
UCLA
UCLA Electronic Theses and Dissertations

Title
Support for Scalable Analytics over Databases and Data-Streams

Permalink
https://escholarship.org/uc/item/6px3z0tw

Author
Laptev, Nikolay Pavlovich

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6px3z0tw
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Support for Scalable Analytics over

Databases and Data-Streams

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Nikolay Pavlovich Laptev

2012

c© Copyright by

Nikolay Pavlovich Laptev

2012

ABSTRACT OF THE DISSERTATION

Support for Scalable Analytics over

Databases and Data-Streams

by

Nikolay Pavlovich Laptev

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2012

Professor Carlo Zaniolo, Chair

The world’s information is doubling every two years, largely due to a tremendous

growth of data from blogs, social medias and Internet searches. ‘Big Data Analytics’

is now recognized as an emerging technology area of great opportunities and techni-

cal challenges. Parallel systems, such as those inspired by MapReduce architectures,

provide a key technology to cope with those challenges—however they often cannot

keep up with the fast-growing size of data and application complexity, nor can they

deliver the response times required by data stream applications. In this thesis, there-

fore, we show that many of said limitations can be overcome by building on classical

approximation techniques from statistics to estimate (i) the sample quality and (ii) the

required sample size given the user-prescribed accuracy.

To achieve (i) we look into the bootstrap theory. The bootstrap approach, based

on resampling, provides a simple way of assessing the quality of an estimate. The

bootstrap technique, however, is computationally expensive, thus our first contribution

involves making the bootstrap estimation efficient. Following our initial results, we re-

alized that in a distributed environment the cost of transferring the data to independent

ii

processors as well as the cost of computing a single resample can be high for large

samples. Furthermore the lack of a scalable support for the popular time-series data

was also a problem. For these reasons, we provide an improved bootstrap approach

that uses the Bag of Little Bootstraps (BLB) along with other recent advances in boot-

strap and time-series theory to provide an effective Hadoop-based implementation for

assessing a time-series sample quality.

To achieve (ii) we look into the data complexity and learning theory. Recently it

has been shown that the performance of a classifier can be analyzed in terms of the

data complexity. We start by analyzing how model complexity can be used to create

a scalable pattern matching automaton. We then extend our findings to other algo-

rithms where we explain how problem complexity affects the required sample size for

a given machine-learning algorithm and accuracy requirement. We also use the learn-

ing theory to estimate the error convergence rate needed for sample size estimation.

Our experimental results provide the motivation for further exploring these ideas.

A spectrum of classical data mining tasks and newly developed mining applica-

tions are used to validate the effectiveness of the proposed approaches. For example,

extensive empirical results on a Twitter dataset show that the proposed techniques pro-

vide substantial improvements in processing speeds while placing the user in control

of the result accuracy.

iii

The dissertation of Nikolay Pavlovich Laptev is approved.

Junghoo Cho

Mark S. Handcock

Todd Millstein

Carlo Zaniolo, Committee Chair

University of California, Los Angeles

2012

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Problem Motivation . 1

1.2 Current Techniques and Drawbacks 4

1.3 Quality Assessment . 5

1.4 Sample Size Estimation . 6

1.5 Dissertation Contributions . 7

1.6 Overview of the Dissertation . 7

2 Literature Overview . 9

2.1 Systems . 9

2.2 Approximation Techniques . 12

2.3 Sample Size Prediction . 17

2.4 Applications Background . 18

2.4.1 Classification . 18

2.4.2 Association Discovery . 19

2.4.3 Pattern Matching . 19

3 Quality Assessment . 22

3.1 Quality Assessment Using the Standard Bootstrap: the EARL System 22

3.1.1 Introduction . 23

3.1.2 EARL System Architecture 26

3.1.3 EARL Details . 30

v

3.1.4 Accuracy Estimation Stage 32

3.1.5 Determining the Sample Size and Number of Bootstraps . . . 33

3.1.6 I.I.D. Sampling in a Distributed Environment 34

3.1.7 Fault-Tolerance . 39

3.1.8 Early Approximation for K-Means 40

3.1.9 EARL Optimizations . 41

3.1.9.1 Inter-Iteration Optimization 41

3.1.9.2 Intra-Iteration Optimization 44

3.1.9.3 Categorical and Weakly-dependent Data 45

3.1.10 EARL Performance Evaluation 46

3.1.10.1 A strong case for EARL 49

3.1.10.2 Approximate Median Computation 49

3.1.10.3 EARL and Advanced Mining Algorithms 51

3.1.10.4 Determining Sample size and Number of Bootstraps 52

3.1.10.5 Pre-map and Post-map sampling 53

3.1.10.6 Update Overhead 54

3.2 Quality Assessment Using the Improved Bootstrap 55

3.2.1 Introduction . 55

3.2.2 BLB-TS: The Scalable Time-Series Resampling Algorithm . . 59

3.2.2.1 The Naı̈ve Approach 59

3.2.2.2 BLB-TS Algorithm 60

3.2.2.3 BLB-TS Optimizations 62

3.2.2.4 I.I.D. and Time-Series Sampling in BLB-TS 63

vi

3.2.3 BLB-TS Performance Evaluation 65

3.2.3.1 Implementation 65

3.2.3.2 Experiments . 66

3.2.3.3 Convergence Rate 68

3.3 Conclusion . 68

4 Classifier Sample Size Prediction using the Learning Curve 70

4.1 Chapter Introduction . 70

4.2 SVM Algorithm and More Background 76

4.2.1 SVN Algorithm . 76

4.3 Learning Curve for Sample Size Prediction 77

4.4 Classifier Error Estimation . 79

4.5 Incremental Classifier Error Estimation 81

4.5.1 Merging Support Vectors from Training Data 81

4.5.2 Merging Test Data . 82

4.6 Sample Size Prediction . 85

4.7 Learning Curve Experiments . 87

4.7.1 Methodology . 87

4.7.2 Classifier Accuracy Estimation Experiments 88

4.7.3 SVM Merge Optimization Experiments 92

4.7.4 Learning Curve Prediction 92

4.8 Future work for Extension to Other Classifiers 94

4.9 Conclusion . 95

vii

5 Data Complexity . 96

5.1 About Data Complexity . 97

5.2 Data Complexity and Association Detection 97

5.2.1 Introduction to Data Complexity for Association Discovery . 98

5.2.2 Experiments . 99

5.3 Data Complexity and Pattern Matching 102

5.3.1 Introduction to Pattern Matching 102

5.3.2 Pattern Matching System Overview 109

5.3.2.1 Reconfiguration Engine Details 111

5.3.2.2 Pre-Configuration 111

5.3.2.3 Run-Time . 115

5.3.2.4 Update-Time . 119

5.3.2.5 Implementation 121

5.3.2.6 Optimizations . 122

5.3.3 Pattern Matching Experiments 123

5.3.3.1 Experimental Setup 124

5.3.3.2 Resource Estimation 126

5.3.3.3 Comparison Against YFilter 126

5.3.3.4 Optimal Number of Precomputed Configurations . . 128

5.3.3.5 Optimal Split vs Approximate Split 129

5.3.3.6 Effects on Throughput 130

5.4 Conclusion . 131

viii

6 Applications . 133

6.1 Association Finding . 133

6.1.1 About Association Discovery 134

6.1.2 Dependency Measure . 136

6.1.3 Implementation . 138

6.1.4 Results . 140

6.2 Extension to other ML Algorithms 141

6.3 Conclusion . 142

7 Conclusion . 143

7.1 Summary of Contributions . 143

7.2 Research Directions . 144

7.3 Closing . 146

References . 147

ix

LIST OF FIGURES

1.1 Current data-set sizes are beginning to be impractical for today’s ma-

chine learning tasks. We provide a way to deal with this problem using

simple and robust approximation techniques. 2

3.1 A simplified EARL architecture . 28

3.2 Bootstrap in EARL: (left) Effect of B on cv, (right) Effect of n on cv . 32

3.3 Computation of K-Means using EARL and stock Hadoop 40

3.4 Work saved using EARL’s Intra Iteration Optimization 45

3.5 An example of how a job definition in EARL. 47

3.6 Computation of average using EARL and Hadoop 50

3.7 Computation of median using EARL and Hadoop 50

3.8 Computation of K-Means using EARL and Hadoop 51

3.9 EARL’s empirical sample size and number of bootstraps estimates

compared to a theoretical prediction 52

3.10 Processing times of pre-map and post-map sampling in EARL 53

3.11 Processing times using EARL’s delta maintainance procedure. 54

3.12 An example of an analytics workflows over time-series data. 57

3.13 Mapper and Reducer algorithms for time-series sampling 65

3.14 BLB-TS Experiments against the Stationary Boostrap 67

4.1 The interface of our system FACT. This screenshot shows FACT’s pre-

diction of the learning curve of the Twitter dataset. 75

x

4.2 Two random subsets are selected from the training data and each is

trained individually. The support vectors in each of the subsets are

marked with frames. They are merged for the final optimization (right),

resulting in a classification boundary (solid curve) close to the one ob-

tained on the entire training data (dashed curve). 83

4.3 The bias of cross-validation with varying sample sizes. 89

4.4 The bias of FACT with varying sample sizes. 90

4.5 The cv of accuracy of FACT. 91

4.6 The cv of cross-validation . 91

4.7 Learning curves predicted by FACT, for various datasets, are similar

to actual learning curves. 93

4.8 We can extrapolate the learning curve quite far without incurring too

much error, and using only a small dataset. 93

5.1 Different types of problem complexity in the context of classification. 96

5.2 Problem complexity and required sample size. 100

5.3 Data complexity results. 102

5.4 Bounded FSA example for a regular expression 104

5.5 Architecture of Morpheus . 109

5.6 Example of subset split generation 123

5.7 Actual vs estimated resource usage (memory) 127

5.8 Actual vs estimated resource usage (CPU) 127

5.9 Matching speed . 128

xi

5.10 The effect of increasing the number of preconfigurations on the dy-

namic reconfiguration time and on the amortized memory usage . . . 129

5.11 Optimal vs approximated split operation 130

5.12 Affects of the dynamic update on throughput 131

6.1 Different relationships and corresponding scores assigned by various

associding finding algorithms. 136

6.2 Associate-TS workflow architecture. 138

6.3 Associate-TS Twitter results. 140

xii

LIST OF TABLES

3.1 EARL System: Symbols used . 27

3.2 BLB-TS: Variables used in Algorithm 3 and Figures 3.13a and 3.13b. 60

4.1 FACT can significantly reduce the variation in prediction accuracy

compared to the standard cross-validation. 80

4.2 Datasets used . 88

4.3 Classification using the merge optimization. 92

5.1 Types of machine-learning algorithms used. 101

5.2 Size estimates of different types of patterns 114

5.3 Classification of automata where n represents the average length of a

pattern and m represents the number of patterns 114

5.4 Parameters for synthetic query generation 126

xiii

ACKNOWLEDGMENTS

To write a dissertation is a mighty undertaking, and I could not have reached the

finish line without the influence, advice, and support of many colleagues, friends, and

family. My thanks are due first and foremost to my advisor, Carlo Zaniolo, for being

willing to take me on as a student, and for being unfailingly generous with his time and

his support throughout my graduate career. Carlo provided consistently good advice,

helped me situate my work in a broader context, and gave me tremendous freedom

in pursuing my ideas, while always ensuring that I was making progress toward some

fruitful outcome. I will be forever grateful for his help.

I am deeply obliged to the other members of my dissertation committee for their

advice and encouragement. From Mark Handcock, I received positive feedback that

helped me keep my motivation strong. Mark Handcock was of great help in working

out various statistical issues. I am indebted to John Cho for his pioneering research in

database management that showed me that simplicity and clarity are key in research.

Finally Todd Millstein’s research on programming language technology helped me

understand the importance of language design in my project.

The faculty, students, and visitors involved with the Web Information Lab have

provided a congenial and stimulating environment in which to pursue my studies. I

am particularly indebted to my frequent collaboratorsincluding Kai Zeng, Alexan-

der Shkapsky, Barzan Mozafari, Vincenzo Russo, Hetal Thakkar and many other-

swho shared my struggles and helped shape my thoughts. I am also grateful to my

other officemates Shi Gao, Hamid Mousavi and Mohan Yang for their warm compan-

ionship and many interesting discussions. Finally, I offer my deepest thanks to my

siblingAnya-whose love and support has sustained me; to my parents, Olga and Pavel,

who instilled in me the love of learning that has fueled all my efforts; and to Faith,

who believed in me most when I believed in myself least.

xiv

VITA

2006 B.S. (Computer Science), UCSB.

2007 M.A. (Economics), UCSB.

2008 M.S. (Computer Science), UCLA.

Summer 2008 Software Engineer Intern, Citrix.

Summer 2009 Software Engineer Intern, Citrix.

Fall 2009 Teaching Assistant, Computer Science Department, UCLA.

Summer 2010 Research Software Engineer Intern, Teradata.

Summer 2011 Software Engineer Intern, Google.

Summer 2012 Software Engineer Intern, HRL.

xv

CHAPTER 1

Introduction

1.1 Problem Motivation

Along with the tremendous growth of data from a fast-expanding set of sources, that

include blogs, social medias, Internet searches, and sensor networks1,we witness a

growing demand for more sophisticated analytics on big data, as needed to spot busi-

ness trends, prevent diseases, and combat crime2.

‘Big Data Analytics’ is now universally recognized as a high-tech area of busi-

ness opportunities into which major companies and a throng of startups are moving

aggressively, typically proposing very different systems and solutions to address the

various facets of the problem. The difficult task of realizing and deploying advanced

analytics in real life applications is complicated by the shear data volume that must be

processed to complete various task. Many of these tasks, however, share a common

software development cycle that typically begins with (i) writing and testing packages

and applications on locally stored data and then (ii) extending them for parallel pro-

cessing on massive distributed data sets and/or data streams. At each step, the user

must work with a different sized set of the data to take advantage of the available

1According to the 2011 Digital Universe Study, the world’s information is doubling every two years.

In 2011 the world will create a staggering 1.8 zettabytes. By 2020 the world will generate 50 times

the amount of information and 75 times the number of “information containers” while IT staff to

manage it will grow less than 1.5 times (http://www.emc.com/collateral/analyst-reports/idc-extracting-

value-from-chaos-ar.pdf).
2Kenneth Cukier: Data, data everywhere. The Economist, 25 February, 2010

(http://www.economist.com/specialreports/displaystory.cfm?story id=15557443).

1

Figure 1.1: Current data-set sizes are beginning to be impractical for today’s machine

learning tasks. We provide a way to deal with this problem using simple and robust

approximation techniques.

resources while satisfying her time and accuracy constraints. To achieve the above

requirement, scalable approximation techniques must be developed that achieve the

desirable accuracy goals. As of today, however, no approaches yet exist that are able

to fulfill this very ambition requirement.

In this dissertation, we claim that the goal of the scalable approximation support

is within the reach of this research project. The approximation support is naturally

provided by ideas from statistics and proceeds by: (i) taking a sample S of the data,

(ii) running a machine learning algorithm M over S, (iii) estimating the error ξ of the

result and (iv) if applicable, increasing the sample size until the required accuracy ǫ

is reached. For this approach to work in practice, however, we must develop scalable

accuracy and sample size estimation techniques.

Often both time and monetary constraints force the user to work on a small sample

of the data for which quality assessment is required to assure a desired result accuracy.

2

For example a user, when debugging her machine learning algorithm locally, may

prefer to work with a sample of the data while remaining confident in the expected

accuracy of her final result. When the same user deploys her application on the cloud

system such as EC23 money and time can also be saved by only working with a sample

of the data and using the minimal resources4. Unfortunately, deriving fast and accurate

estimator assessment is difficult as previously recognized in the literature [KTS12b,

ELZ10a]. This obstacle is getting worse with processing power growth failing to match

dataset growth thereby resulting in an ever-widening gap as shown in Figure 1.1. Time-

series further exacerbates the problem since quality assessment must be carried out in

a way that captures the dependence structure of the data generation process.

Early approximate results can also be used in seemingly unrelated domains such

as fault tolerance. For instance, in a MapReduce scenario if some of the participants

fail or their answers are not returned within a reasonable time, the system might still

allow the computation to proceed when the resulting loss of accuracy falls within ac-

ceptable limits. In many situations this approach can be preferable to that of repeating

the computation, or relying on redundant computations. For example, in situations

requiring iterations, such as the computation of transitive closures or K-Means the in-

accuracies in early iterations can be tolerated since they tend to be compensated for in

later iterations.

In this dissertation we describe techniques that achieve a scalable accuracy assess-

ment with a reliable sample size prediction. We provide a scalable accuracy assessment

through an improved bootstrap technique. We also achieve a reliable sample size es-

timation by using the recent learning theory [HB02, Ho08, Ho04]. Furthermore, we

show that the accuracy obtainable by a particular sample size depends on (i) the com-

plexity of the algorithm and on (ii) the intrinsic complexity of the data. Using (i) and

3http://aws.amazon.com/ec2/
4The pricing of cloud services is based on (a) storage and (b) processing unit usage.

3

(ii) we can select the best mining algorithm, where ‘best’ refers to an algorithm requir-

ing least sample size for a given accuracy. As we show in detail in this dissertation,

the above methods enable the support for scalable analytics over massive datasets and

data-streams.

1.2 Current Techniques and Drawbacks

A crucial step in statistical analysis is to use the given data to estimate the accuracy

measure, such as the bias, of a given statistic. In a traditional approach, the accuracy

measure is computed via an empirical analog of the explicit theoretical formula derived

from a postulated model [ST95]. As is described in chapter 3.1, it is often infeasible to

come up with an explicit theoretical formula for result variance of complex analytics,

for which reason other nonparametric approaches are needed.

The bootstrap approach [ST95, Efr79] and its time-series variants [BK99, PR94]

provide a simple way of assessing the quality of an estimate. The computational cost

of the bootstrap, however, is prohibitively large. In the ‘Big Data’ environment, this

can be the source of incessant problems in the natural life-cycle of advanced analytics

development and a major stumbling block that prevents interactive result exploration

that many users seek [LZZ12a, LK12]. Thus we need a scalable and efficient way of

assessing the quality of an estimator for large independently and identically distributed

(i.i.d.) and time-series data samples in a distributed environment.

The error convergence rate with respect to the size of the sample is required to esti-

mate the needed sample size. A crucial result in this regard is the central limit theorem

(CLT) which shows that for any random sample from any probability distribution with

finite mean and finite variance the sample distribution converges to a normal distribu-

tion N (0, 1). The CLT, however, does not say anything about the convergence rate,

4

requiring us to look for other approaches in modeling accuracy prediction.

While the above represents a very narrow, yet largely sufficient overview of the

state of the art, a full literature review on systems, sampling and approximation tech-

niques can be found in chapter 2.

1.3 Quality Assessment

Our initial attempt to improve the original bootstrap and make it more scalable resulted

in the development of the Early Accurate Result Library (EARL), which made the

bootstrap approach faster and easier to use. The EARL system uses Hadoop and thus

takes advantage of the MapReduce framework to compute the resamples in parallel.

EARL, however, also has scalability limits for very large data-sets and needs fur-

ther extension to support time-series. Therefore, to provide a scalable approach for

assessing the quality of large time-series data samples we build on recent advances in

bootstrap [LZZ12a, KTS12b, KTS11] and in time-series theory [BK99, PR94]. We

introduce the BLB-TS framework that takes advantage of the trend in computational

resources which is shifting towards a multicore and distributed architecture with cloud

services providing thousands of processing units5. The core of BLB-TS relies on (i) the

Bag of Little Bootstraps (BLB) [KTS12b] for bootstrap scalability, (ii) on the Station-

ary Bootstrap (SB) [PR94] for time-series resampling support and (iii) on Hadoop6

for computational scalability. BLB-TS works by first selecting in parallel s random

blocks of the original time-series data sample of size n. Then in parallel r resamples

are generated by applying SB to each block b to obtain a resample of size n. The er-

rors computed on the resamples are then averaged across all nodes to produce the final

5The total number of processing units in a cluster is: number of nodes × the number of CPUs per

node.
6hadoop.apache.org

5

accuracy estimate. Thus, in BLB-TS, the estimator is applied on only a single block b

instead of on the entire time-series sample. In other words, the computational cost in-

curred only depends on the size of b and not on the size of the sample n. Furthermore,

BLB-TS varies r independently on each node to achieve a faster convergence rate.

1.4 Sample Size Estimation

To estimate the required sample size, we provide a new framework called SS-TS,

which works by iteratively constructing a learning curve (LC), where LC denotes a

function of accuracy in terms of the sample size. For a wide range of machine learning

(ML) algorithms, including classification and association, the shape of an LC follows a

power law [MTH02]. Thus, we can estimate the parameters of the power law curve by

computing only k points, where k is typically less than five. Therefore we execute our

association finding algorithm on k different sample sizes and estimate the convergence

rate which is then used to predict the sample size for the required accuracy.

In addition to the learning curve, we present techniques for leveraging data com-

plexity theory to pick the appropriate association finding algorithm given the problem

complexity. Recently it has been shown that the performance of a classifier can be

analyzed in terms of the data complexity [HB02, Ho08, Ho04]. We apply this idea to

the association complexity to explain how relationship complexity affects the required

sample size needed to capture this relationship given a fixed association mining algo-

rithm. We then also apply data complexity theory for pattern matching [LZ12] and

dynamically vary the complexity of the pattern automaton to maximize performance.

Our experimental results provide the motivation for further exploration of this idea.

6

1.5 Dissertation Contributions

To the best of our knowledge, this dissertation is the first to provide a scalable approach

for sample size estimation over massive datasets. In particular this dissertation makes

the following contributions:

1. A scalable, non-parametric accuracy estimation technique for massive datasets

and data-streams is introduced. Our technique provides sample quality assess-

ment for general machine learning algorithms.

2. A sample size estimation technique is presented which introduces a new method-

ology based on the learning curve which can provide a tighter prediction for the

sample size needed to achieve the accuracy prescribed by the user.

3. The notion of problem complexity is introduced as a means for problem domain

exploration. We show that the best ML algorithm, the algorithm that minimizes

the required sample size, can be determined automatically by analyzing the com-

plexity of the data.

4. A robust and extensible Hadoop-based implementation of our techniques is pre-

sented in detail, along with extensive experimental results over real-life data.

1.6 Overview of the Dissertation

In this dissertation, we explore a range of approaches to provide a scalable quality and

sample size estimation for general ML algorithms.

After presenting a literature overview in chapter 2 we develop a baseline quality

assessment algorithm in chapter 3.1. Despite its extreme simplicity, this initial attempt

achieves surprisingly good results for estimating quality of i.i.d. samples. Its effective-

7

ness, however, is limited by its failure to support time-series and large sample sizes.

To remedy these shortcomings, in section 3.2, we introduce the improved quality as-

sessment technique that scales and supports time-series.

Next in chapter 4 we consider the problem of sample size estimation given the user

prescribed accuracy target. Specifically, we examine the relation between accuracy

and sample size also known as the learning curve. We model the accuracy convergence

as an inverse power law and use the method of least squares for parameter estimation.

Using the quality estimation framework from chapter 3.1 we can also naturally provide

the confidence interval of the derived curve.

Having explored sample size estimation given a fixed algorithm, next we seek to

deal with the case where multiple competing algorithms are applicable for a given

task. Thus in chapter 5 we use recent data complexity theory results in order to select

the appropriate ML algorithm for the given problem complexity to minimize the re-

quired sample size. Then, in section 5.3 we apply the complexity theory to the pattern

matching problem.

In chapter 6.1, we describe the application of our approximation framework for

quickly detecting nontrivial associations among millions of variables. Finally in chap-

ter 7 we summarize the contributions of the dissertation, and offer exciting future di-

rections.

8

CHAPTER 2

Literature Overview

2.1 Systems

MapReduce: The MapReduce (MR) model is becoming increasingly popular for tasks

involving large data processing. The programming model adopted by MapReduce was

originally inspired by functional programming. In the MR model two main stages,

map and reduce, are defined with the following signatures:

map : (k1, v1)→ (k2, list(v2))

reduce : (k2, list(v2))→ (k3, v3)

where the map function is applied on every tuple (k1, v1) and produces a list of inter-

mediate (k2, v2) pairs. The reduce function is applied to all intermediate tuples with

the same key producing (k3, v3) as output.

Hadoop, an open source implementation of the MapReduce framework, leverages

Hadoop Distributed File System (HDFS) for distributed storage. HDFS stores file

system metadata and application data separately. HDFS stores metadata on a dedicated

node, termed the NameNode (other systems, such as the Google File System (GFS)

[GGL03] do likewise). The application data is stored on servers termed DataNodes.

All communication between the servers is done via TCP protocols. The replication,

the file block-partitioning and the logical data-splitting provided by HDFS simplify

the sampling techniques discussed in this dissertation.

9

Recent work has shown the efficacy of using the MapReduce paradigm for data

mining and machine learning algorithms [CKL06, ZMH09a, PHB09]. Mahout [mah]

is a machine learning library built on top of Hadoop that relies on algorithm-specific

driver programs to perform and control iteration. HaLoop [BHB10a] is a modified ver-

sion of Hadoop with native support for iteration. HaLoop efficiently handles data that

is invariant across iterations through caching and efficient task scheduling. Similarly,

Twister [ELZ10b] is also an iterative MapReduce system. The authors of [LMD11]

proposed an optimized version of MapReduce suitable for incremental one-pass ana-

lytics that performs fast in-memory processing utilizing new hashing techniques. PrIter

[ZGG11] is a modified version of Hadoop MapReduce framework designed around the

notion of prioritized iterative computation that supports a large collection of iterative

algorithms, including page-rank and shortest path. As part of our future work, we plan

on taking advantage of the above systems to optimize portions of our framework that

require iteration.

To alleviate the burden on the end-user who has to deal with the many low-level in-

tricacies of programming against MapReduce systems’ APIs, projects such as SCOPE

[CJL08], Hive [hiv, TSJ09, TSJ10], Pig [GNC09], DryadLINQ [YIF08], and Jaql

[BEG11] have been proposed to compile a higher-level programming language into

jobs for the target system. For example in [LK12], the authors describe how acyclic

machine learning workflows can be incorporated into Twitter’s Hadoop and Pig [ORS08a]-

based analytics ecosystem through the use of Pig scripts for tasks such as data sam-

pling, feature generation, training, and testing. Hive, a data warehouse system, com-

piles queries written in HiveQL, a subset of SQL that also allows for the specification

of map and reduce tasks within queries, into a DAG of MapReduce jobs which are ex-

ecuted on Hadoop. Pig compiles queries written in Pig Latin [ORS08b], which draws

from both declarative and procedural programming, into MapReduce jobs which are

also executed on Hadoop. With DryadLINQ, users can write programs composed of

10

sequential statements of an extended version of LINQ [LIN], which are compiled and

executed over Dryad [IBY07]. Jaql provides a scripting language and a flexible data

model that is inspired by JSON. Jaql scripts are also compiled into MapReduce jobs

which can then be executed over Hadoop.

Parallel databases were first pioneered by Teradata [ter85] and the GAMMA [DGG86]

project, which, in mid-1980s, introduced a new architecture based on a cluster of

shared-nothing computers that communicate through high-speed interconnects. Re-

cently, hybrid MapReduce/parallel-DBMS solutions seek to leverage the benefits of

both platforms. For instance, HadoopDB [ABA09] is a hybrid MapReduce-parallel

DBMS system that uses Hadoop as the communication layer and a PostgreSQL in-

stance at each node for query answering. Queries are written in SQL, which are trans-

lated to MapReduce jobs through an extended version of Hive [hiv]. As an alternative,

the SQL/MR framework [FPC09] presents an API that allows specification of map-like

and reduce-like user defined functions which are executed in parallel over each node

of the parallel DBMS. UDFs can be written in a variety of programming languages

and packaged in libraries.

Approximation integration into the above efforts is unfortunately very primitive or

almost non-existent.

Scalable Data Stream Processing: The data stream research community has pro-

posed several distributed stream processing systems. Borealis [AAB05, ABc05] is

a distributed data stream processor that provides fault tolerance and load-balancing.

In Borealis, partitioning is used to parallelize expensive operators. Similarly, parti-

tioned parallelism is used in the FLuX extension [SHB04] to TelegraphCQ and in the

D-Cape system [LZJ05] for high-availability and load balancing, respectively. The

SPADE declarative stream processing engine [GAW08] of IBM’s System S, a large

scale distributed data stream processing middleware, supports parallel and distributed

11

data flows which the user can express using the SPADE language constructs for loop-

ing and partitioning.

The S4 system [NRN10, S4] is a scalable stream processing platform that provides

an API for users to implement processing elements using a high-level language such

as Java. S4 is distributed with no single point of failure and throughput scales linearly

as nodes are added.

The Hadoop Online Prototype [CCA10a] moves toward support for continuous

query processing in a MapReduce-like framework, without system features such as

load shedding and support for slides and windows. The work described in [LMD11]

improves on the bottlenecks found in earlier MapReduce systems thus further advanc-

ing the MapReduce paradigm towards scalable data stream processing.

Again, however, no simple and general approximation techniques are provided in

the streaming environment with the exception of the convoluted load-shedding ap-

proaches, which are still preferred to the alternative–system crash.

2.2 Approximation Techniques

Error Estimation: Hellerstein et al. [CCA10b] presented a framework for Online Ag-

gregation which is able to return early approximate results when querying aggregates

on large stored data sets [HHW97]. This work is based on relational database systems,

and is limited to simple single aggregations, which restricts it to AV G, V AR, and

STDDEV . Later, B. Li et al. [LMD11] and Condie et al. [CCA10b] built systems

on top of MapReduce to support continuous query answering. However, none of the

systems could demonstrate the accuracy of the approximate results, and no model for

the resulting approximation error was provided.

The error of arbitrary analytical functions can be estimated via a technique from

12

statistics called the bootstrap [ST95]. This technique relies on resampling methods.

