
UC Irvine
UC Irvine Previously Published Works

Title
Evidence that pneumococcal serotype replacement in Massachusetts following conjugate 
vaccination is now complete

Permalink
https://escholarship.org/uc/item/6pz2204h

Journal
Epidemics, 2(2)

ISSN
1755-4365

Authors
Hanage, William P
Finkelstein, Jonathan A
Huang, Susan S
et al.

Publication Date
2010-06-01

DOI
10.1016/j.epidem.2010.03.005

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6pz2204h
https://escholarship.org/uc/item/6pz2204h#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Evidence that pneumococcal serotype replacement in
Massachusetts following conjugate vaccination is now complete

William P. Hanage1,*, Jonathan A. Finkelstein2, Susan S. Huang3, Stephen I. Pelton4,
Abbie E. Stevenson4, Ken Kleinman2, Virginia L. Hinrichsen2, and Christophe Fraser1
1Imperial College London. UK
2Harvard Medical School and Harvard Pilgrim Health Care, Boston, Massachusetts. USA
3University of California Irvine School of Medicine, California, USA
4Boston University School of Medicine, Boston, Massachusetts. USA

Abstract
Invasive pneumococcal disease (IPD) has been reduced in the US following conjugate vaccination
(PCV7) targeting seven pneumococcal serotypes in 2000. However, increases in IPD due to other
serotypes have been observed, in particular 19A. How much this “serotype replacement” will
erode the benefits of vaccination and over what timescale is unknown. We used a population
genetic approach to test first whether the selective impact of vaccination could be detected in a
longitudinal carriage sample, and secondly how long it persisted for following introduction of
vaccine in 2000. To detect the selective impact of the vaccine we compared the serotype diversity
of samples from pneumococcal carriage in Massachusetts children collected in 2001, 2004 and
2007 with others collected in the pre-vaccine era in Massachusetts, the UK and Finland. The 2004
sample was significantly (p >0.0001) more diverse than pre-vaccine samples, indicating the
selective pressure of vaccination. The 2007 sample showed no significant difference in diversity
from the pre-vaccine period, and exhibited similar population structure, but with different
serotypes. In 2007 the carriage frequency of 19A was similar to that of the most common serotype
in pre-vaccine samples. We suggest that serotype replacement involving 19A may be complete in
Massachusetts due to similarities in population structure to pre-vaccine samples. These results
suggest that the replacement phenomenon occurs rapidly with high vaccine coverage, and may
allay concerns about future increases in disease due to 19A. For other serotypes, the future course
of replacement disease remains to be determined.
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Introduction
Conjugate vaccination against seven serotypes of S. pneumoniae (the pneumococcus) has
had great benefits for public health. In the US between 1998-9 and 2003, following vaccine
licensure and despite vaccine shortages, the incidence of invasive pneumococcal disease
(IPD) due to vaccine serotypes among children under 5 fell by 94% (2005). Moreover, the
interruption of pneumococcal transmission within this core group has led to a substantial
reduction in IPD due to vaccine types among unvaccinated older adults and the population at
large (Lexau et al., 2005).

Despite this success, concern has been raised that these public health benefits are being
eroded by the phenomenon of serotype replacement (Hanage, 2008; Spratt and Greenwood,
2000). This refers to the fact that the vaccine targets only seven of the more than 90 known
pneumococcal serotypes. As well as protecting against IPD, vaccination also prevents
carriage of vaccine serotypes (Ghaffar et al., 2004) and so removes these from the
population. If vaccine and non-vaccine serotypes compete in the human nasopharynx (their
normal anatomical niche) then this will produce an opportunity for those serotypes not in the
vaccine to benefit from the removal of any such competitors, and increase in prevalence.

Such serotype replacement has been documented in carriage (Ghaffar et al., 2004; Huang et
al., 2009; Huang et al., 2005), and a number of disease contexts (Byington et al., 2005;
Eskola et al., 2001). However replacement has, thus far, been limited in invasive disease
(Hicks et al., 2007). The incidence of a small number of non-vaccine serotypes, notably 19A
and serogroup 15 strains has been increasing in IPD (Hicks et al., 2007). Prior to
vaccination, the incidence of IPD due to 19A was estimated at 2.5 /100,000 per year in the
vulnerable under 5 age group. By 2004 in the same age group it was estimated to have
increased to 7.8/100,000 per year, equivalent to a relative risk for IPD due to 19A of 3.2
(95% CI 2.3-4.4) in comparison with the pre-vaccine era (Hicks et al., 2007). In some
particularly vulnerable populations, the overall 19A disease rate can be much higher
(Singleton et al., 2007).

