0
0 λ3 λ1 λ4
λ3 0 λ4 λ1

 4 5 1:4, 2:1, 3:2 3 12 + 12 + 22

11)

! !

" ""

"" "

! !


λ1 λ3 0 λ4
λ3 λ2 λ4 0
0 λ4 λ1 λ5
λ4 0 λ5 λ2

 5 11 1:1, 2:5, 3:4 3 22 + 22

12)

! !

" "

" "


λ1 λ2 0 λ5
λ2 λ1 λ3 0
0 λ3 λ1 λ4
λ5 0 λ4 λ1

 5 11 1:1, 2:5, 3:4 3 22 + 22
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Table 2.7: Continuation of Table 2.6.

13)

! !

" "

"" ""


λ1 λ3 0 λ6
λ3 λ1 λ4 0
0 λ4 λ2 λ5
λ6 0 λ5 λ2

 6 17 2:3, 3:4 5 11 + 11 + 11 + 11 + 42 + 42

14)

! !

" ""

"" "


λ1 λ3 0 λ6
λ3 λ2 λ4 0
0 λ4 λ1 λ5
λ6 0 λ5 λ2

 6 21 3:10, 4:12 3 22 + 22

15)

! !

" "

"


λ1 λ3 0 λ6
λ3 λ1 λ4 0
0 λ4 λ1 λ5
λ6 0 λ5 λ2

 6 17 2:2, 3:8, 4:1 4 102

16)

! !

" "


λ1 λ4 0 λ7
λ4 λ1 λ5 0
0 λ5 λ2 λ6
λ7 0 λ6 λ3

 7 13 2:1, 3:3 5 11 + 11 + 21 + 122

17)

! !

"

"


λ1 λ4 0 λ7
λ4 λ2 λ5 0
0 λ5 λ1 λ6
λ7 0 λ6 λ3

 7 17 3:3, 4:6 3 42

18)

! !


λ1 λ5 0 λ8
λ5 λ2 λ6 0
0 λ6 λ3 λ7
λ8 0 λ7 λ4

 8 9 3:2 5 21 + 21 + 21 + 21 + 82

Table 2.8: All RCOP-models (see [39]) when the underlying graph is the 4-cycle.

Graph K dim d degree mingens PG ML-degree HL

1)

! !

" "!

" "!

! !


λ1 λ2 0 λ2
λ2 λ1 λ2 0
0 λ2 λ1 λ2
λ2 0 λ2 λ1

 2 2 1:7, 2:1 2 (2t1 − t2)(2t1 + t2)

2)

! !

" ""!

"" "!

! !


λ1 λ3 0 λ3
λ3 λ2 λ3 0
0 λ3 λ1 λ3
λ3 0 λ3 λ2

 3 4 1:5, 2:2 2 16t1t2 − t23

3)

! !

" "!

" "
!

" "


λ1 λ2 0 λ3
λ2 λ1 λ3 0
0 λ3 λ1 λ2
λ3 0 λ2 λ1

 3 3 1:6, 3:1 3 (t1 − t2)(t1 + t2)(t1 − t3)(t1 + t3)

4)

! !

" ""!

"" "
!

" "


λ1 λ3 0 λ4
λ3 λ2 λ4 0
0 λ4 λ1 λ3
λ4 0 λ3 λ2

 4 5 1:4, 2:1, 3:2 3 (4t1t2 − t23)(4t1t2 − t24)

5)

! !

"!

"
"

! "


λ1 λ4 0 λ4
λ4 λ2 λ5 0
0 λ5 λ3 λ5
λ4 0 λ5 λ2

 5 6 1:3, 2:1, 3:1 3 (8t1t2 − t24)(8t2t3 − t25)

6)

! !

" "!

"" ""
!

" "


λ1 λ3 0 λ4
λ3 λ1 λ4 0
0 λ4 λ2 λ5
λ4 0 λ5 λ2

 5 3 1:4, 3:1 3 (2.33) in Example 2.5.1
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Chapter 3

Minimal number of observations
needed for existence of MLE

After having studied the problem of existence of the MLE at the level of sufficient statis-
tics in the previous chapter, we now want to find the minimum number of observations
needed for the existence of the MLE in a Gaussian graphical model. Using the geometric
description of the cone of sufficient statistics in Chapter, we give an an algebraic elimination
criterion, which allows us to find exact lower bounds on the number of observations needed
to ensure that the MLE exists with probability one. This is applied to bipartite graphs, grids
and colored graphs. We also study the ML degree, and we present the first instance of a
graph for which the MLE exists with probability one even when the number of observations
equals the treewidth.

The material of this chapter was submitted for publication in a paper with title ”Geom-
etry of maximum likelihood estimation in Gaussian graphical models”.

3.1 Introduction

Gaussian graphical models are regular exponential families. The statistical theory of expo-
nential families, as presented for example by Brown [13] or Barndorff-Nielsen [7], is a strong
tool to establish existence and uniqueness of the MLE. The MLE exists and is unique if and
only if the sufficient statistic lies in the interior of its convex support. We gave a geomet-
ric description of the convex support of the sufficient statistics in Chapter 2, and will now
discuss the connection to the minimum number of samples needed to guarantee that the
corresponding sufficient statistic lies in the interior of its convex support.

This chapter is organized as follows. In Section 3.2, we briefly review the geometry of
ML estimation in Gaussian graphical models, and we develop an exact algebraic algorithm
to determine lower bounds on the number of observations needed to ensure existence of the
MLE with probability one. In Section 3.3, we discuss the existence of the MLE for bipartite
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graphs. Section 3.4 deals with small graphs. The 3 × 3 grid motivated this chapter and
is the original problem Steffen Lauritzen posed during his talk about the existence of the
MLE in Gaussian graphical models at the ”Durham Symposium on Mathematical Aspects
of Graphical Models” on July 8, 2008. The 3 × 3 grid is also the first example of a graph,
for which the MLE exists with probability one even when the number of observations equals
the treewidth of the underlying graph. We conclude this chapter with a characterization of
Gaussian models on colored 4-cycles in Section 3.5.

3.2 Geometry of maximum likelihood estimation in

Gaussian graphical models

In this chapter we study Gaussian graphical models with mean 0 and covariance matrix Σ.
However, the results can easily be generalized to a model N (µ,Σ) with given mean µ, as n
i.i.d. samples from N (µ,Σ) can be transformed into n− 1 i.i.d. samples from N (0,Σ).

The set of all concentration matrices in a Gaussian graphical model with underlying
graph G define the convex cone

KG = {K ∈ Sm�0 | Kij = 0, ∀(i, j) /∈ E}.

Note that the edge set of G contains all self-loops, i.e. (i, i) ∈ E for all i ∈ [m]. By taking
the inverse of every matrix in KG, we get the set of all covariance matrices in the model
denoted by K−1

G .
The minimal sufficient statistic of a sample covariance matrix S in a Gaussian graphical

model is the G-partial matrix SG. The set of all sufficient statistics, for which the MLE
exists, is denoted by CG. It is given by the projection of the positive definite cone Sm�0 onto
the edge set of the graph G:

CG = πG (Sm�0) .

So CG is also a convex cone. Moreover, we proved in Proposition 2.2.1 that the cone of
sufficient statistics CG is the convex dual to the cone of concentration matrices KG. See
Figure 2.2 for a geometric interpretation of the various cones involved in ML estimation in
Gaussian graphical models. In the following, we also visualize the cones by a small example.

Example 3.2.1. For small dimensional problems we are able to give a graphical represen-
tation of the cone of sufficient statistics CG. For example, consider the Gaussian graphical
model on the bipartite graph K2,3 with concentration matrices of the form
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K =


λ1 0 λ2 λ3 λ4

0 λ1 λ4 λ2 λ3

λ2 λ4 λ1 0 0
λ3 λ2 0 λ1 0
λ4 λ3 0 0 λ1



! !

!!!!
!!!!
!!!!
!!!!
!!!!
!!!!
!!!!
!!!!
!!!!
!!!!
!!!!
!!!!
!!!!
!!!!
!!!!
!!!!
!!!!
!!!

"

#
$

%

!
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Note that in order to reduce the number of parameters and be able to draw CG in 3-
dimensional space, we assume additional equality constraints on the non-zero entries of
the concentration matrix represented by the graph coloring above. Such colored Gaussian
graphical models, where the coloring represents equality constraints on the concentration
matrix, are called RCON-models and have been introduced in [39].

Without loss of generality we can rescale K and assume that all diagonal entries are one.
The cone of concentration matrices KG for this model is shown in Figure 3.1(a). Its algebraic
boundary is described by {det(K) = 0} and shown in Figure 3.1(b). In this example,
the determinant factors into two components, a cylinder and an ellipsoid. Dualizing the
boundary of KG by the algorithm described in Proposition 2.2.4 results in the hypersurface
shown in Figure 3.1(e). The double cone is dual to the cylinder in Figure 3.1(b). By making

(a) (b)

(c) (d) (e)

Figure 3.1: These pictures illustrate the convex geometry of maximum likelihood estimation
for Gaussian graphical models. The cross-section of the cone of concentration matrices KG
with a three-dimensional hyperplane is shown in (a), its algebraic boundary in (b), the dual
cone of sufficient statistics in (c), and its algebraic boundary in (d) and (e), where (d) is the
transparent version of (e).
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the double cone transparent as shown in Figure 3.1(d), we see the enclosed ellipsoid, which is
dual to the ellipsoid in Figure 3.1(b). The cone of sufficient statistics CG is shown in Figure
3.1(c). The MLE exists if and only if the sufficient statistic lies in the interior of this convex
body. Using the elimination criterion of Theorem 3.2.2, we can show that the MLE exists
with probability one already for one observation.

In this chapter, we examine the existence of the MLE for n observations in the range
q ≤ n < q∗, for which the existence of the MLE is not well understood (see Corollary 1.5.2).
Cycles are the only non-chordal graphs, which have been studied [8, 9, 15]. We will extend
the results on cycles to bipartite graphs K2,m and small grids.

Geometrically, we look at the manifold of rank n matrices on the boundary of the cone
Sm�0. In general, its projection

πG
({
M ∈ Sm�0 | rk(M) = n

})
(3.1)

lies in the topological closure of the cone CG. The MLE exists with probability one for n
observations if and only if the projection (3.1) lies in the interior of CG.

Based on the geometric interpretation of maximum likelihood estimation in Gaussian
graphical models, we can derive a sufficient condition for the existence of the MLE. The
following algebraic elimination criterion can be used as an algorithm to establish existence
of the MLE with probability one for n observation.

Theorem 3.2.2 (Elimination criterion). Let IG,n be the elimination ideal obtained from the
ideal of (n+1)× (n+1)-minors of a symmetric m×m matrix S of unknowns by eliminating
all unknowns corresponding to non-edges of the graph G. If IG,n is the zero ideal, then the
MLE exists with probability one for n observations.

Proof. The variety corresponding to the ideal of (n + 1) × (n + 1)-minors of a symmetric
m×m matrix S of unknowns consists of all m×m matrices of rank at most n. Eliminating
all unknowns corresponding to non-edges of the graph G results in the elimination ideal
IG,n (see e.g. [19]) and is geometrically equivalent to a projection onto the cone of sufficient
statistics CG. Let V be the variety corresponding to the elimination ideal IG,n. We denote
by k its dimension and by µ the k-dimensional Lesbegue measure. The MLE exists with
probability one for n observations if

µ(V ∩ ∂CG) = 0,

where ∂CG denotes the boundary of the cone of sufficient statistics CG.
If IG,n is the zero ideal, then the variety V is full-dimensional and its dimension satisfies

dim(V ) = k = dim(CG). So if we assume that µ(V ∩ ∂CG) > 0, then µ(∂CG) > 0, which is a
contradiction to dim(∂CG) < k.

For small examples, the elimination ideal IG,n can be computed e.g. using Macaulay2

[33], a software system for research in algebraic geometry. If IG,n is not the zero ideal, then
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Figure 3.2: Bipartite graph K2,m (left) and minimal chordal cover of K2,m (right).

an analysis of polynomial inequalities is required. One needs to carefully examine how the
components of V are located. The argument is subtle because the algebraic boundary of
CG may in fact intersect the interior of CG. So even if the projection V is a component of
the algebraic boundary of CG, the MLE might still exist with positive probability. We will
encounter and describe such an example in detail in Section 3.5.