The function of interest is then computed on each resample resulting in the sampling

distribution used for assigning a measure of accuracy to sample estimates. Sampling

in the bootstrapping technique is done with replacement, and therefore an element in

the resample may appear more than once. There exist other resampling techniques,

such as the jackknife [Efr79], which perform resampling without replacement. The

difference between the various resampling methods is in (1) the number of resamples

required to obtain a reliable error estimate and in (2) the sampling method used. In this

dissertation we use the bootstrapping technique because of its generality and accuracy

[Syr01].

The original bootstrap has several desirable features, including automation and

applicability to a wide range of inferential problems. With the help of the bootstrap,

one can estimate the bias and the quantity of uncertainty via a standard error or via a

confidence interval. Bootstrap quantities are typically approximated via a Monte-Carlo

approach which requires applying a given estimator to the resamples of the original

dataset [ST95] to produce a result distribution from which the corresponding error is

estimated. Even with a Monte-Carlo approximation, however, the realization of the

bootstrap quantities incurs a substantial computational expense.

The m of n bootstrap approach [BZ97] was introduced to mitigate the high cost of

the bootstrap by only performing the computation on the subsample of size m rather

than the size of the sample n where m << n. The success of the m of n bootstrap,

however, heavily depends on the size of the subsample m. Furthermore because the

variability of the subsample differs from its variability of the full dataset, the output

from the m of n bootstrap must be rescaled, which can only be performed if the explicit

knowledge of the convergence rate of the estimator in question is known.

While the bootstrap technique in [Efr79] enjoys a great advantage of estimating

13

accuracy of arbitrary functions, the block-wise bootstrap [SPR91] extends it to give

correct results for dependent stationary observations. The problem with the block

bootstrap techniques is similar to that of the m of n bootstrap, namely that the user

has to manually choose the block size which is a critical component in accuracy per-

formance of the bootstrap. Thus, authors in [BK99] provide a method for automatic

block size selection. Asymptotic theory tells us that the optimal block size should be

O(n1/3), however the constant in front of n1/3 depends on the statistic and on the de-

pendence among the observations both of which can be unknown to the user. Therefore

authors in [BK99] provide an automatic block length selection to make the blockwise

bootstrap more applicable for non-specialists. In this dissertation we show that our

framework is less dependent on the block size selection because we pick the block size

randomly.

The Stationary Bootstrap (SB) [PR94] is a popular time-series sampling technique.

Unlike other methods, SB guarantees that the resampled pseudo-time series is station-

ary (conditional on the original data). The stationary procedure is based on resampling

blocks of random length, where the length of each block has a geometric distribution.

As shown in section 3.2.2 we use SB in our framework to support the time-series data.

Sampling: Sampling techniques for Hadoop were studied previously in [GC12]

where authors introduce an approach of providing Hadoop job with an incrementally

larger sample size. The authors propose an Input Provider which provides the Job-

Client with the initial subset of the input splits. The subset of splits used for input are

chosen randomly. More splits are provided as input until the JobTracker declares that

enough data had been processed as indicated by the required sample size. The claim

that the resulting input represents a uniformly random sample of the original input,

however, is not well validated. Furthermore the assumption that each of the initial

splits represents a random sample of the data, which would validate the claim that the

14

overall resulting sample is a uniform sample of the original data, is not well justified.

Finally the authors do not provide an error estimation framework which would make

it useful for the case where only a small sample of the original data is used.

Random sampling over database files is closely related to random sampling over

HDFS and the authors in [OR90] provide a very nice summary of various file sampling

techniques. The technique discussed in [OR90] that closely resembles our sampling

approach is known as a ‘2-file technique combined with an ARHASH method’. In the

method, a set of blocks, F1, are put into main memory, and the rest of the blocks, F2, re-

side on disk. When seeking a random sample, a 2-stage sampling process is performed

where F1 or F2 is first picked randomly, and then depending on the choice, a random

sample is drawn from memory or from disk. The expected number of disk seeks under

this approach is clearly much less than if only the disk was used for random sam-

pling. The method described, however, is not directly applicable to our environment

and therefore must be extended to support a distributed filesystem (e.g., HDFS).

Authors in [CDS04] explore another efficient sampling approach, termed ‘block

sampling’. Block-sampling suffers, however, from a problem that it no longer is a uni-

form sample of the data. The approximation error derived from a block-level sampling

depends on the layout of the data on disk (i.e., the way that the tuples are arranged into

blocks). When the layout is random, then the block-sample will be just as good as a

uniform tuple sample, however if there is a statistical dependence between the values

in a block (e.g., if the data is clustered on some attribute), the resulting statistic will

be inaccurate compared to a statistic derived from a uniform-random sample. In prac-

tice most data layouts fall somewhere between the clustered and the random versions

[CDS04]. Authors in [CDS04] present a solution to this problem where the number of

blocks to include in a sample, are varied to achieve a uniformly random distribution.

The approach of taking larger and larger samples while the accuracy of a learning

15

model improves had been studied in [PJO99]. Because the distribution parameters are

unknown apriori, authors were able to successfully apply progressive sampling thus

adapting the sample size to specific data characteristics. In [PJO99] it was shown

that in fact simple, geometric progressive sampling schedule is asymptotically optimal

which underlines the efficiency of progressive sampling.

Unsatisfied by the potentially redundant iterations in progressive sampling, authors

in [LB04] proposed a method that avoids several samples in the geometric progression

to reach the accuracy plateau faster. Their idea is to predict the learning curve from

a few initial set of points, however their approach relies on having a set of learning

curves from other datasets which the authors use to predict the learning curve of the

current dataset of interest.

Another approach was proposed by [MTH02] that uses progressive sampling to-

gether with EM algorithm to approximate model-based clustering. The authors in

[MTH02] use benefit/cost approach to decide when increasing the sample size is no

longer beneficial. The work in [MTH02], however, is again task-specific and does not

do delta maintenance when sample size is increased.

A new sampling approach was proposed by [ND09] that combines the two sam-

pling strategies for the specific task via the proposed optimization function that mini-

mizes the distance between the sampled data and the actual dataset. A lot of the above

work however is only applicable to specific mining tasks.

Besides sampling, distributed processing is another technique for performing ana-

lytics on large amounts of data. Authors in [CHB04] show that by combining sampling

with distributed processing one can obtain good results for learning ensembles. Their

approach works by partitioning the data into T nodes and performing importance sam-

pling on each node, while training the model, until the error converges. The author’s

approach, however, is again task-specific.

16

2.3 Sample Size Prediction

The pioneering work of Vapnik et al. [Vap99] introduces a VC (Vapnik-Chervonenkis)

dimension which is a measure of the capacity of a statistical classification algorithm.

The VC dimension has utility in statistical learning theory, because it can predict a

probabilistic upper bound on the test error of a classification model. Previous work

however considered a worst case (pessimistic) learning strategy where an adversary

can pick input that can result in a very high error. Because the VC dimension theory is

general it must also deal with the pessimistic case which results in a very loose upper

bound for error estimation making the VC dimension approach to error estimation

unhelpful for the average case.

Motivated by the previous observations that the VC bounds can sometimes fail led

authors in [HSK94] to provide a new theory where the concept of error shells is in-

troduced that partition the learning curve into segments, thus capturing the potential

“phase transitions” that learning curves sometimes exhibit. As a result the authors pro-

vide a theory that explains many nontrivial behavioral phenomena of learning curves.

The theory proposed, however, is theoretical and in this work we take a more practical

approach to predicting learning curves.

Recent works [Ho08, HB02] provide ways to analyze the behavior of a classifier

by analyzing the geometric and topological data complexity. These results provide a

deeper look into the classifier behavior that go beyond studying the error of a classi-

fier. The authors provide three ways in which data complexity can be derived (1) class

ambiguity, (2) boundary complexity and (3) sample sparsity / feature space dimen-

sionality. The uses of their work include determining the existence of any learnable

structure and a set of expectations on potential gains by automatic learning algorithms.

The complexity measure can be used to compare different problem formulations, in-

cluding alternative class definitions, noise conditions and sampling strategies. The

17

classifier complexity measure can guide the process of classifier selection, or control

the process of classifier training. Motivated by this work, we relate the complexity of

the inter-variable relationship in the data to the sample size.

2.4 Applications Background

As application examples, throughout the chapters of this dissertation, we use classifica-

tion, pattern matching, and association discovery. All three of these applications share

the common BigData problems of prohibitively large data size and time-constrained

response requirement. Next we describe the background necessary to be familiar with

these domains.

2.4.1 Classification

In the course of improving approximation we have also made improvements to the per-

formance of classifiers. Specifically, motivated by poor classification speed of Support

Vector Machines (SVM) as compared to neural networks authors in [BS96] improve

the accuracy of SVM by incorporating the knowledge of invariances of the problem

available. Furthermore, the authors increase the classification speed by reducing the

decision function complexity. Overall, however, there is no practical approximation

techniques for SVM which are critical for processing of ‘Big Data’.

There have been numerous methods that focus on selecting a subset of the data

[WNC05, LH07], specifically targeting SVM, however the proposed methods are ap-

plicable to only special cases. In [WNC05] authors propose a method that selects a

subset of the data that are most likely to be support vectors. The authors’ decision is

based on the observation that SVM’s classification decision depends on a small subset

of the training data, called support vectors. In [LH07] authors choose a subset of the

18

training examples using uniform sampling which they show to be an optimal and a

robust selection scheme in terms of several statistical measures. The above approaches

however are special approaches to solving the problem with large data and the user

still has no ability to control the training size based on the model accuracy which is at

the core of this dissertation.

2.4.2 Association Discovery

Another important application area is that of time series, and we have used a time-

series dataset to discover interesting associations between variables. The Pearson Cor-

relation coefficient r is often used to measure the strength of association between a pair

of variables. Given two signals x and y of equal length m, with respective averages

µx and µy and standard deviations σx and σy their Pearson correlation coefficient is

defined as:

corr(x, y) =
1

m

m−1
∑

y=0

(

xi − µx

σx

)(

yi − µy

σy

)

For example, the Pearson correlation between the height of a child and their parents is

r ≈ 0.5 [Spe] and that of the wheat yield and annual rainfall is r ≈ 0.75. Pearson’s

r, however, only captures linear correlations, and it is not applicable to signals which

have nonlinear associations.

In section 6.1 we present a sophisticated association discovery technique that works

for nonlinear associations and show how one can apply the approximation framework

presented to discover inter-variable relationships in a reasonable time.

2.4.3 Pattern Matching

Another important application area studied in the dissertation is pattern matching.

There is a wide variety of work on pattern matching all of which assume a static

19

environment and thus static optimizations. To keep the static size of the automaton

small, several limitations had to be imposed. For example, some of the limitations in-

clude disallowing the use of the Kleene Closure in underlying REs [WDR06], perform-

ing pattern matching without outputting complete matches [DGH06] and employing a

spatial indexing structure for indexing which is not suitable for data streams [CGR03].

Instead in this dissertation we show how the data complexity theory can be used to

relax the static environment assumption to improve the pattern matching performance.

Authors in [YCD06] proposed a technique for rewriting regular expressions to

avoid exponential memory blow-up of a DFA due to Kleene Closure, however ac-

cording to [MRV08] their approach only works for a subset of Snort REs [Roe99].

Another way to adhere to the system resource constraints is to construct a DFA

lazily (on the fly) [GGM04] assuming that a completely expanded lazy DFA will be

small and be able to fit in memory, however this is a strong assumption and will not

always hold.

There are many other efficient techniques to do pattern matching [CGR03, LJL08,

DF03], however none of the techniques address a resource constrained environment

where system-stress level changes and dynamic adjustment of the underlying pattern

representation is necessary.

The pattern matching portion of this dissertation uses similar motivation as Adap-

tive Query Processing (AQP) [IDR07] namely the fact that the static query does not

provide optimal performance in an environment where the system resources and data

characteristics constantly change. Instead of dynamically modifying the query plan as

is done with AQP our approach modifies the underlying system, which in our case is

a pattern automaton, for optimal pattern matching performance. The key idea of our

pattern matching work is dynamic automaton reconfiguration, which is different from

AQP, and has not yet been addressed in literature. Furthermore, our dynamic pattern

20

matching optimization allows for a more effective use of a multicore system.

21

CHAPTER 3

Quality Assessment

3.1 Quality Assessment Using the Standard Bootstrap: the EARL

System

Approximate results based on samples often provide the only way in which advanced

analytical applications on very massive data sets can satisfy their time and resource

constraints. Unfortunately, methods and tools for the computation of accurate early

results are currently not supported in MapReduce-oriented systems although these are

intended for ‘big data’. Therefore, in this chapter we devise and implement a non-

parametric extension of Hadoop which allows the incremental computation of early

results for arbitrary work-flows, along with reliable on-line estimates of the degree of

accuracy achieved so far in the computation. These estimates are based on a technique

called bootstrapping that has been widely employed in statistics and can be applied to

arbitrary functions and data distributions. In this chapter, we describe the Early Accu-

rate Result Library (EARL) for Hadoop that was designed to minimize the changes re-

quired to the MapReduce framework. Various tests of EARL of Hadoop are presented

to characterize the required situations where EARL can provide major speed-ups over

the current version of Hadoop.

22

3.1.1 Introduction

In today’s fast-paced business environment, obtaining results quickly represents a key

desideratum for ‘Big Data Analytics’ [HLL11]. In analyzing large data sets, perform-

ing careful sampling on the data and computing early results from such samples pro-

vide a fast and effective way to obtain approximate results within the prescribed level

of accuracy for most applications. Although the need for approximation techniques

obviously grow with the size of the data sets, general methods and techniques for han-

dling complex tasks are still lacking in both MapReduce systems and parallel databases

although these claim ‘big data’ as their forte. Therefore in this chapter, we focus on

providing this much needed functionality. To achieve our goal, we explore and apply

powerful methods and models developed in statistics to estimate results and the accu-

racy obtained from sampled data [ST95, Efr79]. We propose a method and a system

that optimize the work-flow computation on massive data-sets to achieve the desired

accuracy while minimizing the time and the resources required. Our approach is ef-

fective for analytical applications of arbitrary complexity and is supported by an Early

Accurate Result Library (EARL) that we developed for Hadoop, which will be released

for experimentation and non-commercial usage [rel]. The early approximation tech-

niques presented are also important for fault-tolerance, where only a portion of the

data is available and the error estimation is required to determine if node recovery is

necessary.

The importance of EARL follows from the fact that real-life applications often gen-

erate a tremendous amount of data. Performing analytics and delivering exact query

results on such large volumes of stored data can be a lengthy process, which can be

entirely unsatisfactory to a user. In general, overloaded systems and high delays are

incompatible with a good user experience; moreover approximate answers that are ac-

curate enough and can be generated quicker are often of much greater value to users

23

than tardy exact results. The first line of research work pursuing similar objectives is

that of Hellerstein et al. [HHW97], where early results for simple aggregates are re-

turned. In EARL however, we seek an approach that is applicable to complex analytics

and dovetails with a MapReduce framework.

When computing some analytical function in EARL, a uniform sample, s, of stored

data is taken, and the resulting error is estimated using the sample. If the error is too

high, then another iteration is invoked where the sample size is expanded and the error

is recomputed. This process is repeated until the computed error is below the user-

defined threshold. The error for arbitrary analytical functions can be estimated via

the bootstrapping technique described in [ST95]. This technique relies on resampling

methods, where a number of samples are drawn from s. The function of interest is

then computed on each sample resulting in the sampling distribution used for assign-

ing measure of accuracy to sample estimates. Sampling in the bootstrapping technique

is done with replacement, and therefore an element in the resample may appear more

than once. There exist other resampling techniques, such as the jackknife [Efr79],

which perform resampling without replacement. The difference between the various

resampling methods is in (1) the number of resamples required to obtain a reliable error

estimate and in (2) the sampling method used. In this chapter we use the bootstrap-

ping technique because of its generality and accuracy [Syr01]. While incorporating

other resampling methods provides an exciting research direction for future work, it is

beyond the limited scope of this chapter.

Hadoop is a natural candidate for implementing EARL. In fact, while our error ap-

proximation approach is general, it benefits from the fundamental Hadoop infrastruc-

ture. Hadoop employs a data re-balancer which spreads HDFS [had] data uniformly

across the DataNodes in the cluster. Furthermore, in a MapReduce framework there

are a set of (key, value) pairs which map to a particular reducer. This set of pairs can

24

be distributed uniformly using random hashing and by choosing a subset of the keys at

random, a uniform sample can be generated quickly. These two features make Hadoop

a desirable foundation for EARL, while Hadoop’s popularity maximizes the potential

for practical applications of this new technology.

Because EARL can deliver approximate results, it is also able to provide fault-

tolerance in situations where there are node failures. Fault-tolerance is addressed in

Hadoop via data-replication and task-restarts upon node failures, however with EARL

it is possible to provide a result and an approximation guarantee despite node failures

without task restarts.

Our approach, therefore, addresses the most pressing problem with Hadoop and

with MapReduce framework in general: a high latency when processing large data-

sets. Moreover, the problem of reserving too many resources to ensure fault-tolerance

can also be mitigated by our approach and is discussed in Section 3.1.7.

Contributions and Organization This chapter makes the following three contri-

butions:

1. A general early-approximation method is introduced to compute accurate ap-

proximate results with reliable error-bound estimation for arbitrary functions.

The method can be used for processing large data-sets on many systems includ-

ing Hadoop, Teradata, and others. An Early Accurate Result Library (EARL)

was implemented for Hadood and used for the experimental validation of the

method.

2. An improved resampling technique was introduced for error estimation; the new

technique uses delta maintenance to achieve much better performance.

3. A new sampling strategy is introduced that assures a more efficient drawing of

random samples from a distributed file system.

25

Organization In section 3.1.2 we describe the architecture of our library as it is

implemented on Hadoop. Section 3.1.3 describes the statistical techniques used for

early result approximation. Section 3.1.9 presents the resampling optimizations. In

Section 3.1.10 performance evaluation of EARL is provided.

3.1.2 EARL System Architecture

This section describes the overall EARL architecture and gives a background on the

underlying system. For a list of all symbols used refer to Table 3.1. EARL consists of

(1) a sampling stage, (2) a user’s task, and (3) an accuracy estimation stage which are

presented in Figure 3.1. The sampling stage draws a uniform sample s of size n from

the original data set S of size N where n << N . In Section 3.1.6 we discuss how this

sampling is implemented using tuple-based and key-based sampling for MapReduce.

After the initial sample s is drawn from the original data-set, B samples (i.e. resam-

ples) with replacement are taken from s. These resamples are used in the work phase

(user’s task) to generate B results, which are then used to derive a result distribution

[DM01] in the accuracy estimation phase. The sample result distribution is used for

estimating the accuracy. If the accuracy of a result is unsatisfactory, the above process

is repeated by drawing another sample ∆s which is aggregated with the previous sam-

ple s to make a larger sample s′ for higher accuracy. The final result is returned when

a desired accuracy is reached.

Extending MapReduce

For implementing the underlying execution engine, we evaluated three alterna-

tives, (1) Hadoop, (2) HaLoop [BHB10b] and (3) Hadoop online [CCA09]. Although

HaLoop would allow us to easily expand the sample size on each iteration, it would be

slow for non-iterative MR jobs due to the extra overhead introduced by HaLoop. With

Hadoop online, we would get the benefit of pipelining, however further modifications

26

Symbol Description

B Number of bootstraps

b A particular bootstrap sample

n Sample size

s Array containing the sample

p Percentage of the data contained in a sam-

ple

N Total data size

S Original data-set

Fi File split i

cv Coefficient of variation

f Statistic of interest

σ User desired error bound

τ Error accuracy

Xi A particular data-item i

θ Parameter of interest

D Total amount of data processed

Table 3.1: EARL System: Symbols used

27

Figure 3.1: A simplified EARL architecture

would be needed to allow the mapper to adjust the current sample size. Since both

Hadoop Online and HaLoop do not exactly fit our requirements, we therefore decided

to make a relatively simple change to Hadoop that would allow dynamic input size

expansion required by out approach. Thus EARL adds a simple extension to Hadoop

to support dynamic input and efficient resampling. An interesting future direction is to

combine EARL’s extensions with those of HaLoop and HOP to make a comprehensive

data-mining platform for analyzing massive data-sets. In summary, with the goals of

seeking EARL fast and requiring the least amount of changes to the core Hadoop im-

plementation we decided to use the default version of Hadoop instead of using Hadoop

extensions such as Hadoop online or HaLoop .

To achieve dynamic input expansion we modify Hadoop in three ways (1) to allow

the reducers to process input before mappers finish (2) to keep mappers active until

explicitly terminated and (3) to provide a communication layer between the mappers

and reducers for checking the termination condition. While the first goal is similar to

that of pipelining implemented in Hadoop Online Prototype (HOP) [CCA09], EARL

28

is different from HOP in that in EARL the mapper is actively, rather than a passively,

transfers the input to the reducer. In other words, the mapper actively monitors the

sample error and actively expands the current sample size. The second goal is to mini-

mize the overall execution time, thus instead of restarting a mapper every time sample

size expands, we reuse an already active mapper. Finally, each mapper monitors the

current approximation error and is terminated when the required accuracy is reached.

We also modify the reduce phase in Hadoop to support efficient incremental com-

putation of the user’s job. We extend the MapReduce framework with a finer-grained

reduce function, to implement incremental processing via four methods: (i) initialize(),

(ii) update(), (iii) finalize() and (iv) correct(). The initialize() function reduces a set

of data values into a state, i.e. < k, v1 >,< k, v2 >, ..., < k, vk >→< k, state >. A

state is a representation of a user’s function f after processing s on f . Each resample

will produce a state. Saving states instead of the original data requires much less mem-

ory as needed for fast in-memory processing. The update() function updates the state

with a new input which can be another state or a <key, value> pair. The finalize()

function computes the current error and outputs the final result. The correct() func-

tion takes the output of the finalize() function, and corrects the final result. When

computed from a subset of the original data, some user’s tasks need to be corrected in

order to get the right answer. For example, consider a SUM query which sums all the

input values. If we only use p of the input data, we need to scale the result by 1/p. As

the system is unaware of the internal semantics of user’s MR task, we allow our users

to specify their own correction logic in correct() with a system provided parameter p

which is the percentage of the data used in computation.

Hadoop’s limited two stage model makes it difficult to design advanced data-

mining applications for which reason high level languages such as PIG [ORS08a] were

introduced. EARL does not change the logic of the user’s MapReduce programs and

29

achieves the early result approximation functionality with minimal modifications to

the user’s MR job (see Figure 3.5).

Next the accuracy estimation stage is described.

3.1.3 EARL Details

In EARL, error estimation of an arbitrary function can be done via resampling. By

re-computing a function of interest many times, a result distribution is derived from

which both the approximate answer and the corresponding error are retrieved. EARL

uses a clever delta maintenance strategy that dramatically decreases the overhead of

computation. As a measurement of error, in our experiments, we use a coefficient

of variation (cv) which is a ratio between the standard deviation and the mean. Our

approach is independent of the error measure and is applicable to other errors (e.g.,

bias, variance). Next a traditional approach to error estimation is presented, after which

our technique is discussed.

A crucial step in statistical analysis is to use the given data to estimate the accuracy

measure, such as the bias, of a given statistic. In a traditional approach, the accuracy

measure is computed via an empirical analog of the explicit theoretical formula de-

rived from a postulated model [ST95]. Using variance as an illustration let X1, ..., Xn

denote the data set of n independent and identically distributed (i.i.d) data-items and

let fn(X1, ..., Xn) be the function of interest we want to compute. The variance of fn

is then:

var(fn) =

∫

[

fn(x)−
∫

fn(y)d
n
∏

i=1

F (yi)

]2

d
n
∏

i=1

F (xi) (3.1)

where x = (x1, ..., xn) and y = (y1, ..., yn). Given a simple fn we can obtain an

equation of var(fn) as a function of some unknown quantities and then substitute

the estimates of the unknown quantities to estimate the var(fn). In the case of the

30

sample mean, where fn = X̄n = n−1
∑n

i=1 Xi, var(X̄n) = n−1var(X1). We can

therefore estimate var(X̄n) by estimating var(X1) which is usually estimated by the

sample variance (n− 1)−1
∑n

i=1

(

Xi − X̄n

)2
. The use of Equation 3.1 to estimate the

variance is computationally feasible only for simple functions, such as the mean. Next

we discuss a resampling method used to estimate the variance of arbitrary functions.

Resampling approaches, such as bootstrap and jackknife [Tho00], provide an accu-

racy estimation for general functions. Both of these resampling methods do not require

a theoretical formula to produce the error estimate of a function. In fact these tech-

niques allow for estimation of the sampling distribution of almost any statistic using

only very simple methods [Efr87]. The estimate of the variance can then be determined

from the sampling distribution. Both techniques however require repeated computa-

tion of the function of interest on different resamples. The estimate of the variance

of the result, σ, produced by this repeated computation is σ2(F) = EF (θ̂ − EF (θ̂))
2,

where θ is the parameter of interest. The jackknife has a fixed requirement for the

number of resamples, n, that is often relatively low. The number of samples required

by the bootstrap approach, however, is not fixed and can be much lower than that of

the jackknife. Moreover, it is known that jackknife does not work for many functions

such as the median [Efr79]. Thus, in this first version of EARL we concentrate on

bootstrapping and leave the study of other resampling methods for future work.

To compute an exact bootstrap variance estimate
(

2n−1
n−1

)

resamples are required,

which for n = 15 is already equal to 77×106, therefore an approximation is necessary

to make the bootstrap technique feasible. The Monte-Carlo [ST95] is the standard

approximation technique used for resampling methods including the bootstrap that re-

quires less than n resamples. It works by taking B resamples resulting in variance

estimate of σ̂2
B = 1

B

∑B
n=1(θ̂

∗
n − θ̂∗)2 where θ̂∗ is the average of θ̂∗n’s. The theory sug-

gests that B should be set to 1
2
ǫ−2
0 [Efr87], where ǫ0 corresponds to the desired error

31

Figure 3.2: Bootstrap in EARL: (left) Effect of B on cv, (right) Effect of n on cv

of the Monte Carlo approximation with respect to the the original bootstrap estimator.

Experiments, however, show that a much better value of B can be used in practical ap-

plications, therefore in section 3.1.5 we develop an algorithm to empirically determine

a good value of B.

3.1.4 Accuracy Estimation Stage

The accuracy estimation stage (AES) uses the bootstrap resampling technique [DM01]

outlined in the previous subsection to estimate the standard error cv of the statistic f

computed from sample s.

In many applications, the number of bootstrap samples required to estimate cv to

within a desired accuracy τ can be substantial. τ is defined as τ = (cvi − cvi+1
) which

measures the stability of the error. Before performing the approximation, we estimate

the required B and n to compute f with cv ≤ σ. If B×n ≥ N , then EARL informs the

user that an early estimation with the specified accuracy is not faster than computing

f over N and instead the computation over the entire data-set is performed. AES

allows for error estimation of general MR-Jobs (mining algorithms, complex functions

etc). Furthermore, EARL works on categorical, as well as on inter-dependent data as

discussed in Appendix 3.1.9.3.

32

For completeness, we will first discuss how B and n impact the error individually,

and then in Section 3.1.5 we present an algorithm to pick B and n that empirically

minimizes the product B×n. Figure 3.2 (left) shows how B affects cv experimentally.

Normally roughly 30 bootstraps are required to provide a confident estimate of the

error. The sample size, n, given a fixed B has a similar effect on cv as shown in Figure

3.2 (right). A larger n results in a lower error. Depending on the desired accuracy, n

can be chosen appropriately as described next.

3.1.5 Determining the Sample Size and Number of Bootstraps

To perform resampling efficiently (i.e. without processing more data than is required)

we need to minimize the sample size (n) and the number of resamples performed

(B). A straightforward sample size adjustment might work as follows: pick an initial

sample size s of size n which theoretically achieves the desired error σ and compute f

on s. If the resulting error σ̂ is greater than σ then the sample size is increased (e.g.,

doubled). A similar naı̈ve strategy may be applicable when estimating the minimum B.

This naı̈ve solution however may result in an overestimate of the sample size and the

number of resamples. Instead, following [CDS04] we propose a two phase algorithm

to estimate the final early approximate result satisfying the desired error bound while

empirically minimizing B × n. As shown later, our algorithm requires only a single

iteration.

Sample Size And Bootstrap Estimation (SSABE) algorithm we propose, performs

the following operations: (1) In the first phase, it estimates the minimum B and n and

then (2) in the second phase, it evaluates the function of interest, f , B times on s of

size n. To estimate the required B, the first phase an initially small n, a fraction p of

N , is picked. In practice we found that p = 0.01 gives robust results. Given a fixed n,

a sample s is picked. The function f is then computed for different candidate values

33

of B ({2, ..., 1
τ
}). The execution terminates when the difference |cvi − cvi−1

| < τ . The

B value so determined is used as the estimated number of bootstraps. In practice the

value of B so calculated is much smaller than the theoretically predicted 1
2
ǫ−2
0 .

To estimate the required sample size n, first the initial sample size 1
τ

is picked. The

initial sample is split into l smaller subsamples si each of size ni where ni =
n

2l−i and

1 ≤ i ≤ l. In our experiments we found it to be sufficient to set l = 5. For each

si we compute the cv using B resamples. When computing f on si we perform delta

maintenance discussed in Section 3.1.9. The result will be a set of points A[si] = cv.

For these set of points, the best fitting curve is constructed. The curve fitting is done

using the standard method of least squares. The best fitted curve yields an si that

satisfies the given σ. Finally, once the estimate for B and n is complete, the second

phase is invoked where the actual user job is executed using s of size n and B.

The initial n is picked to be small, therefore the sample size and the number of

bootstraps estimation can be performed on a single machine prior to MR job start-up.

Thus, when performing the estimation for n and B we run the user’s MR job in a local

mode without launching a separate JVM. Using the local-mode we avoid running the

mapper and the reducer as separate JVM tasks and instead a single JVM is used which

allows for a fast estimation of the required parameters needed to start the job.

