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SURVEY AND SUMMARY
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ABSTRACT

Telomeres are composed of repetitive G-rich
sequence and an abundance of associated proteins
that together form a dynamic cap that protects chro-
mosome ends and allows them to be distinguished
from deleterious DSBs. Telomere-associated pro-
teins also function to regulate telomerase, the
ribonucleoprtotein responsible for addition of the
species-specific terminal repeat sequence. Loss of
telomere function is an important mechanism for
the chromosome instability commonly found in
cancer. Dysfunctional telomeres can result either
from alterations in the telomere-associated proteins
required for end-capping function, or from alterations
that promote the gradual or sudden loss of sufficient
repeat sequence necessary to maintain proper telo-
mere structure. Regardless of the mechanism, loss of
telomere function can result in sister chromatid
fusion and prolonged breakage/fusion/bridge (B/F/
B) cycles, leading to extensive DNA amplification
and large terminal deletions. B/F/B cycles terminate
primarily when the unstable chromosome acquires
a new telomere, most often by translocation of the
ends of other chromosomes, thereby providing a
mechanism for transfer of instability from one chro-
mosome to another. Thus, the loss of a single telo-
mere can result in on-going instability, affect multiple
chromosomes, and generate many of the types of
rearrangements commonly associated with human
cancer.

TELOMERES AND THEIR FUNCTIONS

Telomeres, unique structures at the physical ends of linear
eukaryotic chromosomes, were first described almost 70 years
ago by Hermann Muller in his classic studies of the fruit fly

Drosophilia melanogaster (1). He noted that chromosomal
inversions resulting from ionizing radiation (IR)-induced
double-strand breaks (DSBs) never involved the very end
of a chromosome rejoining with some other part of a chro-
mosome. Muller coined the term ‘telomere’, which comes
from Greek—telos meaning end and meros meaning part—
based on this chromosome end protection phenomenon.
Shortly thereafter, Barbara McClintock observed that while
broken ends of maize chromosome fused, forming dicentric
chromosomes, unbroken chromosomes rarely fused; i.e. natu-
ral chromosomal termini are not ‘sticky’ (2). The absence of
interstitial telomere sequence within IR-induced dicentrics
was later verified in human cells (3). These studies demon-
strate that normally cells accurately distinguish telomeric ends
from random DSB ends and protect the former from illegiti-
mate end-joining reactions. How cells make this critical dis-
tinction continues to be an active area of research today,
especially as the dividing lines between the two types of
ends have become less, rather than more clear. Recent discov-
eries that certain DSB repair proteins act to preserve—rather
than to join—the natural ends of mammalian chromosomes
(4–7), have provided impetus for the union of two seemingly
disparate scientific fields, DNA repair and telomere biology.
Here, we focus on the creation of dysfunctional mammalian
telomeres in various repair deficient backgrounds that result
from either the loss of end-capping structure or the loss of
terminal sequence (shortening), and the consequences of this
loss of function.

Telomeres serve multiple functions in preserving chromo-
some stability, including protecting the ends of chromosomes
from degradation and preventing chromosomal end fusion.
The DNA component of telomeres consists of tandem arrays
of short, repetitive G-rich sequence [TTAGGG in vertebrates,
(8,9)], oriented 50-to-30 towards the end of the chromosome
(10), ending in an essential 30 single-stranded overhang that
ranges in length from �50 to 400 nt (11–13). Electron micro-
scopy studies suggest this overhang can loop back and inte-
grate into the duplex repeat tract, forming a ‘t-loop’ (14), an
attractive, although not necessarily exclusive, architectural
solution to the end-capping dilemma.
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Telomeres gradually shorten in replicating cells due to
end-processing and the ‘end replication problem’ (15–18),
so in order for continuous cell division to occur, they must
be replenished. The addition of telomeric repeats de novo
is accomplished by the reverse transcriptase telomerase
(19, 20). Thus, telomere length maintenance is a state of
equilibrium between telomere loss and re-addition. Precisely
how telomere length regulation occurs is unknown, but it does
appear that the shortest telomeres are preferentially targeted
for elongation by telomerase (21). Telomere length is main-
tained in germ line cells, however, most human somatic cells
do not express sufficient telomerase activity to prevent telo-
mere loss as they divide. As a result, telomeres eventually
shorten to the point where they initiate a cell cycle arrest in
G1, a state termed replicative senescence (22). Telomere
shortening can, therefore, limit the number of times somatic
cells divide, contributing not only to aging phenotypes, but
also providing an effective tumor suppressor mechanism.
Cells that lose the ability to senesce because of mutations
in p53 protein continue to divide, eventually entering ‘crisis’
where extensive telomere shortening results in chromosomal
fusion and cell death. In contrast, cells that constitutively
express telomerase can continue to divide almost indefinitely
(23,24). Consistent with the requirement for telomere main-
tenance as a step in carcinogenesis, most tumor cells express
telomerase (25). However, an alternative mechanism for
telomere maintenance has also been described (26,27),
which is observed in some tumors (28) and involves recomb-
ination (26,29).