A question of pressing public health importance is whether we are only seeing the start of
this phenomenon. Will the increase in IPD due to replacement serotypes continue as the
pneumococcal population responds and adapts to the presence of vaccination? Or has the
population already reached a new equilibrium, and so future changes will be relatively small
in comparison with those that have already occurred?

Previous analyses have focussed on longitudinal trends in carriage or invasive disease rates
to detect and analyse serotype replacement (Hicks et al., 2007; Huang et al., 2005). Here we
present an alternative approach based on changes in the observed diversity of serotypes,
hypothesising that this is a sensitive measure of the selective effects of the vaccine on the
pneumococcal population as a whole, rather than individual serotypes. We use longitudinal
data from Massachusetts (MA) to show the effect of vaccination on the diversity and rank-
frequency distribution of serotypes in carriage.

Methods
Samples

Pre-vaccine communities—We use three datasets. As an indicator of the baseline
serotype distribution in Massachusetts we use a sample of 71 carried isolates from children
between 3 months and 6 years of age with acute otitis media (AOM). These were collected
in 1998 and 1999 from practices in two Massachusetts communities (Pelton et al., 2004).
They are taken as representative of the serotypes in NP carriage (since there are small
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differences in the ability of colonizing serotypes to cause AOM (Hanage et al., 2004)).
Serotyping was carried out in the Maxwell Finland laboratory at Boston University School
of Medicine. For further comparison we use two additional samples, comprising isolates
from nasopharyngeal (NP) swabs from healthy children <2 years of age in Oxford, UK and
Tampere, Finland (Brueggemann et al., 2003; Hanage et al., 2004). To ensure that a single
isolate was included per episode of carriage, we used multilocus sequence typing (MLST)
(Enright and Spratt, 1998) data which was available for all three pre-vaccine datasets. Where
more than one isolate with the same serotype and sequence type (ST) was retrieved from the
same child, all but one was excluded (leading to the exclusion of 18 isolates from the 1998-9
MA sample; 69 isolates from the Tampere, Finland sample, and 69 isolates from the Oxford,
UK dataset. For the latter two datasets the resulting samples are as described previously
(Fraser et al., 2005)). The sizes of the datasets used in this work are Tampere N=216;
Oxford N=228; MA 1998-9 N=71.

Longitudinal sampling of post vaccine cohorts—Serial samples of children <7
years of age were collected in 2001, 2004 and 2007 (described in detail in (Hanage et al.,
2007; Hicks et al., 2007; Huang et al., 2005)) from children seen in pediatric practices in 8
Massachusetts communities. 8 additional communities were sampled in 2001 and 2004 but
have been excluded from this analysis to ensure consistency. The overall carriage prevalence
of pneumococcus did not change greatly over the three study periods (Huang et al., 2009).
Final sample sizes were as follows: 2001 N=124; 2004 N=220; 2007 N=295.

For samples to be comparable, they must be serotyped to the same level of discrimination.
For example, we cannot compare datasets which pool all serogroup 19 isolates together with
those that do not. Because 15B and 15C strains have been found to interconvert with high
frequency (van Selm et al., 2003), these have been pooled together as 15B/C in all samples
including those from post-vaccine communities (see below). For those cases in the MA
1998-9 dataset where isolates were unavailable for testing to a finer level of discrimination,
the MLST data were used to determine the most likely serotype based on the relationship of
the isolate to the rest of the sample and the MLST database. For example, isolates recorded
as serogroup 15 with no further discrimination, and ST 199 by MLST, were assumed to be
15B/C because in all previously recorded cases of this ST expressing serogroup 15 capsule,
the subtype has been found to be 15B/C. In one case where this was not possible (ST 1910 is
a singleton which does not have any close relatives in the MLST database), the isolate was
removed from the dataset.