3.1.6 I.I.D. Sampling in a Distributed Environment

In order to provide a uniformly random subset of the original data-set, EARL requires

sampling. While sampling over memory-resident, and even disk resident, data had

been studied extensively, sampling over a distributed file system, such as HDFS, has

not been addressed [OR90]. Therefore, we provide two sampling techniques: (1) pre-

map sampling and (2) post-map sampling. Each of the techniques has its own strengths

and weaknesses as discussed next.

34

In HDFS, a file is divided into a set of blocks, each block is typically 64MB.

When running an MR job, these blocks can be further subdivided into “Input Splits”

which are used as input to the mappers. Given such an architecture, a naı̈ve sampling

solution is to pick a set of blocks Bi at random, possibly splitting Bi into smaller splits,

to satisfy the required sample size. This strategy however will not produce a uniformly

random sample because each of the Bi and each of the splits can contain dependencies

(e.g., consider the case where data is clustered on a particular attribute resulting in

clustered items to be placed next to each other on disk due to spatial locality). Another

naı̈ve solution is to use a reservoir smapling algorithm to select n random items from

the original data-set. This approach produces a uniformly random sample, but it suffers

from slow loading times because the entire dataset needs to be read, and possibly re-

read when further samples are required. We thus seek a sampling algorithm that avoids

such problems.

In a MapReduce environment, sampling can be done before or while sending the

input to the Mapper (pre-map and post-map sampling respectively). Pre-map sam-

pling significantly reduces the load times, however the sample produced may be an

inaccurate representation of the total < k, v > pairs present in the input. Post-map

sampling first reads the data and then outputs a uniformly random sample of desired

size. Post-map sampling also avoids the problem of inaccurate < k, v > counts.

Post-map sampling works by reading and parsing the data before sending the se-

lected < k, v > pairs to the reducer. Each < k, v > pair is stored by using random

hashing that generates a pre-determined set of keys, of size proportional to the required

sample size. We store all key, value pairs on the mapper locally, and when all data had

been received, we randomly pick p key, value pairs that satisfies the sample size and

send it to the reducer. Because sampling is done without replacement, the key, value

pairs already sent are removed from the hashmap. Post-map sampling is shown in

35

Algorithm 1.

Algorithm 1: Post-map sampling

hash← initialize the hash;

timestamp← initialize the timestamp;

while input ! = null do

key← get random key for input;

value← get value for input;

hash[key]← value;

end

sendSample(hash(rand()%hash size);

while true do

if get new error average (timestamp) > required then

sendSample(hash(rand()%hash size));

end

else

return

end

end

Unlike post-map sampling, which first reads the entire dataset and then randomly

chooses the required subset to process, pre-map sampling works by sampling a por-

tion p of the initial dataset before it gets passed into the mapper. Therefore, because

sampling is done prior to data loading stage, the response time is greatly improved,

with a potential downside of a slightly more inaccurate result. The reason for this is

because when sampling from HDFS directly, we can efficiently only do so by sam-

pling lines1. Each line however may contain a variable number of < k, v > pairs so

that when producing a 1% sample of the key,value pairs, we may produce a larger or

1A default file format in Hadoop is a line delimitted by a new-line character. Another format can be

specified via the RecordReader class in Hadoop.

36

a lesser sample. Therefore, for f which needs correction, we would be unable to do

so accurately without additional information from the user. For majority of the cases

however correcting the final result is not necessary, and even for cases when correction

is required, the estimate of the number of the key, value pairs produced by the pre-map

sampling approach is good enough in practice. Nevertheless the user has the flexibility

to use post-map sampling if an accurate correction to the final result is desired.

We assume, w.l.o.g., that the input is delimited by new-lines, as opposed to commas

or other delimiters. A set of logical splits is first generated from the original file which

will be used for sampling. For each split Fi, we maintain a bit-vector representing

the start byte locations of the lines we had already included in our sample. Therefore

until the required sample size is met, we continue picking a random Fi and a random

start location which will be used to include a line from a file. To avoid the problem

of picking a file start location which is not a beginning of a line, we use Hadoop’s

LineRecordReader to backtrack to the beginning of a line. Using pre-map sampling we

avoid sending an overly large amount of data to the mapper which improves response

time as seen in experiment in Section 3.1.10.1. In rare cases where a larger sample size

is required for an in-progress task, a new split is generated and the corresponding map

task is restarted in the TaskInProgress Hadoop class. Algorithm 2 presents the HDFS

sampling algorithm used in pre-map sampling.

37

Algorithm 2: HDFS sampling algorithm used in pre-map sampling

start← split.getStart();

end← start+ split.getLength();

sample← ∅;
while |sample| < n do

start← pick a random start position;

if start ! = beginning of a line then

skipFirstLine← true;

fileIn.seek(start);

end

in = new LineReader(fileIn, job);

if skipFirstLine then

start += in.readLine(new Text(), ;

0, (int)Math.min((long)Integer.MAX VALUE,

end - start));

end

sample← includeLineInSample();

skipFirstLine← false

end

Therefore, while pre-map is fast and works well for most cases, post-map is still

very useful for applications where a correction function relies on an accurate estimate

of the total key, value pairs. Experiments highlighting the difference between the two

sampling methods are presented in experiment of Section 3.1.10.5.

In both the post-map and the pre-map sampling, every reducer writes its computed

error together with a time-stamp onto HDFS. These files are then read by the mappers

to compute the overall average error. Because both the mappers and the reducers share

the same JobID, it is straight forward to list all files generated by the reducers within

38

the current job. The mapper stores a time-stamp that corresponds to the last successful

read attempt of the reducer output. The mapper collects all errors, and computes the

average error. The average error, incurred by all the reducers, is used to decide if

sample size expansion is required. Lines 9-15 in Algorithm 1 demonstrate this for

pos-map sampling.

Note that in a MapReduce framework independence is assumed between key, value

pairs. In addition to being natural in a MapReduce environment, the independence

assumption also makes sampling applicable to algorithms relying on capturing data-

structure such as correlation analysis.

3.1.7 Fault-Tolerance

Most clusters that use Hadoop and the MapReduce frameworks utilize commodity

hardware and therefore node failure are a part of every-day cluster maintenance. Node

failure is handled in the Hadoop framework with the help of data-replication and task-

restarts upon failures. Such practices however can be avoided if the user is only inter-

ested in an approximate result. Authors in [SG07] show that in the real world, over 3%

of hard-disks fail per year, which means that in a server farm with 1,000,000 storage

devices, over 83 will fail every day. Currently, the failed nodes have to be manually

replaced, and the failed tasks have to be restarted. Given a user specified approxima-

tion bound however, even when most of the nodes have been lost, a reasonable result

can still be provided. Using the ideas from AES stage the error bound of the result can

still be computed with a reasonable confidence. Using our simple framework, a system

can therefore be made more robust against node failures by delivering results with an

estimated accuracy despite node failures.

39

3.1.8 Early Approximation for K-Means

Results for the initial experiments in the realm of classical data mining applications

are encouraging. The experiment below provides a performance study that uses EARL

to approximate K-Means.

It is well known that K-Means algorithm converges to a local optima and is also

sensitive to the initial centroids. For these reasons the algorithm is typically restarted

from many initial positions. There are various techniques used to speed up K-Means,

including parallelization [ZMH09b]. Our proposed approach, compliments previous

techniques by speeding up K-Means without changing the underlying algorithm.

Figure 3.8 shows the results of running K-Means with EARL and stock Hadoop.

Our approach leads to a speed up due to two reasons: (1) K-Means is executed over a

small sample of the original data and (2) K-Means converges more quickly for smaller

data-sets.

Figure 3.3: Computation of K-Means using EARL and stock Hadoop

40

3.1.9 EARL Optimizations

The most computationally intensive part of EARL, aside from the user’s job j, is the

re-execution of j on an increasingly larger sample sizes, during both the main job exe-

cution and during initial sample size estimation. One important observation is that this

intensive computation can reuse its results from the previous iterations. By utilizing

this incremental processing, performing large-scale computations can be dramatically

improved. We first take a more detailed look at the processing of two consecutive

bootstrap iterations and then we discuss the optimization of the bootstrapping (resam-

pling) procedure so that when recomputing f on a new resample s′ we can perform

delta maintenance using a previous resample s.

3.1.9.1 Inter-Iteration Optimization

Let s denote the sample of size n used in the i-th iteration, and let {bi, 1 ≤ i ≤ B}
denote the B bootstrap resamples drawn from s. The user’s job j is repeated on all bi’s.

In the (i+ 1)-th iteration, we enlarge sample s with another sample ∆s. s and ∆s are

combined to get a new sample s′ of size n′. B bootstrapping resamples {b′i, 1 ≤ i ≤ B}
are drawn from s′, and the user’s job j is repeated on all b′i’s. Each resample b′i can

be decomposed into two parts: (1) the set of data-items randomly sampled from s,

denoted by b′i,s, and (2) the set of data-items randomly sampled from ∆s, denoted by

b′i,∆s.

Therefore, in the (i + 1)-th iteration, instead of drawing a completely new {b′i}
from s′, we can reuse the resamples {bi} generated in the i-th iteration. The idea is

to generate b′i,s by updating bi, and to generate b′i,∆s by randomly sampling from ∆s.

This incremental technique has two benefits, in that we can save a part of: (1) the cost

of bootstrapping resampling {b′i}, and (2) the computation cost of repeating the user’s

41

job j on {b′i}.

The process of generating b′i,s from bi is not trivial, due to the following obser-

vation. Each data item in b′i is drawn from bi with probability n
n′

, and from ∆s with

probability 1 − n
n′

. We have the following equation modeling the size of b′i,s by a

binomial distribution.

P (|b′i,s| = k) =

(

n′

k

)

(n

n′

)k (

1− n

n′

)n′−k

(3.2)

This means that we may need to randomly delete data-items from bi, or add data-items

randomly drawn from s to bi. We first present a naive algorithm which maintains a

resample b′i from s′ by updating the resample bi form s in three steps: (1) randomly

generate |b′i,s| according to Equation 4.4. (2) if |b′i,s| < n, then randomly delete (n −
|b′i,s|) data-items from bi; if |b′i,s| > n, then randomly sample (|b′i,s| − n) data-items

from s and combine them with bi. (3) generate (n′ − |b′i,s|) random sample from ∆s

and combine them with bi.

The above process requires us to record all the data-items of s and bi, which is a

huge amount of data that cannot reside in memory. Therefore, s and bi must be stored

on the HDFS file system. Because this data will be accessed frequently, the disk I/O

cost can be a major performance bottleneck.

Next, we present our optimization algorithm with a cache mechanism that supports

fast incremental maintenance. Our approach is based on an interesting observation

from Equation 4.4. With n′ very large and n/n′ fixed, which is usually the case in

massive MapReduce tasks, Equation 4.4 can be approximated by the Gaussian distri-

bution

N
(

n, n
(

1− n

n′

))

(3.3)

For a Gaussian distribution, by the famous 3-sigma rule, most data concentrate

around the mean value, to be specific, within 3 standard deviations of the mean.

42

As an example, for the distribution 4.5 with its standard deviation denoted by σ0 =
√

n
(

1− n
n′

)

, over 99.7% data lie within the range (n− 3σ0, n+ 3σ0); over 99.9999%

data lie within the range (n− 5σ0, n+ 5σ0). Note that σ0 <
√
n.

Next we explain our optimized algorithm in more detail. For the i-th iteration, we

define the delta sample added to the previous sample as ∆si. For the first iteration,

we can treat the initial sample as a delta sample added to an empty set. Therefore we

can denote it by ∆s1. The size of ∆si is ni. After the i-th iteration, a bootstrapping

resample b can be partitioned into {b∆sk , k < i}, where b∆sk represents the data-items

in b drawn from ∆sk. We build a two-layer memory-disk structure of b. Instead of

simply storing b on a hard-disk, we build two pieces of information of it: (i) memory-

layer information (a sketch structure) and (ii) disk-layer information (the whole data

set). A sketch of data set of size n is c
√
n data items randomly drawn without replace-

ment from it where c is a chosen constant. Determining an appropriate c is a trade-off

between memory space and the computation time. A larger c will cost more memory

space but will introduce less randomized update latency. The sketch structure contains

{sketch(b∆sk)} and {sketch(∆sk)}.

During updating, instead of accessing s and b directly, we always access the sketches

first. Specifically, for step 2 in our algorithm, if we need to randomly delete data-items

from b∆sk , we sequentially pick the data-items from sketch(b∆sk) for deletion; if we

need to add data-items randomly drawn from ∆sk, we sequentially pick the data-items

from sketch(∆sk) for addition. For already picked data-items, we mark them as used.

At the end of each iteration, we will randomly substitute some of the unused data items

in sketch(b∆sk) with the used data items in sketch(∆sk) by following a reservoir sam-

pling approach, in order to maintain sketch(b∆sk) as a random sketch of b∆sk . If we

use up all the data-items in a sketch, we access the copy stored in HDFS, applying two

operations: (1) committing the changes on the sketch, and (2) resampling a new sketch

43

from the data.

3.1.9.2 Intra-Iteration Optimization

When performing a resample, at times a large portion of the new sample is identical to

the previous sample in which case effective delta maintenance can be performed. Our

main observation is shown in Equation 3.4. The equation represents the probability

that a fraction y of a resample is identical to that of another resample. Therefore, for

example if n = 29 and y = 0.3, that means that 35% of the time, resamples will

contain 30% of identical data. In other words, for roughly 1 in 3 resamples, 30% of

each resample will be identical to one-another. Because of the relatively high level

of similarity among samples, an intra iteration delta maintenance can be performed

where the part that is shared between the resamples is reused.

P (X = y) =
n!

(n− y ∗ n)!× ny∗n
(3.4)

Using Equation 3.4 we can find the optimal y, given n, that minimizes the overall

work performed by the bootstrapping stage. The overall work saved can be stated as

P (X = y)∗y. Figure 3.4 shows how the overall work saved varies with n for different

y. The optimal y for given n can be found using a simple binary search. Overall we

found that on average we save over 20% of work using our Intra Iteration Optimization

procedure when compared to the standard bootstrapping method.

While the optimization techniques presented in this section greatly increase the

performance of the standard bootstrap procedure there is still more research to be done

with regards to delta maintenance and sampling techniques. Our optimization tech-

niques are best suited for small sample sizes, which is reasonable for a distributed

system where both response time and data-movement must be minimized.

44

Figure 3.4: Work saved using EARL’s Intra Iteration Optimization

3.1.9.3 Categorical and Weakly-dependent Data

In this section w.l.o.g., we assumed that N consists of numerical data and that f also

returns numerically ordered results. Our approach, however, is also applicable to cat-

egorical data with a small modification discussed next.

The analysis of categorical data will involve the proportion of “successes” in a

given population. The success can be defined as an estimate of the parameter of inter-

est. Therefore, given a random sample of size n the number of successes X divided

by the sample size gives an estimate for the population proportion p. This proportion

follows a binomial distribution with mean p and variance
p(1−p)

n
. Because the binomial

distribution is approximately normal, for large sample sizes, a z-test can be used for

testing confidence interval and significance. This approach allows EARL to be applied

even to categorical data.

We have also assumed that all samples contain i.i.d. data, however the bootstrap

technique can be modified to support non-iid (dependent) data when performing re-

sampling [ST95, Lah03, PW04, LL09]. The approach used to deal with b-dependent

45

data is usually called block-sampling. A data-set that is b-dependent contains N
b

blocks

where each block Xi, ..., Xi+b represents b inter-dependent tuples. Such dependency

is usually present in time-series data. In the block based sampling instead of a single

observation, blocks of consecutive observations are selected. Such a sampling method

insures that dependencies are preserved amongst data-items. In section 3.2 we address

the inter-dependent data problem in detail.

3.1.10 EARL Performance Evaluation

We have used Hadoop version 0.20.2-dev, to implement our extension and run the ex-

periments on a small cluster of machines of size 5 containing Intel Core duo (CPU

E8400 @ 3.00GHz), 320MB of RAM and Ubuntu 11.0 32bit. Each of the parts shown

in Figure 3.1 are implemented as separate modules which can seamlessly integrate

with user’s Map-Reduce jobs. The sampler is implemented by modifying the Recor-

dReader class to implement the Pre-Map sampling and extending the map class to

implement the Post-Map sampling. The resampling and update strategies are imple-

mented by extending the Reduce class. The results generated from resamples are used

for result and accuracy estimation in the AES phase. The AES phase computes the

coefficient of variation (cv) and outputs the result to HDFS which is read by the main

Map-Reduce job where the termination condition is checked. Because the number of

required resamples and the required sample size are estimated via regression, a single

iteration is usually required. Figure 3.5 shows an example of an MR program written

using EARL’s API. As can be observed from the figure, the implementation allows for

a generic user job to take advantage of our early approximation library.

The biggest implementation challenge with EARL was reducing the overhead of

the AES phase and of the sample generation phase. If implemented naively, (i.e. mak-

ing both the sampler and the AES phase its separate job) then the execution time would

46

p u b l i c s t a t i c vo i d main (S t r i n g [] a r g s)

t h r o w s E x c e p t i o n {

/ / I n i t i a l i z a t i o n o f l o c a l v a r i a b l e s

/ / . . .

/ / . . .

Sampler s = new Sampler () ;

w h i l e (e r r o r > s igma) {

/ / p a t h s t r i n g i s t h e i n i t i a l D a t a S e t

s . I n i t (p a t h s t r i n g) ;

/ / num r e s a m p l e s o f r e s a m p l e s o f s i z e

/ / sample s i z e i s g e n e r a t e d . Both o f t h e s e

/ / v a r i a b l e s a r e d e t e r m i n e d e m p i r i c a l l y .

s . G e ne r a t e S a mpl e s (sample s i z e ,

num r e s a m p l e s) ;

JobConf a e s j o b = new JobConf (AES . c l a s s) ;

JobConf u s e r j o b ;

/ / For each sample we e x e c u t e u s e r j o b

f o r (i n t i = 0 ; i < num r e s a m p l e s ; i ++) {

u s e r j o b = new JobConf (

MeanBoots t r ap . c l a s s) ;

/ / I n i t o f t h e u s e r j o b

/ / . . .

J o b C l i e n t . r u nJ ob (u s e r j o b) ;

/ / AES u s e s t h e i n p u t from u s e r j o b t o

/ / compute t h e

/ / a p p r o x i m a t i o n e r r o r .

/ / I n i t o f t h e a e s j o b

/ / . . .

/ / . . .

/ / The a e s j o b a l s o u p d a t e s t h e e r r .

J o b C l i e n t . r u nJ ob (a e s j o b) ;

/ / I n c a s e s where e a r l y a p p r o x i m a t i o n

/ / i s n o t p o s s i b l e , sample s i z e and

/ / num r e s a m p l e s w i l l be s e t t o N and 1

/ / r e s p e c t i v e l y .

UpdateSampleSizeAndNumResamples () ;

}

}

Figure 3.5: An example of how a job definition in EARL.

47

be inferior to that of the standard Hadoop especially for small data-sets and light ag-

gregates where EARL’s early approximation framework has little impact to begin with.

We wanted to make EARL light-weight so that even for light tasks, EARL would not

add additional overhead and the execution time in the worst case would be comparable

to that of the standard Hadoop.

The potential overhead of our system is due to three factors: (1) creating a new MR

job for each iteration used for sample size expansion (2) generating a sample of the

original dataset and (3) creating numerous resamples to compute a result distribution

that will be used for error estimation. The first overhead factor is addressed with the

help of pipelining, similar to that of Hadoop Online, however in our case the mappers

also communicate with reducers to receive events that signal sample size expansion or

termination. With the help of pipelining and efficient inter task communication, we

are able to reuse Hadoop tasks while refining the sample size. The second challenge

is addressed via the added feature of the mappers to directly ask for more splits to

be assigned, in the case of pre-map sampling, when a larger sample size is required.

Alternatively a sample can be generated using post-map sampling as discussed in Sec-

tion 3.1.6. Post and pre-map sampling work flawlessly with the Hadoop infrastructure

to deliver high quality random sample of the input data. Finally the last challenge is

addressed via a resampling algorithm and its optimizations presented in Section 3.1.6.

Re-sampling is actually implemented within a reduce phase, to minimize any overhead

due to job restarts. Due to delta maintenance, introduced in Section 3.1.9, resampling

becomes efficient and its overhead is tremendously decreased making our approach

not only feasible but to deliver an impressive speed-up over standard Hadoop. Next

key experiments are presented which showcase the performance of EARL.

A set of experiments measuring the efficiency of the accuracy estimation and sam-

pling stages are presented in the following sections. To measure the asymptotic behav-

48

ior of our approach a synthetically generated data-set is used. The synthetic dataset

allows us to easily validate the accuracy measure produced by EARL. The normalized

error used for the approximate early answer delivery is 0.05 (i.e. our results are ac-

curate to within 5% of the true answer). The experiments were executed on simple,

single phase MR tasks to give concrete evidence of applicability of EARL, and more

elaborate experiments on a wider range of mining algorithms is part of our future work.

3.1.10.1 A strong case for EARL

In this experiment, we implemented a simple MR task computing the mean, and tested

it on both standard Hadoop and EARL. Figure 3.6 shows the performance comparison

between these two. It shows that when the data-set size is relatively large (> 100GB),

our solution provides an impressive performance gain (4x speed-up) over standard

Hadoop even for a simple function such as the mean. In the worst case scenario, where

our framework cannot provide early approximate results (< 1GB), our platform in-

telligently switch back to the original work flow which runs on the entire data-set

without incurring a big overhead. It demonstrates clearly that EARL greatly outper-

forms the standard Hadoop implementation even for light-weight functions. Figure 3.6

also shows that a standard Hadoop data loading approach is much less efficient than

the proposed pre-map sampling technique.

3.1.10.2 Approximate Median Computation

In this experiment, we did a break-down study, to measure how much a user defined

MR task can benefit from resampling techniques and our optimization techniques. We

used the computation of a median as an example, and tested it using three different

implementations: (1) standard Hadoop, (2) original resampling algorithm, and (3) op-

timized resampling algorithm. Figure 3.7 shows that: (1) With a naı̈ve Monte Carlo

49

Figure 3.6: Computation of average using EARL and Hadoop

Figure 3.7: Computation of median using EARL and Hadoop

50

Figure 3.8: Computation of K-Means using EARL and Hadoop

bootstrap, we can provide a reliable estimate for median with a 3-fold speed-up, com-

pared to the standard Hadoop, due to a much smaller sample size requirement. (2)

Our optimized algorithm provides another 4x speed-up over the original resampling

algorithm.

3.1.10.3 EARL and Advanced Mining Algorithms

EARL can be used to provide early approximation for advanced mining algorithms,

and this experiment provides a performance study when using EARL to approximate

K-Means.

It is well known that K-Means algorithm converges to a local optima and is also

sensitive to the initial centroids. For these reasons the algorithm is typically restarted

from many initial positions. There are various techniques used to speed up K-Means,

including parallelization [ZMH09b]. Our approach, compliments previous techniques

by speeding up K-Means without changing the underlying algorithm.

51

Figure 3.9: EARL’s empirical sample size and number of bootstraps estimates com-

pared to a theoretical prediction

Figure 3.8 shows the results of running K-Means with EARL and stock Hadoop.

Our approach leads to a speed up due to two reasons: (1) K-Means is executed over a

small sample of the original data and (2) K-Means converges more quickly for smaller

data-sets. Because of a synthetic data-set, we were also able to validate that EARL

finds centroids that are within 5% of the optimal.

3.1.10.4 Determining Sample size and Number of Bootstraps

In this experiment we measure how the theoretical sample size and the theoretical

number of bootstraps prediction compare to our empirical technique of estimating the

sample size and the number of bootstraps. We use a sample mean as the function of in-

terest. Frequently, theoretical prediction for sample size is over estimated given a low

error tolerance and is under-estimated for a relatively high error tolerance. Further-

more, theoretical bootstrap prediction frequently under-estimates the required number

52

Figure 3.10: Processing times of pre-map and post-map sampling in EARL

of bootstraps. In other empirical tests we have observed cases where theoretical boot-

strap prediction is much higher than the practical requirement. This makes a clear case

for the necessity of an empirical way to determine the required sample size and the

number of bootstraps to deliver the user-desired error bound. In the case of the sample

mean, we found that for a 5% error threshold, a 1% uniform sample and 30 bootstraps

are required.

3.1.10.5 Pre-map and Post-map sampling

In this experiment we determine the efficiency of pre-map and post-map sampling

as described in Section 3.1.6 when applied to computation of the mean. Recall that

pre-map sampling is done before sending any input to the mapper thus significantly

decreasing the load-times and improving response time. The down-side of pre-map

sampler is a potential decrease in accuracy of estimating the number of key, value

pairs which may be required for correcting the final output. In post-map sampling,

53

Figure 3.11: Processing times using EARL’s delta maintainance procedure.

the sampling is done per-key, which increases the load-times but potentially improves

accuracy of estimating the number of key, value pairs. As presented in Figure 3.10 the

pre-map sampling is faster than post-map sampling in terms of total processing time.

Furthermore, our empirical evidence suggests that for a large sample size, pre-map

sampler is as accurate in terms of the number of key, value prediction as the post-map

sampler. Therefore, to decrease the load-times, and to produce a reasonable estimate

for functions that require result correction, the pre-map sampler should be used. The

post-map sampler should be used when load-times are of low concern and a fast as

well as accurate estimates of a function on a relatively small sample size are required.

3.1.10.6 Update Overhead

This experiment measures the benefit that our inter-iteration and intra-iteration (incre-

mental processing) strategies achieve. Recall that in order to produce samples of larger

sizes and perform resampling efficiently, we rely on delta maintenance as described in

54

section 3.1.9. Figure 3.11 shows the total processing time of computing the mean func-

tion with and without the delta maintenance optimization. The data-size represents the

total data that the function was to process. The without optimization strategy refers

to executing the function of interest on the entire dataset and with optimization strat-

egy refers to execution the function on half of the data and merging the results with

the previously saved state as described in section 3.11. The optimized strategy clearly

outperforms the non-optimized version. The optimized strategy introduced achieved a

speedup of close to 300% for processing a 4GB data-set as compared to the standard

method.

3.2 Quality Assessment Using the Improved Bootstrap

In this chapter we propose a scalable method for assessing the quality of machine

learning algorithms over sampled time-series data. While bootstrap provides a sim-

ple and powerful means of estimating accuracy, its application to large time-series

data still suffers from scalability issues. As an alternative we introduce BLB-TS, a

scalable extension of bootstrap for time-series which utilizes the recent advances in

bootstrap and time-series theory to provide a practical implementation for assessing

a time-series sample quality using Hadoop. For instance, our new procedure yields

a robust and computationally efficient means of assessing the quality of our Twitter

analytics workflow over large, real-world, time-series data.

3.2.1 Introduction

A large portion of today’s data is in a time-series format (e.g., Twitter stream, system

logs, blog posts), and time constraints as well as monetary constraints force the user

to work on a sample of the data, for which the quality assessment is required. Further-

55

more the trend of dataset growth is accelerating, with ‘big data’ becoming increasingly

prevalent. The original bootstrap approach [ST95, Efr79] and its time-series variants

[BK99, PR94] provide a simple way of assessing the quality of an estimate, however

in the distributed environment the cost of transferring the data to independent proces-

sors as well as the cost of computing a single resample can be high. This is the source

of incessant problems in the natural life-cycle of advanced analytics development and

a major stumbling block that prevents interactive result exploration that many users

desire [LZZ12a, LK12]. Thus we need a scalable and efficient way of assessing the

quality of an estimator for large time-series data samples in a distributed environment.

In this section we propose a simple, accurate and scalable technique for assessing

the quality of results computed from samples of the real-world time-series data. This

technique allows the average user or a small business to derive analytics on the data

of massive sizes by using sampling. Therefore our method will go towards allowing

everyone to gain access to and benefit from knowledge discovery.

Reliable estimation of the quality obtained from sampled data often leads to sam-

ple sizes that are orders of magnitude smaller than the original dataset thus providing

major savings in terms of time and money [LZZ12a]. The average user, when debug-

ging her machine learning algorithm locally can work with a sample of the data while

remaining confident in the expected accuracy of her final result. When the same user

deploys her application on the cloud system such as EC22 money and time can also be

saved by only working with a sample of the data and using only the needed resources3.

This section addresses the scalability issue of error estimation for sampled time-

series data. We build on previous work of bootstrap [LZZ12a, KTS12b, KTS11] and

time-series theory [BK99, PR94] to provide a scalable approach for assessing the qual-

ity of large time-series data samples. We take advantage of the trend in computational

2http://aws.amazon.com/ec2/
3The pricing of cloud services is based on (a) storage and (b) processing unit usage.

56

��� ������

������	 �

��	���

�����
�	���

������

���������� ��

������ ���

��� ���	� ������	

��� ������	���

����������� ��

���

������

������	����	��

��������� ��

������	���

(a) A 40,000 ft. view of Twitter hashtag

association computation.

����� �� !"#$#%�&

'�() *+�, -�.-�//%�&0

1--�- �/#% $#%�&

'�() 2-�// +$�%�$#%�&0

3//�// �&# �4

� !%-%�$� �%/#-%5"#%�&

5%$/ ��&4%��&��

%&#�-6$�/#$&�$-�

��6%$#%�&

(b) Details on 2 . Bias, s.d. and variance

are among the many statistical error mea-

sures that can be used.

Figure 3.12: An example of an analytics workflows over time-series data.

resources which is shifting towards a multicore and distributed architecture with cloud

services providing thousands processing units4. These new processing units support

fast execution of ‘big data’ applications. Motivated by this trend, we introduce the

BLB-TS system that integrates recent research in both bootstrap and time-series the-

ory. The core of our approach relies on the Bag of Little Bootstraps (BLB) [KTS12b]

for bootstrap scalability, on the Stationary Bootstrap (SB) [PR94] for time-series re-

sampling support and on Hadoop5 for computational scalability. BLB-TS works by

first selecting in parallel a random block b of the original time-series data sample of

size n. Then in parallel r resamples are generated by applying SB to each block b to

obtain a resample of size n. In our implementation, r is not fixed, and each node can

converge independently which was a limitation in [KTS12b]. The errors computed on

the resamples are then averaged across all nodes to produce the final accuracy esti-

mate. Thus, in BLB-TS, the estimator is applied on only a single block b instead of

on the entire time-series sample. In other words, the computational cost incurred only

depends on the size of b and not on the size of the resample n.