Although telomerase is responsible for addition of telo-
meric sequence with every cell cycle, a plethora of other
proteins also play important roles in the regulation of telo-
mere length maintenance and in the formation of a protective
end-cap that prevents chromosome fusion (30,31). Proteins
that directly bind the double-stranded telomeric repeats
include the TTAGGG Repeat Factors TRF1 (32,33) and
TRF2 (34,35). POT1 (Protection Of Telomeres 1) specifically
recognizes telomeric single-stranded DNA, belongs to a fam-
ily of oligosaccharide/oligonucleotide-binding (OB)-fold-
containing proteins and is highly conserved among eukaryotes
(36,37). Telomere-associated proteins that do not bind DNA
directly include TIN2 (TRF1-Interacting Nuclear Protein 2),
which associates with TRF1 (38) and TRF2 (39,40). The TRF1
complex contains both TIN2 and POT1 and acts to regulate
telomere-length homeostasis. TPP1, the recently proposed
name (31) for a POT1-interacting protein identified indepen-
dently in three laboratories [TINT1 (41), PTOP (42) and PIP1
(43)], recruits POT1 to telomeres and so is also involved in
telomere length regulation. Rap1 (human repressor activator
protein) (44) is recruited to telomeres by TRF2 and has been
shown to negatively regulate telomere length in vivo (45). Six
proteins have been proposed to form an essential, dynamic
complex at human telomeres: TRF1, TRF2, POT1, TIN2,
TPP1 and Rap1. This mammalian telomeric core complex
serves to form and protect the telomere, and has been termed
both the telosome (42) and alternately, Shelterin (31).

Other proteins, many of which are more commonly asso-
ciated with DNA repair, are also found at telomeric ends
[reviewed in (46)]. Examples include DNA-PK (Ku70/
Ku86/DNA-PKcs), the MRN complex (MRE11/RAD50/
NBS1), PARP1/2, Tankyrase 1/2, ATM, ERCC1/XPF,

RAD51D, WRN and BLM. TRF2 has been shown to bind
to ATM, blocking a damage response at telomeres (47).
Interestingly, it has recently been proposed that normally,
functional human telomeres must be recognized as DNA
damage in the G2 phase of the cell cycle, in order to recruit
the processing machinery necessary for formation of a func-
tional telomere (48). The interplay between telomeres and
DSBs may be better understood not by viewing the striking
differences between them, but instead by viewing the obvious
similarity—both are DNA ends, the very substrate telomere
and damage response/repair proteins specifically recognize
and bind.

FAILURE OF TELOMERIC FUNCTION DUE TO
LOSS OF END-CAPPING STRUCTURE

Functional telomeres are essential for continuous cellular
proliferation, and therefore loss of chromosomal end-capping
has consequences in both aging and carcinogenesis (49,50).
We have shown that effective end-capping of mammalian
telomeres requires the non-homologous end-joining (NHEJ)
protein DNA-dependent protein kinase (DNA-PK) (4).
Mutation of any of the genes comprising DNA-PK, i.e.
Ku70, Ku86, or the catalytic subunit, DNA-PKcs (51),
leads to spontaneous chromosomal end-to-end fusions that
maintain large blocks of telomeric sequence at the points of
fusion (Figure 1). DNA-PK has since been shown to associate
with human telomeric DNA in vivo (52,53). Events at the
extreme terminus of the chromosome that normally serve to
create a functionally protected telomere fail in the absence
of DNA-PK, resulting in inappropriate end-to-end fusion
events of uncapped telomeres fusing not only to each other,
but also to IR-induced DSBs (54). We have also shown that

Figure 1. Strand-specific CO-FISH detection of leading- (red) and lagging-
(green) strand telomeres demonstrating chromosomal telomere-telomere
fusion in a DNA-PKcs deficient background, indicative of end-capping failure
owing to loss of structure, not loss of sequence.
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the kinase activity of DNA-PKcs is required for effective
telomere protection, just as it is for NHEJ (55,56). However,
as with NHEJ, the critical in vivo substrates are not known.
The in vivo consequences of inappropriate interstitial blocks
of telomere sequence are also unknown, but they most likely
affect chromatin stability, and in vitro studies have demon-
strated they increase chromosomal instability (57).