3.3 Bipartite graphs

In this section, we first derive the MLE existence results for bipartite graphs K2,m paralleling
the results on cycles proven by Buhl [15]. Let the graph K2,m be labelled as shown in
Figure 3.2. A minimal chordal cover is given in Figure 3.2 (right). As for cycles, for bipartite
graphs K2,m we have q = 2 and q∗ = 3. Therefore only the case of n = 2 observations is
interesting.

Let X1 and X2 denote two independent samples from the distribution Nm+2(0,Σ), which
obeys the undirected pairwise Markov property on K2,m. We denote by X the (m + 2)× 2
data matrix consisting of the two samples X1 and X2 as columns. The rows of X are
denoted by x1, . . . , xm+2. Similarly as for cycles in [15], we will describe a criterion on the
configuration of data vectors x1, . . . , xm+2 ensuring the existence of the MLE. The following
characterization of positive definite matrices of size 3× 3 proven in [9] will be helpful in this
context.

Lemma 3.3.1. The matrix  1 cos(α) cos(β)
cos(α) 1 cos(γ)
cos(β) cos(γ) 1


with 0 < α, β, γ < π is positive definite if and only if

α < β + γ, β < α + γ, γ < α + β, α + β + γ < 2π.
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Figure 3.3: The MLE on K2,m exists in the following situations. Lines and data vectors cor-
responding to the variables 1 and 2 are drawn in blue. Lines and data vectors corresponding
to the variables 3, . . . ,m+ 2 are drawn in red.

Proposition 3.3.2. The MLE on the graph K2,m exists with probability one for n ≥ 3
observations, and the MLE does not exist for n < 2 observations. For n = 2 observations
the MLE exists if and only if the lines generated by x1 and x2 are direct neighbors (see Figure
3.3 left).

Proof. Because the problem of existence of the MLE is a positive definite matrix completion
problem, we can rescale and rotate the data vectors x1, . . . , xm+2 (i.e. perform an orthogonal
transformation) without changing the problem. So without loss of generality we can assume
that the vectors x1, . . . , xm+2 ∈ R2 have length one, lie in the upper unit half circle, and
x1 = (1, 0). We need to prove that the MLE exists if and only if the data configuration is as
shown in Figure 3.3 (middle) or (right).

Let θij denote the angle between vector xi and xj. Then the K2,m-partial sample covari-
ance matrix SK2,m is of the form

1 ? cos(θ13) cos(θ14) · · · cos(θ1,m+2)
? 1 cos(θ23) cos(θ24) · · · cos(θ2,m+2)

cos(θ13) cos(θ23) 1 ? · · · ?

cos(θ14) cos(θ24) ? 1
. . .

...
...

...
...

. . . . . . ?
cos(θ1,m+2) cos(θ2,m+2) ? · · · ? 1


.

The graphK2,m can be extended to a chordal graph by adding one edge as shown in Figure 3.2
(right). So by Theorem 1.3.1, SK2,m can be extended to a positive definite matrix if and
only if the (1, 2)-entry of SK2,m can be completed in such a way that all the submatrices
corresponding to maximal cliques are positive definite. This is equivalent to the existence of
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ρ ∈ R with 0 < ρ < π such that 1 cos(ρ) cos(θ1i)
cos(ρ) 1 cos(θ2i)

cos(θ1i) cos(θ2i) 1

 � 0 for all i ∈ {3, 4, . . . ,m+ 2}.

By Lemma 3.3.1 this occurs if and only if

θ1i − θ2i

θ2i − θ1i

}
< ρ <

{
θ1j + θ2j

2π − θ1j − θ2j
for all i, j ∈ {3, 4, . . . ,m+ 2},

which is equivalent to
2θai < θ1i + θ2i + θ1j + θ2j < 2π + 2θai (3.2)

for all a ∈ {1, 2}, i, j ∈ {3, 4, . . . ,m+ 2}. We distinguish two cases.

Case 1 There is a vector xj lying between x1 and x2, which implies that θ1j + θ2j = θ12. If
there was a vector xi, i 6= j, which does not lie between x1 and x2, then

θ1j + θ2j + θ1i + θ2i = 2θ1i,

which is a contradiction to (3.2). Hence all vectors x3, . . . xm+2 lie between x1 and x2,
in which case

θ1i + θ2i + θ1j + θ2j = 2θ12

and Inequality (3.2) is satisfied.

Case 2 The vectors x1 and x2 are direct neighbors, which implies that θ1i + θ2i = θ12 + 2θ2i

for all i ∈ {3, . . . ,m+ 2}, in which case Inequality (3.2) is satisfied.

This proves that for two observations the MLE exists if and only if the data configuration is
as shown in Figure 3.3 (middle) or (right).

The geometric explanation of what is happening in this example, is that the projection of
the positive definite matrices of rank 2 intersects the interior and the boundary of the cone
of sufficient statistics CG with positive measure. The sufficient statistics originating from
data vectors, where lines 1 and 2 are neighbors, lie in the interior of CG. If lines 1 and 2 are
not neighbors, the corresponding sufficient statistics lie on the boundary of the cone CG and
the MLE does not exist. A similar situation is encountered in Example 2.5.1 and depicted
in Figure 3.7.

A different approach to gaining a better understanding of maximum likelihood estimation
in Gaussian graphical models is to study the ML degree of the underlying graph. The map
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taking a sample covariance matrix S to its maximum likelihood estimate Σ̂ is an algebraic
function and its degree is the ML degree of the model. See [25, Def. 2.1.4]. The ML degree
represents the algebraic complexity of the problem of finding the MLE. This suggests that a
larger ML degree results in a more difficult MLE existence problem. We proved in Theorem
2.4.3 that the ML degree is one if and only if the underlying graph is chordal. It is conjectured
in [25, Section 7.4] that the ML degree of the cycle grows exponentially in the cycle length.
An interesting contrast to the cycle conjecture is the following theorem, where we prove that
the ML degree for bipartite graphs K2,m grows linearly in the number of variables.

Theorem 3.3.3. In a Gaussian graphical model with underlying graph K2,m the ML degree
is 2m+ 1.

Proof. Given a generic matrix S ∈ Sm+2, we fix Σ ∈ Sm+2 with entries Σij = Sij for (i, j) ∈ E
and unknowns Σ12 = Σ21 = y and Σij = zij for all other (i, j) /∈ E. We denote by K = Σ−1

the corresponding concentration matrix. The ML degree of K2,m is the number of complex
solutions to the equations

(Σ−1)ij = 0 for all (i, j) /∈ E.

Let A denote the set consisting of the two distinguished vertices {1, 2} and let B = V \A.
In the following we will use the block structure

Σ =

(
ΣAA ΣAB

ΣBA ΣBB

)
, K =

(
KAA KAB

KBA KBB

)
.

For example for the graph K2,5 the corresponding covariance matrix Σ and concentration
matrix K are of the form

Σ=


1 y S13 S14 S15

y 1 S23 S24 S25

S13 S23 1 z34 z35

S14 S24 z34 1 z45

S15 S25 z35 z45 1

, K=


K11 0 K13 K14 K15

0 K22 K23 K24 K25

K13 K23 K33 0 0
K14 K24 0 K44 0
K15 K25 0 0 K55

 .

Note that in general the block KBB is a diagonal matrix. Hence the Schur complement

ΣBB − ΣBAΣ−1
AAΣAB

is also a diagonal matrix. Writing out the off-diagonal entries of this matrix results in the
following expression for the variables z in terms of the variable y:

zij = − 1

1− y2
(y (S1iS2j + S1jS2i)− S1iS1j − S2iS2j) .



CHAPTER 3 57

Setting the minor M12 of Σ to zero results in the last equation of the form

y det(ΣBB) + (polynomial in z of degree m− 1) = 0. (3.3)

Note that det(ΣBB) is a polynomial in z of degree m, where the degree 0 term is 1. So by
multiplying equation (3.3) with (1−y2)m, we get a degree 2m+1 equation in y and therefore
2m+ 1 complex solutions for y. For each solution of y we get one solution for the variables
z, which proves that the ML degree of K2,m is 2m+ 1.

Both bipartite graphs and cycles are classes of graphs with q = 2 and q∗ = 3. What can
we say about such graphs in general regarding the existence of the MLE for two observations?
In [8] a related question has been studied from a purely algebraic point of view. A cycle-
completable graph is defined to be a graph such that every partial matrix MG has a positive
definite completion if and only if MG is positive definite on all submatrices corresponding to
maximal cliques in the graph and all submatrices corresponding to cycles in the graph can be
completed to a positive definite matrix. It is shown in [8] that a graph is cycle-completable
if and only if there is a chordal cover with no new 4-clique.

Buhl [15] studied cycles from a more statistical point of view and described a criterion on
the data vectors for the existence of the MLE for two observations. Combining the results
of [8] and [15], we get the following result:

Corollary 3.3.4. Let G be a graph with q = 2 and q∗ ≥ 3. Then the following statements
are equivalent:

i) For n = 2 observations the MLE exists if and only if Buhl’s cycle condition is satisfied
on every induced cycle.

ii) q∗ = 3.

This result solves the problem of existence of the MLE for all graphs with q = 2 and
q∗ = 3. Note that Corollary 3.3.4 is more general than Proposition 3.3.2. The proof, however,
is more involved and less constructive.

For bipartite graphs K3,m the situation is more complicated. We do not yet have state-
ments as in Proposition 3.3.2 and Theorem 3.3.3. We here describe some preliminary results.

Let the graph K3,m be labelled as shown in Figure 3.4. A minimal chordal cover is given in
Figure 3.4 (middle). Hence, q = 2 and q∗ = 4. The convex body shown in Figure 3.4 (right)
consists of all positive semidefinite 3×3 matrices with ones on the diagonal. We call this the
tetrahedron-shaped pillow, and we will prove that the existence of the MLE is equivalent to
a non-empty intersection of such inflated and shifted tetrahedron-shaped pillows.

Remark 3.3.5. The MLE on the graph K3,m exists if and only if the m inflated and shifted
tetrahedron-shaped pillows corresponding to the maximal cliques in the minimal chordal
cover of K3,m shown in Figure 3.4 (middle) have non-empty intersection.
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Figure 3.4: Bipartite graph K3,m (left) and minimal chordal cover of K3,m (middle). The
tetrahedron-shaped pillow consisting of all correlation matrices of size 3× 3 is shown in the
right figure.

Proof. Applying Theorem 1.3.1 in a similar way as in the proof of Theorem 3.3.2, the partial
covariance matrix SK3,m can be extended to a positive definite matrix if and only if the
entries corresponding to the missing edges (1, 2), (1, 3), and (2, 3) can be completed in such
a way that all the submatrices corresponding to maximal cliques in the minimal chordal cover
(Figure 3.4, middle) are positive definite. This is equivalent to the existence of x, y, z ∈ R
with −1 < x, y, z < 1 such that

1 s1i s2i s3i

s1i 1 x y
s2i x 1 z
s3i y z 1

 � 0 for all i ∈ {4, 5, . . . ,m+ 3}, (3.4)

where sai, a ∈ {1, 2, 3}, i ∈ {4, 5, . . . ,m + 3} are the sufficient statistics corresponding to
edges in K3,m. Using Schur complements and rescaling, (3.4) holds if and only if 1 xi yi

xi 1 zi
yi zi 1

 � 0 for all i ∈ {4, 5, . . . ,m+ 3}, (3.5)

where

xi =
x− s1is2i√

1− s2
1i

√
1− s2

2i

, yi =
y − s1is3i√

1− s2
1i

√
1− s2

3i

, zi =
x− s2is3i√

1− s2
2i

√
1− s2

3i

.