The difficulty in supporting fast and accurate estimator assessment based on a sam-

ple has long been recognized as one of the major obstacles in interactive big data pro-

cessing [KTS12b, ELZ10a]. The problem is more complicated when the data are a

time-series because bootstrap must be carried out in a way that captures the depen-

4The total number of processing units in a cluster is: number of nodes × the number of CPUs per

node.
5hadoop.apache.org

57

dence structure of the data generation process. As a concrete application of BLB-TS

we use one of our own Twitter analytics workflows which is composed of four stages:

1 Get latest Twitter data of size W → 2 Estimate error based on a sample n of W

→ 3 Compute the similarity between Twitter hashtags6 from |s| → 4 Update inter-

nal tag similarity model. Note that we compute similarity across more than 2 Million

Twitter tags which further motivates this research. Step 2 is computed infrequently,

only to estimate the sample size required to achieve a user defined accuracy. The goal

of this workflow is to compute a similarity score of all hashtag pairs based on a state of

the art algorithm called MIC [RRF11]. Chapter 6.1 will provide more details on this

workflow. While all stages of this workflow provide interesting challenges, this section

is specifically on step 2 . Figure 3.12 further elucidates this workflow and emphasizes

the focus of this section.

To the best of our knowledge, this work is the first to provide scalable bootstrap

with favorable statistical guarantees. Our preliminary experiments show a promising

trend when applying BLB-TS to the analytics workflow shown in Figure 3.12 and to

other ML algorithms such as classification and regression.

Notation: Let {Xi}∞i=−∞ be an Rd-valued stationary process observed from some

underlying distribution P with Pn = n−1
∑n

i=1 δXi
denoting the corresponding em-

pirical distribution. Let Xn = {X1, ..., Xn} denote the available observations (usually

drawn i.i.d. from {Xi}). Based on Xn we compute an estimator θ̂n of the parameter

of interest θ. For example θ̂n may estimate the accuracy of a classifier. Borrowing no-

tation from [KTS12b] we define Qn{P} ∈ Q as the true distribution of θ̂n. Thus our

final goal is to estimate ξ(Qn{P}, P). In our case ξ denotes the coefficient of varia-

tion but it can also denote bias, standard error, confidence region or a quantile. Sample

size estimation is driven by the user’s threshold on ξ. Using bootstrap with Monte

6The # symbol, called a hashtag, is used to mark keywords or topics in a Tweet.

58

Carlo approximation [Efr79] one can repeatedly resample n points i.i.d. from Pn from

which an empirical distribution Qn is formed and from which ξ(Qn{P}, P) ≈ ξ(Qn)

is approximated.

To preserve the inter-tuple dependency, we employ a block resampling technique

called the Stationary Block bootstrap (SB) [PR94]. Letting the expected size of the

block be l which is an integer satisfying 1 < l < n, SB functions as follows: we let

Lni ≡ Li, i ≥ 1 be conditionally i.i.d. random variables with parameter p = l−1 ∈
(0, 1). Also let I1, ..., In be conditionally i.i.d. random variables with the discrete

uniform distribution on {1, ..., n}. Then, the SB resample X∗
1 , ..., X

∗
n is produced from

the first n elements in the array B(I, L1), ...,B(I, LK) where K ≡ inf{κ ≥ 1 :

L1 + ...+ Lκ ≥ n} and where the block B(i, κ) = (Xi, ..., Xi+κ−1), i ≥ 1, κ ≥ 1.

3.2.2 BLB-TS: The Scalable Time-Series Resampling Algorithm

In this section, we first discuss the limitations of a naı̈ve approach for quality assess-

ment of a time-series sample and then we present the new BLB-TS approach.

3.2.2.1 The Naı̈ve Approach

Predicting the quality of an estimate over time-series can be done in an embarrassingly

parallel way using bootstrap variations for time-series [SPR91, BK99, PR94]. The

time-series data is sent to all nodes on which block sampling is then applied. Since

only a certain number of resamples is needed, the computation time scales down as the

number of nodes is increased. This naı̈ve approach is inefficient because it sends the

entire dataset to all machines, which can still be impractical for large datasets. Authors

in [KTS12b] address this concern for i.i.d. data by splitting the sample into chunks and

processing each chunk in parallel thus avoiding sending the whole dataset to all nodes.

The limitations of the solution proposed in [KTS12b] are: (i) it is only applicable to

59

Variable Definition

ti The tuple count for a mapper mi

mi Mapper i.

pi The split provided to mapper i.

b The sample that each reducer receives.

s The number of reducers such that s×|b| = n

k A reducer chosen randomly s.t. s > k ≥ 0

<blk start,

blk end>

The start and end of the block picked from

split pi

n Sample Size

S Sample

S ′ New Sample

Table 3.2: BLB-TS: Variables used in Algorithm 3 and Figures 3.13a and 3.13b.

i.i.d. data and (ii) it treats all block samples as equal. Treating all block samples as

equal can be inefficient in practice because some nodes may get a bad block sample

and require more resamples, r, to converge. The block quality is measured using

the Kendell Test described in Section 3.2.2.3. Thus setting a fixed r, as is done in

[KTS12b], may lead to inefficiencies. To address (i) and (ii) we propose our BLB-TS

approach next.

3.2.2.2 BLB-TS Algorithm

Algorithm 3 presents the BLB-TS algorithm. The algorithm starts by selecting s ran-

dom blocks from a set of possible blocks B(I, L1), ...,B(I, LK) observed in the time-

series sample. The stationary bootstrap is then applied to each block b by appending

the next point (wrapping around if necessary) in the series to the current block with

probability 1 − p, and appending a random point from b with probability p. The act

60

Algorithm 3: BLB-TS

Input: Time-series data sample X1, . . . , Xn

θ̂: Estimator of interest

ξ: Estimator quality assessment
b: Selected subsample

s: Number of sampled blocks

r: Max. number of Monte Carlo iterations
Output: An estimate of ξ(Qn(P))

for j ← 1 to s do

Randomly select a block b from B(I, L1), ...,B(I, LK)

for k ← 1 to r do

while Size of sample ≤ n do

if rgeom(1, p) == 0 then

currentIndex← A random index in b

pick the next item as b[currentIndex] and continue

end

pick the next item in our sample as b[currentIndex++]

end

P∗
n,k ← n−1

∑b
a=1 naδXia

θ̂∗n,k ← θ̂(P∗
n,k)

check if θ̂∗n,k converged and if so, append (r − k) estimates

to θ̂∗n,k drawn i.i.d. from θ̂∗n,k and break

end

Q∗
n,j ← r−1

∑r
k=1 δθ̂∗

n,k

ξ∗n,j ← ξ(Q∗
n,j)

end

return s−1
∑s

j=1 ξ
∗
n,j

of selecting a 0 with probability p is captured by the rgeom method in Algorithm 3.

Note that although other time-series approaches are applicable, we focus on SB due

61

to its popularity and its robustness with respect to the block size [PR94]. The error

ξ(Qn(P
(j)
n,b)) for each block b is estimated by applying the Monte Carlo approximation

via repeatedly resampling the blocks using the SB method and computing the estima-

tor of interest r on each resample. The number of resamples r is locally determined

by each node with O(r) ≈ 100 in our experiments. Local convergence is important

because two nodes, having subsamples of different quality, should not have the same

r. Thus by locally determining r for each s, BLB-TS turns out to be less sensitive to

the quality and to the size of b than SB. More details on local convergence are given

in section 3.2.2.3. Note that if a local node converges after m resamples, BLB-TS

must append r −m resample estimates to θ̂∗n; this is done by drawing r −m resample

estimates i.i.d. from θ̂∗m.

Observe that r is dependent on |b| and at convergence can be as low as 1-5 for

|b| = n0.9 or 10-20 for |b| = n0.5 which is consistent with results for i.i.d. data found

in [KTS12b]. The r resample estimates then form an empirical distribution which is

used to approximate ξ(Qn(P
(j)
n,b)) ≈ ξ(Qn,j). The quality estimates are then averaged

across all the nodes and final error is returned as s−1
∑s

j=1 ξ
∗
n,j .

3.2.2.3 BLB-TS Optimizations

Varying the number of resamples r: To compute the exact bootstrap variance esti-

mate,
(

2n−1
n−1

)

resamples are required, which for n = 15 is already equal to 77 × 106.

Therefore, an approximation is necessary to make the bootstrap technique feasible.

The Monte-Carlo [ST95] is the standard approximation technique used for resampling

methods including the bootstrap that requires less than
(

2n−1
n−1

)

resamples. It works by

taking r resamples resulting in variance estimate of σ̂2
r = 1

r

∑r
i=1(θ̂

∗
r − θ̂∗)2 where θ̂∗

is the average of θ̂∗r ’s. The theory suggests that r should be set to 1
2
ǫ−2
0 [Efr87], where

ǫ0 corresponds to the desired error of the Monte Carlo approximation with respect to

62

the original bootstrap estimator. Our experiments in [LZZ12a] for i.i.d. data show

that a much lower value of r can be used in a great majority of practical applications.

As a rule of thumb, for i.i.d. data we found that 30 bootstraps are enough for most

applications [LZZ12a] (see section 3.1).

For time-series data, however, setting a fixed r for all nodes is inefficient because

not all nodes receive the same quality block sample. In our experiments we control

the quality of a time-series sample by using the Kendell Test which is commonly used

to determine the probability p that a sampled distribution X came from the original

distribution Y [SS07]. Therefore a ‘bad’ time-series sample would correspond to a

relatively low p. This test is non-parametric, as it does not rely on any assumptions on

the distributions of X or Y or the distribution (X , Y).

Thus we propose an adaptive algorithm to select r. Similar to [KTS12b], we se-

lect r by continuously processing more resamples and updating θ̂∗n,k until it ceases to

change significantly. Thus, r in Algorithm 3 is used as an upper-bound, and each node

uses a threshold ǫ for local convergence checking. Despite some nodes converging

quicker than others, BLB-TS forces all nodes to produce the same number of error

estimates by enlarging θ̂∗n to r via i.i.d. resampling from θ̂∗n,k if necessary. Authors

in [KTS12b] suggest a similar approach, however no experiments are provided. We

present experimental results of our approach in section 3.2.3.3.

3.2.2.4 I.I.D. and Time-Series Sampling in BLB-TS

Recall that BLB-TS needs to generate s random samples of size |b| such that |b| × s =

n. To solve this problem we draw from past work on memory-resident and disk-

resident sampling [OR90].

Consider the HDFS architecture where a file is divided into several blocks and

where each block is typically 64MB. A naı̈ve single-sampling solution is to pick a

63

set of blocks Bi at random, possibly splitting Bi into smaller splits, to satisfy the

required sample size. This strategy however will not produce a uniformly random

sample because each of the selected Bi can contain dependencies (e.g., consider the

case where data is clustered on a particular attribute resulting in clustered items to be

placed next to each other on disk due to spatial locality). Another naı̈ve single-sample

generating solution is to use a reservoir sampling algorithm to select k random items

from the original data-set. This approach produces a uniformly random sample, but

it suffers from slow loading times because the entire dataset needs to be read, and

possibly re-read when further samples are required. Below we present the i.i.d. and

time-series sampling algorithms that run over HDFS, generate s random samples and

avoid the problems of the naı̈ve approaches presented above. For convenience, the

variables used in the algorithms below are explained in Table 3.2.

In the case of i.i.d. data, as an input, each mapper mi will receive a split pi which

will have a set of tuples ti. For each tuple t ∈ ti, mapper mi will output < k, t >, where

k is a random number such that s > k ≥ 0 and where s is the total number of reducers.

The mapper function has the complexity of O(ti). The reducer for i.i.d. sampling

simply evaluates the estimator of interest θ̂ at most r times and has the complexity of

O(θ̂(b)r).

When computing a random sample of time-series data the dependency between

tuples must be captured. Thus, for each split the mappers perform block sampling and

output a < k,< blk start, blk end >> where k is defined as before and blk start,

blk end denote respectively the start and end of the selected block from split pi. When

performing block sampling, b may span multiple splits which are on different mappers.

Therefore, each mapper mi for each split pi must send the first b tuples to each s

reducers. The mapper and reducer are shown in Figures 3.13a and 3.13b respectively.

The complexity of the mapper is O(|b|s + ti) and the complexity of the reducer is

64

Input: A split pi

Output: Random Sample

while Size of sample ≤ |b| do

if rgeom(1, p) == 0 then

currentIndex← A random

index in b

pick the next item as

b[currentIndex] and

continue

write(< k,current sample>)

end

pick the next item in our sample as

b[currentIndex++]

end

for i← 1 to s do

send first b tuples to(i)

end

(a) Mapper for time-series sampling

Input: A set of random

blocks
Output: r models

block← empty()

for For each received block bi do

// append() joins blocks

together taking care of

inter-map spanning

blocks.

block← append(block, bi)

end

while ξ not converged do

bnew = Resample block

M.add(θ̂(bnew))

update ξ

end

write(<output key, M >

(b) Reducer for time-series sampling

Figure 3.13: Mapper and Reducer algorithms for time-series sampling

O(θ̂(b)r).

3.2.3 BLB-TS Performance Evaluation

3.2.3.1 Implementation

The performance of the current implementation of BLB-TS relies on the two design

decisions of adopting: (1) Model-error computation separation and (2) Convergence

aware computation. The first decision proved invaluable for achieving a simple API

design that is easy to understand and test. In model-error computation separation the

65

error computation is performed in three stages: (a) Model computation (b) Model Val-

idation and (c) Error derivation from empirical distribution of (b). It is important to

realize that a lot of machine learning algorithms fall under this three-stage model, and

the quality assessment of many classic machine learning algorithms (SVM, regression)

can easily be expressed using it. Decision (2) is also important because in providing

block samples, not every block will be of the same ‘quality’, error computation on

some nodes may actually converge faster; therefore in our implementation r in Algo-

rithm 3 is actually used as an upper-bound, and each node instead uses a threshold for

local convergence checking. Note however that all nodes produce the same number of

error estimates because we enlarge |θ̂∗n| to r via iid resampling if necessary.

3.2.3.2 Experiments

All experiments were performed on a 7-node cluster with 140 map-slots on Hadoop

1.0.4. Each node is a 16-core AMD Opteron Processor 6134 @ 2.3GhZ with 132GB

RAM. The Total Twitter Dataset is of size 4.3TB.

In Figure 6.3a we show the type of time-series BLB-TS was designed to deal with.

Figure 6.3a shows only three time-series for three tags over a period of three months.

Our experiments in production, however, were run on two million tags, with the goal

of determining similarity measure across all
(n−1)(n)

2
hashtag pairs. Note that some

tags may have many random spikes (e.g., #riot), some tags may be fairly stable (e.g.,

#youtube) and some may show very little level of activity (e.g., #mycatsnameisboris).

In Figure 3.14c we show the convergence rate of BLB-TS and of Stationary Bootstrap.

BLB-TS succeeds in converging to a low relative error significantly faster than the

Stationary Bootstrap. Although here we only show convergence results for similarity

computation, we observed similar results for other machine learning tasks such as

SVM and linear regression as discussion in the application chapter of the dissertation.

66

0
40

80
12

0
#facebook

Fr
eq

ue
nc

y

Jul 1st Jul 15th Aug 1st Aug 15th sep 1st sep 15th

0
10

0
20

0
30

0 #yosoy132

Fr
eq

ue
nc

y

Jul 1st Jul 15th Aug 1st Aug 15th sep 1st sep 15th

0
10

30
50

@soccerdotcom

Fr
eq

ue
nc

y

Jul 1st Jul 15th Aug 1st Aug 15th sep 1st sep 15th

(a) Sample time-series of several hashtags.
2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of resamples

R
e

la
ti
ve

 E
rr

o
r

Bad Quality Block Sample

Medium Quality Block Sample

Good Quality Block Sample

(b) Different quality samples require differ-

ent time to converge.

2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time Units

R
e

la
ti
ve

 E
rr

o
r

Stationary Bootstrap

BOOT_TS (BLK_SIZE=10%)

BOOT_TS (BLK_SIZE=20%)

BOOT_TS (BLK_SIZE=30%)

(c) BLB-TS succeeds at converging faster

than the Stationary Bootstrap for a fixed |b|.

5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Block Size (%)

V
a

ri
a

n
c
e

Stationary Bootstrap

BOOT_TS

(d) BLB-TS is less dependent on the size of

b than the Stationary Bootstrap.

Figure 3.14: BLB-TS Experiments against the Stationary Boostrap

In Figure 3.14d we show the block size dependence on the estimated variance of the

Stationary Bootstrap and of the BLB-TS. Notice that the variance of the BLB-TS is

much more stable than that of the Stationary Bootstrap and therefore in practice the

user should be much less concerned with picking the perfect block size.

67

3.2.3.3 Convergence Rate

Varying r: This experiment measures the convergence rate when the quality of the

block is varied. Our goal was to test our hypothesis that more resamples are required

given a bad vs. a good time-series sample. Recall that the quality of the block sample is

controlled by the Kendall test which is widely used by others [SS07]. The Kendall test

assigns the probability p that the sample came from the original dataset. The results

are shown in Figure 3.14b. Although the results may seem insignificant, in practice

we found that for a relatively poor sample with p < 0.2 the required r can be as much

as 10 times greater than for a relatively good sample with p > 0.9.

Fixed Block Size: Next we measure the convergence rate of BLB-TS when the size

of the block is kept constant. From Figure 3.14c we observe that BLB-TS succeeds in

converging to a low relative error significantly faster than SB, which means BLB-TS

requires a smaller value of r than SB. The reason for this is because SB uses b whereas

BLB-TS resamples b n times resulting in lower variance.

Fixed Number of Resamples: Motivated by our results in Figure 3.14c we sus-

pected that BLB-TS will also be less dependent on the value of b. Figure 3.14d varies

the block size and estimates the variance for both BLB-TS and SB. Notice that the

variance of the BLB-TS is much more stable than that of SB and therefore in practice

the data analyst should be much less concerned with picking the perfect block size.

3.3 Conclusion

A key part of big data analytics is the need to collect, maintain and analyze enormous

amounts of data efficiently. With such application needs, frameworks like MapReduce

are used for processing large data-sets using a cluster of machines. Current systems

however are not able to provide accurate estimate of incremental results. In this chap-

68

ter we presented EARL which is a non-parametric extension of Hadoop that provides

a way to deliver early results with a reliable accuracy. EARL can be applied to im-

prove efficiency of fault-tolerance techniques by avoiding the restart of failed nodes if

the desired accuracy is reached. Our approach relies on resampling techniques from

statistics. To further improve EARL, we introduced optimizations to the resampling

methods. to make our framework even more attractive. We also introduced sampling

techniques that are suitable for a distributed file-system. Our empirical results suggest

an impressive improvement in processing times for the various scenarios. Based on

our experimental results, we are confident that this is a promising method for provid-

ing the interactive support that many users seek when working with large data-sets.

In future work we will investigate the use and the range of applications of other re-

sampling methods (e.g., jackknife) that although are not as general and as robust as

bootstrapping can provide better performance in specific situations.

Also in this chapter we improve EARL by making it scalable and adaptable to

time-series. We have discussed BLB-TS and shown that it is a promising approach

to scalable time-series sample quality assessment. We have shown preliminary results

of its superiority to the Stationary Bootstrap and found that using BLB-TS we were

able to discover some interesting patterns in our dataset, that would otherwise be im-

possible due to an impractically large dataset. Our work on BLB-TS will continue

in the direction of providing more rigorous statistical guarantees of BLB-TS’ quality

assessment.

69

CHAPTER 4

Classifier Sample Size Prediction using the Learning

Curve

In this chapter we rely on a nonparametric accuracy estimation techniques developed

in sections 3.1 and 3.2 to speed-up Support Vector Machine (SVM) classifier by ac-

curately predicting the learning curve and choosing the appropriate training set size

required for achieving the relative accuracy specified by the user. While SVM is a pop-

ular classification tool, its applicability is limited by the fact that the training is based

on solving a quadratic programming (QP) problem which is slow for large datasets.

We provide the necessary theoretical backing that extends our approach to other learn-

ing algorithms. This section describes the library called the Fast Accurate Classifier

Training (FACT) library used in local and distributed environments. In both environ-

ments, FACT provides orders of magnitude classification speed improvement whereby

a very accurate prediction on a 4.3TB Twitter dataset is achieved by only using 1% of

the data.

4.1 Chapter Introduction

Motivation: Here, we try to answer the following question: What training sample size

yields a given classifier accuracy? Better yet we try to describe the classification error

as a function of the desired confidence, the variants of the classifier, the complexity of

70

the task to be learned and the number of training examples. This question is important

because analytics today run over an increasingly large amount of data, and in particular

for classifiers, training a model on a large dataset containing thousands of features

currently takes days even on a powerful cluster1. In this chapter we show that often

only a fraction of a dataset is required to construct an accurate classifier.

We are motivated by the growing data-size/processing-speed gap, previously shown

in Figure 1.1. This gap is a major problem today when performing big scale analytics,

for instance, over Twitter and Google trends data. Furthermore, ambitious learning

tasks such as major event prediction (e.g., stock market crashes, large social upris-

ings etc) require even more data aggregated from multiple sources. The complexity of

such learning tasks will only increase, therefore new tools and methods are required

that bridge the gap by stopping the classifier learning process early when the user pre-

scribed accuracy had been reached.

Thus, we propose a method and a system that optimizes the classifier training on a

massive dataset. We picked a classification task, as opposed to an unsupervised learn-

ing task, as a target for optimization because there is a well agreed measure of clas-

sification accuracy, whereas in unsupervised learning the measure of accuracy is not

well defined and therefore optimization can be difficult. The optimization minimizes

the computation time while taking the user prescribed model accuracy into account.

To estimate the accuracy we explore and apply powerful methods and models devel-

oped in statistics to compute the classification accuracy obtained from training data

[ST95, Efr79]. Our approach is supported by the Fast Accuracy Classifier Training

(FACT) library that we developed for local and distributed environments. As an un-

derlying distributed system we use Hadoop [had]. To the best of our knowledge our

system is the first complete implementation for early classifier training.

1In our lab, an 8 machine state of the art cluster takes a day to train an SVM model, that classifiers

the embedded emotion in a tweet, on a medium sized (1GB) Twitter dataset.

71

FACT consists of three components that help answer the underlying question of

this chapter: How does one make a classifier run faster on a large data-set given a

user-prescribed accuracy requirement? The three components of FACT are: (i) the

classifier accuracy estimator (ii) the optimizer of the accuracy estimator and (iii) the

learning curve predictor. The first and second components provide a quick classifica-

tion accuracy estimation for a specific data size and these components were discussed

in chapter 3. The third component extrapolates the classification accuracy for data-

sizes that might be impractical to deal with directly. Together the three components of

FACT allow for fast classifier training over bigdata.

Background: The first line of research pursuing similar objectives is that of Lee et

al. [LH07], where uniform random sampling is used to train a classifier model. The

approach in [LH07] however is application specific and does not take the user-specified

accuracy requirement into account. Our approach, however, seeks a technique that is

nonparametric (i.e., parameter-less) and supports early termination based on the user

accuracy requirement.

FACT is effective for a wide range of classifiers but for practical purposes we focus

on a Support Vector Machines (SVM) classifier, and provide a theoretical backing for

FACT’s applicability to other classifiers. The SVM concept is used to analyze and rec-

ognize patterns for classification and regression analysis. For example the input to the

standard SVM can be a dataset for which a binary class can be predicted as an output.

Therefore, given a set of training examples together with the corresponding categories

the SVM training algorithm builds a model which predicts the class of testing data.

An SVM model represents training examples as points in space such that a clear line

can be drawn between the points belonging to different classes. The optimization ap-

proaches presented in this chapter take advantage of SVM’s incremental computation

support. For other types of classifiers, such as Decision Trees, incremental compu-

72

tation represents a more difficult task, and thus we leave the detailed study of those

classifiers for future work. Building an SVM model for a large set of examples is time

consuming and therefore we seek to find the minimum training size to satisfy the user-

specified model accuracy requirement. Next, we introduce key ideas of FACT and we

recollect the SVN algorithm in Section 4.2.1

FACT is based on our previous work [LZZ12b], which is discussed in chapter 3

where a resampling approach, called the bootstrap [ST95], is used to support approx-

imation for arbitrary functions with no assumption on the underlying dataset distribu-

tion. The fundamental idea that resampling can be used for error estimation is carried

over from [LZZ12b]. In short, using resampling one can estimate a sampling distribu-

tion of a sample statistic from a single sample s by repeatedly executing a function of

interest on s. Our work differs from [LZZ12b] in the following ways: we provide (i) an

optimized extension of [LZZ12b] to classification, (ii) techniques to speedup the SVM

error estimation and (iii) classifier error prediction (i.e., learning curve prediction) in

addition to point-based error estimation. More details on resampling can be found in

Section 2.

We implement our approach in Hadoop. Hadoop is a natural candidate for imple-

menting FACT. That is to say, while our fast accurate classifier approximation is plat-

form independent, it benefits from the fundamental Hadoop infrastructure. Hadoop

employs a data re-balancer which distributes HDFS [had] data uniformly across the

DataNodes in the cluster. Furthermore, in a MapReduce framework there are a set

of <key, value> pairs which map to a particular reducer. This set of pairs can be

distributed uniformly using random hashing and by choosing a subset of the keys at

random, a uniform sample can be generated quickly. These two features make Hadoop

a desirable foundation for FACT, while Hadoop’s popularity maximizes the potential

for practical applications of this new technology.

73

Challenges: Designing a reliable classifier accuracy estimator was our primary con-

cern. Previous work for modeling accuracy prediction in both theoretical and practical

sense are ill-suited for today’s fast-paced business environment. The pioneering work

of Vapnik et. al. [Vap99] introduces a VC (Vapnik-Chervonenkis) dimension which is

a measure of the capacity of a statistical classification algorithm. The VC dimension

has utility in statistical learning theory, because it can predict a probabilistic upper

bound on the test error of a classification model. However, because the VC dimension

theory is general it must also deal with the pessimistic case which results in a very

loose upper bound for error estimation making the VC dimension approach to error

estimation unhelpful for the average case. The empirical accuracy measure of classi-

fier is usually estimated using a cross-validation technique [HTF09]. Cross-validation,

however, is parametric and does not provide a reliable confidence interval of the error

estimation. FACT addresses the above challenges by providing an empirically tight,

nonparametric, classifier accuracy estimation for the given training size.

As described in chapter 3 computing all possible resamples of a sample is infeasible

for accuracy estimation. In principle computing all
(

2n−1
n

)

values of a statistic, where

n is the sample size, to obtain the “ideal” bootstrap is possible, but is computationally

difficult. Even for n = 15, there are already 77558760 distinct samples. The work-

around for this problem involves using the Monte Carlo simulation to approximate the

bootstrap by only drawing B number of resamples. This however is still not enough

and to make bootstrap practical, in section 4.5 we present resampling optimization

techniques which take advantage of the incremental computation in the context of

classification.

Lastly it was necessary to preform classifier accuracy prediction (i.e. constructing

the learning curve) which is a key challenge for large data classification. Accuracy as a

function of training size is referred to as a learning curve (LC). The shape of LC often

74

Figure 4.1: The interface of our system FACT. This screenshot shows FACT’s predic-

tion of the learning curve of the Twitter dataset.

follows a power law. Thus, we wish to estimate the parameters of the power law curve

by computing only k points. The challenge was to find how k related to prediction

accuracy and if the power law assumption works on real-world datasets. In other

words, before this project it was unclear how good our prediction of the convergence

rate of the power law curve will be by only computing k points. A crucial result in this

field is the central limit theorem (CLT) which shows that for any random sample from

any probability distribution with finite mean and finite variance the sample distribution

converges to a normal distribution N(0, 1). The CLT, however, does not say anything

about the convergence rate. Nevertheless, we will show that using simple methods we

are able to provide a powerful accuracy prediction tool to the user. The interface of

our tool is shown in Figure 4.1.

75

Contributions: Therefore our approach addresses a very pressing problem in the real-

world ‘big data’ analytics: How to minimize the time and sample size required to

achieve a given user prescribed accuracy? In answering this challenge we make the

following three contributions:

1. A general early classifier approximation method is introduced with a specific

application for providing early SVM model training with a reliable classifica-

tion error estimation. The method is platform independent and can be used for

processing large data-sets on many systems including Hadoop, Teradata, R, and

others. A Fast Accurate Classifier Training (FACT) library is implemented for

Hadood and used for the experimental validation.

2. A new methodology is introduced that can provide a tighter empirical estimate

of the learning curve prediction to determine the required training size for the

prescribed user accuracy.

4.2 SVM Algorithm and More Background

4.2.1 SVN Algorithm

Let the element of the training data be xi ∈ ζ , ζ = ℜd, i = 1, ..., l, and the class

labels yi ∈ {±1}. A mapping Φ is performed by SVM into a high, potentially infinite,

dimensional Hilbert Space H where Φ : ζ → H, x→ x̄. In H the decision rule of SVM

is a separating hyperplane with normal Ψ̄ ∈ H which separates the xi into two classes:

Ψ̄ · x̄i + b ≥ k0 − ξi, yi = +1 (4.1a)

Ψ̄ · x̄i + b ≥ k1 − ξi, yi = −1 (4.1b)

76

where k0 and k1 are usually defined to be +1 and−1 respectively, and where ξi are the

slack variables to handle the non-separable case. The Ψ̄ is computed by minimizing

the objective function,

Ψ̄Φ̄

2
+ C

(

l
∑

i=1

ξi

)p

s.t. 4.1a and 4.1b (4.2)

where C is a constant and p is chosen to be 2. In a separable case, SVM constructs the

hyperplane H such that the margin between the positive and the negative class label

examples is maximized. Given a test vector x ∈ ζ , a class label {+1,−1} is assigned

to x depending on whether Ψ̄ · Φ(x) + b is less than or greater than (k0 + k1)/2. To

distinguish them from the rest of the training examples, support vectors sj ∈ ζ are

defined as training samples for which one of the Equations 4.1a 4.1b is an equality.