It is of interest to note that a ‘free end’ remains following a
telomere–DSB fusion, thus providing a means of generating
on-going instability. We find that telomere fusions contribute
significantly to the background level of chromosomal aberra-
tions, and that they occur despite the presence of ample telo-
mere sequence. Thus, they are obviously not a consequence
of telomere shortening, nor are they telomere associations
[defined as distinct telomere signals separated by less than
approximately one-third the width of a chromatid, (58)].
Banding studies demonstrated that any chromosome could
be involved in the telomere fusions (end-capping failure is
not chromosome specific), and further, that some of the telom-
ere fusions were clonal, suggestive of covalent linkages
(S. Bouffler, unpublished data). Utilizing the strand-specific
CO-FISH technique (59,60), we found that the telomere
fusions in DNA-PKcs-deficient cells exclusively involved
telomeres synthesized via leading-strand DNA synthesis, sug-
gesting a crucial difference in the post-replicative protection
of telomeres that is linked to their mode of replication (61).
Additional support for a model of end-specific differences in
telomeric end-protection was provided by the demonstration
of preferential loss of lagging-strand telomeres with WRN
deficiency in human cell lines (62).

TRF2 directly binds the duplex telomere repeat tract as a
homodimer (63,64). It protects the 30 single-stranded G-rich
overhang and is involved in t-loop formation, perhaps
facilitating invasion of the 30 single-stranded overhang (14).
Inhibition of TRF2 induces a dramatic telomere fusion pheno-
type (65) resulting from failure of end-protection preferen-
tially at leading-strand telomeres (61). End-capping failure
occurs after replication, as evidenced by the presence of
numerous chromatid-type telomere fusions (61) (Figure 2).
It has also been shown that DNA damage foci form at
telomeres uncapped by TRF2 inhibition (telomere
dysfunction-induced foci; TIFs), and consistent with the
cytogenetic results, uncapping of telomeres occurs in late
S/G2, i.e. after replication (66).

FAILURE OF TELOMERE FUNCTION DUE TO
LOSS OF TELOMERIC REPEAT SEQUENCES

In addition to loss of end-capping function, chromosomal
fusion can also result from the absence of sufficient telomeric
repeat sequences to form a functional telomere. The most
obvious mechanism for the loss of telomeric repeat sequences
is attrition due to the failure to compensate for the gradual
loss of telomeric repeat sequences during cell division. This
failure to maintain telomere homeostasis can result from
either insufficient telomerase activity or alterations in other
telomere-associated proteins required for the recruitment of
telomerase to the telomere. The gradual loss of telomeric
repeat sequence due to insufficient telomerase activity is
exemplified by the telomere shortening that occurs in

telomerase-deficient somatic cells with each cell division,
although due to cell senescence or apoptosis, this does not
normally result in chromosome instability. In addition to
gradual loss, telomeric repeat sequences can also be lost
through stochastic processes, in which large blocks of telom-
eric repeat sequences are lost in single events. Stochastic
events leading to telomere loss can occur through a variety
of different mechanisms, the most obvious being large dele-
tions involving recombination, problems encountered during
DNA synthesis or inefficient DNA repair. Replication forks
stall near telomeres in yeast, and require the Rrm3 helicase,
which promotes replication through regions of non-histone
chromatin (67,68). Mammalian telomeres may also pose prob-
lems for DNA replication, since the mammalian telomere-
binding proteins TRF1 and TRF2 can inhibit replication
fork movement (69). Studies in yeast have also demonstrated
that telomeric regions are deficient in repair of DSBs. The
introduction of DSBs at different sites along a chromosome
with the I-SceI endonuclease demonstrated that DSBs near
telomeres are not repaired efficiently by NHEJ, but instead
result in complex chromosome rearrangements (70).
Mammalian telomeres have been shown to be deficient in
repair of single-strand breaks (71) and get damaged from
ultraviolet light (72). Studies with mouse ES cells (73,74)
and human tumor cell lines (J. P. Murnane, unpublished
data) also show that a single DSB generated by I-SceI
often results in complex chromosome rearrangements not
commonly observed at I-SceI-induced DSBs at other locations
within chromosomes (75–77).