So the MLE exists if and only if the inflated and shifted tetrahedron-shaped pillows corre-
sponding to the inequalities in (3.5) have non-empty intersection.
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We used the software Macaulay2 [33] to compute the ML degree of K3,m for m ≤ 4. It is
an open problem to find the general formula of the ML degree for Kl,m, where l ≥ 3.

m 1 2 3 4
ML degree 1 7 57 131

3.4 Small graphs

In this section we analyze the 3 × 3 grid in particular and complete the discussion of Sub-
section 2.4.3 with the number of observations and the corresponding existence probability
of the MLE for all graphs with 5 or less vertices.

The 3 × 3 grid is shown in Figure 3.5 (left) and has q = 2 and q∗ = 4. This graph
is of particular interest, because characterizing the existence of the MLE for this graph
constitutes the original problem posed by Steffen Lauritzen at the ”Durham Symposium on
Mathematical Aspects of Graphical Models” in 2008. As a preparation, we first discuss the
existence of the MLE for the graph G on six vertices shown in Figure 3.6. The graph G also
has q = 2 and q∗ = 4, and is the first example, for which we can prove that the bound n ≥ q∗

for the existence of the MLE with probability one is not tight and that the MLE can exist
with probability one even when the number of observations equals the treewidth.

Theorem 3.4.1. The MLE on the graph G (Figure 3.6, left) exists with probability one for
n = 3 observations.

Proof. We compute the ideal IG,3 by eliminating the variables s13, s15, s16, s24, s26, s34, s35

from the ideal of 4 × 4 minors of the matrix S. This results in the zero ideal, which by
Theorem 3.2.2 completes the proof.

! ! ! !

Figure 3.5: 3× 3 grid H (left) and grid with additional edge H′ (right).
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Figure 3.6: Graph G (left) and minimal chordal cover of G (right).

Remark 3.4.2. Theorem 3.4.1 is equivalent to the following purely algebraic statement.
Let

S =


1 s12 s13 s14 s15 s16

s12 1 s23 s24 s25 s26

s13 s23 1 s34 s35 s36

s14 s24 s34 1 s45 s46

s15 s25 s35 s45 1 s56

s16 s26 s36 s46 s56 1

 ∈ S6
�0

with rank(S) = 3. Then there exist x, y, a, b, c, d, e ∈ R such that

S ′ =


1 s12 a s14 b c
s12 1 s23 x s25 y
a s23 1 d e s36

s14 x d 1 s45 s46

b s25 e s45 1 s56

c y s36 s46 s56 1

 ∈ S6
�0.

So any partial matrix of rank 3 with specified entries at all positions corresponding to edges
in G can be completed to a positive definite matrix.

Corollary 3.4.3. Let H be the 3 × 3-grid shown in Figure 3.5. Then the MLE on H
exists with probability one for n ≥ 3 observations, and the MLE does not exist for n < 2
observations.

Proof. First note that Gröbner bases computations are extremely memory intensive and the
elimination ideal IH,3 cannot be computed directly due to insufficient memory. We solve this
problem by glueing together smaller graphs. The probability of existence of the MLE for the
3 × 3 grid H is at least as large as the existence probability when the underlying graph is
H′. The graph H′ is a clique sum of two graphs of the form G, for which the MLE existence
probability is one for n ≥ 3.

This example shows that although we are not able to compute the elimination ideal for
large graphs directly, the algebraic elimination criterion (Theorem 3.2.2) is still useful also
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in this situation. We can study small graphs with the elimination criterion and glue them
together using clique sums to build larger graphs.

For two observations on the 3 × 3 grid, the cycle conditions are necessary but not suffi-
cient for the existence of the MLE (Corollary 3.3.4). Unlike for bipartite graphs K2,m, the
existence of the MLE does not only depend on the ordering of the lines corresponding to the
data vectors in R2. By simulations with the Matlab software cvx [32], one can easily find
orderings for which the MLE sometimes exists and sometimes doesn’t. Finding a necessary
and sufficient criterion for the existence of the MLE for two observations remains an open
problem.

We now complete the discussion of Subsection 2.4.3 with the number of observations and
the corresponding existence probability of the MLE for all graphs with 5 or less vertices. All
non-chordal graphs with 5 or less vertices are shown in Table 3.1. The 4-cycle and 5-cycle
in a) and b) are covered by Buhl’s results [15]. The graphs in c) and d) are clique sums
of two graphs and therefore completable if and only if the submatrices corresponding to
the two subgraphs are completable. Graph e) is the bipartite graph K2,3 and covered by
Theorem 3.3.2. For the graph in f) q = 3 and q∗ = 4. Applying the elimination criterion
from Theorem 3.2.2 shows that three observations are sufficient for the existence of the MLE.
Finally, for 3 observations on the graph g) we can find by simulation configurations of data
vectors for which the MLE exists and others for which the MLE does not exist. Because

Table 3.1: This table shows the number of observations (obs.) and the corresponding MLE
existence probability for all non-chordal graphs on 5 or fewer vertices.

Graph G 1 obs. 2 obs. 3 obs. ≥ 4 obs.

a) no p ∈ (0, 1) p = 1 p = 1

b) no p ∈ (0, 1) p = 1 p = 1

c) no p ∈ (0, 1) p = 1 p = 1

d) no no p = 1 p = 1

e) no p ∈ (0, 1) p = 1 p = 1

f) no no p = 1 p = 1

g) no no p ∈ (0, 1) p = 1
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every configuration has a positive probability under the multivariate normal distribution,
the MLE exists with probability strictly between 0 and 1 in this case.

3.5 Colored Gaussian graphical models

For some applications, symmetries in the underlying Gaussian graphical model can be as-
sumed. Adding symmetry to the conditional independence restrictions of a graphical model
reduces the number of parameters and in some cases also the number of observations needed
for the existence of the MLE. The symmetry restrictions can be represented by a graph
coloring, where edges, or vertices, respectively, have the same coloring if the corresponding
elements of the concentration matrix are equal. Such colored Gaussian graphical models
have been introduced in Subsection 1.5.2 and studied in Section 2.5. We also discussed such
a model in Example 3.2.1.

We denote the uncolored graph by G and the colored graph by G. Note that in this
section the graph G does not contain any self-loops. Let the vertices be colored with p
different colors and the edges with q different colors:

V = V1 t V2 t · · · t Vp, p ≤ |V |
E = E1 t E2 t · · · t Eq, q ≤ |E|.

Then the set of all concentration matrices KG consists of all positive definite matrices satis-
fying

• Kαβ = 0 for any pair of vertices α, β that do not form an edge in G.

• Kαα = Kββ for any pair of vertices α, β in a common vertex color class Vi.

• Kαβ = Kγδ for any pair of edges (α, β), (γ, δ) in a common edge color class Ej.

Example 3.5.1 (Frets’ heads). We revisit the heredity study of head dimensions known as
Frets’ heads reported in [53] and also discussed in Example 2.5.1. We now want to find the
minimum number of observations needed for the existence of the MLE.

The data set consists of the length and breadth of the heads of 25 pairs of first and second
sons. The data supports the following colored Gaussian graphical model, where the joint
distribution remains the same when the two sons are exchanged.

K =


λ1 λ3 0 λ4

λ3 λ1 λ4 0
0 λ4 λ2 λ5

λ4 0 λ5 λ2


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In this graph variable 1 corresponds to the length of the first son’s head, variable 2 to the
length of the second son’s head, variable 3 to the breadth of the second son’s head, and
variable 4 to the breadth of the first son’s head.

Given a sample covariance matrix S = (sij), the five sufficient statistics for this model
according to the graph coloring are

t1 = s11 + s22, t2 = s33 + s44, t3 = 2s12, t4 = 2(s23 + s14), t5 = 2s34.

The algebraic boundary of the cone of sufficient statistics CG is computed in Example
2.5.1 and given by the polynomial

HG = (t1 − t3) · (t1 + t3) · (t2 − t5) · (t2 + t5)

·(4t22t23 − 4t1t2t
2
4 + t44 + 8t1t2t3t5 − 4t3t

2
4t5 + 4t21t

2
5).

For two observations the elimination ideal IG,2 is the zero ideal. Therefore, the MLE exists
with probability 1 for two or more observations in this model. For one observation we get

IG,1 = 〈4t22t23 − 4t1t2t
2
4 + t44 + 8t1t2t3t5 − 4t3t

2
4t5 + 4t21t

2
5〉,

which corresponds to one of the components of the algebraic boundary of the cone of sufficient
statistics. In this example, the algebraic boundary of the cone of sufficient statistics intersects
its interior. This is illustrated in Figure 3.7. In order to get a graphical representation in
3-dimensional space, we fixed t3 and t5. The variety corresponding to IG,1 is shown on the
left. We call this hypersurface the bow tie. The cone of sufficient statistics CG is the convex
hull of the bow tie and shown in Figure 3.7 (right). It’s boundary consists of four planes
corresponding to the components t1 − t3, t1 + t3, t2 − t5, and t2 + t5 shown in blue, and the
bows of the bow tie shown in yellow. The black curves show where the planes touch the bow
tie. Note that the upper and lower two triangles of the bow tie lie in the interior of CG. Only
the two bows are part of the boundary of CG. So the MLE exists if the sufficient statistic
lies on one of the triangles of the bow tie, and it does not exist if the sufficient statistic lies
on one of the bows of the bow tie. Consequently, for one observation the MLE exists with
probability strictly between 0 and 1.

A different approach is to run simulations for example using cvx [32]. We can generate
vectors of length four and compute the MLE by solving a convex optimization problem. If
cvx finds a solution, the MLE exists. This also shows that the MLE exists with probability
strictly between 0 and 1 for one observation.

For this example, we can characterize not just the sufficient statistics, but also the ob-
servations, for which the MLE exists. In other words, we can characterize the observations
whose sufficient statistics lie on the triangles of the bow tie. First, note that by exchang-
ing variables 1 and 2 and simultaneously exchanging variables 3 and 4, we get the same
model. This means that from one observation X1 = (x1, x2, x3, x4) we can generate a second



CHAPTER 3 64

Figure 3.7: All possible sufficient statistics from one observation are shown on the left. The
cone of sufficient statistics is shown on the right.

observation X2 = (x2, x1, x4, x3). So the resulting data matrix is given by

X =


x1 x2

x2 x1

x3 x4

x4 x3

 .

Applying Buhl’s result about two observations on a Gaussian cycle [15], the MLE exists if
and only if the lines corresponding to the vectors

y1 =

(
x1

x2

)
, y2 =

(
x2

x1

)
, y3 =

(
x3

x4

)
, y4 =

(
x4

x3

)
are not graph consecutive. This is the case if and only if

|x1| > |x2| and |x3| > |x4| or |x1| < |x2| and |x3| < |x4|.

Hence, the MLE for one observation exists if and only if the data is inconsistent, meaning
that the head of the first (second) son is longer than the head of the second (first) son,
but the breadth is smaller. In this situation the corresponding sufficient statistics lie on the
triangles of the bow tie in Figure 3.7. Otherwise the corresponding sufficient statistics lie on
the bows of the bow tie.

In Section 2.5 we found the defining polynomial HG of the cone of sufficient statistics for
all colored Gaussian graphical models on the 4-cycle, which have the property that edges in
the same color class connect the same vertex color classes. Such models have been studied in
[39] and are of special interest, because they are invariant under rescaling of variables in the
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same vertex color class. In Table 3.2, 3.3 and 3.4, we complete the discussion of Section 2.5
with the number of observations and the corresponding existence probability of the MLE.

For every colored 4-cycle we computed the elimination ideal IG,n for n = 1, 2, 3. If it is the
zero ideal, we know from Theorem 3.2.2 that the MLE exists with probability one. If IG,n is
non-zero, we run simulations using cvx. The MLE exists with probability strictly between 0
and 1 for n observations, if we find examples for which the MLE exists and other examples for
which the MLE does not exist. In cases where simulations don’t yield any counterexamples,
we need to prove that the MLE does indeed not exist by carefully analyzing the components
corresponding to the ideal IG,n. This is the case for one observation on the RCON graphs
9), 11), 14) and 17). Note that the graphical models 9) and 11) are sub-models of 14) and
17). So if we prove that the MLE does not exist for one observation on the graphs 9) and
11), this follows also for the graphs 14) and 17).