Statistical analysis—The diversity of each dataset was estimated using Simpson's index

of diversity D (Ref (Simpson, 1949)); defined here as  where  is
the fraction of the sample with serotype i, m is the total number of serotypes and N is the
sample size. The choice of measure was motivated by analogy with population genetics,
where D is equivalent to the heterozygosity of a sample, and here is the probability that two

randomly selected isolates have different serotypes.  is a correction for sample size.
Variances and 95% confidence intervals for each sample were calculated as previously
described (Simpson, 1949). Since diversity did not differ between the baseline pre-vaccine
era samples (see Table 1), we pooled the pre-vaccine samples by summing the number of
isolates with each serotype across the three samples, and dividing by the combined sample
size of 515 isolates (from the 1998-9 MA sample combined with the Tampere and Oxford
datasets) to compare diversity D between the pre and post vaccine samples. To test whether
estimates of D were significantly different p-values were calculated by two tailed Welch's t-
test. We also tested the effect of pooling by rank (ie combining the numbers of isolates in

Hanage et al. Page 3

Epidemics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the category of most common serotype, second most common serotype, etc) and obtained
similar results to those reported below (not shown).

To further explore the selective impact of vaccination, we calculated the rank frequency
distribution of each sample. Specifically, if {x1, x2,…, xm} denotes the distribution of
serotype frequencies, then we denote the permutation of this distribution re-ordered from
largest to smallest as {x[1], x[2],…, x[m]}, which is called the rank-frequency distribution. We
do this ranking in turn for each sample, and note the strong similarity between all the pre-
vaccine era samples despite differences in serotype composition (Figs 1A and B). To obtain
a range of rank-frequency distributions to compare with the vaccine era samples, we
simulated 1000 Monte-Carlo replicates drawn from the empirically observed rank-frequency
distribution of the pooled pre-vaccine samples. All procedures were carried out in Microsoft
Excel 2007.

Results
Comparison of serotype diversity in pre-vaccine populations

To characterise the pneumococcal population prior to vaccination, we used three
independent samples from similar age groups typed to the same level of discrimination
(namely Oxford, UK (Meats et al., 2003); Tampere, Finland (Hanage et al., 2004), and
Massachusetts 1998-9). Details of all samples used in this work are provided in Table 1. Fig
1A compares the frequency of individual serotypes in the different locations (for reasons of
clarity, only the 20 most common are shown). While 6B was the most common in all three,
marked differences were observed (for example in the frequencies of 19F, 6A, 11A and
19A). However the rank frequency distribution of serotypes, shown in Fig 1B, is strikingly
similar. In none of these samples does the most common serotype make up more than 20%
of the population. Also shown in Figure 1 is the mean rank frequency distribution,
calculated as the sum of each serotype in the combined dataset, divided by the combined
sample size of 515, and arranged by rank. The diversity of this combined dataset was 0.919
(95% CI: 0.909 – 0.929), with the diversity of individual datasets shown in Table 1.

Diversity and rank frequency serotype distributions following vaccination
All three samples collected following vaccination are more diverse than the pooled pre
vaccination dataset (see Table 1), however only the 2004 sample is significantly so
(p>0.0001). While a similar increase in diversity is apparent in 2001, this is not significant,
possibly due to the small size of this sample. The rank frequency distributions for each
sample, calculated as previously, are shown in figure 2 B-D, along with that from the 1998-9
MA sample which is reproduced from Fig 1B for purposes of comparison (Fig 2A). For each
sample, the median and 95% intervals of 1000 samples of the same size drawn from the
empirical pre-vaccine distribution are also shown. The greater diversity of the 2004 sample
is reflected by the pronounced flattening in the rank frequency distribution (figure 2C).
Although serotype replacement has led to changes in the specific serotypes which compose
the 2007 sample (the largest single sample N= 295), its diversity is not significantly different
from that of the pre-vaccine samples (see Table 1), while the frequency of the most common
serotype (19A) and the rank frequency distribution appear similar to that expected from the
pre-vaccine datasets (Fig 2D).