Cells containing mutations in various proteins known to be
involved in telomere maintenance have provided valuable
insights into the mechanisms of telomere loss. One such

Figure 2. CO-FISH detection of chromatid-type telomere fusions in TRF2
deficient cells demonstrating preferential failure of end-capping at leading-
strand (red) telomeres.
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protein is WRN, which is responsible for the human genetic
disease Werner Syndrome (WS), an autosomal recessive
genetic disease presenting a wide range of phenotypic
abnormalities, including characteristics of premature aging
(78). WRN is a member of the RecQ DNA helicase family
and has both a 30 to 50 helicase activity and a 30 to 50 exonu-
clease activity (79–81). Cells isolated from individuals with
WS exhibit shortened life span in culture (82), as well as an
increased rate of DNA rearrangements, including trans-
locations, deletions and dicentrics (83–88). WRN binds to
a number of proteins involved in recombination, including
replication protein A (RPA) (89,90), PCNA and topo-
isomerase I (91), DNA polymerase delta (92), and co-localizes
with RAD51 (93) and the Mre11/Rad50/Nbs1 (MRN) com-
plex in response to DSBs (94). Consistent with these protein
interactions, WS cells have been shown to have a defect in
homologous recombination (HR) (95,96). In addition, the
observations that WS cells have a prolonged S-phase (97)
and WRN co-localizes with RPA in cells arrested in
S-phase with hydroxyurea (98), suggest that WS cells have
a defect in resolving stalled replication forks (80,98,99). WRN
has also been demonstrated to bind the DNA-PK complex
(94,100–103) and FEN-1 (104), proteins involved in NHEJ.
Moreover, the activity of WRN is influenced by its binding to
the DNA-PK complex (101,102). Thus, in addition to a role in
HR, WRN also appears to have a role in the NHEJ pathway for
DSB repair.

WRN is also important in telomere maintenance. The
role of telomeres in cellular senescence initially led to the
proposal that the shortened life-span of WS cells in culture
might be due to accelerated telomere shortening (105). WS
cells were found to have accelerated telomere shortening,
although the premature senescence in WS cells was found
to occur when telomeres were longer than in senescent normal
cells (106). However, a subsequent study found that WS cells
at senescence have telomeres that are similar in length to
normal senescent cells (107). Combined with the fact that
WS cells can be immortalized by expression of telomerase
(107–109), these results suggest that WS cells have a defect
in telomere maintenance that leads to premature senescence.
This conclusion was confirmed by studies in mice deficient
in both WRN and telomerase. Although due to their long
telomeres, mice deficient in WRN alone do not demonstrate
the premature aging phenotype observed in humans with
WS, later generations of telomerase-deficient mice with
shortened telomeres demonstrate classic WS-like premature
aging, accelerated replicative senescence, and genomic
instability (110).

The mechanism responsible for telomere shortening in
WRN-deficient cells has yet to be determined. One study
found that cells expressing dominant-negative WRN showed
an increase in chromosome ends without detectable telomeres
even though no difference in average telomere length was
observed (111), indicating that telomere loss in WS is due
to a stochastic process. The association of WRN with the
DNA-PK complex involved in NHEJ would suggest that
telomere loss in WS cells is due to a deficiency in repair of
DSBs near telomeres. However, the DNA-PK complex also
has a role in telomere capping (4–6,53,112,113). In addition,
WRN has been found to bind to TRF2 (114), which is essential
for maintaining the cap on the end of the chromosome (65),

and WRN is required for D-loop resolution regulated by
TRF1 and TRF2 (114). Based on these observations, another
possible mechanism for telomere loss in WRN-deficient cells
would involve t-loop deletions similar to those observed in
cells deficient in TRF2 (115). However, loss of end-capping
structure would not lead directly to loss of telomeric repeat
sequences. A critical clue to the mechanism of telomere loss
in WS cells comes from a recent study demonstrating the
preferential loss of the lagging-strand of telomeres (62),
suggesting that telomere loss in WS cells is a result of the
requirement for WRN in replication of the G-rich DNA found
in the lagging strand. This model is consistent with the
involvement of WRN in DNA replication and/or resolution
of stalled replication forks (80,98,99), since failure to resolve
stalled replication forks can result in DNA DSBs (116,117).
The importance of WRN in replication and/or recombina-
tion of telomeres is also apparent from its requirement in
suppression of sister chromatid exchange (SCE) specifically
within telomeric DNA (T-SCE) (118) and activation of the
ALT pathway that involves recombination (119), similar
to that proposed for the yeast homolog for WRN,
Sgs1 (120–122).