If the cone CG for the RCON graphs 9) and 11) is a basic open semialgebraic set (see
e.g. [2]), then CG does not meet its algebraic boundary and the MLE does not exist for one
observation. We end this chapter with two conjectures which would answer the question
marks in Tables 3.2 and 3.3:

Conjecture 3.5.2. The cones CG corresponding to the RCON graphs 9) and 11) are basic
open semialgebraic sets.

The question marks could also be resolved by solving a non-commutative sum of squares
problem. Let x1, . . . , x4 ∈ Rn be the observations on each vertex of the 4-cycle. Note that
the dimension n corresponds to the number of observations and is not fixed. For the RCON
graph 9) the sufficient statistics are

t1 = xT1 x1, t2 = xT2 x2 + xT4 x4, t3 = xT3 x3, t4 = 2xT1 x2 + 2xT1 x4, t5 = 2xT2 x3, t6 = 2xT3 x4.

The two components defining the boundary of the cone of sufficient statistics for this example
are given by

p1 = 4t2t3 − t25 − t26 and p2 = 8t1t2t3 − t3t24 − t1t25 + 2t1t5t6 − t1t26.

It is straightforward to prove that p1 ≥ 0 for any x1, . . . , x4 ∈ Rn for any dimension n ≥ 1.
If we can prove that p2 is non-negative as well, then the cone CG does not meet its algebraic
boundary and the MLE does not exist for one observation.

Similarly, for the RCON graph 9) the sufficient statistics are given by

t1 = xT1 x1 + xT3 x3, t2 = xT2 x2 + xT4 x4, t3 = 2xT1 x2, t4 = 2xT2 x3 + 2xT1 x4, t5 = 2xT3 x4.

The two components defining the boundary of the cone of sufficient statistics for this example
are given by

q1 = 4t1t2 − t23 − 2t3t5 − t25 and q2 = 4t1t2 − t23 − t24 + 2t3t5 − t25.
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It is straightforward to prove that q1 ≥ 0 for any x1, . . . , x4 ∈ Rn with n ≥ 1. The following
conjecture would prove that the MLE does not exist for one observation on the RCON graphs
9) and 11):

Conjecture 3.5.3. The polynomials p2 and q2 can be written as sums of squares in the
variables x1, . . . , x4 ∈ Rn for any dimension n ≥ 1.

This is a partially non-commutative sum of squares problem, since

(xT1 x2)(xT3 x4) = (xT4 x3)(xT1 x2), but (xT1 x2)(xT3 x4) 6= (xT1 x3)(xT2 x4).

Table 3.2: Results on the number of observations and the MLE existence probability for all
colored Gaussian graphical models with some symmetry restrictions (namely, edges in the
same color class connect the same vertex color classes) on the 4-cycle.

Graph K 1 obs. 2 obs. ≥ 3 obs.

1)

! !

" "!

" "!

!


λ1 λ2 0 λ2
λ2 λ1 λ3 0
0 λ3 λ1 λ2
λ2 0 λ2 λ1

 p = 1 p = 1 p = 1

2)

! !

" ""!

"" "!

!


λ1 λ3 0 λ3
λ3 λ2 λ4 0
0 λ4 λ1 λ3
λ3 0 λ3 λ2

 p = 1 p = 1 p = 1

3)

! !

" "!

" "
"

! "


λ1 λ2 0 λ2
λ2 λ1 λ3 0
0 λ3 λ1 λ3
λ2 0 λ3 λ1

 p = 1 p = 1 p = 1

4)

! !

" "!

"
"

! "


λ1 λ3 0 λ3
λ3 λ1 λ4 0
0 λ4 λ2 λ4
λ3 0 λ4 λ1

 p = 1 p = 1 p = 1

5)

! !

"" "!

" ""
"

! "


λ1 λ3 0 λ3
λ3 λ2 λ4 0
0 λ4 λ1 λ4
λ3 0 λ4 λ2

 p = 1 p = 1 p = 1

6)

! !

" "!

" "

!


λ1 λ2 0 λ2
λ2 λ1 λ3 0
0 λ3 λ1 λ4
λ2 0 λ4 λ1

 p = 1 p = 1 p = 1

7)

! !

" "!

"

!


λ1 λ3 0 λ3
λ3 λ1 λ4 0
0 λ4 λ2 λ5
λ3 0 λ5 λ1

 p ∈ (0, 1) p = 1 p = 1
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Table 3.3: Continuation of Table 2.6.

8)

! !

"" "!

" ""

!


λ1 λ3 0 λ3
λ3 λ2 λ4 0
0 λ4 λ1 λ5
λ3 0 λ5 λ2

 p ∈ (0, 1) p = 1 p = 1

9)

! !

"!

"

!


λ1 λ4 0 λ4
λ4 λ2 λ5 0
0 λ5 λ3 λ6
λ4 0 λ6 λ2

 no? p = 1 p = 1

10)

! !

" "

" "

! !


λ1 λ2 0 λ3
λ2 λ1 λ3 0
0 λ3 λ1 λ4
λ3 0 λ4 λ1

 p = 1 p = 1 p = 1

11)

! !

" ""

"" "

! !


λ1 λ3 0 λ4
λ3 λ2 λ4 0
0 λ4 λ1 λ5
λ4 0 λ5 λ2

 no? p = 1 p = 1

12)

! !

" "

" "


λ1 λ2 0 λ5
λ2 λ1 λ3 0
0 λ3 λ1 λ4
λ5 0 λ4 λ1

 p = 1 p = 1 p = 1

13)

! !

" "

"" ""


λ1 λ3 0 λ6
λ3 λ1 λ4 0
0 λ4 λ2 λ5
λ6 0 λ5 λ2

 p ∈ (0, 1) p = 1 p = 1

14)

! !

" ""

"" "


λ1 λ3 0 λ6
λ3 λ2 λ4 0
0 λ4 λ1 λ5
λ6 0 λ5 λ2

 no? p = 1 p = 1

15)

! !

" "

"


λ1 λ3 0 λ6
λ3 λ1 λ4 0
0 λ4 λ1 λ5
λ6 0 λ5 λ2

 p ∈ (0, 1) p = 1 p = 1

16)

! !

" "


λ1 λ4 0 λ7
λ4 λ1 λ5 0
0 λ5 λ2 λ6
λ7 0 λ6 λ3

 no p = 1 p = 1

17)

! !

"

"


λ1 λ4 0 λ7
λ4 λ2 λ5 0
0 λ5 λ1 λ6
λ7 0 λ6 λ3

 no? p = 1 p = 1

18)

! !


λ1 λ5 0 λ8
λ5 λ2 λ6 0
0 λ6 λ3 λ7
λ8 0 λ7 λ4

 no p ∈ (0, 1) p = 1
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Table 3.4: All RCOP-models (see [39]) on the 4-cycle.

Graph K 1 obs. 2 obs. ≥ 3 obs.

1)

! !

" "!

" "!

! !


λ1 λ2 0 λ2
λ2 λ1 λ2 0
0 λ2 λ1 λ2
λ2 0 λ2 λ1

 p = 1 p = 1 p = 1

2)

! !

" ""!

"" "!

! !


λ1 λ3 0 λ3
λ3 λ2 λ3 0
0 λ3 λ1 λ3
λ3 0 λ3 λ2

 p = 1 p = 1 p = 1

3)

! !

" "!

" "
!

" "


λ1 λ2 0 λ3
λ2 λ1 λ3 0
0 λ3 λ1 λ2
λ3 0 λ2 λ1

 p = 1 p = 1 p = 1

4)

! !

" ""!

"" "
!

" "


λ1 λ3 0 λ4
λ3 λ2 λ4 0
0 λ4 λ1 λ3
λ4 0 λ3 λ2

 p = 1 p = 1 p = 1

5)

! !

"!

"
"

! "


λ1 λ4 0 λ4
λ4 λ2 λ5 0
0 λ5 λ3 λ5
λ4 0 λ5 λ2

 p = 1 p = 1 p = 1

6)

! !

" "!

"" ""
!

" "


λ1 λ3 0 λ4
λ3 λ1 λ4 0
0 λ4 λ2 λ5
λ4 0 λ5 λ2

 p ∈ (0, 1) p = 1 p = 1
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Chapter 4

Asymptotics of ML estimation in
Gaussian cycles

In the previous chapters, we described the geometry of maximum likelihood estimation
in Gaussian graphical models and gave an algebraic criterion to find the minimum number of
observations needed for the existence of the MLE. This criterion can in theory be applied to
any graph. However, due to the computational limitations of Gröbner bases techniques, we
are in practice only able to apply this criterion to small graphs. In this chapter, we describe
a possible future direction on how our results could be used for studying very large graphs.
We prove that for very large cycles already two observations are sufficient for the existence
of the MLE with probability one.

The content of this chapter is based on various discussions (mainly during the fall semester
of 2009) with Venkat Chandrasekaran and Parikshit Shah, two PhD students in the Depart-
ment of Electrical Engineering and Computer Science at MIT.

4.1 Introduction

In this chapter, we study the problem of existence of the MLE in Gaussian graphical models
from an asymptotic point of view. Given a class of graphs (e.g. cycles), we let the graph
size grow to infinity and we want to determine how fast the sample size has to grow in order
for the MLE existence probability to go to one. In this chapter, we show how the results
about the existence of the MLE for (small) cycles can be used to find the corresponding
asymptotic results. We believe that our results about small graphs in the previous chapters
(in particular the 3× 3 grid) can be extended in a similar way to large graphs.

In this chapter, we denote a graph with m vertices by Gm. We distinguish between
the underlying true Gaussian graphical model and the assumed model used for covariance
estimation. We denote the family of graphs underlying the Gaussian graphical model from
which the n samples are drawn from by Gtrue

m and the corresponding covariance matrix by
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Σtrue
m . The family of graphs underlying the assumed Gaussian graphical model with which we

analyze the samples is denoted by Gassumed
m . This graph defines the structure of the partial

sample covariance matrix. Those two families of graphs need not necessarily be the same.
Note that the question of existence of the MLE is only interesting for non-chordal families
of graphs Gassumed

m . If Gassumed
m is chordal, existence of the MLE depends on the sample size

only (see Corollary 1.5.2).
With this notation we can rephrase the main question as follows: What is the asymptotic

behavior of P(MLE exists, n observations,Σtrue
m , Gassumed

m ) as m goes to infinity?

In this chapter, we will be working with the following family of graphs:

i) Trivial graphs: Gm = ([m], E) with E = ∅.

ii) Cycles: Gm = ([m], E) with E = {(i, i+ 1) | i = 1, . . . ,m− 1} ∪ {(1,m)}.

iii) Complete graphs: Gm = ([m], E) with E = {(i, j) | i, j ∈ [m]}.

4.1.1 ML estimation in Gaussian cycles

Cycles have been the first family of non-chordal graphs Gassumed
m for which the probability

P(MLE exists, n,Σtrue
m , Gassumed

m ) for a fixed number of vertices m has been studied [9, 15]. For
a fixed number of vertices m, Gassumed

m =cycle, and Gtrue
m = complete graph (no restrictions

on the entries of the concentration matrix), Buhl [15] showed the following result.

Theorem 4.1.1. The MLE exists with probability 1 for n ≥ 3 and does not exist for n ≤ 1.
For n = 2 let

X = (X1, . . . , Xm), Y = (Y1, . . . , Ym) ∼ N (0,Σ) independently with Σ positive definite.

Then the MLE exists if and only if the lines defined by the vectors (X1, Y1), . . . (Xm, Ym) are
not graph consecutive, i.e. when starting with an arbitrary line and turning half a revolution,
the lines do not occur in one of the two sequences conforming with the graph cycle.

As a direct consequence one gets an asymptotic result for Gtrue
m = trivial. Under inde-

pendence, every configuration of lines has the same probability. Fixing one line, there are
(m− 1)! different cyclic arrangements of which 2 are graph consecutive, which explains the
following Corollary:

Corollary 4.1.2.

P(MLE exists, n = 2,Σtrue
m = Idm, G

assumed
m = cycle) = 1− 2

(m− 1)!
.
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So in the most restrictive case, where Gtrue
m is the trivial family of graphs, the probability

that the MLE exists for two observations goes to 1 exponentially in the cycle length. In the
following, we study the asymptotic behavior of

P(MLE exists, n = 2,Σtrue
m , Gassumed

m = cycle)

as m goes to infinity and we will give a criterion on Σtrue
m which ensures the existence of the

MLE for two observations.