Therefore, the solution Ψ̄ ∈ H can be written as:

Ψ̄ =

|s|
∑

j=1

αjyjΦ(sj) (4.3)

where |s| is the number of support vectors, yj ∈ {±1} are the class labels of sj and

αj ≥ 0 are weights determined during training. Therefore, in order to classify a

test point x we must multiply Ψ̄, from Equation 4.3, by x. One of the key ideas in

SVM is the use of kernels to efficiently compute the dot products in a possibly infinite

dimension in H without having to explicitly compute the mapping Φ.

4.3 Learning Curve for Sample Size Prediction

Correctly estimating the parameters of a learning curve (LC) can help us estimate n or

the sample size to achieve the desired accuracy. Recall that the LC is a function that

relates the accuracy and the sample size. Vapnik-Chervonenkis (VC) theory [VC71]

77

states that a random sample of n examples leads to a generalization error O(d
n
) of a

function class F where d is a measure of the complexity of F . VC theory presents

universal bounds that are distribution independent. In our case, through empirical

support, we are able to provide a tighter empirical estimate of the accuracy error than

those given by the VC theory.

To estimate the required sample size, we provide a new framework called SS-TS,

which works by iteratively constructing a learning curve (LC), where LC denotes a

function of accuracy in terms of the sample size. For a wide range of machine learn-

ing (ML) algorithms, including association, the shape of an LC follows a power law

[MTH02]. Thus, we can estimate the parameters of the power law curve by computing

only k points, where k is typically less than five. Therefore we execute our association

finding algorithm on k different sample sizes and estimate the convergence rate which

is then used to predict the sample size for the required accuracy.

For a wide range of machine learning algorithms, including classification, the

learning curve follows a power law [MTR03] and thus we estimate the parameters

of a learning curve by subsampling and extrapolating. Our method parametrizes the

learning curve as an inverse function of the power law: ξ(n) = a + n−α, where α is

the power law index or ‘scaling’ parameter and a is a constant. The unknown parame-

ters of this expression, a ∈ R and α ≥ 0, are estimated using nonlinear least squares,

which estimates the parameters via minimization. The estimation of the parameters is

done by evaluating ξ(ni) for various i exactly. Figure 4.1 shows SS-TS’s interface for

the learning curve prediction. Empirically we observe that the learning curve can be

estimated with a useful accuracy for real-world datasets.

78

4.4 Classifier Error Estimation

This section develops a technique for the error estimation of a classification rule con-

structed from a training set of data. The training set s = (s1, s2, ..., sn) consists of n

observations si = (ti, yi), with ti representing the features and yi the class. Thus, on

the basis of x we wish to construct a classifier cs(t) and wish to estimate its accuracy

error. Using the foundation developed in this section the user can get a quick estimate

of the accuracy for a given dataset size.

Recall that FACT uses resampling to perform error estimation of classifier accu-

racy. By re-computing a function of interest many times, a result distribution is derived

from which both the approximate answer and the corresponding error are retrieved.

FACT uses a delta maintenance strategy, to be discussed in the next section, that dra-

matically decreases the overhead of computation. As a measurement of the accuracy

error, in our experiments, we use a coefficient of variation (cv) which is a ratio be-

tween the standard deviation and the mean. Our approach is independent of the error

measure. Other error measures (e.g., bias, variance) are applicable to our approach.

Our classifier error estimation works in three steps: (i) select a sample of the train-

ing set (ii) execute classifier validation estimator B times on the training data and (iii)

estimate the accuracy and confidence intervals from the resulting accuracy distribu-

tion. For step (ii) the classifier validation is performed by training the model on half of

the sample and using the other half for testing. Other classifier validation techniques

(e.g. CV) are also acceptable. Next we present more details on the above steps.

The traditional way of estimating classifier accuracy uses cross-validation [ET97].

Cross-validation, although a nearly unbiased estimate of the error rate, has high vari-

ability. Our proposed classifier error estimator, as shown in the experiments, can sub-

stantially reduce the variance of the estimated error. Specifically, in the case of clas-

79

Table 4.1: FACT can significantly reduce the variation in prediction accuracy com-

pared to the standard cross-validation.

Method Estimated Accuracy True Accuracy Error (cv)

CV1 0.76 0.85 NA

FACT 0.83 0.85 0.012

sification, our generalized accuracy model can be thought of as a smoothed version of

the cross-validation. As shown in Table 4.1 our proposed method produces a closer

estimate to the true error together with a reliable accuracy error estimation.

We needed to also find the empirically correct value for B in step (ii) above that

would provide a reliable accuracy measure and not introduce too much processing

overhead due to resampling. To compute an exact bootstrap variance estimate
(

2n−1
n−1

)

resamples are required, which for n = 15 is already equal to 77 × 106, therefore

an approximation is necessary to make the bootstrap technique feasible. The Monte-

Carlo [ST95] is the standard approximation technique used for resampling methods

including the bootstrap that requires less than n resamples. It works by taking B

resamples resulting in variance estimate of σ̂2
B = 1

B

∑B
n=1(θ̂

∗
n − θ̂∗)2 where θ̂∗ is the

average of θ̂∗n’s. The theory suggests that B should be set to 1
2
ǫ−2
0 [Efr87], where ǫ0

corresponds to the desired error of the Monte Carlo approximation with respect to the

the original bootstrap estimator. Experiments, however, over and over again show that

a much lower value of B can be used in practical applications. In practice as discussed

in chapter 3 30 bootstraps are enough to provide a confident estimate of the error.

Thus, using resampling we can provide a reliable estimate of the classifier accuracy

error. The computational efficiency of the approach presented, however, can still be

improved by using the techniques from section 3.1.9 as we describe next.

80

4.5 Incremental Classifier Error Estimation

The most computationally intensive part of FACT, aside from the classifier training

job j, is the re-execution of j on an increasingly larger sample sizes. One important

observation is that this intensive computation can reuse its results from the previous it-

erations. By utilizing this incremental processing, performing large-scale computation

can be dramatically improved. Thus in this section we describe how classifiers from

multiple bootstrap samples can be combined.

Given m1 and m2 SVM models that were trained on samples s1 and s2 respectively,

we want to merge m1 and m2 such that the resulting SVM m3 is just as accurate as an

SVM model trained on s1 ∪ s2. Because an SVM model consists of a set of support

vectors, merging two models implies combining the support vectors of both models

together. We combine and retrain the support vectors from two models only if their

separating hyperplanes are sufficiently different. By combining the two models we

avoid re-computation. Recall that we build the model on half of the sample and test it

on the other half. Therefore, when expanding a sample, we in fact have to combine the

test data and the support vectors. Thus we first discuss how the combining of support

vectors is done and then describe how to combine the testing data to ensure that our

test examples come from a uniformly random distribution.

4.5.1 Merging Support Vectors from Training Data

Training SVM is costly because it requires solving a quadratic programming (QP)

problem in a number of coefficients equal to the number of training examples. Thus,

standard numeric techniques for QP become infeasible for very large datasets [CP00].

In our case, SVM models are trained on the training sample data that expands in size.

Thus the goal of this subsection is to show how results from different samples can be

81

combined.

We combine support vectors produced from uniform samples of the training data.

This is an important difference from previous approaches [Rup01, CP00], where SVM

is trained via a techniqued called ‘chunking’ where subsets of the training data are

optimized iteratively until the global optimal is reached [Rup01]. The key difference

here is that each chunk may not be uniformly random. Thus, eliminating non-support

vectors from each subset becomes important. Like the above approach, most of the

previous work on incremental SVM processing deals with a non-uniformly random

subsets of the data [WNC05, Rup01]. This is a problem due to the lack of knowledge

about the population distribution from such a sample. Because our training samples

are i.i.d. we avoid the issues of incremental processing of previous work.

Due to the i.i.d sample property we can combine support vectors v1 from s1 with

support vectors v2 of s2 directly. In other words, to get a new set of support vectors

v3 from s3 ⊆ s1 ∪ s2 SVM is re-trained on v1 ∪ v2 which is a much smaller set than

the original number of training examples. As an additional improvement we make

an optimization where v1 ∪ v2 is retrained only if the distance between the separating

hyper-planes of s1 and s2 is greater than ǫ.

An intuitive picture of this approach is presented in Figure 4.2. If s1 is chosen ran-

domly from a training set, its support vectors are very likely to contain support vectors

of the whole training data. Therefore, non-support vectors of s1 have a high chance of

being non-support vectors of the whole dataset and thus can be safely excluded.

4.5.2 Merging Test Data

This subsection explains how to ensure that the combined test data represents a uni-

formly random sample. Let s denote the test data sample of size n used in the i-th

iteration, and {bi, 1 ≤ i ≤ B} denote the B bootstrap resamples drawn from s. The

82

Figure 4.2: Two random subsets are selected from the training data and each is trained

individually. The support vectors in each of the subsets are marked with frames. They

are merged for the final optimization (right), resulting in a classification boundary

(solid curve) close to the one obtained on the entire training data (dashed curve).

classifier testing job j is repeated on all bi’s. In the (i + 1)-th iteration, we enlarge

sample s with another sample ∆s. s and ∆s are combined to get a new sample s′ of

size n′. B bootstrapping resamples {b′i, 1 ≤ i ≤ B} are drawn from s′, and the user’s

classifier testing job j is repeated on all b′i’s. Each resample b′i can be decomposed into

two parts: (1) the set of test data-items randomly sampled from s, denoted by b′i,s, and

(2) the set of test data-items randomly sampled from ∆s, denoted by b′i,∆s.

Therefore, in the (i + 1)-th iteration, instead of drawing a completely new {b′i}
from s′, we can reuse the resamples {bi} generated in the i-th iteration. The idea is

to generate b′i,s by updating bi, and to generate b′i,∆s by randomly sampling from ∆s.

This incremental technique has the benefit of producing a uniformly random sample

of the data from multiple subsamples.

The process of generating b′i,s from bi is not trivial, due to the following obser-

vation. Each data item in b′i is drawn from bi with probability n
n′

, and from ∆s with

probability 1 − n
n′

. We have the following equation modeling the size of b′i,s by a

binomial distribution.

P (|b′i,s| = k) =

(

n′

k

)

(n

n′

)k (

1− n

n′

)n′−k

(4.4)

83

This means that we may need to randomly delete data-items from bi, or add data-items

randomly drawn from s to bi. We first present a naive algorithm which maintains a

resample b′i from s′ by updating the resample bi form s in three steps: (1) randomly

generate |b′i,s| according to Equation 4.4. (2) if |b′i,s| < n, then randomly delete (n −
|b′i,s|) data-items from bi; if |b′i,s| > n, then randomly sample (|b′i,s| − n) data-items

from s and combine them with bi. (3) generate (n′ − |b′i,s|) random sample from ∆s

and combine them with bi.

The above process requires us to record all the data-items of s and bi, which is a

huge amount of data that cannot reside in memory. Therefore, s and bi must be stored

on the HDFS file system. Because this data will be accessed frequently, the disk I/O

cost can be a major performance bottleneck.

Next, we present our optimization algorithm with a cache mechanism that supports

fast incremental maintenance. Our approach is based on an interesting observation

from Equation 4.4. With n′ very large and n/n′ fixed, which is usually the case in

massive MapReduce tasks, Equation 4.4 can be approximated by the Gaussian distri-

bution

N
(

n, n
(

1− n

n′

))

(4.5)

For a Gaussian distribution, by the famous 3-sigma rule, most data concentrate around

the mean value, to be specific, within 3 standard deviations of the mean. As an exam-

ple, for the distribution 4.5 with its standard deviation denoted by σ0 =
√

n
(

1− n
n′

)

,

over 99.7% data lie within the range (n− 3σ0, n+ 3σ0); over 99.9999% data lie within

the range (n− 5σ0, n+ 5σ0). Note that σ0 <
√
n.

Next we explain our optimized algorithm in more detail. For the i-th iteration, we

define the delta sample added to the previous sample as ∆si. For the first iteration,

we can treat the initial sample as a delta sample added to an empty set. Therefore we

can denote it by ∆s1. The size of ∆si is ni. After the i-th iteration, a bootstrapping

84

resample b can be partitioned into {b∆sk , k < i}, where b∆sk represents the data-items

in b drawn from ∆sk. We build a two-layer memory-disk structure of b. Instead of

simply storing b on a hard-disk, we build two pieces of information of it: (i) memory-

layer information (a sketch structure) and (ii) disk-layer information (the whole data

set). A sketch of data set of size n is c
√
n data items randomly drawn without replace-

ment from it where c is a chosen constant. Determining an appropriate c is a trade-off

between memory space and the computation time. A larger c will cost more memory

space but will introduce less randomized update latency. The sketch structure contains

{sketch(b∆sk)} and {sketch(∆sk)}.

During updating, instead of accessing s and b directly, we always access the sketches

first. Specifically, for step 2 in our algorithm, if we need to randomly delete data-items

from b∆sk , we sequentially pick the data-items from sketch(b∆sk) for deletion; if we

need to add data-items randomly drawn from ∆sk, we sequentially pick the data-items

from sketch(∆sk) for addition. For already picked data-items, we mark them as used.

At the end of each iteration, we will randomly substitute some of the unused data items

in sketch(b∆sk) with the used data items in sketch(∆sk) by following a reservoir sam-

pling approach, in order to maintain sketch(b∆sk) as a random sketch of b∆sk . If we

use up all the data-items in a sketch, we access the copy stored in HDFS, applying two

operations: (1) committing the changes on the sketch, and (2) resampling a new sketch

from the data.

4.6 Sample Size Prediction

In this section, a learning-curve based technique for sample size prediction is pre-

sented. We also discuss our work towards using recent data complexity theory to

identify the best ML algorithm so a minimal sample size can be used.

85

One of the exciting parts of our work is predicting the learning curve, or the rela-

tionship between the size of the training data and the classifier accuracy. Thus, in this

section we describe how a learning curve can be estimated naturally using techniques

presented so far. The study of learning curves is important to us because learning

curves can be used to estimate how large n must be before the probability of a misclas-

sification drops below a user specified level τ . Thus, we are interested in the asymp-

totic complexity as n becomes large. Vapnik-Chervonenkis (VC) theory [VC71] states

that a random sample of n examples leads to a generalization error O(d
n
) of a function

class F where d is a measure of the complexity of F . VC theory presents universal

bounds that are distribution independent. In our case, through empirical support, we

are able to provide a much tighter empirical estimates of the accuracy error than those

given by the VC theory.

The learning curve expresses the error rate of a predictive modeling procedure as a

function of the sample size of the training dataset. The learning curve typically follows

the power law. By predicting the learning curve one can gauge if more examples will

improve the accuracy of a classifier. Empirically we observe that the learning curve

can be estimated with a useful accuracy for real-world datasets. Although this is a

relatively new research area we show that, for data-sets examined, our prediction has

a low error compared to the actual pre-computed learning curves.

Predicting learning curves can be useful in many areas including the interpretation

of modeling results as well as dealing with large datasets. For example if training data

obtained is of a modest size one might naturally ask if the trained model is a useful

predictor given the small training size. If we learn that the expected error can be sub-

stantially improved when using a larger sample size, then one would be encouraged

to retrieve a larger sample [LS12]. Other, more pressing issues, such as the scalabil-

ity of a learning algorithm given a growing training size are also critical and can be

86

addressed by FACT.

The problem we consider is to estimate the learning curve rather than to bound it.

Thus, we assume that the data from which the estimation can be computed is avail-

able, and in evaluating our estimation we are focused on statistical criteria such as the

variance, bias etc. Thus to achieve this estimation, we must capture the general form

of the function as well as the constants and lower order terms.

The learning curve follows a power-law [MTR03] and thus we estimate the param-

eters of a learning curve by subsampling and extrapolating. Our method parametrizes

the learning curve as an inverse function of the power law: τ(n) = a + m−α. The

unknown parameters of this expression, a ∈ R, b, α ≥ 0, are estimated using nonlin-

ear least squares, which estimates the parameters via minimization. The estimation of

the parameters is done by evaluating τ(ni) for various i exactly. The estimation of the

learning curve, using our optimization techniques, gives the user the ultimate power of

making many data-gathering/model training decisions quickly.

4.7 Learning Curve Experiments

4.7.1 Methodology

We chose datasets from the UC Irvine repository [A 07] that contained more than 500

instances. We found 25 such datasets. While we felt that 500 instances were enough

for the initial testing, larger datasets are needed to draw any meaningful conclusions.

Thus, we also used a private Twitter dataset that is many TB in size. We also validated

our theoretical claims using a synthetic dataset, which is a no information random

dataset with 20 boolean features and a boolean random label. While the true accuracy

cannot be determined because the target concept is not known, we can approximate

the true accuracy using the holdout method. Using the holdout method, a sample of a

87

Table 4.2: Datasets used

Name # Features Examples True Accu-

racy

% data needed to

achieve 90% ac-

curacy (relative)

Adult 14 48,842 86% 2%

Breast Can-

cer (W)

32 569 93.2% 5%

Vehicle 18 946 61% 3%

Mushroom 22 8,124 96.5% 3%

Rand 20 100,000 49% <1%

Twitter 1,000 3B 85% <1%

given size is taken and a model is trained on that sample. The rest of the data is used

to compute the accuracy. This process is repeated 30 times. Table 4.2 summarizes

the datasets used in our experiments. Table 4.2 also provides the training size actually

needed to achieve a 90% relative accuracy. By relative accuracy we mean the accuracy

obtained relative to a model trained on the entire dataset. In our experiments, for

comparison, we use a 10-fold CV method.

4.7.2 Classifier Accuracy Estimation Experiments

We now show the experimental results for our proposed classifier accuracy estimation

using resampling. We begin with the discussion of the bias for our proposed estimation

method and the standard cross-validation method. We conclude with the discussion on

variance of these techniques.

The bias of the method that estimates a parameter θ is defined as the expected value

minus the estimated value. An unbiased method is that which has a zero bias. Figure

88

 �

��

��

��

��

��

��

��

���

� �� � �� �� �� �� �� �� �� ���

A
	
	

��
	

��
�

S����� S��� ���

V������
T��� V������

�!��"
T��� �!��"

B���#" $�%��� �&�
T��� B���#" $�%��� �&�

'(

)(

*(

+(

,(

-(

.(

/(

0((

(0('()(*(+(,(-(.(/(0((

1
2
2
3
45
2
6
78
9

:;<=>? :@C? DEF

GH@II?J
GJK? GH@II?J
MKLNJOO<

GJK? MKLNJOO<
R;PQO<

GJK? R;PQO<

Figure 4.3: The bias of cross-validation with varying sample sizes.

4.3 shows that the 10-fold cross validation is pessimistically biased especially for low

sample sizes. Figure 4.4 on the other hand shows that our approach is much less biased

at lower sample sizes.

While a given method may have low bias, it can be at the expense of high variance.

89

 �

��

��

��

��

��

��

���

� �� �� � �� �� �� �� �� �� ���

A
	
	

��
	

��
�

S������ S��� ���

V������
T��� V������

!"��#
T��� !"��#

B����# $�%��� �&�
T��� B����# $�%��� �&�

'(

)(

*(

+(

,(

-(

.(

/(

0(

'((

('()(*(+(,(-(.(/(0('((

1
2
2
3
45
2
6
78
9

:;<=>?@ :CD? EFG

HICJJ?K
HKL? HICJJ?K
ML@NKOO<

HKL? ML@NKOO<
R;PQO<

HKL? R;PQO<

Figure 4.4: The bias of FACT with varying sample sizes.

Thus in this experiment we have also computed the coefficient of variation. Figure 4.6

shows the cv for cross-validation and Figure 4.5 shows that for our approach. Cross-

validation has higher cv than that of our approach.

Thus, FACT performs better in terms of the cv and the bias, which proves our

90

0��0

0��0

0��0

0 �0 �0 �0 0 �0 �0 �0 �0 �0 �00

C
	

��
�

�

�
�
	
�
�
�
��
�
��
	
�

S����� S��� ���

V������

R��!"�

A!#�$

B%��&$ '����% �(�

T)�$$�%

M#&�%""�

Figure 4.5: The cv of accuracy of FACT.

+,

+-

+.

+/

+1

+2

+3

+4

+5

,+**

* ,* -* .* /* 1* 2* 3* 4* 5* ,**

6
7
8
99
:;
:8
<
=
7
9
>
?
@:
?
=:
7
<

DEFGHI DJKI LNO

PIQJUHI

WEXYZF

[Y\H]

^_IE`] aEXUI_ LbO

cdJ]]I_

e\`Q_ZZF

Figure 4.6: The cv of cross-validation

hypothesis that FACT is a smoother accuracy estimator compared to the standard cross

validation.

91

Table 4.3: Classification using the merge optimization.

Dataset Accuracy

w/o merge

Accuracy

w/ merge

Training

Time w/o

merge

Training

Time w/

merge

Adult 85.21 85.50 ≈
11.23min

≈ 1.22min

Breast Can-

cer (W)

93.2 93.23 ≈ 32sec ≈ 3.43sec

Vehicle 62 62.21 ≈ 34.2sec ≈ 3.67sec

Mushroom 96.3 96.35 ≈ 2.2min ≈ 12.7sec

Rand 49.3 49.23 ≈ 23min ≈ 2.1min

Twitter 85.2 85.7 ≈ 20hrs ≈ 1.7hr

4.7.3 SVM Merge Optimization Experiments

To check the validity of our merging algorithm we compared it against the results

produced by a 10-fold cross-validation on the entire dataset. Merging was done via

partitioning the entire dataset into 10 parts and performing merging on each part as de-

scribed in Section 4.5. Table 4.3 shows that our merging algorithm, while performing

significantly faster, does not introduce major accuracy degradation. Recall that while

merging was introduced specifically for SVM in this paper, theoretical work was pre-

sented that can be used to extend FACT to other classifiers.

4.7.4 Learning Curve Prediction

In this experiment we use the initial training set of n = 50 to estimate the σ(n) for

n = 75, 100, 150 and 200. Therefore our task of extrapolating beyond the original

sample is ambitious. Figure 4.7 shows a learning curve prediction for various datasets

92

2�

3�

4�

5�

6�

7�

8�

9�

1��

� 5� 1�� 15� 2��

A
�
�
�
��
�
�
��
�

T	
����
 ����

V������ ����
�
V������ ���T
����� ����
�
����� ���T

B	�
�� �
���	 ��� ����
�
B	�
�� �
���	 ��� ���T

Figure 4.7: Learning curves predicted by FACT, for various datasets, are similar to

actual learning curves.

0�000

0�00�

0�0 0

0�0 �

0�0!0

0 !0 "0 #0 $0 00 !0 "0 #0 $0 !00

C
%
&
''
()
(&
*
+
%
'
,
-
.(
-
+(
%
*

I/:;:<= >?<:/:/@ D:EF

GFH:J=F
KLM=;

N?F<O; P</JF? QRS

Figure 4.8: We can extrapolate the learning curve quite far without incurring too much

error, and using only a small dataset.

93

given a fixed initial training size of n = 50.

Figure 4.8 shows the learning curve prediction error for various initial training set

sizes. This experiment aimed to accomplish two objectives (i) show that our estimated

predicted curve is close to the actual learning curve for various datasets and (ii) show

that the extrapolated the learning curve does not incur too much error when only a

small initial training sample is used. As can be observed, we successfully accomplish

both of these objectives. Note however that our LC approach is not perfect, and there

are still some discrepancies in Figure 4.7.

4.8 Future work for Extension to Other Classifiers

Many machine learning algorithms use gradient descent or exception maximization,

for which online and stochastic versions exist, e.g. stochastic gradient descent and on-

line exception maximization [CM07, BB07]. These online and stochastic algorithms

allow training points to be considered in a streaming manner. That is, when the learn-

ing model is trained on new data, we do not need to re-consider the old training data

we have already seen. Using this observation, it is promising to develop light weight

delta maintenance techniques for large range of machine learning algorithms using in-

cremental bootstrap computation. However, this would be our future work, and is not

discussed in this dissertation.

Furthermore, recent bootstrap variants, such as the Bag of Little Bootstraps [KTS12a],

are developed in order to take advantage of distributed computing setting. These meth-

ods can be plugged into our framework to achieve faster bootstrap computation and

less network overhead.

94

4.9 Conclusion

In this chapter we presented FACT, a non-parametric classifier approximation system

that relies on techniques presented in chapter 3. We showed how FACT can be applied

to the SVM classifier for quick model training. We found that our approach provides an

accurate estimation method for SVM. We also presented an initial insight for extending

our approach to other classifiers. Using the resampling techniques from chapter 3 we

found that it is rarely necessary to use more than 1% of the training data to achieve

identical accuracy levels compared to the classifier trained on the entire dataset. In

our internal tasks we found that the learning curve estimation was quite helpful in

classifying large datasets. In general the learning curve proved effective in planning the

classification task by determining with confidence the point after which no noticeable

improvement is seen. We plan to extend the presented approximation approach to other

classification algorithms and other data mining tasks, which suggests a future direction

of our research.

95

CHAPTER 5

Data Complexity

Up to this point in the dissertation we dealt with quality assessment and sample size se-

lection while keeping the underlying machine learning algorithm fixed. In this chapter

we study the relationship between the three factors: (i) sample size (ii) data complex-

ity and (iii) algorithm complexity. The goal is to determine the required sample size

given the algorithm complexity and data complexity. The study of data complexity is a

complicated issue, and we do not expect to obtain immediate success. For this reason,

we restrict our analysis to very simple data models and two types of algorithms: (i)

association finding and (ii) pattern matching.

(a) A complex dataset. (b) A simple dataset.

Figure 5.1: Different types of problem complexity in the context of classification.

96

5.1 About Data Complexity

Data complexity theory can be used to complement LC parameter estimation. This

approach selects the most competent algorithm for a given problem complexity to

minimize the required sample size. The data complexity part of this dissertation is very

novel, and we present its results only as independent experiments in sections 5.2.2 and

5.3.3. We believe, and confirm through experiments, that data complexity represents

a strong potential for future work in the area of ML algorithm selection. Our belief is

also justified by the recent notable works in the area [HB02, Ho08, Ho04, KB06].

The intuition behind data complexity is best presented from the classification point

of view. Consider Figure 5.1 which shows the different levels of classification com-

plexity. The complexity of the data for the classification problem is often measured in

terms of the percentage of points on boundary (estimated by the minimum spanning

tree) and linear separability of the classes [KB06]. Based on these metrics, Figure 5.1a

gives an example of a complex problem due to a nonlinearly separable classes and

Figure 5.1b shows an example of a less complex problem. Authors in [KB06] identify

classifiers which are most adept at dealing with problems of various complexities 1.

5.2 Data Complexity and Association Detection

In this section we show how the recent data complexity theory can be used to provide

sample size estimation given the relationship complexity and algorithm complexity.

The data complexity results presented can be seamlessly integrated with the quality

estimation, BLB-TS, and with the sample size estimation, SS-TS, approaches pre-

sented in Chapters 3 and 4 respectively. The findings in this section can be used as an

1In [KB06] authors find that nearest neighbor (nn) and linear classifier (lc) have opposite domains

of competence. Surprisingly (lc) performs best for complex problems and (nn) performs best for easy

problems.

97

initial stage for algorithm selection instead of the often-used trial-and-error strategy.

5.2.1 Introduction to Data Complexity for Association Discovery

Here we present techniques for leveraging data complexity2 theory to pick the appro-

priate association finding algorithm given the problem complexity. Recently it has

been shown that the performance of a classifier can be analyzed in terms of the data

complexity [HB02, Ho08, Ho04]. We apply this idea to the association complexity to

explain how relationship complexity affects the required sample size needed to capture

this relationship given a fixed association mining algorithm. Our experimental results

provide the motivation for further exploring this idea.

Definition of Association Complexity: In this work, we study how the complex-

ity of data dependence affects the sample size required when we hold constant both

the association finding algorithm and the user prescribed accuracy. Section 6.1 further

describes the association finding method used and below we only present the required

pieces of the algorithm to understand complexity computation. To compute the com-

plexity of a relationship between two variables x and y we use the approach proposed

by [RRF11] which describes complexity as:

MCN(D, ǫ) = max
xy<B
{log(xy) : M(D)x,y ≥ (1− ǫ)MIC(D)}

where MIC is defined as

MIC(D)x,y =
I∗(D, x, y)

logmin{x, y} (5.1)

and where D is a finite set of ordered pairs, and x, y correspond to an x-by-y grid into

which x and y values of D can be partitioned into. I∗ corresponds to the maximum

2Here data complexity refers to the complexity of the data distribution and is different from the

complexity of evaluating a query on a database instance which is expressed as a function of the size of

the instance when the query is fixed.

98

mutual information of D when it is partitioned into a specific x-by-y grid G. Note

that 0 ≤ I∗(D, x, y) ≤ logmin{x, y} therefore dividing by logmin{x, y} bounds

M(D)x,y to a [0, 1] range. The MCN statistic measures the complexity of the rela-

tionship in terms of the number of cells required to reach the MIC score. The MIC

score is the maximum MI score over all possible x-by-y grids that aim at ‘encapsulat-

ing’ the inter-variable relationship (see Section 2.2). Using the MCN metric we can

determine that a function like f(x) = x represents a simple relationship because very

few cells are required (e.g., four) to encapsulate the dependency whereas a function

like f(x) = sin(18π(x)) requires many (thirty-six) cells. Notice that MCN(D, ǫ)

depends on MIC(D), but because MIC(D) roughly equals R2 for most practical

purposes it is a good approximation to the actual inter-variable dependence.