Replacement
Serotype replacement refers to the expansion of non vaccine serotypes as a result of the
removal from the population of vaccine types which compete with them to colonise new
hosts. The major replacement serotypes in the carriage studies described here, thus far, have
been serotypes 6A, 19A and 15B/C. The serial increase of these has been previously
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documented in these communities (Huang et al., 2009; Huang et al., 2005), and their
expansion may be clearly observed in Figure 2. In contrast, by 2007 the pooled vaccine
serotypes (4, 6B, 9V, 14, 18C, 19F and 23F and shown in gray) were responsible for a small
fraction of carriage. Note that over the period of the study the overall carriage prevalence
did not change (1998, 21.6%; 2001, 25%; 2004, 24%; 2007, 31%) (Huang et al., 2009).

Discussion
We have found that we can detect the impact of selection, due to conjugate vaccination, on
the population structure of carried pneumococci by comparing three longitudinal samples
collected post vaccination with samples collected in the absence vaccination. The samples
collected from MA in 2001, 2004 and 2007 document the change produced by vaccination.
The 2004 sample is significantly more diverse than the pre-vaccine samples (with a non-
significant change in the same direction in 2001). The pre-vaccine samples are similar to
each other terms of serotype diversity (Table 1). Data from the National Immunisation
Survey (http://www.cdc.gov/vaccines/stats-surv/imzcoverage.htm) show that vaccine
coverage in MA was relatively low in 2001 and 2002, as most toddlers were born before the
vaccine became available and “catch up” vaccination was incomplete. The first time point
for which data are available is July 2001 – June 2002, when coverage with three doses of
vaccine was 35.8 ± 5.1% among children aged 19-35 months. By 2004 coverage in the same
age group had reached 89.7 ± 3.8% and has not dropped below 90% since. It is reasonable
therefore to suggest that the data from 2004 reflect the period at which the pneumococcal
population was in the process of responding to the novel selective pressure of the vaccine,
and it is this which produces the comparatively flat distribution observed as vaccine
serotypes, initially common, are selected against (clearly evident in the decline of the gray
points in Fig 2) and non-vaccine serotypes experience a relative fitness advantage. The
results show that the 2004 sample is more diverse than expected from samples in the
absence of vaccination (D = 0.946; 95% CI: 0.934 – 0.958).

In contrast by 2007 the distribution has regained many of its pre-vaccine characteristics, in
both serotype diversity and the rank frequency distribution of serotypes (Table 1 and Figure
2d). It should be noted however that although we did not find the 2007 sample to be
significantly different from the pre-vaccine observations, this could be because of
limitations in the power of the test used here. Nevertheless the similarity between the rank
frequency serotype distributions of the 2007 sample and those observed in pre-vaccine
samples is pronounced (Fig 2d). In this most recent sample, the most common serotype in
2007 is 19A, now a relatively common cause of invasive disease (Hicks et al., 2007). The
vaccine serotypes, which together were responsible for the majority of isolates in all pre-
vaccine samples (56% in Oxford; 53% in both Finland and MA) have dwindled to a small
fraction of their previous prominence. There has been considerable concern about the future
trajectory of replacement disease due to 19A strains: do we expect that in the absence of
vaccination against 19A they would continue to expand? Based on these observations we
suggest that, at least in MA, this is unlikely. Given that carriage rates remain similar to the
pre-vaccine era (data not shown), by 2007 19A is already as common as the most common
serotypes in the pre-vaccine population, making up ∼20% of the carriage population. If this
empirically observed limit in the frequency of the most common serotype is maintained in
the post vaccine era, further large increases in the carriage prevalence of this serotype are
unlikely. And in consequence, large increases, compared to current rates, in invasive disease
due to 19A should not be expected in coming years.

This study has several shortcomings. It would be preferable to have a larger sample for
2001. The relatively small sample size at this time point and 2004 is due to the exclusion of
data from the 8 additional communities not sampled in 2007, in order to ensure consistency.
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Inclusion of these communities does not alter the results (not shown). Another concern is
that the only pre-vaccine sample available for MA is from NP carriage in children with
AOM. Those serotypes causing AOM may not be representative of those in carriage, but the
differences are expected to be minor in the light of a study showing that the serotypes in
AOM are a relatively good reflection of NP carriage, in comparison with IPD (Hanage et al.,
2004). Furthermore the children in question are not necessarily suffering from
pneumococcal AOM. We hence use this sample as an approximation to the pre-vaccine
carriage population in MA. It is gratifying to note that the serotype diversity D is similar to
other pre-vaccine populations and the fit to the empirical rank frequency distribution is a
good one (Table 1 and figure 2).