4.2 On the distribution of quotients of normal random

variables

Let (X1, . . . , Xm) and (Y1, . . . , Ym) be two independent samples from N (0,Σm), where Σm

is a positive definite matrix. We denote the quotients Xi

Yi
by Zi. Understanding the joint

distribution of these Gaussian quotients is important, because the sum over all 2m proba-
bilities of the form P (Z1 < Z2 < · · · < Zm) yields the MLE existence probability in the case
Gassumed
m = cycle.

Note that the joint distribution of (Z1, . . . , Zm) is scale invariant. So without loss of
generality we can consider correlation matrices Σm only. For m = 1 we get the distribution
of the quotient of two independent Gaussian variables, which is known to have a standard
Cauchy distribution. We can also consider the angle Θ = arctan(Z1), which has a uniform
distribution on the unit half circle. For m = 2 it can be seen that

P (Z1 < Z2) =
1

2

without computing the joint density by applying a symmetry argument. The joint density
for m = 2 is given in the following lemma.

Lemma 4.2.1. Let (X1, X2) and (Y1, Y2) be two independent samples from N (0,Σ), where

Σ =

(
1 σ
σ 1

)
is a positive definite matrix. The joint density of (Z1 = X1

Y1
, Z2 = X2

Y2
) is given by

f(z1, z2) =
1− σ2

(1 + z2
1)(1 + z2

2)π2(1− ρ2)
3
2

(√
1− ρ2 + ρ sin−1 ρ

)
,

where

ρ =
(1 + z1z2)√

(1 + z2
1)(1 + z2

2)
σ.
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Proof. The cumulative probability distribution function equals

F (z1, z2) = P(Z1 ≤ z1, Z2 ≤ z2)

=

∫ ∞
0

∫ ∞
0

P(X1 ≤ z1y1, X2 ≤ z2y2 | Y1 = y1, Y2 = y2)f(y1, y2) dy2 dy1

+

∫ 0

−∞

∫ ∞
0

P(X1 ≥ z1y1, X2 ≤ z2y2 | Y1 = y1, Y2 = y2)f(y1, y2) dy2 dy1

+

∫ ∞
0

∫ 0

−∞
P(X1 ≤ z1y1, X2 ≥ z2y2 | Y1 = y1, Y2 = y2)f(y1, y2) dy2 dy1

+

∫ 0

−∞

∫ 0

−∞
P(X1 ≥ z1y1, X2 ≥ z2y2 | Y1 = y1, Y2 = y2)f(y1, y2) dy2 dy1

=

∫ ∞
0

∫ ∞
0

∫ z1y1

−∞

∫ z2y2

−∞
f(x1, x2)f(y1, y2) dx2 dx1 dy2 dy1

+

∫ 0

−∞

∫ ∞
0

∫ ∞
z1y1

∫ z2y2

−∞
f(x1, x2)f(y1, y2) dx2 dx1 dy2 dy1

+

∫ ∞
0

∫ 0

−∞

∫ z1y1

−∞

∫ ∞
z2y2

f(x1, x2)f(y1, y2) dx2 dx1 dy2 dy1

+

∫ 0

−∞

∫ 0

−∞

∫ ∞
z1y1

∫ ∞
z2y2

f(x1, x2)f(y1, y2) dx2 dx1 dy2 dy1

By taking derivatives with respect to z1 and z2 we get the joint density.

f(z1, z2) =

∫ ∞
0

∫ ∞
0

y1y2 f(z1y1, z2y2)f(y1, y2) dy2 dy1

−
∫ 0

−∞

∫ ∞
0

y1y2 f(z1y1, z2y2)f(y1, y2) dy2 dy1

−
∫ ∞

0

∫ 0

−∞
y1y2 f(z1y1, z2y2)f(y1, y2) dy2 dy1

+

∫ 0

−∞

∫ 0

−∞
y1y2 f(z1y1, z2y2)f(y1, y2) dy2 dy1

=

∫ ∞
−∞

∫ ∞
−∞
|y1y2| f(z1y1, z2y2)f(y1, y2) dy2 dy1

=
1

4π2

1

1− σ2

∫ ∞
−∞

∫ ∞
−∞
|y1y2| exp

(
− 1

2(1− σ2)

[
a1y

2
1 − 2a12σy1y2 + a2y

2
2

])
dy2 dy1,
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where a1 = 1+z2
1 , a12 = 1+z1z2, and a2 = 1+z2

2 . We make the following change of variables

wi =
√
ai

√
1− σ2 a212

a1a2

1− σ2
yi, i = 1, 2

and define a random vector (W1,W2) with distribution

N
((

0
0

)
,

(
1 ρ
ρ 1

))
,

where
ρ =

a12√
a1a2

σ.

With these transformations we get

f(z1, z2) =
1

2π

1− σ2

(1− ρ2)
3
2

1

a1a2

∫ ∞
−∞

∫ ∞
−∞
|w1w2|f(w1, w2) dw2 dw1

=
1

2π

1− σ2

(1− ρ2)
3
2

1

a1a2

E(|W1W2|)

=
1

2π

1− σ2

(1− ρ2)
3
2

1

a1a2

2

π

(√
1− ρ2 + ρ sin−1 ρ

)
=

1− σ2

a1a2π2(1− ρ2)
3
2

(√
1− ρ2 + ρ sin−1 ρ

)
For the second to last equality we used the formula about the absolute moments of a product
of two Gaussians given in [43, Chapter 46, Section 3].

4.3 Bounds on the MLE existence probability

In this section, we compute bounds on P(MLE exists, n = 2,Σtrue
m , Gassumed

m = cycle). We
will prove that under some regularity conditions on the condition number K(Σtrue

m ), the
MLE existence probability goes to 1 for two observations and a growing cycle length. The
condition number of a matrix is defined as the ratio of its largest eigenvalue to its smallest
eigenvalue. A problem with a low condition number is said to be well-conditioned.

Theorem 4.3.1. Denote by km the minimal condition number of Σtrue
m after scaling, i.e.

km = min
D diagonal

K(DΣtrue
m D).
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Then

1−kmm
2

(m− 1)!
≤ P(MLE exists, n = 2,Σtrue

m , Gassumed
m = cycle) ≤ 1− 1

kmm

2

(m− 1)!
,

and

P(MLE exists, n = 2,Σtrue
m , Gassumed

m = cycle)
m→∞−−−→ 1 if km <

m1− 1
2m

e
for all m.

Proof. We denote by A the event that the MLE does not exist for n = 2 observations and
Gassumed
m = cycle. We write Q for the multivariate probability measure with underlying

covariance matrix

ΣQ =

(
Σtrue
m 0
0 Σtrue

m

)
,

and P for the multivariate probability measure with underlying covariance matrix

ΣP =

(
α Idm 0

0 α Idm

)
,

where Idm denotes the m×m identity matrix. Note that we listed the 2m random variables
as one vector for simpler notation. We are interested in bounds on Q(A) and will compute
these by using the formula for P(A) given in Corollary 4.1.2. Note that P(A) is independent
of the value α.

Q(A) =

∫
A

dQ
dP

dP

=

√
|ΣP|√
|ΣQ|

∫
A

exp

(
−1

2
xT
(
Σ−1

Q − Σ−1
P
)
x

)
dP

=
αm

|Σtrue
m |

∫
A

exp

(
−1

2
xT
(

Σ−1
Q −

1

α
Id2m

)
x

)
dP

We choose α equal to the largest eigenvalue of Σtrue
m . Then the matrix

Σ−1
Q −

1

α
Id2m

is positive semidefinite and

exp

(
−1

2
xT
(

Σ−1
Q −

1

α
Id2m

)
x

)
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is maximized by x = 0. With this choice of α and by applying Corollary 4.1.2 we get

Q(A) ≤ αm

|Σtrue
m |

∫
A

dP

=
αm

|Σtrue
m |

2

(m− 1)!

≤ K(Σtrue
m )m

2

(m− 1)!

In order to get a lower bound on Q(A) we choose α equal to the smallest eigenvalue of
Σtrue
m . Then the matrix

Σ−1
Q −

1

α
Id2m

is negative semidefinite and

exp

(
−1

2
xT
(

Σ−1
Q −

1

α
Id2m

)
x

)
is minimized by x = 0. Similarly to the previous argument we get

Q(A) ≥ 1

K(Σtrue
m )m

2

(m− 1)!

Because the MLE existence probability is invariant under rescaling of the covariance
matrix, we get

1− kmm
2

(m− 1)!
≤ P(MLE exists, n = 2,Σtrue

m , Gassumed
m = cycle) ≤ 1− 1

kmm

2

(m− 1)!
.

We use the following lower bound on m! resulting from Stirling’s approximation

m! ≥
√

2πmm+ 1
2 e−m

to conclude that

kmm
2

(m− 1)!
≤ kmm

2m
√

2πmm+ 1
2 e−m

=

√
2

π

(
kmm

1
2m
−1e
)m

,
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which converges to zero for m→∞ if and only if

km <
m1− 1

2m

e
for all m.

It is interesting that the upper bound on the MLE existence probability found in this
theorem increases with increasing condition number, while the lower bound on the MLE
existence probability decreases with increasing condition number. Thus, ill-conditioned co-
variance matrices represent the worst and the best examples with respect to MLE existence.
In the following, we give two examples explaining this phenomena.

Example 4.3.2. Let (X1, X2, X3, X4) and (Y1, Y2, Y3, Y4) be two independent samples from
N (0,Σ), where

Σ =


1 0 σ 0
0 1 0 σ
σ 0 1 0
0 σ 0 1

 .

For a large value of σ, we expect the resulting lines given by (Xi, Yi) to lie as shown
in Figure 4.1. The lines are not graph consecutive, meaning that the MLE exists. More
precisely, let Zi = Xi

Yi
, i = 1, . . . , 4. Using Lemma 4.2.1 we can prove that

P(Z1 ≤ Z2 ≤ Z3 ≤ Z4)
σ→1−−→ 0.

! !

"

#
$
%

Figure 4.1: Strong correlation between variables 1 and 3 and between variables 2 and 4 leads
to lines which are not graph consecutive.
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Proof.

P(Z1 ≤ Z2 ≤ Z3 ≤ Z4) =

∫ ∞
−∞

∫ ∞
−∞

P(Z1 ≤ z2 ≤ Z3 ≤ z4 | Z2 = z2, Z4 = z4)f(z2, z4) dz4 dz2

=

∫ ∞
−∞

∫ ∞
−∞

P(Z1 ≤ z2 ≤ Z3 ≤ z4)f(z2, z4) dz4 dz2

=

∫ ∞
−∞

∫ ∞
−∞

∫ z2

−∞

∫ z4

z2

f(z1, z3)f(z2, z4) dz3 dz1 dz4 dz2
σ→1−−→ 0,

because f(z1, z3) and f(z2, z4) go to zero as σ approaches 1 (Lemma 4.2.1).

This example can easily be extended to m ≥ 4. The above result holds for m ≥ 4 when
there exist indices 1 ≤ i < j < k < l ≤ m such that the submatrix of the covariance matrix
corresponding to the indices i, j, k, l is of the form

1 0 σ 0
0 1 0 σ
σ 0 1 0
0 σ 0 1

 .

This example shows that for fixed m and for any ε > 0 one can find a positive definite matrix
Σtrue
m such that

P(MLE exists, n = 2,Σtrue
m , Gassumed

m = cycle) > 1− ε.

Example 4.3.3. In the following, we describe a class of covariance matrices, for which the
converse happens, namely, for fixed m and for any ε > 0 one can find a positive definite
matrix Σtrue

m such that

P(MLE exists, n = 2,Σtrue
m , Gassumed

m = cycle) < ε.

Intuitively, we would like to find a class of covariance matrices, which make the resulting
data vectors as spread out as possible (see Figure 4.2 for m = 7). Simulations suggest that
for odd m a nearly singular circulant concentration matrix of the form

(
Σtrue
m

)−1
=



1 ρ 0 · · · 0 ρ

ρ 1 ρ
. . . . . . 0

0 ρ 1
. . . . . .