5.2.2 Experiments

Experimental Setup: We use a real-world dataset of size 4.3TB from Twitter that we

have privately collected. This dataset consists of roughly 2 Million hashtags and their

frequency in a time-series format. We use hourly granularity and at a maximum, each

hashtag has 4,000 observations3. Empirical evidence suggests that computing an MIC-

association matrix for the above dataset is very expensive and without approximation

can take months to compute. We use a private Hadoop cluster of size 7 where each

node is a 16-core AMD Opteron(tm) Processor 6134 @ 2.3GhZ with 132GB RAM.

We use Hadoop 1.0.4 with a total of 140 map slots.

Experimental Results: We vary the data complexity and a machine learning al-

gorithm and observe how the sample size is impacted. Table 5.1 presents the ML

algorithms used. The association finding algorithms presented in Table 5.1 are ranked

based on their ability to find nonlinear associations as measured from the set of func-

3Not every hashtag contains the same number of observations

99

Relationship Type Description Required Sample Size

Linear y = x 20

Parabolic y = 4(x− 1
2
)2 20

Cubic y = 128(x − 1
3
)3 − 48(x −

1
3
)2 − 12(x− 1

3
) + 2

20

Exponential y = 1010x − 1 20

Linear/Periodic y = sin(10πx) + x 20

Sinusoidal (Fourier Fre-

quency)

y = sin(16πx) 50

Sinusoidal (non-Fourier Fre-

quency)

y = sin(13πx) 160

Sinusoidal (Varying Fre-

quency)

y = sin(7πx(1 + x)) 310

Categorical 64 points chosen from the

following set: {(1,0.297), (2,

0.796), (3,0.290),(4,0.924),

(5,0.717)}

580

Random random number generator 660

(a) Different levels of data complexity and the required sample size needed to capture the relation-

ship using MIC.

Figure 5.2: Problem complexity and required sample size.

100

Correlation Method Type

Pearson Linear

Spearman Linear

MI (KDE) Nonlinear

MI (Kroskov) Nonlinear

CovGC Nonlinear

Maximal Correlation Nonlinear

MIC Nonlinear

Table 5.1: Types of machine-learning algorithms used.

tional Relationship Types shown in Table 5.2a. Thus we compare the score produced

by algorithm A with the score given by R2 and rank A accordingly. Figure 5.3 shows

the results indicating that to achieve a minimal sample size, one should apply the sim-

plest association finding algorithm to find the simplest complexity and one should ap-

ply a more sophisticated algorithm to a problem with more complexity. Note that there

are several spikes which are due to Spearman and Pearson correlation being more effi-

cient for monotonic and linear relationships respectively. Table 5.2a further elucidates

the relationship between the problem complexity and the required sample size when

using MIC. We observe that as relationship complexity increases, the required sample

size also increases. Note that the required sample size in Table 5.2a is measured in

the number of tuples, ignoring the total size of the dataset. The types of relationships

we examined only include those that can be represented by a function and the study of

other relationship types are part of our future work.

Next, application of data complexity to pattern matching is presented.

101

all’, we propose a dynamic model that adopts to its resource environment thus dra-

matically improving the performance of pattern queries. Indeed, the optimization of

pattern queries represents a problem of great research interest and practical importance

due the many application of such queries.

In the financial sector, pattern queries (PQs), that run continuously over the data

streams, are used to detect fleeting opportunities by monitoring trends. Informally we

define a pattern query as a regular expression (RE) with optional predicates assigned

to each symbol. Note that if a pattern query q only contains equality predicates, then

q is exactly equivalent to a regular expression [PC03]. In network management con-

tinuous pattern queries can be utilized to monitor online traffic and detect anomalies

(e.g., link congestion) and their cause (e.g., hardware failure, denial-of-service attack).

Because a set of patterns is usually large (a set of HTTP patterns alone takes a few GB

[Roe99]) and because we look at applications where processing of data needs to be

done in realtime, dynamically adjusting the pattern matching system to take advantage

of the entire system resources without sacrificing the overall performance is of great

importance. These are just two of the many application examples where pattern match-

ing plays an important role. The importance of pattern matching is underscored by

the large series of increasingly powerful and sophisticated query languages proposed

for pattern matching. A very incomplete list includes SQL-TS supporting regular ex-

pressions and backtrack optimization [SZZ01], SASE+ [DIG07] supporting powerful

Kleene-closure queries, and K*SQL [MZZ10] supporting the nested word model and

queries on XML software logs, and genomics.

In these pattern languages, regular Kleene-star expressions are used to characterize

patterns which are then implemented using an FSA. The type of FSA constructed and

thus the resulting query performance much depend on the available system resources.

Thus in this section, we address the problem of dynamically changing the underly-

103

Figure 5.4: Bounded FSA example for a regular expression

ing automata in response to changing system resources, in order to optimize pattern

matching performance.

High level of performance is, for instance, required by long running pattern queries

that perform decision support and data mining against massive databases or bursty data

streams that put a strain on the already limited resources such as processing power,

network bandwidth and battery capacitance. The problem is exacerbated when pat-

tern query evaluation is performed using a multi-core or a cloud environment where

frequent changes in the availability of workstation resources and the overall worksta-

tion load are common. Thus in this work we make the first steps towards designing

a dynamic pattern matching system, called Morpheus that alleviates the above issues.

In fact, Morpheus automatically reconfigures its pattern representation, based on the

finite state automata, according to the available workstation resources.

Further evidence for the need of dynamic systems is provided by the introduction of

Adaptive Query Processing (AQP)[IDR07]. With AQP run-time statistics are recorded

and optimizations on the query, including selection and projection optimizations, are

performed [FHA10] based on the current run-time statistics. AQP is especially popular

in data streams processing where the data and system resources change frequently. Our

work leaves the query unchanged and instead modifies the system, which in our case

is the pattern automaton, for efficient pattern matching execution. It is common for a

multicore system to experience a mixture of predictable and sporadic changes in the

workload thereby creating a necessity for a dynamic system optimization. To address

these conditions, “resource-aware” systems are beginning to emerge [LWZ01, NSN97]

that provide a varying quality of service depending on the available resources. The

closest work to ours relies on convoluted tactics to cache frequently accessed program

instructions [LCH00] to help with the dynamic workload. These approaches, however,

104

are not effective when workloads are unpredictable. Other previous works mainly fo-

cused on tuning the query representation given a static environment. For example au-

thors in [DF03] employ a non-deterministic finite state automaton (NFA) to represent

a set of XPath patterns to filter XML documents. Other methods [KCT07] explore the

trade-off between a deterministic finite automaton (DFA) pattern representation and an

NFA to find the middle ground that achieves desired performance while minimizing

memory usage. These works, however, do not consider changing workloads. This is

a serious limitation given the rapid, bursty nature of data streams, and the real-time

response requirement of many applications.

Dynamic reconfiguration methods present several problems in terms of reconfigu-

ration overhead (time and space). Because reconfiguration is done during run-time, the

overhead is part of the run-time cost and needs to be minimized. The dynamic recon-

figuration problem is further complicated by the search requirement that must select

the best system configuration. This is often difficult because resource and performance

estimations of a potential configuration are required. One way to address the issues

with dynamic reconfiguration is by using a naive method. The obvious, but deficient

solution, is to let the user reconfigure manually the representation of pattern queries.

Unfortunately, the user may know what she wants but not know how to achieve it. The

assumption that the user understands the low level system details including the avail-

able resources and is able to adapt a query representation to environment changes is

clearly unreasonable. Thus in our approach the above objectives are instead achieved

through fast automatic approximation methods that are very effective in practice and

significantly improve the state of the art in dynamic pattern matching.

For completeness we briefly define a pattern matching problem. Informally a pat-

tern matching problem seeks to detect all sub-sequences of input that match a given

set of patterns. More formally, given a potentially infinite stream I consisting of sym-

105

bols drawn from the alphabet Σ and given P = {ρ1, ..., ρm} which is a set of patterns

over Σ then the pattern matching problem involves detecting all subsequences of I

matching ρi ∈ P .

Traditional pattern matching approaches generally construct one finite state ma-

chine (a deterministic or a nondeterministic finite automaton (DFA or NFA respec-

tively)) for all patterns to be matched. A DFA is a quintuple M(S, s0, σ,Σ, F) where

S is a finite set of states, s0 is an initial state, σ : S × Σ → S is a transition function,

Σ is the alphabet and F ⊆ S is a set of accepting states. NFA is defined similarly ex-

cept that the transition function σ may return multiple states, thus multiple states may

be active for input i. As compared to a DFA, an NFA can represent a pattern using

storage that is on the same order as the number of characters present in the pattern,

however the processing cost of the NFA is expensive due to a potentially large number

of concurrently active states. While DFA are largely immune from the processing cost

issues plaguing NFA, representing a patterns with a DFA may lead to a state explo-

sion and thus to a prohibitively large automata. Therefore, the number of concurrently

active states is the primary criterion that determines both the processing bandwidth

and the space requirements of the automaton. Thus, by using a middle-ground be-

tween an NFA and a DFA to represent a set of patterns in a dynamic environment we

could potentially achieve the speed of a DFA and the space efficiency of NFA during

run-time.

In order to dynamically adjust the automaton configuration our system prototype

needs to be able to efficiently switch between a non-deterministic finite automaton

(NFA), a determinism finite automaton (DFA) and an automaton that has k active

states. There are standard techniques to convert a pattern (RE) into an NFA or a DFA

[HMU06]. However no published research has so far considered the important prob-

lem of dynamically adjusting an automaton with a bounded number of concurrently

106

active states. Thus we define a K-Finite Automaton (K-FA) to be a finite automaton

where there is at most k concurrently active states at any time.

Figure 5.4 shows a motivating example of using an automaton with a bounded num-

ber of concurrently active states. Figure 5.4 (a) shows an NFA that accepts pattern p

and has up to three concurrently active states. Figure 5.4 (b) shows a DFA that accepts

p and has only one active state at any time. Figure 5.4 (c) presents a K-FA that accepts

p where there is only a bounded number of k = 2 concurrently active states. Now, if

D(i, j) is the difference in the number of states between automaton i and j, we have

that D((b), (c)) < D((a), (c)). Therefore if resources change such that the automaton

in Figure 5.4 (c) was the desired configuration, template in (b) would be morphed into

an automaton in (c) as this morphing would require least amount of operations. This

type of analysis will be used when deciding how dynamic reconfiguration should be

done.

Morpheus uses dynamic system reconfiguration to reconfigure the underlying pat-

tern matching automaton based on the current system resource availability to improve

pattern matching performance. Morpheus pre-computes critical query configurations

that will be used as templates which will be morphed into the desired configurations

during run time. By using templates the overhead of dynamic reconfiguration is sig-

nificantly reduced as shown in the experimental section. The critical templates to

precompute are selected such that the average expected reconfiguration time is min-

imized. Empirical evidence also shows that the templates virtually do not increase

the amortized memory cost while greatly increasing the throughput when compared to

static solutions. Throughout this section we refer to a configuration as a representation

of an automaton m at time t given resources Rit where i ∈ Resources (R).

Anomaly Detection With the help of pattern matching and statistical methods we

also will employ our system to detect anomalies, Anomaly Detection, which is defined

107

as detecting events that deviate from a normal behavior, has recently been attract-

ing a lot of attention. The administrator of a server may use anomaly detection to

monitor real-time system statistics and to raise alerts if an abnormal usage pattern is

detected. Anomaly detection can also be used for detecting suspicious behavior in a

network traffic. Most research on anomaly detection, however, is application-specific

and works based on predefined rules. Furthermore, current anomaly detection algo-

rithms are not scalable and cannot adapt to a changing behavior in the input. Our

project takes advantage of Stream Mill, a Data Stream Management System designed

at UCLA, to construct a light-weight statistical model of the stream that can be used

to make predictions of a parameter of interest based on which anomalous behavior

can be detected. The model we use is derived from a classical auto regressive model,

which is a one-dimension time-series model. Since a large portion of data-streams cor-

responding to the applications (e.g., real-time system statistics, web-traffic) of interest

are one-dimensional time-series, our approach is attractive. We conduct experiments

that demonstrate the scalability and efficiency of our approach.

Morpheus performs efficient dynamic reconfiguration in three stages: (i) template

computation, (ii) run-time optimization and (iii) template adjustment. In (i) the tem-

plates are computed such that the expected dynamic reconfiguration (morphing) time

is minimized. The optimal number of templates is determined based on the estimated

amortized memory cost and the template update cost. In (ii) resource estimation is

performed when searching for a potential configuration. Furthermore the run-time

stage identifies the time when it is feasible and desirable to perform the automaton

reconfiguration by analyzing the cost/benefit of the reconfiguration. Steps necessary

to perform the reconfiguration are also carried out in (ii). Stage (iii) updates the pre-

computed templates based on the template usage statistics. All three of the dynamic

reconfiguration stages are seamlessly integrated into Morpheus.

108

Figure 5.5: Architecture of Morpheus

This section makes the following contributions:

1. A system prototype, termed Morpheus, is presented that uses a novel way of

performing dynamic reconfiguration of pattern automata via morphing of pre-

computed templates to speed up pattern matching in a dynamic environment.

2. Linear optimization techniques are discussed that are used for dynamic reconfig-

uration of pattern automaton that increase/decrease automaton parallelism thus

adjusting to the current system resources.

3. An Empirical study that evaluates Morpheus over various workloads is pre-

sented.

The rest of the section is organized as follows: in section 5.3.2 we present an

overview of the architecture of Morpheus. Section 5.3.2.1 is devoted to discussion of

the details of each of the components of our system. Section 4.7 presents a perfor-

mance evaluation of our system.

5.3.2 Pattern Matching System Overview

The main components of Morpheus are briefly described next. The focus of Mor-

pheus is on improving the performance of pattern matching and the main way this is

accomplished is by reconfiguring the pattern representation based on the available sys-

tem resources. Dynamic reconfiguration can negatively impact matching performance,

however templates help mitigate the problem by precomputing several configurations

in advance that can be used as starting points for achieving the final configuration.

Precomputed templates are nondeterministic and have a small memory foot-print as

shown by empirical evidence in Figure 5.3.3.4.

109

Morpheus as an input takes an NFA representing a collection of patterns. The

inputted NFA is then used by the reconfiguration engine to precompute templates. The

key components presented in Figure 5.5 can be summarized as follows:

1. Reconfiguration Engine: The reconfiguration engine is responsible for pre-

computing and adjusting the automata on the basis of the current workload.

Specifically, Morpheus uses linear optimization techniques to find (i) the op-

timal number of precomputed configurations, (ii) the optimal set of operations

needed to transition between configurations and (iii) the optimal time when to

update the precomputed configurations. The automaton access probabilities are

also taken into account during reconfiguration. Furthermore the reconfiguration

engine evolves over time because both the resources and the access probabilities

change over time.

2. Resource Monitor: Morpheus includes an automated statistics collection tool

that, with a negligible overhead, captures data from the OS (CPU and RAM us-

age) and from the currently active automaton (state access probabilities). The

CPU usage reported by the Linux kernel is expressed as a percentage of one

CPU core. Initially we assume a uniform random distribution of the input sym-

bols (i.e., an equal access probability of all states). During run-time, however,

we consider a trace driven probability distribution of various input symbols.

With these traces we can more accurately determine the nondeterminism of a

particular configuration. The collected statistics are utilized to decide when to

reconfigure and into what reconfiguration.

3. Resource Usage Estimator: When choosing an automaton M from the search

space we must estimate its resource usage to insure that the available resources

are properly utilized. Based on our experiments the average CPU load is linearly

proportional to the average non-determinism of approximately the first 5% of

110

the states of the automaton. Therefore doubling non-determinism of the first

5% of the automaton states doubles the CPU usage requirement. The intuitive

explanation for the 5% figure is that on average only the first 5% of the pattern is

matched by the input. This crude estimate produces good results as discussed in

the performance evaluation section. The memory usage of M is again estimated

by a linear approximation and as seen in Figure 4.7 this produces good results.

A brief overview of the resource monitor and the resource usage estimator will be

given in Section 5.3.2.5; next we describe the details of the reconfiguration engine.

5.3.2.1 Reconfiguration Engine Details

The reconfiguration engine can be decomposed into three stages: pre-configuration,

execution and update. In the first phase several automaton configurations are pre-

computed to minimize the dynamic re-configuration time when system resources or

workload varies. Then in the execution phase the pre-computed configurations are

used as templates to morph the pre-configuration into a desired state. Finally during

the last phase the pre-computed configurations are updated based on the historical

statistics gathered. The above phases are discussed in detail next.

5.3.2.2 Pre-Configuration

When pre-computing templates, the assumption is made that all operations are done on

a single FSA, (i.e. no clustering is performed). Breaking up the FSA into disjoint clus-

ters may improve memory usage however for the sake of simplicity we only deal with

a single automaton. Nevertheless clustering is important especially when dynamically

adding patterns into the automaton. While Morphesus also supports simple pattern

clustering method using distance metrics such as MDL [CGR03], these are orthogonal

111

to the focus of this chapter. Thus we will assume that a single NFA N representing a

set of patterns is given as input. Given N and a set of resources R representing system

constraints (e.g. memory, cpu) the pre-configuration problem consists of computing

a set of automata derived from N such that the average conversion time between any

two automata is minimized and all resource constraints are satisfied. Therefore, we

will derive from N a new automaton M that accepts the same language but has a dif-

ferent level of non-determinism, k, where k denotes the average number of states that

are concurrently active per input. A DFA has k = 1 and an NFA has no upper bound

on k. Thus we define K-FA (K-Finite Automaton) as automaton that has a bounded

number of concurrently active states equal to k.

minimize :

max
∑

di

s.t.
∑

mijxi ≤ Rj (5.2)

xi ∈ {0, 1}

More formally, the pre-configuration problem can be formulated as shown in Equation

5.2. Variable di is defined as the minimum distance to automaton i from any other

automaton and overall we want to minimize the maximum distance to any automaton.

The distance refers to the difference in the number of states between the original and

the derived automaton. Variable di is directly proportional to the number of operations

(merge or split) needed to be performed to derive automaton i. The formalization of

these operations is discussed in Section 5.3.2.3. The estimation of the size of various

automata is presented in Section 5.3.2.2. mij refers to the amount of resource j that

automaton i uses, where i varies from k to 1 and where k is initially set to be the

average number of the concurrently active states in N .

The constraints in Equation 5.2 guarantee the feasibility of the solution. Because

each xi,j can only vary between 0 and 1, and because the sum of all mi,j for a given i

112

must be less than or equal to Rj , we guarantee that the combined load imposed on the

system will not exceed what is available; this avoids saturation and overcommitment of

the system resources. The resource constraints include the CPU and the RAM because

these were the most constrained resources in the real-world scenarios we explored.

Extending a set of constraints, however, to include other resources (e.g., network, disk

space) is straight forward. Furthermore note that the goal function in Equation 5.2 also

depends on the time t as discussed in Section 5.3.2.3. The feasible solution imposed by

the constraints may be fractional and must be rounded as discussed in Section 5.3.2.5.

The number of pre-computed templates also affects the overall dynamic reconfigu-

ration performance. Recall that templates are used as a way to speed up reconfiguration

by picking a starting point to reconfigure from that will result in the desired configu-

ration in the least amount of time. Figure 5.3.3.4 shows the number of precomputed

template configurations, n, should be such that the benefit (average time to perform

dynamic reconfiguration) is equal to the cost (the sum of the average search and the

update times of the templates). Automatically determining n is important in decreasing

the overhead of Morpheus.

Estimating the number of operations: In Equation 5.2, the number of opera-

tions (di) is measured in terms of the difference in the number of states between two

automata. To estimate the number states (size) of the K-FA for some k we use linear

fitting between the size of an NFA N and the size of the corresponding DFA D. Thus

given a desired k we can quickly estimate the size of the K-FA without explicitly deriv-

ing it. The number of states of N can be accurately computed, because N is given as

the input. The number of states in D can be estimated based on the average nondeter-

minism per state of the automaton and on the underlying pattern characteristics. The

summary of the memory and processing complexities of different types of automata,

including K-FA is presented in Tables 5.3 and 5.2 [YCD06] where n is the length of

113

the regular expression and m is the number of regular expressions. Given the initial

pattern set we can determine the class of N from Table 5.2, based on which the size

of D is computed. To estimate the sizes of subsequent automata a linear model is

constructed given two points |D| and |N |. When the exact sizes of different K − FA

automaton are computed subsequently, Lagrange polynomial is used to adjust our size

estimation model into a more accurate, polynomial, version.

Pattern Type Example # of states

Strings of length k ˆabcd k + 1

Wildcards ab.*cd k + 1

Patterns with ˆ, a wildcard of length j ˆab.{j+}cd O(kj)

Patterns with ˆ, overlapping with prefix of

length j

ˆa+[a-z]—{j}d O(k + j2)

Patterns with length j, where prefix over-

laps with a wildcard or a set of characters

.*ab.{j}cd O(k + 2j)

Table 5.2: Size estimates of different types of patterns

Processing complexity Storage cost

NFA O(n2m) O(nm)

DFA O(1) O(m2n)

K-FA O(k) O(m2n −∑
(

n
k

)

)

Table 5.3: Classification of automata where n represents the average length of a pattern

and m represents the number of patterns

Estimating non-determinism: It was shown how to estimate the memory re-

source requirements of K-FA given k. Next we demonstrate how non-determinism of

the K-FA is estimated. Estimating the non-determinism of the K-FA is done by com-

puting the average nondeterminism per state of the automaton as is shown in Equation

114

5.3.
∑

states P (i)× a

|sn|
(5.3)

P (i) is the probability of executing a transition with input i, and a is the number of

states that is activated when input i is processed. |sn| is the total size of the input. In

our experiments |sn| is equal to the length of the string that is accepted by the current

automaton. Note that initially all symbols in alphabet σ occur with equal probability,

however throughout execution P (i)s can be updated to P (i)′. This presents a problem

because when P (i) is updated, the nondeterminism of K-FA can increase/decrease

thus violating the guarantee of our automaton that at most k states are simultaneously

active. When this occurs a set of merge/split operations needs to be performed to

decrease/increase the non-determinism. In our prototype the threshold α determines

the delta such that if α < |P (i)− P (i)′| then the update is performed.

5.3.2.3 Run-Time

During run-time three main steps are performed: (i) decide whether a reconfiguration

is needed (ii) when a reconfiguration is needed, find the most applicable configuration

from the search space and (iii) perform the necessary merge and split operations to

achieve the desired configuration. In this section we give a detailed overview of these

three steps.

A reconfiguration is the process of applying a set of operations to an automaton to

make it more or less deterministic depending on the available system resources. More

determinism is beneficial for systems with high available memory but low processing

availability. Less determinism is attractive for systems with low memory resources

and high processing availability. Valid operations that can be applied to an automa-

ton include a merge operation and a split operation. The merge(Si, Sj) operation is

performed by merging two simultaneously active states Si and Sj (for input a) thus

115

decreasing k. The split(Si) operation is performed by splitting state Si into two states

Sim and Sin. Both the split and the merge operations are performed with a goal of

minimizing the overall size of the resulting automaton.

To change the automaton m (into a more deterministic or into a more non-deterministic

system m′) we search for a template automaton that requires the least number of op-

erations to derive m′. Once the automaton mi, which will be used to derive m′′, is

determined, the reconfiguration process can start by applying the merge or the split

operations required to achieve the level of non-determinism of m′. The operations are

applied continuously until the desired level of non-determinism (k) is obtained. The

merge and split operations are safe, meaning that after reconfiguration the automaton is

left in the same state as prior to reconfiguring and the matching process can continue.

When to reconfigure: The reconfiguration process can be required or optional:

1) Reconfiguration is required: Occurs when the available system RAM does not

meet the memory requirements of the current automaton configuration.

2) Reconfiguration is optional: Occurs for two reasons: (i) system RAM is in-

creased or (ii) the percentage of free cores is increased. In (i) we can decrease the

non-determinism (via the merge operation) of the current configuration thus increas-

ing system performance if the current nondeterminism of the system is greater than

the number of available cores. In (ii) nondeterminism can be increased (via the split

operation) to match the number of free cores. If both (i) and (ii) occur simultaneously,

Morpheus considers (ii) first when searching for a feasible configuration because ap-

plying the split operation will not increase memory usage and therefore is considered

a resource safe operation.

Search Space: When searching for a solution we consider the available resources

R to find the target configuration T that maximizes the throughput. T is determined

by first considering the available cores k and estimating if |Tk| ≤ Rm where Rm is

116

the available memory resource and Tk is the target automaton with k level of non-

determinism. Once Tk is determined we search for a template M which will be mor-

phed into Tk. M is picked such that the potential number of operations (|(|Tk|−|M |)|)
required to derive Tk is minimal. To find both Tk and M in our implementation we

perform a binary search. This is an applicable solution because in our case max(k)

(maximum level of nondeterminism) is about 16 (number of concurrent threads in a

system) which is acceptable for today’s multi-core systems.

Next we discuss the formulation of the split and merge operations as an optimiza-

tion problem.

Split Operation: Suppose we have a DFA automaton M and the available cpu or

free memory resources change. Suppose we are given the available parallelism of the

system k. Assuming that k > 1, we want to increase the parallelism (non-determinism)

of M while bounding the number of concurrently active states at k resulting in au-

tomaton M ′. The nondeterminism of automaton M is increased via a split operation.

Intuitively the split operation takes state Si and splits it into two states Si1 and Si2. All

transitions belonging to Si now are part of Si1 and Si2. The split operation is repeated

until nondeterminism of M is equal to k. Furthermore Si is selected in such a way that

|M ′| is minimized. The above problem is referred to as the State Split Problem (SSP)

[XJS10], and if we let S be the set of all NFA states, N be the set of states in M (i.e. all

NFA state combinations), Si (i = 1, ..., N) be i-th combination of NFA active states,

Si,j be the j-th subset split from Si and Q be the union of Si,j (i=1,...,N ; j = 1,...,k) the

SSP can be formulated as the following equation:

min|Q|

s.t.

∪jSi,j = Si; (i = 1, ..., N ; j = 1, ..., k) (5.4)

Q = {Si,j|i = 1, ..., N ; j = 1, ..., k} − {∅}

117

Equation 5.4 minimizes the number of distinct Si,j which are non-empty and the union

of which will translate into a smaller automaton. Authors in [XJS10] show that the

SSP problem is NP-complete for any k > 1 and therefore we rely on a heuristic to

solve it. The heuristic used by Morpheus depends on u which specifies the minimum

size of each Si,j , which restricts the number of resulting sets. With this heuristic, when

splitting S, at least one of the splits must be of size u. Once the Si,j is obtained, the

problem reduces to a minimum subset cover problem where the minimum number of

sets has to be picked to minimize |Q|. We implement other heuristics, such as limiting

the amount of non-parallelism to consider k, requiring that there is no overlap between

the subset split from the same NFA active state combination and requiring that at least

one of the subset splits Si,j for some NFA active state combination y must satisfy

Si,j = y where i 6= y. For more details on heuristics and optimizations used see

Section 5.3.2.6. The SSP problem can be formulated as a Linear Program (LP) which

is presented in Equation 5.5.

min
∑

T

XT

∑

D∈S XD ≥ 1 ∀ States S

XT ≥ XD∀ New States T (5.5)

0 ≤ XT , XD ≤ 1∀ decompositions D

The LP formulation presented in equation 5.5 can be interpreted as minimizing the

number of new states, with the following conditions: (i) for each decomposition of

states XD, we must pick at least one such decomposition and (ii) the number of new

states must be at least as great as the number of decompositions, which guarantees that

all original states can be derived. XD is generated using the heuristics discussed. Note

that during run time we collect access statistics pi for each state i, thus all subsets are

weighted by pi. Initially the weight of all subsets is the same.

Merge Operation: Similarly to the split operation above we can define a linear

118

program that solves the merge optimization problem. In the merge optimization prob-

lem a set S of states has to be derived that is a combination of a subset of the current

K-FA states the union of which minimizes the overall size of the resulting automa-

ton. The relaxed LP is depicted in Equation 5.6. The LP in equation 5.6 minimizes

the number of unique sets as a result of merging two states from the possible K-FA

2-state combinations. The variable XT represents the number of new states as a result

of picking XM .

min
∑

T

XT

∑

M∈S XM ≥ 1∀ States S

XT ≥ XM∀ New States T (5.6)

0 ≤ XT , XM ≤ 1∀ decompositions D

5.3.2.4 Update-Time

Based on the history of reconfigurations performed, an update of pre-computed config-

urations (templates) can be carried out. In other words, we may change a pre-computed

configuration if a better pre-configuration can be generated which will result in a lesser

dynamic configuration overhead. A better pre-configuration p′ may arise if an existing

pre-configuration p is infrequently used thus utilizing resources without having a sig-

nificant impact on the reconfiguration time. Changing a precomputed reconfiguration

p involves either removing p or deriving p′ via split or merge operations of p. Ad-

ditionally, when resources change, we may need to remove or add a reconfiguration.

Therefore the formulation in 5.2 must be rephrased to encompass the dynamic nature

of the problem in terms of time t.

At time t two scenarios might occur:

• Resources may change.

119

• By keeping run-time statistics, we may notice that some pre-configurations p

are less frequently used compared to others and the available resources can be

utilized better by pre-computing other configurations instead of p′.

Thus, at time t, Rtj , specifies the capacity of resource j at time t, witdi, specifies

the minimum number of operations needed to derive automaton (template) i at time t,

wit specifies the weight of automaton i. wit increases with the increase of the frequency

of usage of i. By changing the maximum distance di via the weight wit as a function of

time t our pre-configuration algorithm becomes dynamic with respect to both the time

and the available resources. The above formulation can be expressed using the LP in

Equation 5.7.

minimize :

max(
∑

witdi)

s.t.
∑

mijxti ≤ Rtj (5.7)

xit ∈ {0, 1}∀i ∈ m, t ∈ T

Thus, based on the template usage statistics we can remove a template p, modify

it to p′ or add a new template p′′. The weight wit is adjusted by a constant c each time

template i is used. In our prototype version of Morpheus c was specified manually,

and a fully automated approach is part of the future work.

When solving the optimization problem in Equation 5.7, we have to estimate if

updating template i to j is ’worthwhile’. When template i needs updating, we term

this event as template i expiring. We can estimate the average throughput of i and j by

calculating the average nondeterminism and the available processing power present.