NBS1 is another protein that can influence the loss of telo-
meric repeat sequences. Mutations in NBS1 are responsible
for the autosomal recessive disease Nijmegen breakage syn-
drome (NBS), which displays a wide range of phenotypic
abnormalities, including premature aging, increased cancer
incidence, chromosomal instability and sensitivity to IR
(123,124). NBS1 is part of the MRN complex that also con-
tains the MRE11 and RAD50 proteins (125,126). The MRN
complex is a key player in the cellular response to DSBs in that
association of the MRN complex with DSBs is required for the
localization and activation of ATM (127), which in turn phos-
phorylates NBS1 (128–130). As a result, similar to cells defi-
cient in ATM, mammalian cells deficient in NBS1 lack the
S-phase cell cycle checkpoint (131) and are sensitive to IR
(132). In addition to its roles in DNA recombination and
repair, the MRN complex also functions in telomere mainte-
nance. Inhibition of NBS1 by RNAi resulted in an increased
frequency of telomere association (58). Primary fibroblasts
from individuals with NBS have shortened telomeres,
which are proposed to play a role in the pathology of this
disease (133). In this respect NBS is similar to AT, where
accelerated telomere shortening is observed in primary fibrob-
lasts (134), although no difference in telomere length is evi-
dent in immortal cells actively maintaining their telomeres
(135). In fact, mice with combined knockouts in both ATM
and the RNA component of telomerase show accelerated
telomere loss and premature aging, leading to the hypothesis
that telomere loss is the reason for some of the phenotypic
abnormalities observed in AT (136). Like WRN, the function
of NBS1 affecting telomere loss is unclear. Similar to WRN,
the MRN complex interacts with TRF2 (137), and therefore is
likely to function in proper end-cap formation. However,
although MRE11 and RAD50 are found at the telomere
throughout the cell cycle, NBS1 is associated with the telom-
ere only during S-phase, suggesting that it is involved in
telomere replication. Thus, like WRN, a defect in NBS1
may promote telomere loss through problems in DNA replica-
tion or the resolution of stalled replication forks in telomeric
regions. In fact, WRN associates with MRN (94), and both
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dominant-negative NBS1 (138) and WRN (111) have been
found to cause similar increases in the rate of telomere loss
with no change in average telomere length.

MECHANISMS OF GENOMIC INSTABILITY
RESULTING FROM TELOMERE LOSS

Selectable marker genes adjacent to telomeres have been used
to study the consequences of telomere loss in mammalian cells
(139). This approach has the advantage of following the
changes in individual chromosomes from the initial event,
rather than attempting to reconstruct the sequence of events
involved in the generation of complex rearrangements. These
marked telomeres contain a Herpes simplex virus thymidine
kinase (HSV-tk) selectable-marker gene to select for loss of
the telomere, as well as an 18 bp recognition site for the I-SceI
endonuclease to introduce DSBs, which has been widely used
to study DNA repair and recombination in mammalian cells
(75–77). Using this system, the types of chromosome rear-
rangements resulting from telomere loss have been followed in
both mouse ES cells (73) and the EJ-30 human tumor cell line
(140–142). In both the mouse ES cells and EJ-30, telomere
loss resulted in either a telomere added directly on to the end of
the broken chromosome or inverted repeats resulting from
sister chromatid fusion. While the addition of a new telomere
resulted in stabilization of the marker chromosome, sister
chromatid fusion was followed by breakage/fusion/bridge
(B/F/B) cycles and amplification of subtelomeric DNA
(Figure 3). These B/F/B cycles occur when the chromosome
that has lost a telomere is replicated, and the sister chromatids
fuse together at their ends. The fused sister chromatids then
form a bridge that breaks during anaphase when the two cen-
tromeres are pulled in opposite directions. Following DNA
replication in the next cell cycle, the sister chromatids fuse
once again, and therefore these B/F/B cycles continue until the
marker chromosome acquires a new telomere. Because neither
direct telomere addition nor sister chromatid fusion have been
observed at DSBs generated by I-SceI at interstitial sites
(75–77), these results suggest that there is something different
about the processing of DSBs occurring near telomeres. Con-
sistent with this conclusion, DSBs generated by I-SceI are
poorly repaired by NHEJ near telomeres in yeast, and result
in complex chromosome rearrangements (70). Moreover,
direct telomere addition on to the ends of broken chromosomes
in yeast preferentially occurs near existing telomeric repeat
sequences (143).