In addition to this it should be noted that the clonal composition of 19A could continue to
change to include larger numbers of antibiotic resistant or non-susceptible strains (Hanage et
al., 2007). This could have a substantial clinical impact. It must also be emphasized that
small fluctuations in the carriage prevalence of a rarely carried but highly invasive serotype
(such as serotype 7F) could have a substantial impact on overall IPD rates, and that such
changes would not be apparent in analyses of carriage serotype diversity such as this one.
We have made no assumptions in this study regarding the reasons for the success of 19A,
but it may be related to the relatively high frequency of penicillin non-susceptibility in
clones of this serotype (Pelton et al., 2007). We suggest that 6A strains, which in Figure 2
appear well positioned to expand, have not done so because of confusion with the newly
discovered serotype 6C (Nahm et al., 2009). Until recently, it was not possible to distinguish
these serotypes by usual quellung reaction, but they nevertheless differ markedly in terms of
vaccine efficacy: 6A appears to cross react with the 6B component of PCV7 and has been
declining since vaccine introduction whereas no such decline has been noted for 6C (Park et
al., 2008). We suggest therefore that our data reflect a decrease in 6A, and replacement with
6C, but because the methods used here were unable to distinguish between these two
serotypes 6A prevalence apparently remains reasonably constant. Finally, the data shown in
figure 1 clearly show that even prior to vaccination, considerable variation in the prevalence
of individual serotypes could exist among different communities.

New vaccines with higher valency which target 19A strains (among other serotypes) will be
available in the near future. We would predict that the impact of these will be similar to that
which has been seen with the current conjugate vaccine, removing vaccine serotypes over a
period of 4-6 years, with replacement occurring on the same timescale. The effect on IPD
will depend on the invasive nature of the replacing serotypes though we propose that no
serotype is likely to increase to cause >20% of carriage episodes. The precise rank order of
the serotypes cannot be predicted with confidence at this stage, but it is reasonable to
suppose that presently common non-vaccine serotypes will be well represented. Finally, we
do not wish to suggest that once replacement has occurred, substantial secular changes are
not possible in terms of the precise serotype composition of different communities, such as
have given rise to the differences between unvaccinated communities seen in Fig1a.

In conclusion, we have used a simple test to demonstrate the selective impact of vaccination
on the carried population of pneumococci. In 2004 differences in population structure are
evident, but by 2007 the distribution of serotype frequencies is not significantly different
from that observed in three pre-vaccination samples. We suggest that this means we are
unlikely to see any great further increase in the common carriage serotypes, either in
carriage or disease. Of course, this hypothesis will be tested through ongoing monitoring of
IPD serotypes in Massachusetts. The impact of the next generation of vaccines, which will
provide an opportunity for rarer serotypes, remains unknown.
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Figure 1.
A) Frequencies of individual serotypes in the three pre-vaccine datasets. Sample details are
described in the main text and Table 1. For reasons of space only the 20 most common
serotypes in the combined dataset are shown. Vaccine serotypes are underlined. B) The
same data arranged by rank (most-least common).

Hanage et al. Page 9

Epidemics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Rank frequency distributions of serotypes in the MA samples from 1998-9 (a), 2001 (b),
2004 (c) and 2007 (d). Details of the samples are as described in the text and table.
Serotypes are shown as indicated in the legend. The median values obtained from 1000
samples of the same size drawn from the combined pre-vaccine distribution (as described in
the text) are shown as a solid line with dashed lines either side representing the 5th and 95th

percentiles for each point. Larger numbers of serotypes in the later samples reflect larger
sample size.
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Table 1

Diversity of samples used in this study.

Sample N No of serotypes D (95% CI)

Finland 216 28 0.911 (0.896 – 0.926)

Oxford 228 34 0.922 (0.905 – 0.938)

MA 1998-9 71 20 0.918 (0.889 – 0.946)

Combined pre vaccine 515 40 0.919 (0.909 – 0.929)

MA 2001 124 24 0.941 (0.918 – 0.964)

MA 2004 220 29 0.946 (0.934 – 0.958)

MA 2007 295 32 0.923 (0.912 – 0.935)

N is the total number of isolates after censoring as described in the methods section. D is the observed diversity. 95% CIs were calculated by the
method of Simpson (Simpson, 1949).
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