...
...

. . . . . . . . . ρ 0

0
. . . . . . ρ 1 ρ

ρ 0 · · · 0 ρ 1


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Figure 4.2: Lines are in graph consecutive order with equal angle between consecutive lines

leads to this phenomena. It is an open problem to prove that, indeed, for any ε > 0 one can
find a ρ ∈ R such that

P(MLE exists, n = 2,Σtrue
m , Gassumed

m = cycle) < ε,

when m is odd.

In this chapter we studied Gaussian cycles from an asymptotic point of view. We believe
that our results in Chapter 3, in particular the results about bipartite graphs and the 3× 3
grid, can be used in a similar way to study these models for a growing graph size and answer
the question of existence of the MLE for very large bipartite graphs and grids.
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Part II

Algebraic statistics and disease
association studies
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Chapter 5

Using Markov bases for disease
association studies

Rapid research progress in genotyping techniques have allowed large genome-wide asso-
ciation studies. Existing methods often focus on determining associations between single
loci and a specific phenotype. However, a particular phenotype is usually the result of com-
plex relationships between multiple loci and the environment. In this chapter, we describe
a two-stage method for detecting epistasis by combining the traditionally used single-locus
search with a search for multiway interactions. Our method is based on an extended version
of Fisher’s exact test. To perform this test, a Markov chain is constructed on the space of
multidimensional contingency tables using the elements of a Markov basis as moves. We
test our method on simulated data and compare it to a two-stage logistic regression method
and to a fully Bayesian method, showing that we are able to detect the interacting loci
when other methods fail to do so. Finally, we apply our method to a genome-wide data set
consisting of 685 dogs and identify epistasis associated with canine hair length for four pairs
of single nucleotide polymorphisms (SNPs).

The material of this chapter is joint work with Anna-Sapfo Malaspinas. It will be pub-
lished in the Journal of Algebraic Statistics in a paper of the same title.

5.1 Introduction

Conditions with genetic components such as cancer, heart disease, and diabetes, are the
most common causes of mortality in developed countries. Therefore, the mapping of genes
involved in such complex diseases represents a major goal of human genetics. However,
genetic variants associated with complex diseases are hard to detect. Indeed, only a small
portion of the heritability of complex diseases can be explained by the variants identified so
far. This led to several hypotheses (see e.g. [51]). One of them is that most common diseases
are caused by several rare variants with low effects, rather than a few common variants with
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large effects [60]. Another hypothesis is that the variants interact in order to produce the
disease phenotype and independently only explain a small fraction of the genetic variance.
In this chapter, we mainly focus on the interaction hypothesis, but we will also discuss the
relevance of our method to the rare variant hypothesis along the way.

Recent development of methods to screen hundreds of thousands of SNPs has allowed
the discovery of over 50 disease susceptibility loci with marginal effects [56]. Genome-wide
association studies have hence proven to be fruitful in understanding complex multifacto-
rial traits. The absence of reports of interacting loci, however, shows the need for better
methods for detecting not only marginal effects of specific loci, but also interactions of loci.
Although some progress in detecting interactions has been achieved in the last few years
using simple log-linear models, these methods remain inefficient to detect interactions for
large-scale data [4].

Many models of interaction have been presented in the past, as for example the addi-
tive model and the multiplicative model. The former model assumes that the SNPs act
independently, and a single marker approach seems to perform well. In the multiplicative
model, SNPs interact in the sense that the presence of two (or more) variants have a stronger
effect than the sum of the effects of each single SNP. We will discuss such models in more
detail in Section 5.2.1. A complete classification of two-locus interaction models has been
given in [36].

In the method described in this chapter, we first reduce the potential interacting SNPs
to a small number by filtering all SNPs genome-wide with a single locus approach. The
loci achieving some threshold are then further examined for interactions. Such a two-stage
approach has been suggested in [52]. For some models of interaction, they show that the
two-stage approach outperforms the single-locus search and performs at least as well as when
testing for interaction within all subsets of k SNPs.

Single locus methods consider each SNP individually and test for association based on dif-
ferences in genotypic frequencies between case and control individuals. Widely used methods
for the single-locus search are the χ2 goodness-of-fit test or Fisher’s exact test together with
a Bonferroni correction of the p-values to account for the large number of tests performed.
We suggest using Fisher’s exact test as a first stage to rank the SNPs by their p-value and
select a subset of SNPs, which is then further analyzed. Under the rare variant hypothesis
the resulting contingency tables are sparse and it is desirable to test for interactions within
the selected subset using an exact test. We suggest using Markov bases for this purpose.

In Section 5.2, we define three models of interaction and present our algorithm for detect-
ing epistasis using Markov bases in hypothesis testing. In Section 5.3, we test our method
on simulated data and make a comparison to logistic regression and BEAM, a Bayesian
approach [79]. Finally, we run our algorithm on a genome-wide dataset from dogs [16] to
test for epistasis related to canine hair length.
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5.2 Method

5.2.1 Models of interaction

In this chapter, we mainly study the interaction between two SNPs and a binary phenotype,
as for example the disease status of an individual. However, our method can be easily
generalized for studying interaction between three or more SNPs and a phenotype with
three or more states. We show a generalization in Section 5.3.4, where we analyze a genome-
wide dataset from dogs and, inter alia, test for interaction between three SNPs and a binary
hair length phenotype (short hair versus long hair).

The binary phenotype is denoted by D, taking values 0 and 1. We assume that the SNPs
are polymorphic with only two possible nucleotides. The two SNPs are denoted by X and
Y , each with genotypes taking values 0, 1 and 2 representing the number of minor alleles.
We investigate three different models of interaction: a control model, an additive model, and
a multiplicative model. The parameterization is given in the following tables showing the
odds of having a specific phenotype

P(D = 1|genotype)

P(D = 0|genotype)
.

• Control model:

Y
0 1 2

0 ε ε ε
X 1 ε ε ε

2 ε ε ε

• Additive model:

Y
0 1 2

0 ε εβ εβ2

X 1 εα εαβ εαβ2

2 εα2 εα2β εα2β2

• Multiplicative model:

Y
0 1 2

0 ε εβ εβ2

X 1 εα εαβδ εαβ2δ2

2 εα2 εα2βδ2 εα2β2δ4
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These three models can also be expressed as log-linear models. We denote the state of X
by i, the state of Y by j, and the state of D by k. If nijk describes the expected cell counts
in a 3 × 3 × 2 contingency table, then the three models can be expressed in the following
way, where the γ terms represent the effects the variables have on the cell counts (e.g. γXi
represents the main effect for X), and α, β, δ, and ε are defined by the odds of having a
specific phenotype shown in the above tables:

Control model: log(nijk) = γ + γXi + γYj + γXYij + k log(ε)

Additive model: log(nijk) = γ + γXi + γYj + γXYij + k log(ε) + ik logα
+jk log β

Multiplicative model: log(nijk) = γ + γXi + γYj + γXYij + k log(ε) + ik logα
+jk log β + ijk log δ

Note that in the additive model the interaction effect for SNP X (SNP Y ) and the disease
status is additive with respect to the number of causative SNPs i (j), whereas in the multi-
plicative model there is an additional 3-way interaction effect between SNPs X, Y , and the
disease status, which is multiplicative in the number of causative SNPs i, j. From the rep-
resentation as log-linear models we can deduce the nesting relationship shown on the Venn
diagram in Figure 5.1. Note that the additive model corresponds to the intersection of the
no 3-way interaction model (log(nijk) = γ + γXi + γYj + γDk + γXYij + γXDik + γY Djk ) with the
multiplicative model, and the control model is nested within the additive model.

In a biological context, interaction between markers (or SNPs) is usually used as a syn-
onym for epistasis. Cordell [18] gives a broad definition: “Epistasis refers to departure from
‘independence’ of the effects of different genetic loci in the way they combine to cause dis-
ease”. Epistasis is for example the result of a multiplicative effect between two markers
(i.e. log(δ) 6= 0 in the multiplicative model).

In contrast, in a mathematical context interaction is used as synonym for dependence.
Two markers are said to be interacting if they are dependent, i.e.

P(marker 1 = i,marker 2 = j) 6= P(marker 1 = i)P(marker 2 = j).

In general, in association studies the goal is to find a set of markers that are associated
with a specific phenotype. In what follows, we will use the term interaction as synonym for
dependence and the term epistasis with respect to a specific phenotype synonymously to the
presence of a k-way interaction (k ≥ 3) between k − 1 SNPs and a specific phenotype. The
epistatic models are indicated by the shading in Figure 5.1.



CHAPTER 5 84

!"#$%&'(&)*#'&+,-').&-/01'")&-'2")

&3456478 !

No 3-way 
interaction model

Multiplicative 
model

Additive model

Control model

Saturated model

Epistasis

Figure 5.1: Nesting relationship of the control model, the additive model, and the multiplica-
tive model. The intersection of the no 3-way interaction model with the multiplicative model
corresponds to the additive model. The shading indicates the presence of epistasis.

5.2.2 Algorithm

The χ2 goodness-of-fit-test is the most widely used test for detecting interaction within
contingency tables. Under independence the χ2 statistic is asymptotically χ2 distributed.
However, this approximation is problematic when some cell counts are small, which is often
the case in contingency tables resulting from association studies and particularly problematic
under the rare variant hypothesis. The other widely used test is Fisher’s exact test. As
its name suggests, it has the advantage of being exact. But it is a permutation test and
therefore computationally more intensive. For tables with large total counts or tables of
higher dimension enumerating all possible tables with given margins is not feasible.

Diaconis and Sturmfels [23] describe an extended version of Fisher’s exact test using
Markov bases. A Markov basis for testing a specific interaction model is a set of moves
connecting all contingency tables with the same sufficient statistics. So a Markov basis al-
lows constructing a Markov chain on the set of contingency tables with given margins and
computing the p-value of a given contingency table using the resulting posterior distribution.
Such a test can be used for analyzing multidimensional tables with large total counts. In
addition, it has been shown in [23] that the resulting posterior distribution is a good approx-
imation of the exact distribution of the χ2-statistic even for very sparse contingency tables,
leading to a substantially more accurate interaction test than the χ2-test for sparse tables.
Useful properties of Markov bases can be found in [25].
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Table 5.1: Standard interaction models for three-dimensional contingency tables.

Model Minimal sufficient statistics Expected counts
(X, Y,D) (ni..), (n.j.), (n..k) n̂ijk =

ni..n.j.n..k

(n...)2

(XY,D) (nij.), (n..k) n̂ijk =
nij.n..k

(n...)

(XD,Y ) (ni.k), (n.j.) n̂ijk =
ni.kn.j.

(n...)

(X, Y D) (ni..), (n.jk) n̂ijk =
n.jkni..

(n...)

(XY, Y D) (nij.), (n.jk) n̂ijk =
nij.n.jk

(n.j.)

(XY,XD) (nij.), (ni.k) n̂ijk =
nij.ni.k

(ni..)

(XD, Y D) (ni.k), (n.jk) n̂ijk =
ni.knj.k

(n..k)

(XY,XD, Y D) (nij.), (ni.k), (n.jk) Iterative proportional fitting

The Markov basis of the null model can be computed using the software 4ti2 [1]. An
example is given in Table 5.3. Then a Markov chain is started in the observed 3× 3× 2 data
table using the elements of the Markov basis as moves in the Metropolis-Hastings steps. At
each step the χ2 statistic is computed. Its posterior distribution is an approximation of the
exact distribution of the χ2 statistic.

Interaction tests with the extended version of Fisher’s exact test

We present various hypotheses that can easily be tested using Markov bases and discuss a
hypothesis that is particularly interesting for association studies. The corresponding Markov
basis can be found in Table 5.3. For simplicity we constrain this discussion to the case of
two SNPs and a binary phenotype.

Table 5.1 consists of the standard log-linear models on three variables. Their fit to a given
data table can be computed using the extended version of Fisher’s exact test. We use the
notation presented in [12] to denote the different models. Interaction is assumed between
the variables not separated by commas in the model. So the model (X, Y,D) in Table
5.1 represents the independence model, the model (XY,XD, Y D) the no 3-way interaction
model and the other models are intermediate models. For association studies the no 3-way
interaction model (XY,XD, Y D) is particularly interesting and will be used as null model
in our testing procedure.