Specifically, the overall throughput can be estimated as

T = α
∑

j

∑

i(d(sj)× (pj + (1− pj))

|s| (5.8)

120

where |s| is the number of states of the current FSA, α is a system maximum through-

put, dsj is the determinism measure of state j (see Equation 5.3. Notice that if sj has

low throughput (e.g ≤ 0.1) and its activation probability pj is also low (close to 0), the

overall throughput will be close to 1 because the slow sj will not be active frequently

hence the term (d(sj× (pj)+(1−pj)). Thus, T (the overall throughput of the system)

is equivalent to the average throughput of all states j of the current automaton.

We can also track the average time it before template i expires. Thus to check

if updating i is ’worthwhile’ we compare the cost with the benefit of updating. The

cost of updating is the reconfiguration (update) time and the benefit is the time it takes

for i to process the same data as j (Ti×it
Tj

) where Ti is the throughput of automaton i.

Thus reconfiguration is performed if the benefit is greater than the cost. Because of

the benefit analysis before reconfiguration, Morpheus does not suffer from too much

oscillation between different reconfigurations. Furthermore the response frequency to

the changing system environment can be easily tuned in Morpheus by adjusting the

minimum gap required for reconfiguration between the benefit and the cost.

5.3.2.5 Implementation

In this section we briefly discuss the implementation details. The components shown in

Figure 5.5 are implemented in Java. We use lp solve [lps] to solve the Linear Program

optimizations defined. To solve the fractional optimization LP problems presented,

we use the technique of rounding [RT85], which in expectation will give an optimal

integer solution. Thus suppose that a solution to an instance of the LP in Equation 5.5

is as follows: XD1
= 0.2 XD2

= 0.5 and XD3
= 0.3. Via rounding we can get a good

approximation to the above solution by rounding the largest XD to 1 and others to 0,

therefore XD2
would be rounded to 1 and others to 0. Our experiments clearly show

that using a rounding technique in expectation produces a good solution.

121

During run-time the access probabilities of states have to be updated and automa-

ton reconfiguration has to be performed without losing the currently active states. The

original NFA states are stored in a hash-table, which allows for a fast update of ac-

cess probabilities of states. During reconfiguration, the necessary state transitions are

copied to the currently active automaton. Furthermore, upon reconfiguration, the state

of the previous automaton Mold should be restored in the new automaton Mnew for the

pattern matching process to continue from the same point. This is achieved by record-

ing the active state labels in Mold and setting the same states to be active in Mnew. By

keeping the original NFA states separate from the states in the currently active automa-

ton, the update of access probabilities and the reconfiguration of the current automaton

can be performed efficiently.

5.3.2.6 Optimizations

In this section more details about the optimization techniques used for solving the split

problem are presented. In [XJS10] it is shown that the upper bound on |Q| (the size of

unique states after a split) using the heuristic presented in Section 5.3.2.3 is given by

Equation 5.9.

|Q| ≤ 2u′ +N −
√
2α

m2
t′2 (5.9)

The run time of the SSP algorithm [XJS10], that is used to determine the split, is too

expensive for the online environment thus we use an approach based on Fractional

Linear Programming that provides a fast approximation (see Figure 5.3.3.5). Further-

more the heuristic in [XJS10] generates a search space that can still be very large. We

make this simple observation: a subset split must be such that: ∃iSi ∈ Si,j . In other

words to reduce the size of the overall automaton, and thus the memory usage, a subset

split must contain at least one of the nodes. If no such subset exists then the split is not

performed. This observation in practice further reduces the search space. Figure 5.6 il-

122

lustrates this heuristic, where the arrow from Si to Sj indicates that Si is a subset of Sj .

Thus intuitively our LP solver would first pick the largest-degree subset whose sizes

are larger than the threshold, and the degrees are larger than 1. Thus, first {A,D,O}
is picked, and {A,D,O,G} is split into {A,D,O} and {G}. The sets {A,D,O,G} and

{A,D,O} are then removed from the graph as well as the edges between these two ver-

tices. Then we pick {G,O} and {O}, and split {G,O} into {G} and {O}. Removing

all edges and nodes associated with {G,O} and {O} leaves an empty graph, therefore

the final graph set of nodes resulting from the split are {A,D,O}, {O}, {G}.
Figure 5.6: Example of subset split generation

Other optimizations used in Morpheus include the restriction on the amount of non-

determinism to consider (k) and the isolation constraint. The bound on the amount of

non-determinism is usually determined by the number of cores or by the number of

concurrently supported threads. The bound on k reduces the search space during run-

time. Furthermore similar to the heuristic in [XJS10], we add the following isolation

constraint:

Si,jŜi,k = ∅(∀j 6= k, i = 1, ..., N) (5.10)

The isolation constraint requires that there is no overlap between the subset split from

the same NFA active state combination. Even with the isolation constraint, as evi-

dent from the experimental results (see Figure 5.3.3.5), the approximation obtained by

Morpheus for the split and merge operations is reasonable.

5.3.3 Pattern Matching Experiments

In this section we begin by demonstrating the accuracy of our resource and throughput

estimation models of the K-FA automaton. The main motivation of our research is to

improve the performance of pattern matching in environments where system resources

constantly change. Because we are the first to propose a dynamic pattern matching

123

system, we compare our approach against the fastest known static pattern matching

system, YFilter [DF03], to validate our claim that dynamic pattern reconfiguration can

dramatically improve pattern matching performance. YFilter is a query processing en-

gine for XML, and as will be shown XML queries will benefit from the techniques

discussed, but so will many other query languages (e.g., K*SQL [MZZ10]), for which

FSA provide a powerful execution model as it has been widely recognized in previous

literature [DF03, YCD06, PC03, GGM04] We then study how the number of precom-

puted configurations affect the dynamic reconfiguration overhead and the amortized

memory usage. The goodness of the split/merge approximation algorithms presented

in Section 5.3.2.3 is also measured with respect to the optimal. The effect of our

dynamic reconfiguration strategy is then measured on resource utilization and on the

overall performance given workloads of different severity levels. As is explained in

more detail in the following section, a severity level refers to the current input speed

measured in characters per second (cps) and to the current memory and CPU load due

to non-pattern matching related processes.

5.3.3.1 Experimental Setup

Workloads: There are two types of workloads that we use to test our system: (i)

Server workloads and (ii) Input (transaction) workloads. For (i) we use our synthetic

micro-benchmark (SMB) and the real work-load datasets. Using SMB we derive five

independent workloads. In order to specify these workloads we use a BurnInTest

[bur11] utility with which we specify the amount of CPU and RAM to utilize. By

precisely controlling these parameters we obtain five different workloads of varying

time-patterns (sinusoidal, sawtooth, flat with different amplitude and period etc). The

goal of these workloads is to validate that Morpheus can dynamically adjust the un-

derlying automaton under various system loads. Furthermore these workloads test the

124

ability of our system to automatically recognize an opportunity for dynamic reconfigu-

ration. Furthermore we obtained real-world load-statistics from Wikipedia and Nasdaq

servers. Pattern matching is heavily used in these services to respectively detect any

malicious activity and investment opportunities in the current stream of stock prices.

To simulate the transaction load we use the MIT Lincoln Lab intrusion detection

traces [MIT]. These traces provide a way to test a real system against the network

intrusion attacks. To process these traces we used a set of patterns found in Snort

network intrusion detection system [Roe99]. The advantage of using the real MIT

Lincoln Lab traces is that it tests the nature of real attack traffic that includes periods

of spurious activity.

A high severity level refers to the system load of 90% for both CPU and RAM

(10% of resources available) and the input speed of 100K cps. A low severity level

refers to 10% system load and 1K cps.

Data Sets: We use a mixture of real pattern queries and synthetically designed

queries. Real pattern queries are retrieved from Snort [Roe99] Network Intrusion De-

tection system. To generate synthetic queries, we design a query generation tool to

synthesize pattern queries with predictable properties.

Our query generator tool responds to a number of parameters presented in Table

5.4.

System Information and Implementation: All experiments were run on an eight

core 2.0GhZ with hyper-threading server with 16GB of RAM running Java 1.6. We

implement the monitoring tools in Java and utilize SSH to collect OS-level statistics.

Morpheus utilizes an open source LP solver lp solve [lps] to solve our global linear

approximation program. We have used the standard automaton library for java to gen-

erate NFAs and DFAs [aut].

125

Synthetic Query Parameter List

Parameter Range Description

Q 1000 to 500000 Number of queries

W 0 to 1 Probability of a wild-card ”*” occurring

in a qeury

Distinct 0-100% Percentage of unique predicates

P 0 to 20 Number of predicates per query

Table 5.4: Parameters for synthetic query generation

5.3.3.2 Resource Estimation

Given an environment with limited resources, the resource consumption by a partic-

ular configuration c must be estimated without explicitly computing c. Based on the

observations made in Table 5.2 we used a simple linear approximation for the size of

the automaton. This experiment measures the estimated size of our automaton versus

its actual size, for a given level of non-determinism K. The results indicate a fairly

small overestimate of the memory usage of K-FA (Figure 5.7). This is expected be-

cause frequently the memory is reduced due merging opportunities of duplicate states.

The CPU usage is slightly over-estimated (Figure 5.8), which can be explained by an

irregular work-load. The memory overestimation problem is mitigated by a reason-

able over-estimation of the RAM resource is acceptable because it is considered to be

a limiting constraint.

5.3.3.3 Comparison Against YFilter

We compared Morpheus against the state of the art XML index YFilter. The results

can be seen in Figure 5.9. We have varied the input speed cps given an automata

consisting of 500 HTTP pattern queries found in Snort. The available system resources

are also varied gradually with the increased cps starting at 90% and are decreased to

126

 �

���

� �

���

� �

���

� � � � � � � � ��

M
	

�
�

�
�
�
�
	
��
�
�

K

A����� �����! "#�$�
E#�%����& �����! "#�$�

Figure 5.7: Actual vs estimated resource usage (memory)

'

(

)'

)(

*'

*(

+'

+(

,'

,(

('

) * + , (- . / 0)'

C
1
2
2
34
54
6
7
34
8
9
:;

8
<
=
C
1
2
>

?

@BDFGH IJL LDNHNOGDNPQ
RSDNTGDUV IJL LDNHNOGDNPQ

Figure 5.8: Actual vs estimated resource usage (CPU)

10%. The results confirm that due its inherently static NFA implementation, YFilter

is unable to adapt to a changing system environment. We have varied the input speed,

measured in characters per second (cps), between 500 cps and 128Kcps and recorded

the average time for both YFilter and Morpheus to perform a match. The match time

can be interpreted as latency for the overall system. Thus, even though YFilter has

a fast and memory-light approach to represent patterns, its inability to adjust to the

changing system environment causes it to suffer from poor performance when a large

cps is used. Our approach is able to quickly adjust to the current system resources and

thus shows a five-fold performance gain over YFilter. Morpheus experiences slight

127

increase in system resources during reconfiguration (roughly 3%), however the overall

matching time of Morpheus is still significanly less than that of YFilter. Given the

input speed of 1K cps Morpheus outperforms YFilter in matching speed 1100230ns

to 50000000ns, and for 128K cps the performance gap increases with Morpheus and

YFilter having match times of 1100230ns to 68000000ns. It should be noted however

that in the case where the input speed and system load is overly high (> 128K cps and

90% respectively), our approach defaults to that of the YFilter, namely utilizing a full

NFA for pattern matching.

 �

��

��

��

��

��

� �� � �� �� ��� ��� � �

M
�
�	

�
�

�
��
�
��
��
��
��
�

M
�
�	

�
�

�
�M
�
��

�
�
�
�
��
�

C��������� !�� "��#$% &'�(�)

*#�(��+�

Y,-.���

Figure 5.9: Matching speed

5.3.3.4 Optimal Number of Precomputed Configurations

The experiment in Figure 5.10 shows the effect of the number of precomputed con-

figurations on the dynamic reconfiguration time and on the memory usage. Given a

current system C, a target system T and a set of precomputed configurations S =

{S1, S2, ..., Sn}, the dynamic reconfiguration time includes the time to search for a

solution in S given C and T , morph the found solution Sk into T and update S de-

pending on the reconfigurations performed so far (see Section 5.3.2.4). The amortized

memory usage includes the memory used for the buffer to hold the tuples from the

128

input stream while reconfiguring and the size of S. Note that the longer it takes to

perform a reconfiguration, the larger the input buffer has to be. Figure 5.10 shows that

in our case, after precomputing more than five configurations, the search and update

time of S starts to dominate and the performance deteriorates. Furthermore the amor-

tized memory usage starts to increase after five precomputed configurations because

an additional precomputed configuration consumes more memory than the decrease in

the size of the temporary input memory buffer needed. From this experiment we can

conclude that given our system set-up and the workload from SMB the optimal number

of precomputed configurations to achieve the highest throughput should be five.

 ��

���

���

���

���

���

���

���

���

 � � � � � � � � �

 ��

���

D
	

�
�

�
�
�
�
�

�

�
�
��
�

�

�

�
�
��
�
�
�
�

A
�
�
��

�
�
�
�
�
�
�
�	
��
�
�

N!"#$% &' (%$)&"*!+$, -&.'/0!%1+/&.2

34.1"/) 5$)&.'/0!%1+/&. 6/"$

7"&%+/8$, 9$"&%4 :210$

Figure 5.10: The effect of increasing the number of preconfigurations on the dynamic

reconfiguration time and on the amortized memory usage

5.3.3.5 Optimal Split vs Approximate Split

In Section 5.3.2.3 we have presented an approximation LP rounding formulation for

the split and merge problems. In this experiment we measure how the approximation

factor ǫ (error) affects the resulting size of the automaton. The error in Figure 5.11

measures the fraction of the set split generated. Thus error of ‘n’ implies that 1
n

subset

splits out of possible Si,j splits are generated. Therefore when ǫ=1, we get the best split

129

because our search space includes a collection of all possible splits. By decreasing ǫ

we spend more time on deciding how to perform a split but in return lower the size

of the resulting automaton. We observe that the benefit of a lower ǫ decreases rapidly

(in terms of the memory usage). Furthermore the less time we spend on choosing the

right split, the less of an input buffer we need, thus the point p of where the buffer

size and the automaton size intersect is the optimal ǫ necessary to minimize the overall

memory usage for our SMB. The optimal value of p can be determined by a simple

experimental process that is being incorporated into Morpheus.

 ��

 ��

���

���

���

���

���

���

���

���

���

� � � � � � � � ��

�

���

���

 ��

���

���

���

���

M
	

�
�

�
��
	
��
�
�

�
B
��
	
�
�
��
	
��
�
�

E����

������ �����

!"##�� $%&�

Figure 5.11: Optimal vs approximated split operation

5.3.3.6 Effects on Throughput

In this experiment we evaluate the effect of dynamic reconfiguration on the overall

throughput. The evaluation is done by comparing the memory usage increase and

the overall throughput increase with respect to a situation where there is no dynamic

reconfiguration. Figure 5.12 shows that for a fraction of the cost in memory increase

we get a great increase in throughput. The x-axis in Figure 8 represents the severity

of the underlying system changes (i.e. severity of 1 implies that only memory slightly

increased/decreased and severity of 10 indicates that the CPU usage, memory and

130

access patterns have changed dramatically). To simulate severity we used the Burn In

Test utility to specify precisely how much CPU and RAM resources to consume.

�

�

�

�

�

��

��

� � � � � � � � � �

�

T
	

�
�

	
�
�
�
��
�
�
�
�

A
�
�

�
��
�
�
�
�
�
�

�
�
�
�
�

�
��
!
�

I"#$ %&'(')*

+,-./*,0/(I)1-$&2$

M$3.-4 I)1-$&2$

Figure 5.12: Affects of the dynamic update on throughput

5.4 Conclusion

In this chapter we presented two domains where data complexity is useful. In associ-

ation discovery we provided the first set of experiments showing the relationship be-

tween problem complexity, association finding algorithms and sample size. For a fixed

algorithm we validated a natural hypothesis that as relationship complexity increases,

the required sample size also increases. For other association finding algorithms we

observed that as relationship complexity increases the sample size also increases in

proportion to the complexity of the algorithm. Using the problems of known levels of

difficulty we were able to validate the chosen measure of association complexity.

In section 5.3 we described how the model complexity can be adjusted automat-

ically with changing resources to optimize the overall throughput in the context of

pattern matching. The resulting system, called Morpheus, dramatically improves the

performance of pattern matching with the help of dynamic reconfiguration of the un-

derlying pattern automaton given a changing system stress load. Morpheus precom-

131

putes several key pattern configurations (templates) that are then morphed into a re-

quired form during run-time depending on the available system resources. Our ex-

tensive experiments show that the approach proposed here is attractive due to its low

amortized memory overhead and an order of magnitude decrease in dynamic recon-

figuration time when compared to standard approaches that do not use templates. In

the future we hope to add load-shedding and dynamic addition and removal of patterns

support into Morpheus.

The rapid growth and availability of massive time-series datasets and a throng of al-

gorithm proposals to deal with this data are creating a demand for ways to sort through

all the possible tools that can be applied over this data. We believe that the presented

descriptors of data complexity are useful for identifying and comparing the different

algorithm types. Our work with data complexity will continue in the direction of gen-

eralizing these descriptors towards their applicability to other problem domains.

132

CHAPTER 6

Applications

In this chapter we provide an important application of quality assessment and sample

size prediction that deals with computing nonlinear associations and demonstrates the

applicability of our approach on the static ‘Big Data’ problem. Although it is the

application we were directly involved in, the approximation approaches presented in

this dissertation are general enough to be applicable to a variety of other fields as is

discussed in sections 7.2, 1.1 and 6.2.

6.1 Association Finding

In this section we focus on applying our approximation approach to the problem of

association computation. We propose a scalable end-to-end system, called Associate-

TS, for finding approximate nonlinear associations in time-series (TS) data. We use

the two critical parts for approximation support presented in chapters 3, 4 and 5: (i)

sample quality assessment and (ii) sample size estimation. Recall that to achieve (i)

we use the Bag of Little Bootstraps (BLB) along with other recent advances in boot-

strap and time-series theory to provide an effective Hadoop-based implementation for

assessing a time-series sample quality. To achieve (ii), in sections 4 and 5 we proposed

a technique called SS-TS that uses the recent learning and data complexity theory to

estimate the required sample size (SS). As we show in this section, the application of

the above framework to the Twitter dataset demonstrates that Associate-TS provides

133

substantial improvements in processing speeds while placing the user in control of the

result accuracy.

6.1.1 About Association Discovery

Problem and Motivation: Consider a time-series dataset with hundreds, or even mil-

lions of variables such as those common in domains as varied as genomics, physics,

political science, economics and social media. A natural challenge is to discover the

many unknown relationships in this massive dataset. If you do not already know the

relationships to search for, how do you quickly identify the important ones? There are

billions of variable pairs to consider; far too many to provide the user with the result

in a reasonable time, making this question of growing importance [RRF11].

One way to approach this challenging problem is to use approximation techniques.

For that, (i) one could take a sample S of the data, (ii) compute a measure of the

inter-variable dependence M over S using existing approaches [RRF11], (iii) estimate

the accuracy ξ of M and (iv) increase the sample size until the required accuracy ǫ

is reached. For this approach to work in practice, however, we must develop scalable

accuracy and sample size estimation techniques.

Recall our quality assessment technique described in chapter 3. To provide a scal-

able approach for assessing the quality of large time-series data samples we built

on previous work of bootstrap [LZZ12a, KTS12b, KTS11] and time-series theory

[BK99, PR94] We introduced the BLB-TS framework that takes advantage of the trend

in computational resources which is shifting towards a multicore and distributed archi-

tecture with cloud services providing thousands of processing units. Here we use the

framework presented to support the use-case described below.

Use-Case: As an input to our system, the user specifies a machine learning (ML)

algorithm A, its input I and desired accuracy ǫ. Without the loss of generality of

134

our approach, we restrict ourselves to M = Maximal Information Coefficient (MIC)

[RRF11], an overview of which is given in subsection 6.1.2, and I = M(i, t) where

M is a matrix with i representing a variable, t representing the time and M(i, t) repre-

senting a value of i at time t. Our job is to compute all pairs association between all i

variables using MIC. We choose MIC because it can find nonlinear associations as is

described in more detail in section 6.1.2. While we restrict our discussion to associa-

tion computation, our approximation techniques can be applied to other machine learn-

ing algorithms such as SVM and linear regression as discussed in subsection 6.1.3.

As a concrete application of Associate-TS consider the Twitter analytics workflow

shown in Figure 3.12. The goal of this workflow is to compute a similarity score of all

hashtag pairs using MIC. The workflow consists of four stages: 1 Get latest Twitter

data of size W → 2 Estimate error based on a sample S of W → 3 Compute the

similarity between Twitter hashtags1 from S → and 4 Update internal tag similarity

model. Step 2 consists of BLB-TS and of SS-TS described in sections 3.2 and 4

which are respectively used for accuracy estimation and sample size prediction. Step

2 creates s subsamples from the original sample. To compute the error ξi for sample

size n, s subsamples of size b are taken. Then, each subsample bi is resampled r times

and for each resample the association matrix Mi is computed. The variance of bi is

determined by the variance of the r association matrices computed. Cumulative error

is then obtained by averaging s−1
∑s

i=1 ξ
∗
i . The s−1

∑s
i=1 ξ

∗
i value would correspond

to a point on the learning curve for a given sample size n. The value of n is then

adjusted based on the convergence rate of the learning curve and the required user

error.

As we show in this section, our preliminary experiments show the effectiveness of

Associate-TS for applications such as the analytics workflow shown in Figure 3.12,

1The # symbol, called a hashtag, is used to mark keywords or topics in a Tweet.

135

(a) Scores given to various noiseless functional re-

lationships by several different statistics [RRF11].

(b) Several relationship types and their

MIC scores with added noise [RRF11].

Figure 6.1: Different relationships and corresponding scores assigned by various asso-

ciding finding algorithms.

as well as for other ML workflows including classification and regression (see section

6.2). Finding associations is a computationally expensive task, and in our use case a

2,000,000 by 4,000 matrix takes over a month to process without approximation. In

this section we show how using the techniques presented in this dissertation we can

dramatically decrease the required time while only marginally sacrificing the result

quality.

6.1.2 Dependency Measure

As presented in section 2.4.2, the Pearson Correlation coefficient r is often used to

measure the strength of association between a pair of variables. Given two signals x

and y of equal length m, with respective averages µx and µy and standard deviations

σx and σy their Pearson correlation coefficient is defined as:

corr(x, y) =
1

m

m−1
∑

y=0

(

xi − µx

σx

)(

yi − µy

σy

)

For example, the Pearson correlation between the height of a child and their parents is

r ≈ 0.5 [Spe] and that of the wheat yield and annual rainfall is r ≈ 0.75 [Spe]. Pear-

136

son’s r, however, only captures linear correlations, and it is not applicable to signals

which have nonlinear associations.

In this section, we use the Maximal Information Coefficient (MIC) [RRF11] algo-

rithm which provides a normalized association score for nonlinear relationships and

reduces to Pearson’s in the linear case. Intuitively, MIC is based on the idea that if

a relationship exists between two variables, then a grid can be drawn on the scatter-

plot of these variables that partitions the data to encapsulate that relationship [RRF11].

Therefore, to compute the MIC score of two signals, all grids up to a maximal grid

resolution, which depends on the sample size, are explored, computing for every pair

of integers the largest possible mutual information (MI) achievable by any x-by-y grid

applied to the data. These MI values are then normalized to obtain modified val-

ues between 0 and 1 and to ensure a fair comparison between grids of different sizes.

Specifically, the MIC statistic is the maximum value in the characteristic matrix M(D)

defined as:

M(D)x,y =
I∗(D, x, y)

logmin{x, y} (6.1)

where D is a finite set of ordered pairs, and x, y correspond to an x-by-y grid into

which x and y values of D can be partitioned into. I∗ corresponds to the maximum

mutual information of D when it is partitioned into a specific x-by-y grid G. Note

that 0 ≤ I∗(D, x, y) ≤ logmin{x, y} therefore dividing by logmin{x, y} bounds

M(D)x,y to a [0, 1] range.

The authors in [RRF11] show that with probability approaching 1 as sample size

grows, (i) MIC scores approach 1 for all never-constant noiseless functional relation-

ships; (ii) MIC scores approach 1 for a large class of noiseless relationships and (iii)

MIC scores approach 0 for statistically independent variables. Simulations in Figure

6.1a show that for noiseless functional relationships with R2 = 1.0 receive MIC scores

approaching 1. For various other functions and various noise levels, MIC also roughly

137

ni, stage 2, the accuracy estimation stage (BLB-TS), is executed. If the error for a

given sample size is too high, the workflow returns to stage 1, until the accuracy re-

quirement is satisfied. Otherwise, the computation of the association matrix over ni

using MIC is performed which returns the final result to the user.

The key entities of Associate-TS are (i) the Learning Curve, (ii) the Model, (iii)

the Model Validator, (iv) the Data Path and (v) the Error Calculator. The Model class

holds model parameters and is a super class for entities such as ClassifierModel and

AssociationModel representing Classifiers and Association models respectively. The

Validator class tests the given model, and hence it is a super class of ClassifierValida-

tor and AssociationValidator. As an input, the Validator class takes a model M and

outputs a ValidatedModel object, which for a classifier is an accuracy score and for

Association Mining it is an identity operation. The Error Calculator takes in a Set of

ValidatedModel objects and outputs a single Variance value vi. The Learning Curve

class stores the output from the Error Calculator as < ni, vi >, and depending on the

accuracy score, is responsible for picking the next set of inputs from the Data Path

object or terminating.

Next, we map the above description to a MapReduce environment. The main

application is initialized with an empty learning curve, an appropriate model along

with a model validator and error calculator. The Data Path is initialized with a set

of available splits. The iteration starts by picking 1% of the splits in the Data Path

and creating s random subsamples (described below). The reducers then create the

appropriate Model Mi for a given subsample b and use the Model Validator to out-

put < Mi, V alidatedModel > which is used as an input to the next MapReduce job.

Then, for each key Mi the next MR Job computes the variance with Error Calculator.

Finally by sending all vi to a single reducer the variances are averaged and the learning

curve is updated checking for convergence.

139

(a) Example of the hashtag time-series from

the Twitter dataset.

(b) An interesting relationship between hash-

tags in the Twitter dataset.

Figure 6.3: Associate-TS Twitter results.

Incremental MIC Computation: In the SS-TS component, when increasing the

sample size to improve the accuracy, we use a delta maintenance strategy that avoids

expensive recomputation of the MIC algorithm on the new sample S ′ and instead uses

the result from the old sample S. To compute MIC incrementally, upon arrival of a

tuple t, we update the tuple count in cell i to which t maps in the grid Mx,y. Note

also that due to its small size, we store Mx,y in memory. Therefore, by incrementally

updating Mx,y we incur only the cost of S ′ instead of S ′ + S.

6.1.4 Results

The goal of the Twitter Associate workflow is to determine the similarity measure

across all
(n−1)(n)

2
hashtag pairs. In particular we have used a real-world dataset of size

4.3TB from Twitter that we have privately collected. This dataset consists of roughly 2

Million hashtags and their frequency in a time-series format. We use hourly granularity

and at a maximum, each hashtag has 4,000 observations2. Empirical evidence suggests

2Not every hashtag contains the same number of observations

140

that computing an MIC-association matrix for the above dataset is very expensive and

without approximation can take over a month to compute on our Hadoop cluster. We

use a private Hadoop cluster of size 7 where each node is a 16-core AMD Opteron(tm)

Processor 6134 @ 2.3GhZ with 132GB RAM. We use Hadoop 1.0.4 with a total of 140

map slots. Figures 6.3a and 6.3b respectively show the type of time-series and the type

of relationships that Associate-TS was designed to deal with and find. Observe that

some tags may have many random spikes (e.g., #riot), some tags may be fairly stable

(e.g., #youtube) and some may show very little level of activity (e.g., #mypersonal-

statement). The association between these tags may result in interesting3 relationships

such as the one shown in Figure 6.3b.

6.2 Extension to other ML Algorithms

The performance of the current implementation of BLB-TS relies on the model com-

putation and error estimation separation. This insight proved invaluable for achieving

a simple API design that is easy to understand and test. In the model-error computation

separation the error computation is performed in three stages: (a) Model computation

(b) Model Validation and (c) Error estimation. These steps are depicted in the BLB-

TS box in Figure 6.2. As we explain in this section, the accuracy of a wide range of

machine learning algorithms can be estimated using this three-stage workflow.

First, let’s apply the three stage accuracy estimation workflow to the problem of

estimating the sample error of the inter-variable relationship task. Step (a) would cor-

respond to computing the different association matrices M based on the s samples

each of which are of size b (recall Section 3.2.2). Step (b) would be an identity4 stage

3The relationship in Figure 6.3b explains that when people are rioting (#MarchaYoSoy132) they do

not play the said video game (#rageofbahamut) and vice versa.
4Identity stage refers to the stage that has no effect on its input.

141

because the association computation task is an unsupervised machine learning prob-

lem. Finally, in step (c) we compute the error by averaging the s errors computed for

each b. The variance of b corresponds to the variance of the r MIC score matrices

computed from resamples of b.

Let’s now try to see how the BLB-TS can work for other ML algorithms such

as SVM [Bur98] and linear regression (LR). When training the SVM classifier, step

(a) would build the s models, and step (b) would validate these models using cross

validation. Step (c) would collect the model accuracies from step (b) from which the

error will be derived based on the variance of the accuracy scores. Similar to our

use-case, step (a) for LR would compute s regression estimates with step (b) being an

identity step. Step (c) would compute the variance from the empirical distribution of

the r regression estimates for each b.

6.3 Conclusion

The rapid growth and availability of massive time-series datasets is creating demand

for scalable and robust techniques for time-series data analytics. To support nonlinear

association analytics over massive time-series data we have presented Associate-TS.