Performing the extended version of Fisher’s exact test involves sampling from the space of
contingency tables with fixed minimal sufficient statistics and computing the χ2 statistic. So
the minimal sufficient statistics and the expected counts for each cell of the table need to be
calculated. These are given in Table 5.1. If a loop is present in the model configuration as for
example in the no 3-way interaction model (this model can be rewritten as (XY, Y D,DX)),
then there is no closed-form estimator for the cell counts (see [12]). But in this case, estimates
can be achieved by iterative proportional fitting (e.g. [28]).
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Table 5.2: Testing for association between haplotypes and phenotype.

Phenotype status: Total:
0 1

Haplotype: 00 n000 n001 n00.

01 n010 n011 n01.

10 n100 n101 n10.

11 n110 n111 n11.

Total: n..0 n..1 n...

It is important to note that testing for epistasis necessarily implies working with mul-
tidimensional contingency tables and is not possible in the collapsed two-dimensional table
shown above. In this table, the two SNPs are treated like a single variable and we consider
their haplotype. The sufficient statistics for the model described in Table 5.2 are the row
and column sums (nij.) and (n..k). So testing for association in this collapsed table is the
same as using (XY,D) as null model. In this case, the null hypothesis would be rejected
even in the presence of marginal effects only, showing that testing for epistasis in Table 5.2
is impossible.

Hypothesis testing with the extended version of Fisher’s exact test

Our goal is to detect epistasis when present. According to the definition of epistasis in Section
5.2.1 and as shown in Figure 5.1, epistasis is present with regard to two SNPs and a specific
phenotype, when a 3-way interaction is found. So we suggest using as null hypothesis the
no 3-way interaction model and testing this hypothesis with the extended version of Fisher’s
exact test. The corresponding Markov basis consists of 15 moves and is given in Table 5.3.
It can be used to compute the posterior distribution of the χ2 statistic and approximate the
exact p-value of the data table. If the p-value is lower than some threshold, we reject the
null hypothesis of no epistasis.

Although in this chapter we focus merely on epistasis, it is worth noting that one can
easily build tests for different types of interaction using Markov bases. If one is interested
in detecting whether the epistatic effect is of multiplicative nature, one can perform the
extended version of Fisher’s exact test on the contingency tables, which have been classified
as epistatic, using the multiplicative model as null hypothesis. In this case, the corresponding
Markov basis consists of 49 moves. Similarly, if one is interested in detecting additive effects,
one can use the additive model as null hypothesis and test the contingency tables, which
have been classified as non-epistatic. In this case, the corresponding Markov basis consists
of 156 moves. The Markov bases for these tests can be found on our website1.

1http://www.carolineuhler.com/epistasis.htm
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Table 5.3: Markov basis for the no 3-way interaction model on a 3× 3× 2 table, where the
tables are reported as vectors

(n000, n100, n200, n010, n110, n210, n020, n120, n220, n001, n101, n201, n011, n111, n211, n021, n121, n221).

f1 = (0 0 0 1 0 -1 -1 0 1 0 0 0 -1 0 1 1 0 -1)
f2 = (0 0 0 0 1 -1 0 -1 1 0 0 0 0 -1 1 0 1 -1)
f3 = (1 0 -1 0 0 0 -1 0 1 -1 0 1 0 0 0 1 0 -1)
f4 = (0 1 -1 0 0 0 0 -1 1 0 -1 1 0 0 0 0 1 -1)
f5 = (0 0 0 1 -1 0 -1 1 0 0 0 0 -1 1 0 1 -1 0)
f6 = (1 -1 0 0 0 0 -1 1 0 -1 1 0 0 0 0 1 -1 0)
f7 = (1 -1 0 -1 1 0 0 0 0 -1 1 0 1 -1 0 0 0 0)
f8 = (1 0 -1 -1 0 1 0 0 0 -1 0 1 1 0 -1 0 0 0)
f9 = (0 1 -1 0 -1 1 0 0 0 0 -1 1 0 1 -1 0 0 0)
f10 = (0 1 -1 -1 0 1 1 -1 0 0 -1 1 1 0 -1 -1 1 0)
f11 = (1 0 -1 0 -1 1 -1 1 0 -1 0 1 0 1 -1 1 -1 0)
f12 = (-1 1 0 1 0 -1 0 -1 1 1 -1 0 -1 0 1 0 1 -1)
f13 = (1 -1 0 0 1 -1 -1 0 1 -1 1 0 0 -1 1 1 0 -1)
f14 = (1 0 -1 -1 1 0 0 -1 1 -1 0 1 1 -1 0 0 1 -1)
f15 = (0 1 -1 1 -1 0 -1 0 1 0 -1 1 -1 1 0 1 0 -1)

The elements of the Markov basis can be viewed as binomials in the variables nijk. We
write each element of the Markov basis as a long vector fi ∈ Z18 and decompose it into two
parts

fi = f+
i − f−i ,

where f+
i and f−i are non-negative and have disjoint support. Then the elements of the

Markov basis can be interpreted as binomials

nfi
+ − nfi− ,

where n is the vector of variables nijk. For example, the first element of the Markov basis in
Table 5.3 can be interpreted as the binomial

n010n220n211n021 − n210n020n011n221.

These binomials generate the toric ideal corresponding to the underlying model. Under
the no 3-way interaction model the Markov basis consists of 9 elements of degree 4 and 6
elements of degree 6. The 49 moves under the multiplicative model consist of 7 moves of
degree 4, 14 moves of degree 6, 24 moves of degree 8, and 4 moves of degree 10. Finally,
the Markov basis corresponding to the additive model consists of 30 moves of degree 4, 78
moves of degree 6, 40 moves of degree 8, and 8 moves of degree 10.
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The no 3-way interaction model, the multiplicative model and the additive model are log-
linear models, which can be transformed into logistic models. We represent the interaction
effects of the covariates by a matrix A, where the columns of A correspond to the SNP
values 00, 10, 20, 01, 11, 21, 02, 12, 22. Then

A =


1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1


for the no 3-way interaction model,

A =


1 1 1 1 1 1 1 1 1
0 1 2 0 1 2 0 1 2
0 0 0 1 1 1 2 2 2
0 0 0 0 1 2 0 2 4


for the multiplicative model, and

A =

1 1 1 1 1 1 1 1 1
0 1 2 0 1 2 0 1 2
0 0 0 1 1 1 2 2 2


for the additive model.

Let Id denote the identity matrix. The matrix

Λ(A) =

(
A 0
Id Id

)
is called the Lawrence lifting of A. The Lawrence liftings of the above matrices A define the
toric ideals of the three models under consideration.

It is interesting that the correspondence between the log-linear models and the logistic
models translates into the fact that the Graver basis corresponding to A coincides with the
unique minimal Markov basis corresponding to the Lawrence lifting Λ(A) ([65, Theorem 7.1]).

5.3 Results

In this section, we first conduct a simulation study to evaluate the performance of the
suggested method. We then compare our method to a two-stage logistic regression approach
and to BEAM ([79]). Logistic regression is a widely used method for detecting epistasis
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within a selection of SNPs. BEAM is a purely Bayesian method for detecting epistatic
interactions on a genome-wide scale. We end this section by applying our method to a
genome-wide data set consisting of 685 dogs with the goal of finding epistasis associated
with canine hair length.

5.3.1 Simulation study

We simulated a total of 50 potential association studies with 400 cases and 400 controls
for three different minor allele frequencies of the causative SNPs and the three models of
interaction presented in Section 5.2.1. We chose as minor allele frequencies (MAF) 0.1, 0.25
and 0.4. The parameters for the three models of interaction were determined numerically by
fixing the marginal effect measured by the effect size

λi :=
p(D = 1|gi = 1)

p(D = 0|gi = 1)

p(D = 0|gi = 0)

p(D = 1|gi = 0)
− 1

and the prevalence

π :=
∑
g1,g2

p(D|g1, g2)p(g1, g2).

For our simulations, we used an effect size of λ1 = λ2 = 1 and a sample prevalence of
π = 0.5. Choosing in addition α = β in the additive model, and α = β and δ = 3α in the
multiplicative model determines all parameters of the interaction models and one can solve
for α, β, δ and ε numerically.

The simulations were performed using HAP-SAMPLE ([76]) and were restricted to the
SNPs typed with the Affy CHIP on chromosome 9 and chromosome 13 of the Phase I/II
HapMap data2, resulting in about 10,000 SNPs per individual. On each of the two chromo-
somes we selected one SNP to be causative. The causative SNPs were chosen consistent with
the minor allele frequencies and far apart from any other marker (at least 20,000bp apart).
Note that HAP-SAMPLE generates the cases and controls by resampling from HapMap.
This means that the simulated data show linkage disequilibrium and allele frequencies simi-
lar to real data.

As suggested in [52], we took a two-stage approach for finding interacting SNPs. In the
first step, we ranked all SNPs according to their p-value in Fisher’s exact test on the 2x3
genotype table and selected the ten SNPs with the lowest marginal p-values. Within this
subset, we then tested for interaction using the extended version of Fisher’s exact test with
the no 3-way interaction model as null hypothesis. We generated three Markov chains with
40,000 iterations each and different starting values, and used the tools described in [30] to
assess convergence of the chains. This included analyzing the Gelman-Rubin statistic and
the autocorrelations. After discarding an initial burn-in of 10,000 iterations, we combined

2http://hapmap.ncbi.nlm.nih.gov/
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Figure 5.2: Rejection rate of the no 3-way interaction test in the two-stage approach on 50
simulated association studies for MAF=0.1, MAF=0.25, and MAF=0.4 (left). Proportion of
50 association studies, in which the two causative SNPs were ranked among the ten SNPs with
the lowest p-values by Fisher’s exact test (middle). Rejection rate of the no 3-way interaction
hypothesis using only the extended version of Fisher’s exact test on the 50 causative SNP
pairs (right).

the remaining samples of the three chains to generate the posterior distribution of the χ2

statistic.
In Figure 5.2 (left), we report the rejection rate of the no 3-way interaction hypothesis for

each of the three minor allele frequencies. Per point in the figure we simulated 50 potential
association studies. The power of our two-stage testing procedure corresponds to the curve
under the multiplicative model. The higher the minor allele frequency, the more accurately
we can detect epistasis. Under the additive model and the control model, no epistasis is
present. We never rejected the null hypothesis under the control model and only once under
the additive model, resulting in a high specificity of the testing procedure.

We also analyze the performance of each step separately. Figure 5.2 (middle) shows the
performance of the first step and reports the proportion of 50 association studies, in which
the two causative SNPs were ranked among the ten SNPs with the lowest p-values. Because
Fisher’s exact test measures marginal association, the curves under the additive model and
the multiplicative model are similar.

Figure 5.2 (right) shows the performance of the second step in our method and reports the
proportion of 50 association studies, in which the null hypothesis of no 3-way interaction was
rejected using only the extended version of Fisher’s exact test on the 50 causative SNP pairs.

5.3.2 Comparison to logistic regression

For validation, we compare the performance of our method to logistic regression via ROC
curves. Logistic regression is probably the most widely used method for detecting epistasis
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Figure 5.3: ROC curves of the extended version of Fisher’s exact test and logistic regression
for MAF=0.1 (left), MAF=0.25 (middle), and MAF=0.4 (right) based on the ten filtered
SNPs.

within a selection of SNPs nowadays. We base the comparison on the simulated association
studies presented in the previous section using only the simulations under the multiplicative
model. The structure of interaction within this model should favor logistic regression as
logistic regression tests for exactly this kind of interaction.