Using Associate-TS we were able to process the 2,000,000 by 4,000 matrix of Twitter

hashtag time-series data in 2 hours compared to the original one month requirement; a

greater than 99% execution time speedup while only sacrificing 10% accuracy.

142

CHAPTER 7

Conclusion

7.1 Summary of Contributions

Our work on scalable approximation has two high-level goals. First we provide the

user with the quality assessment score so that she is confident in the results computed

from a sample of the data. Second, we provide the support for sample size prediction

and algorithm selection so that the user can pick the right sample size and the right

algorithm to minimize the overall resource usage. We summarize the key contributions

as follows:

• We propose the scalable accuracy assessment framework [LZZ12b] that is based

on the resampling method called the bootstrap. Given a sample and the under-

lying machine learning (ML) algorithm, our framework resamples the input r

times and for each resample re-executes the ML algorithm. From the r esti-

mates, the result variance is derived. We also make the bootstrap method scal-

able through parallelism and applicable to time-series data [LLZ12].

• We then address the problem of (i) sample size prediction [LZZ13] and (ii) algo-

rithm selection [LZL12, LZ12]. Therefore, we achieve two main objectives: (i)

the user’s need for accurate sample size prediction given the prescribed user ac-

curacy and (ii) the important aspect of algorithm selection to minimize resource

utilization. We achieve the sample size prediction using the learning curve and

143

we achieve the algorithm selection using the recent data complexity theory.

• We evaluate the performance of our approaches using the real world Twitter data

and classification datasets from UCI’s machine learning repository [Rep10]. We

validate that our system is efficient and scalable in the face of massive real-world

data. Our experimental results show that BLB-TS is superior to the Stationary

Bootstrap for sampling over massive time-series datasets and that SS-TS is an

accurate sample size estimator. Another very novel aspect of our work is that we

established the relationship between problem complexity, algorithm complexity

and sample size and provided experiments to elucidate this relationship. Using

Associate-TS we were able to process the 2,000,000 by 4,000 matrix of Twitter

hashtag time-series data in 2 hours compared to the original one month require-

ment; a greater than 99% execution time speedup while only sacrificing only

10% of accuracy.

7.2 Research Directions

We realize that a comprehensive set of methods and systems that support scalable

approximation is challenging and it involves many research issues. Only the first steps

towards a general solution have been taken in this dissertation, but they have opened

up the door to many research opportunities of great significance as described next.

We relied on the bootstrap resampling technique for quality assessment. As dis-

cussed in section 2.2, however, other resampling methods exist and analyzing them

presents another exciting research direction.

The sample size prediction approaches discussed rely on iterative computation

which can make use of the existing optimization in iterative computation. MapReduce-

based systems such as HaLoop [BHB10b] and PrIter [ZGG11] provide elaborate iter-

144

ative support including static data caching and improved convergence performance.

Therefore another interesting future direction would be integrating the existing state

of the art systems into our approximation workflow for a more efficient learning curve

construction.

The recent explosion of query languages shows the growing interest in this field

but also leaves plenty of room for approximation support. For example notable lan-

guages including SQL-TS supporting regular expressions and backtrack optimization

[SZZ01], SASE+ [DIG07] supporting powerful Kleene-closure queries, and K*SQL

[MZZ10] provide powerful pattern matching capabilities but have little or no approx-

imation semantics. The recent 10 year VLDB best paper award [MM12] on approx-

imate item-set counting over streams provides a SQL-like language suggesting the

interest in approximation support at the language level and leveraging this interest is

an ongoing part of our current and future work.

Often in a streaming environment it is difficult to estimate the required window

size necessary to achieve a result of a particular quality. Using the approximation

framework presented in this dissertation, however, it now becomes feasible to dynami-

cally determine the necessary window size. Currently, in dealing with extreme system

load, streaming systems rely on load-shedding techniques [TZ06, TcZ03, CWY05]

whereby the data stream management system sheds a fraction of its input to meet the

quality of service requirement. Providing accuracy estimates for load-shedding sys-

tems is very difficult especially for complex analytics, however it is still better then

the alternative–system crash. As an ongoing part of the future work we will extend

our data-stream management system, called Stream-Mill Miner (SMM) [TLM11], to

dynamically determine the required window size to meet the prescribed user accuracy

requirement.

Furthermore, our work on Associate-TS will continue in a direction of providing

145

more rigorous statistical guarantees of BLB-TS’ quality assessment as well as making

further strides in the area of data complexity.

7.3 Closing

We live in the world where the amount of data continues to grow. With an unbounded

data growth comes the increasing need to make sense of all the data and hence approx-

imation support becomes critical. In this dissertation, we have addressed the problem

of quality assessment and sample size prediction that when combined help the user

minimize the needed resources while ensuring the desired accuracy. Our approach is

scalable and is applicable to independent data or data with weak dependency. Our ex-

perience with the systems developed suggests that the bootstrap and data complexity-

based techniques are effective for quality and sample size estimation. Finally, our

results open doors for many future research directions in the approximation domain.

146

REFERENCES

[A 07] D.J. Newman A. Asuncion. “UCI Machine Learning Repository.”, 2007.

[AAB05] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel,

Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag S

Maskey, Alexander Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and

Stan Zdonik. “The Design of the Borealis Stream Processing Engine.” In

Second Biennial Conference on Innovative Data Systems Research (CIDR

2005), Asilomar, CA, January 2005.

[ABA09] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel J. Abadi, Alexan-

der Rasin, and Avi Silberschatz. “HadoopDB: An Architectural Hy-

brid of MapReduce and DBMS Technologies for Analytical Workloads.”

PVLDB, 2(1):922–933, 2009.

[ABc05] Yanif Ahmad, Bradley Berg, Ugur Çetintemel, Mark Humphrey, Jeong-

Hyon Hwang, Anjali Jhingran, Anurag Maskey, Olga Papaemmanouil,

Alex Rasin, Nesime Tatbul, Wenjuan Xing, Ying Xing, and Stanley B.

Zdonik. “Distributed operation in the Borealis stream processing engine.”

In SIGMOD Conference, pp. 882–884, 2005.

[aut] “Automaton implementation.” http://www.brics.dk/automaton/.

[BB07] Léon Bottou and Olivier Bousquet. “The Tradeoffs of Large Scale Learn-

ing.” In NIPS, 2007.

[BEG11] Kevin S. Beyer, Vuk Ercegovac, Rainer Gemulla, Andrey Balmin, Mo-

hamed Y. Eltabakh, Carl-Christian Kanne, Fatma Özcan, and Eugene J.

Shekita. “Jaql: A Scripting Language for Large Scale Semistructured

Data Analysis.” PVLDB, 2011.

[BHB10a] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst.

“HaLoop: Efficient Iterative Data Processing on Large Clusters.” PVLDB,

pp. 285–296, 2010.

[BHB10b] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst.

“HaLoop: Efficient Iterative Data Processing on Large Clusters.” In 36th

International Conference on Very Large Data Bases, pp. 285–296, Singa-

pore, September 14–16, 2010.

[BK99] Peter Bhlmann and Hans R Knsch. “Block length selection in the boot-

strap for time series.” Computational Statistics And Data Analysis,

31(3):295 – 310, 1999.

147

[BS96] Christopher J. C. Burges and Bernhard Schölkopf. “Improving the Ac-

curacy and Speed of Support Vector Machines.” In NIPS, pp. 375–381,

1996.

[Bur98] Christopher J. C. Burges. “A tutorial on support vector machines for pat-

tern recognition.” Data Mining and Knowledge Discovery, 2:121–167,

1998.

[bur11] “Burn-in Test.”, 2011. http://www.passmark.com/products/bit.htm.

[BZ97] P. J. Bickel, F. tze, and W. R. Van Zwet. “Resampling fewer than n ob-

servations: gains, losses, and remedies for losses.” STATIST. SINICA,

7:1–32, 1997.

[CCA09] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled

Elmeleegy, and Russell Sears. “MapReduce Online.” Technical Re-

port UCB/EECS-2009-136, EECS Department, University of California,

Berkeley, 2009.

[CCA10a] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled

Elmeleegy, and Russell Sears. “MapReduce Online.” In NSDI, pp. 313–

328, 2010.

[CCA10b] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, John

Gerth, Justin Talbot, Khaled Elmeleegy, and Russell Sears. “Online ag-

gregation and continuous query support in MapReduce.” In Proceedings

of the 2010 international conference on Management of data, SIGMOD

’10, pp. 1115–1118, New York, NY, USA, 2010. ACM.

[CDS04] Surajit Chaudhuri, Gautam Das, and Utkarsh Srivastava. “Effective use

of block-level sampling in statistics estimation.” In Proceedings of the

2004 ACM SIGMOD international conference on Management of data,

SIGMOD ’04, pp. 287–298, New York, NY, USA, 2004. ACM.

[CGR03] Chee Yong Chan, Minos N. Garofalakis, and Rajeev Rastogi. “RE-tree:

an efficient index structure for regular expressions.” VLDB J., 12(2):102–

119, 2003.

[CHB04] Nitesh V. Chawla, Lawrence O. Hall, Kevin W. Bowyer, and W. Philip

Kegelmeyer. “Learning Ensembles from Bites: A Scalable and Accurate

Approach.” J. Mach. Learn. Res., 5:421–451, December 2004.

[CJL08] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren

Shakib, Simon Weaver, and Jingren Zhou. “SCOPE: easy and efficient

parallel processing of massive data sets.” PVLDB, 1(2):1265–1276, 2008.

148

[CKL06] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary R.

Bradski, Andrew Y. Ng, and Kunle Olukotun. “Map-Reduce for Machine

Learning on Multicore.” In NIPS, pp. 281–288, 2006.

[CM07] Olivier Cappé and Eric Moulines. “Online EM Algorithm for Latent Data

Models.” CoRR, abs/0712.4273, 2007.

[CP00] Gert Cauwenberghs and Tomaso Poggio. “Incremental and Decremental

Support Vector Machine Learning.” In NIPS, pp. 409–415, 2000.

[CWY05] Yun Chi, Haixun Wang, and Philip S. Yu. “Loadstar: load shedding in

data stream mining.” In Proceedings of the 31st international conference

on Very large data bases, VLDB ’05, pp. 1302–1305. VLDB Endowment,

2005.

[DF03] Yanlei Diao and Michael J. Franklin. “High-Performance XML Filtering:

An Overview of YFilter.” IEEE Data Engineering Bulletin, 26:41–48,

2003.

[DGG86] David J. DeWitt, Robert H. Gerber, Goetz Graefe, Michael L. Heytens,

Krishna B. Kumar, and M. Muralikrishna. “GAMMA - A High Perfor-

mance Dataflow Database Machine.” In Proceedings of the 12th Interna-

tional Conference on Very Large Data Bases, VLDB ’86, pp. 228–237,

San Francisco, CA, USA, 1986. Morgan Kaufmann Publishers Inc.

[DGH06] Alan J. Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald,

and Walker M. White. “Towards Expressive Publish/Subscribe Systems.”

In EDBT, pp. 627–644, 2006.

[DIG07] Yanlei Diao, Neil Immerman, and Daniel Gyllstrom. “Sase+: An agile

language for kleene closure over event streams.” Technical report, 2007.

[DM01] Russell Davidson and James G. MacKinnon. “Bootstrap Tests: How

Many Bootstraps?” Working Papers 1036, Queen’s University, Depart-

ment of Economics, 2001.

[Efr79] B Efron. “Bootstrap Methods: Another Look at the Jackknife.” Annals of

Statistics, 7(1):1–26, 1979.

[Efr87] Bradley Efron. “Better Bootstrap Confidence Intervals.” Journal of the

American Statistical Association, 82(397):171–185, 1987.

[ELZ10a] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-

Hee Bae, Judy Qiu, and Geoffrey Fox. “Twister: a runtime for iterative

MapReduce.” HPDC, pp. 810–818, 2010.

149

[ELZ10b] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-

Hee Bae, Judy Qiu, and Geoffrey Fox. “Twister: a runtime for iterative

MapReduce.” In HPDC, pp. 810–818, 2010.

[ET97] Bradley Efron and Robert Tibshirani. “Improvements on Cross-

Validation: The .632+ Bootstrap Method.” Journal of the American Sta-

tistical Association, 92(438):548–560, June 1997.

[FHA10] Fatima Farag, Moustafa A. Hammad, and Reda Alhajj. “Adaptive query

processing in data stream management systems under limited memory re-

sources.” In PIKM, pp. 9–16, 2010.

[FPC09] Eric Friedman, Peter M. Pawlowski, and John Cieslewicz. “SQL/MapRe-

duce: A practical approach to self-describing, polymorphic, and paral-

lelizable user-defined functions.” PVLDB, 2(2):1402–1413, 2009.

[GAW08] Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu, and

Myungcheol Doo. “SPADE: the system s declarative stream processing

engine.” In SIGMOD Conference, pp. 1123–1134, 2008.

[GC12] Raman Grover and Michael Carey. “Extending Map-Reduce for Efficient

Predicate-Based Sampling.” ICDE ’12, 2012.

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google

file system.” In Proceedings of the nineteenth ACM symposium on Op-

erating systems principles, SOSP ’03, pp. 29–43, New York, NY, USA,

2003. ACM.

[GGM04] Todd J. Green, Ashish Gupta, Gerome Miklau, Makoto Onizuka, and Dan

Suciu. “Processing XML streams with deterministic automata and stream

indexes.” ACM Trans. Database Syst., 29(4):752–788, 2004.

[GNC09] Alan Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath, Shravan

Narayanam, Christopher Olston, Benjamin Reed, Santhosh Srinivasan,

and Utkarsh Srivastava. “Building a HighLevel Dataflow System on top

of MapReduce: The Pig Experience.” PVLDB, 2(2):1414–1425, 2009.

[had] “Hadoop: Open-source implementation of mapreduce:

http://hadoop.apache.org.”.

[HB02] Tin Kam Ho and Mitra Basu. “Complexity Measures of Supervised Clas-

sification Problems.” IEEE Trans. Pattern Anal. Mach. Intell., 24(3):289–

300, 2002.

150

[HHW97] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. “Online Ag-

gregation.” In Joan Peckham, editor, SIGMOD 1997, Proceedings ACM

SIGMOD International Conference on Management of Data, May 13-15,

1997, Tucson, Arizona, USA, pp. 171–182. ACM Press, 1997.

[hiv] “Hive. http://hive.apache.org.”.

[HLL11] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang

Dong, Fatma Bilgen Cetin, and Shivnath Babu. “Starfish: A Self-tuning

System for Big Data Analytics.” In CIDR, pp. 261–272, 2011.

[HMU06] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduc-

tion to Automata Theory, Languages, and Computation (3rd Edition).

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[Ho04] Tin Kam Ho. “Geometrical Complexity of Classification Problems.”

CoRR, cs.CV/0402020, 2004.

[Ho08] Tin Kam Ho. “Data Complexity Analysis: Linkage between Context and

Solution in Classification.” In SSPR/SPR, p. 1, 2008.

[HSK94] David Haussler, H. Sebastian Seung, Michael J. Kearns, and Naftali

Tishby. “Rigorous Learning Curve Bounds from Statistical Mechanics.”

In COLT’94, pp. 76–87, 1994.

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of

Statistical Learning, Second Edition: Data Mining, Inference, and Pre-

diction. Springer Series in Statistics. Springer, 2nd ed. 2009. corr. 3rd

printing 5th printing. edition, February 2009.

[IBY07] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fet-

terly. “Dryad: distributed data-parallel programs from sequential building

blocks.” In EuroSys, pp. 59–72, 2007.

[IDR07] Zachary G. Ives, Amol Deshpande, and Vijayshankar Raman. “Adaptive

query processing: Why, How, When, and What Next?” In VLDB, pp.

1426–1427, 2007.

[KB06] Tin Kam Ho and Ester Bernad-Mansilla. “Classifier Domains of Compe-

tence in Data Complexity Space.” In Mitra Basu and TinKam Ho, edi-

tors, Data Complexity in Pattern Recognition, Advanced Information and

Knowledge Processing, pp. 135–152. Springer London, 2006.

151

[KCT07] Sailesh Kumar, Balakrishnan Chandrasekaran, Jonathan S. Turner, and

George Varghese. “Curing regular expressions matching algorithms from

insomnia, amnesia, and acalculia.” In ANCS, pp. 155–164, 2007.

[KTS11] Ariel Kleiner, Ameet Talwalkar, Purnamrita Sarkar, and Michael Jordan.

“Bootstrapping Big Data.” NIPS, 2011.

[KTS12a] Ariel Kleiner, Ameet Talwalkar, Purnamrita Sarkar, and Michael Jordan.

“The Big Data Bootstrap.” 2012.

[KTS12b] Ariel Kleiner, Ameet Talwalkar, Purnamrita Sarkar, and Michael I. Jordan.

“A Scalable Bootstrap for Massive Data.” Technical report, UC Berkeley,

2012.

[Lah03] S.N. Lahiri. Resampling methods for dependent data. Springer series in

statistics. Springer-Verlag, 2003.

[LB04] Rui Leite and Pavel Brazdil. “Improving Progressive Sampling via Meta-

learning on Learning Curves.” In ECML, pp. 250–261, 2004.

[LCH00] Zhiyuan Li, Katherine Compton, and Scott Hauck. “onfiguration Caching

Techniques for FPGA.” IEEE Symposium on FPGAs for Custom Com-

puting Machines, 2000.

[LH07] Yuh-Jye Lee and Su-Yun Huang. “Reduced Support Vector Machines: A

Statistical Theory.” Neural Networks, IEEE Transactions on, 18(1):1 –13,

jan. 2007.

[LIN] “LINQ. http://msdn.microsoft.com/en-us/library/bb397926.aspx.”.

[LJL08] Dong Gyu Lee, Young Jin Jung, Young Wook Lee, and Keun Ho Ryu.

“Hashed Multiple Lists: A Stream Filter for Processing Continuous Query

with Multiple Attributes in Geosensor Networks.” pp. 104–109, July

2008.

[LK12] Jimmy Lin and Alek Kolcz. “Large-scale machine learning at twitter.”

SIGMOD, pp. 793–804, 2012.

[LL09] Stephen M. S. Lee and P. Y. Lai. “Double block bootstrap confidence

intervals for dependent data.” Biometrika, 96(2):427–443, 2009.

[LLZ12] Nikolay Laptev, Tsai-Ching Lu, and Carlo Zaniolo. “BOOT-TS: Scalable

Bootstrap over Massive Time-Series data.” In NIPS, 2012.

152

[LMD11] Boduo Li, Edward Mazur, Yanlei Diao, Andrew McGregor, and

Prashant J. Shenoy. “A platform for scalable one-pass analytics using

MapReduce.” In SIGMOD Conference, pp. 985–996, 2011.

[lps] “lp solve, a Mixed Integer Linear Programming (MILP) solver.” Website.

[LS12] Eric Laber and Kerby Shedden. “An imputation method for estimating the

learning curve in classication problems.” Phys.Rev., 1:4043–4061, 2012.

[LWZ01] Eyal de Lara, Dan S. Wallach, and Willy Zwaenepoel. “Puppeteer:

Component-based Adaptation for Mobile Computing.” In USITS, pp.

159–170, 2001.

[LZ12] Nikolay Laptev and Carlo Zaniolo. “Optimization of Massive Pattern

Queries by Dynamic Configuration Morphing.” In ICDE, pp. 917–928,

2012.

[LZJ05] Bin Liu, Yali Zhu, Mariana Jbantova, Bradley Momberger, and Elke A.

Rundensteiner. “A Dynamically Adaptive Distributed System for Process-

ing Complex Continuous Queries.” In VLDB, pp. 1338–1341, 2005.

[LZL12] Nikolay Laptev, Carlo Zaniolo, Tsai-Ching Lu, and Alexander Shkapsky.

“Associate-TS: Scalable Association over Massive Time-Series Data.”

Technical report, Department of Computer Science, University of Cali-

fornia, Los Angeles, 2012.

[LZZ12a] Nikolay Laptev, Kai Zeng, and Carlo Zaniolo. “Early Accurate Results for

Advanced Analytics on MapReduce.” PVLDB, 5(10):1028–1039, 2012.

[LZZ12b] Nikolay Laptev, Kai Zeng, and Carlo Zaniolo. “Early Accurate Results for

Advanced Analytics on MapReduce.” PVLDB, 5(10):1028–1039, 2012.

[LZZ13] Nikolay Laptev, Kai Zeng, and Carlo Zaniolo. “Very Fast Estimation for

Result and Accuracy of Big Data Analytics: the EARL System.” In ICDE,

2013.

[mah] “Mahout. http://mahout.apache.org/.”.

[MIT] MIT. “DARPA INTRUSION DETECTION EVALUATION.”.

[MM12] Gurmeet Singh Manku and Rajeev Motwani. “Approximate Frequency

Counts over Data Streams.” PVLDB, 5(12):1699, 2012.

[MRV08] Anirban Majumder, Rajeev Rastogi, and Sriram Vanama. “Scalable reg-

ular expression matching on data streams.” In SIGMOD Conference, pp.

161–172, 2008.

153

[MTH02] Christopher Meek, Bo Thiesson, and David Heckerman. “The learning-

curve sampling method applied to model-based clustering.” J. Mach.

Learn. Res., 2:397–418, March 2002.

[MTR03] Sayan Mukherjee, Pablo Tamayo, Simon Rogers, Ryan M. Rifkin, Anna

Engle, Colin Campbell, Todd R. Golub, and Jill P. Mesirov. “Estimating

Dataset Size Requirements for Classifying DNA Microarray Data.” Jour-

nal of Computational Biology, pp. 119–142, 2003.

[MZZ10] Barzan Mozafari, Kai Zeng, and Carlo Zaniolo. “K*SQL: a unifying en-

gine for sequence patterns and XML.” In SIGMOD Conference, pp. 1143–

1146, 2010.

[ND09] Willie Ng and Manoranjan Dash. “Which Is Better for Frequent Pattern

Mining: Approximate Counting or Sampling?” DaWaK ’09, pp. 151–

162. Springer-Verlag, 2009.

[NRN10] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari. “S4:

Distributed Stream Computing Platform.” In ICDM Workshops, pp. 170–

177, 2010.

[NSN97] Brian Noble, Mahadev Satyanarayanan, Dushyanth Narayanan, J. Eric

Tilton, Jason Flinn, and Kevin R. Walker. “Agile Application-Aware

Adaptation for Mobility.” In SOSP, pp. 276–287, 1997.

[OR90] Frank Olken and Doron Rotem. “Random Sampling from Database Files:

A Survey.” In SSDBM, pp. 92–111, 1990.

[ORS08a] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and

Andrew Tomkins. “Pig latin: a not-so-foreign language for data process-

ing.” In SIGMOD, pp. 1099–1110. ACM, 2008.

[ORS08b] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and

Andrew Tomkins. “Pig latin: a not-so-foreign language for data process-

ing.” In SIGMOD Conference, pp. 1099–1110, 2008.

[PC03] Feng Peng and Sudarshan S. Chawathe. “XPath Queries on Streaming

Data.” In SIGMOD Conference, pp. 431–442, 2003.

[PHB09] Biswanath Panda, Joshua Herbach, Sugato Basu, and Roberto J. Bayardo.

“PLANET: Massively Parallel Learning of Tree Ensembles with MapRe-

duce.” PVLDB, 2(2):1426–1437, 2009.

[PJO99] Foster Provost, David Jensen, and Tim Oates. “Efficient progressive sam-

pling.” KDD ’99, pp. 23–32, New York, NY, USA, 1999. ACM.

154

[PR94] Dimitris N. Politis and Joseph P. Romano. “The Stationary Bootstrap.”

Journal of the American Statistical Association, 89(428):1303+, Decem-

ber 1994.

[PW04] Dimitris N. Politis and Halbert White. “Automatic Block-Length Selec-

tion for the Dependent Bootstrap.” Econometric Reviews, 23:53–70, 2004.

[rel] “EARL Release Website: http://yellowstone.cs.ucla.edu/wis/.”.

[Rep10] UCI Machine Learning Repository. “http://archive.ics.uci.edu/ml/datasets.html.”,

December 2010.

[Roe99] Martin Roesch. “Snort: Lightweight Intrusion Detection for Networks.”

In LISA, pp. 229–238, 1999.

[RRF11] David N. Reshef, Yakir A. Reshef, Hilary K. Finucane, Sharon R. Gross-

man, Gilean McVean, Peter J. Turnbaugh, Eric S. Lander, Michael Mitzen-

macher, and Pardis C. Sabeti. “Detecting Novel Associations in Large

Data Sets.” Science, 334(6062):1518–1524, 2011.

[RT85] Prabhakar Raghavan and Clark D. Thompson. “Randomized Rounding: A

Technique for Provably Good Algorithms and Algorithmic Proofs.” Tech-

nical Report UCB/CSD-85-242, EECS Department, University of Califor-

nia, Berkeley, May 1985.

[Rup01] Stefan Ruping. “Incremental Learning with Support Vector Machines.”

Data Mining, IEEE International Conference on, 0:641, 2001.

[S4] “S4. http://incubator.apache.org/s4/.”.

[SG07] Bianca Schroeder and Garth A. Gibson. “Disk failures in the real world:

what does an MTTF of 1,000,000 hours mean to you?” In Proceedings of

the 5th USENIX conference on File and Storage Technologies, Berkeley,

CA, USA, 2007. USENIX Association.

[SHB04] Mehul A. Shah, Joseph M. Hellerstein, and Eric A. Brewer. “Highly-

Available, Fault-Tolerant, Parallel Dataflows.” In SIGMOD Conference,

pp. 827–838, 2004.

[Spe] Terry Speed.

[SPR91] Stanford University. Dept. of Statistics, D.N. Politis, J.P. Romano, and Na-

tional Science Foundation (U.S.). A Circular Block-resampling Procedure

for Stationary Data. 1991.

155

[SS07] Mark Sanderson and Ian Soboroff. “Problems with Kendall’s tau.” In

SIGIR, pp. 839–840, 2007.

[ST95] Jun Shao and D. Tu. The jackknife and bootstrap. Springer series in

statistics. Springer Verlag, 1995.

[Syr01] Stephen E. Syrjala. “A bootstrap Approach to making sample-size calcu-

lations for resource surveys.” In SSC, pp. 53–60, 2001.

[SZZ01] Reza Sadri, Carlo Zaniolo, Amir M. Zarkesh, and Jafar Adibi. “Optimiza-

tion of Sequence Queries in Database Systems.” In PODS, 2001.

[TcZ03] Nesime Tatbul, Uğur Çetintemel, Stan Zdonik, Mitch Cherniack, and

Michael Stonebraker. “Load shedding in a data stream manager.” In Pro-

ceedings of the 29th international conference on Very large data bases -

Volume 29, VLDB ’03, pp. 309–320. VLDB Endowment, 2003.

[ter85] teradata Corp. Database Computer System Manual, Feb 1985.

[Tho00] Alun Thomas. “Bootstrapping, jackknifing and cross validation, reusing

your data.” Utah University Lecture, 2000.

[TLM11] Hetal Thakkar, Nikolay Laptev, Hamid Mousavi, Barzan Mozafari, Vin-

cenzo Russo, and Carlo Zaniolo. “SMM: a Data Stream Management

System for Knowledge Discovery.” In ICDE, 2011.

[TSJ09] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad

Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy.

“Hive - A Warehousing Solution Over a Map-Reduce Framework.”

PVLDB, 2(2):1626–1629, 2009.

[TSJ10] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad

Chakka, Ning Zhang, Suresh Anthony, Hao Liu, and Raghotham Murthy.

“Hive - a petabyte scale data warehouse using Hadoop.” In ICDE, pp.

996–1005, 2010.

[TZ06] Nesime Tatbul and Stan Zdonik. “Window-aware load shedding for ag-

gregation queries over data streams.” In Proceedings of the 32nd inter-

national conference on Very large data bases, VLDB ’06, pp. 799–810.

VLDB Endowment, 2006.

[Vap99] Vladimir Vapnik. “An overview of statistical learning theory.” IEEE

Transactions on Neural Networks, 10(5):988–999, 1999.

156

[VC71] V N Vapnik and A Y Chervonenkis. “On the uniform convergence of

relative frequencies of events to their probabilities.” Theory of Probability

and Its Applications, 16(2):264–280, 1971.

[WDR06] Eugene Wu, Yanlei Diao, and Shariq Rizvi. “High-performance complex

event processing over streams.” In SIGMOD Conference, pp. 407–418,

2006.

[WNC05] Jigang Wang, Predrag Neskovic, and LeonN. Cooper. “Training Data Se-

lection for Support Vector Machines.” In Lipo Wang, Ke Chen, and Yew-

Soon Ong, editors, Advances in Natural Computation, volume 3610 of

Lecture Notes in Computer Science, pp. 554–564. Springer Berlin Heidel-

berg, 2005.

[XJS10] Yang Xu, Junchen Jiang, Yang Song, Tang Jiang, and H. Jonothan Chao.

“i-Dfa: A novel deterministic FInite Automaton without state explosion.”

Technical report, Polytechnic Institute of New York University, Brooklyn,

NY, 2010.

[YCD06] Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman, and Randy H. Katz.

“Fast and memory-efficient regular expression matching for deep packet

inspection.” In ANCS, pp. 93–102, 2006.

[YIF08] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlings-

son, Pradeep Kumar Gunda, and Jon Currey. “DryadLINQ: A System

for General-Purpose Distributed Data-Parallel Computing Using a High-

Level Language.” In OSDI, pp. 1–14, 2008.

[ZGG11] Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. “PrIter: A

Distributed Framework for Prioritized Iterative Computations.” In SOCC,

2011.

[ZMH09a] Weizhong Zhao, Huifang Ma, and Qing He. “Parallel K-Means Cluster-

ing Based on MapReduce.” In Proceedings of the 1st International Con-

ference on Cloud Computing, pp. 674–679. Springer-Verlag, 2009.

[ZMH09b] Weizhong Zhao, Huifang Ma, and Qing He. “Parallel K-Means Clustering

Based on MapReduce.” Cloud Computing, 5931:674–679, 2009.

157