As before, for each minor allele frequency and each of the 50 simulation studies we first
filtered all SNPs with Fisher’s exact test and chose the ten SNPs with the lowest p-values
for further analysis. Both causative SNPs are within the ten filtered SNPs for 19 (46) [45]
out of the 50 simulation studies for MAF=0.1 (MAF=0.25) [MAF=0.4]. We then ran the
extended version of Fisher’s exact test and logistic regression on all possible pairs of SNPs
in the subsets consisting of the ten filtered SNPs. This results in 50 ·

(
10
2

)
tests per minor

allele frequency with 19 (46) [45] true positives for MAF=0.1 (MAF=0.25) [MAF=0.4].
Because both methods, logistic regression and our method, require filtering all SNPs first,

we compare the methods only based on the ten filtered SNPs. The ROC curves comparing
the second stage of our method to logistic regression are plotted in Figure 5.3 showing that
our method performs substantially better than logistic regression for MAF=0.1 with an area
under the ROC curve of 0.861 compared to 0.773 for logistic regression. For MAF=0.25 and
MAF=0.4 both methods have nearly perfect ROC curves with areas 0.9986 [0.99994] for our
method compared to 0.9993 [0.99997] for logistic regression for MAF=0.25 [MAF=0.4].

5.3.3 Comparison to BEAM

We also compare our method to BEAM, a Bayesian approach for detecting epistatic inter-
actions in association studies ([79]). We chose to compare our method to BEAM, because
the authors show it is more powerful than a variety of other approaches including the step-
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Figure 5.4: Proportion of simulation studies for which the interacting SNP pair belongs to
the x SNP pairs with the lowest p-values for MAF=0.1 (left), MAF=0.25 (middle), and
MAF=0.4 (right).

wise logistic regression approach, and it is one of the few recent methods that can handle
genome-wide data.

In this method, all SNPs are divided into three groups, namely, SNPs that are not asso-
ciated with the disease, SNPs that contribute to the disease risk only through main effects,
and SNPs that interact to cause the disease. BEAM outputs the posterior probabilities
for each SNP to belong to these three groups. The authors propose to use the results in
a frequentist hypothesis-testing framework calculating the so called B-statistic and testing
for association between each SNP or set of SNPs and the disease phenotype. BEAM was
designed to increase the power to detect any association with the disease, and not to sepa-
rate main effects from epistasis. Therefore, BEAM outputs SNPs that interact marginally
OR through a k-way interaction with the disease. This does not match our definition of
epistasis since the presence of marginal effects only already gives rise to a significant result
using BEAM.

We compare our method to BEAM using the B-statistic. BEAM reports this statistic
only for the pairs of SNPs which have a non-zero posterior probability of belonging to the
third group. In addition, the B-statistic is automatically set to zero for the SNP pairs where
any of the SNPs is found to be interacting marginally with the disease. We force BEAM to
include the marginal effects into the B-statistic by choosing a significance level of zero for
marginal effects. This should favor BEAM in terms of sensitivity.

We ran BEAM with the default parameters on our simulated datasets for the multiplica-
tive model. Due to the long running time of BEAM, we based the comparison only on 1,000
SNPs out of the 10,000 SNPs simulated for the analysis in Section 5.3.1. BEAM takes about
10.6 hours for the analysis of one dataset with 10,000 SNPs and 400 cases and controls,
whereas the same analysis with our method takes about 0.7 hours on an Intel Core 2.2 GHz
laptop with 2 Gb memory.
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In contrast to BEAM, our method is a stepwise approach, which makes a comparison via
ROC curves difficult. We therefore compare the performance of all three tests by plotting for
a fixed number x of SNP pairs the proportion of simulation studies for which the interacting
SNP pair belongs to the x SNP pairs with the lowest p-values. The resulting curves are
shown in Figure 5.4. Although the marginal effects were not extracted, BEAM has a very
high false negative rate, attributing a p-value of 1 to the majority of SNPs, interacting and
not interacting SNPs.

5.3.4 Genome-wide association study of hair length in dogs

We demonstrate the potential of our Markov basis method in genome-wide association studies
by analyzing a hair length dataset consisting of 685 dogs from 65 breeds and containing
40, 842 SNPs [16].

The individuals in [16] were divided into two groups for the hair length phenotype: 319
dogs from 31 breeds with long hair as cases and 364 from 34 breeds with short hair as controls.
In the original study, it is shown that the long versus short hair phenotype is associated with
a mutation (Cys95Phe) that changes exon one in the fibroblast growth factor-5 (FGF5 gene).
Indeed, the SNP with the lowest p-value using Fisher’s exact test is located on chromosome
32 at position 7, 100, 913 for the Canmap dataset, i.e. about 300Kb apart from FGF5.

We ranked the 40, 842 SNPs by their p-value using Fisher’s exact test and selected the 20
lowest ranked SNPs (about 0.05%) to test for 3-way interaction. Note that all 20 SNPs are
significantly correlated (p-value < 0.05) with the phenotype. We found a significant p-value
(< 0.05) for four out of the

(
20
2

)
pairs. These pairs together with their p-values are listed in

Table 5.3.4.
The pairs include six distinct SNPs located on five different chromosomes and the two

SNPs lying on the same chromosome are not significantly interacting (p-value of 0.54).
This means that a false positive correlation due to hitchhiking effects can likely be avoided.
Hitchhiking effects are known to extend across long stretches of chromosomes in particular
in domesticated species [54, 68, 71] consistent with the prediction of [63].

In order to identify potential pathways we first considered genes, which are close to the
six SNPs we identified as interacting. To do so, we used the dog genome available through
the ncbi website3. Most of the genes we report here have been annotated automatically. Our
strategy was to consider the gene containing the candidate SNP (if any) and the immediate
left and right neighboring gene, resulting in a total of two or three genes per SNP.

Among the six significantly interacting SNPs, four are located close to genes that have
been shown to be linked to hair growth in other organisms. This is not surprising, since
these SNPs also have a significant marginal association with hair growth. We here report
the function of these candidate genes. The two other SNPs are located close to genes that
we were not able to identify as functionally related to hair growth.

3http://www.ncbi.nlm.nih.gov/genome/guide/dog/, build 2.1
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Table 5.4: Pairs of SNPs, which significantly interact with the hair length phenotype for the
Canmap dataset. Question marks indicate that we were not able to identify a close-by gene
which is functionally related to hair growth.

chromosome and location of SNPs p-value potential relevant genes
chr30.18465869, chr26.6171079 0 FGF7 -?
chr15.44092912, chr23.49871523 0 IGF1 -P2RY1
chr24.26359293, chr15.43667654 2e-04 ASIP -?
chr15.43667654, chr23.49871523 1e-04 ?-P2RY1

First, the SNP chr30.18465869 is located close to (about 80Kb) fibroblast growth factor
7 (FGF7 also called keratinocyte growth factor, KGF ), i.e. it belongs to the same family as
the gene reported in the original study (but on a different chromosome). The FGF family
members are involved in a variety of biological processes including hair development reported
in human, mouse, rat and chicken (GO:0031069, [6]).

Secondly, chr15.44092912 is located between two genes, and about 200Kb from the
insulin-like growth factor 1 gene (IGF1 ). IGF1 has been reported to be associated with
the hair growth cycle and the differentiation of the hair shaft in mice [72].

Thirdly, chr23.49871523 is located about 430Kb from the purinergic receptor P2Y1
(P2RY1 ). The purinergic receptors have been shown to be part of a signaling system for
proliferation and differentiation in human anagen hair follicles [34].

Finally, chr24.26359293 is located inside the agouti-signaling protein (gene ASIP), a gene
known to affect coat color in dogs and other mammals. The link to hair growth is not obvious
but this gene is expressed during four to seven days of hair growth in mice [75].

According to our analysis, IGF1 and P2RY1 are significantly interacting. All other pairs
of interacting SNPs involve at least one SNP for which we were not able to identify a close-by
candidate gene related to hair growth (see Table 5.3.4). IGF1 has a tyrosine kinase receptor
and P2RY1 is a G-protein coupled receptor. One possibility is that these receptors cross-
talk as has been shown previously for these types of receptors in order to control mitogenic
signals [24]. However, a functional assay would be necessary to establish that any of the
statistical interactions we found are also biologically meaningful.

We also considered all triplets of SNPs among the 20 preselected SNPs and tested for
4-way interaction. However, we did not find any evidence for interaction among the

(
20
3

)
triplets.

5.4 Discussion

In this chapter, we proposed a Markov basis approach for detecting epistasis in genome-wide
association studies. The use of different Markov bases allows to easily test for different types
of interaction and epistasis involving two or more SNPs. These Markov bases need to be
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computed only once and can be downloaded from our website4 for the tests presented in this
chapter.

The use of an exact test is of particular relevance for disease mapping studies where
the contingency tables are often sparse. One example where there has been also functional
validation, is a deletion associated with Crohn’s disease [55] This deletion was found to
have a population frequency of 0.07, and a frequency of 0.11 in the cases [51]. So within
400 controls and under Hardy-Weinberg equilibrium, we would expect only 2 individuals
to be homozygote for this deletion. This shows that also for a moderate number of cases
and controls the resulting tables for disease association studies are likely to be sparse. The
sparsity is even more pronounced for rare variants, defined as variants with a MAF smaller
than 0.005. Current genome wide association studies are still missing these rare variants, but
advances in sequencing technologies should allow to sequence these variants and appropriate
statistical methods will then be necessary.

We tested our method in simulation studies and showed that it outperforms a stepwise
logistic regression approach and BEAM for the multiplicative interaction model. Logistic
regression has the advantage of a very short running time (3 seconds compared to 39 minutes
using our method for the analysis of one dataset with 10,000 SNPs and 400 cases and controls
not including the filtering step, which takes about 1 minute for both methods on an Intel
Core 2.2 GHz laptop with 2 Gb memory). However, especially for a minor allele frequency of
0.1 logistic regression performs worse than our method, even when simulating epistasis under
a multiplicative model, which should favor logistic regression. This difference arises because
our method approximates the exact p-value well for all sample sizes while the performance
of logistic regression increases with larger sample size. 400 cases and 400 controls are not
sufficient to get a good performance using logistic regression for a minor allele frequency of
0.1 and it is expected to do even worse for rare variants. Another advantage of our method
compared to logistic regression is that it is not geared towards testing for multiplicative
interaction only, but should be able to detect epistasis regardless of the interaction model
chosen. It would be interesting to compare these two methods on data sets generated by
other interaction models.

BEAM on the other hand, has the advantage of not needing to filter the large number
of SNPs first. However, it runs about 15 times slower than our method for our simulations
and has a very high false negative rate. The difference between our results and what the
authors of BEAM have found might be due to linkage disequilibrium in our data. BEAM
handles linkage disequilibrium with a first order Markov chain, which will be improved in
future versions (Yu Zhang, personal communication). But as of today, we conclude that this
method is impractical for whole genome association studies, since linkage disequilibrium is
present in most real datasets.

The limitation of our method is the need for a filtering step to reduce the number of
SNPs to a small subset. Especially if the marginal association of the interacting SNPs

4http://www.carolineuhler.com/epistasis.htm
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with the disease is small, these SNPs might not be caught by the filter. However, in our
simulations using Fisher’s exact test as a filter seems to perform well. Another possibility is
to incorporate biological information such as existing pathways ([26]) to choose a subset of
possibly interacting SNPs.

We demonstrated the potential of the proposed two-stage method in genome-wide as-
sociation studies by analyzing a hair length dataset consisting of 685 dogs and containing
40, 842 SNPs using the extended version of Fisher’s exact test. In this dataset, we found
a significant epistatic effect for four SNP pairs. These SNPs lie on different chromosomes,
reducing the risk of a false positive correlation due to linkage effects. The dataset includes
dogs from 65 distinct breeds. Although linkage disequilibrium has been shown to extend over
several megabases within breeds, linkage disquelibrium extends only over tens of kilobases
between breeds and drops faster than in human populations ([45, 50, 68]), suggesting that
it is possible to do fine-mapping between breeds. These observations are consistent with
two bottlenecks, the first associated with the domestication from wolves and the second
associated with the intense selection to create the breeds. Other studies have successfully
employed the extensive variation between breeds to map genes affecting size and behavior
([16, 44]). The validity of this approach rests on the assumption that the breeds used are
random samples of unrelated breeds or that related breeds make up a small part of our
sample ([31, 44]). This is rarely the case and false positive results may therefore have arisen
from population structure. A second independent dataset would be useful to confirm our
findings. Finally, a functional assay would be necessary to establish if the interactions we
found are also biologically meaningful.
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