One important difference between the mouse ES cells and
the EJ-30 human tumor cell line is that while telomeres in
mouse ES cells are highly stable (loss of the HSV-tk gene
<10�6 events/cell/generation), the telomeres in the human
EJ-30 tumor cell line are lost at a relatively high rate
(10�4 events/cell/generation). Similar results were observed
with other human tumor cell lines (J. P. Murnane, unpublished
data). This observation is consistent with other studies
demonstrating that cancer cells commonly have telomere
instability (144,145). Therefore, although chromosomal rear-
rangements due to telomere loss in cancer cells are commonly
thought to result from the extensive chromosome fusion that
occurs during crisis (146,147), a high rate of telomere loss is
often observed even in human tumors and tumor cell lines that

express telomerase (73,140,144,148,149), suggesting that
many tumor cells have a fundamental defect that promotes
telomere loss.

Another important difference between the mouse ES cells
and human tumor cell lines is that while the direct addition of a
telomere at the site of the break is a common event it mouse ES
cells (74), telomere loss in human tumor cell lines often results
in sister chromatid fusion followed by B/F/B cycles (140). In
addition, while B/F/B cycles last only a few generations in
mouse ES cells (73,74), in EJ-30 they can last for many cell
generations (73,140,141). This inability to terminate B/F/B
cycles is likely to contribute to the chromosome instability
resulting from telomere loss in human tumor cells.

The prolonged B/F/B cycles in the EJ-30 human tumor cell
line results in extensive DNA amplification and terminal
deletions of DNA on the end of the marker chromosome
that lost its telomere (141). The fused sister chromatids
most often break within 1 Mb of the site of fusion, which
was confirmed by a subsequent study that found that anaphase
bridges formed by sister chromatid fusions most often break
near their center, regardless of length (150). As a result, the
region amplified by B/F/B cycles without selection is most
often relatively small (i.e. <1 Mb). However, some breaks also
occur far from the site of fusion, resulting in large duplications

Breakage/cytokinesis 

Fusion 

Bridge 

Replication 

Fusion 

Bridge 

Breakage 

Replication

Breakage/cytokinesis 

Figure 3. B/F/B cycles as a mechanism for chromosome instability resulting
from telomere loss. B/F/B cycles are initiated when sister chromatids fuse
following the loss of a telomere. Owing to the presence of two centromeres,
the fused sister chromatids break when the cell attempts to divide up its sister
chromatids at anaphase. Because the break does not occur exactly at the site of
the fusion, one daughter cell will receive a copy of the chromosome with an
inverted repeat at its end, while the other daughter cell will have a copy of the
chromosome with a terminal deletion. Owing to the lack of a telomere, these
chromosomes will again undergo sister chromatid fusion after DNA replication,
resulting in additional amplification and terminal deletions. The location of
telomeres (squares), centromeres (circles) and orientation of the subtelomeric
sequences (horizontal arrows) are shown.
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and deletions (73,140,141). This type of break is involved
in the amplification of selectable marker genes located far
from the end of the chromosome, and has been shown to
occur at the location of fragile sites (151,152). Thus, the
loss of a telomere can result in the amplification of genes
anywhere on the arm of a chromosome.

B/F/B cycles end when the chromosome acquires a telomere
and again becomes stable. The most common mechanism
for telomere acquisition in both the mouse ES cells and the
EJ-30 tumor cell line was through translocation of the ends of
other chromosomes (139,142). In EJ-30 these translocations
were either non-reciprocal (NRT) or involved duplications, as
determined by the status of the donor chromosome, i.e. with
NRTs, one of the homologs of the donor chromosome is
missing part or all of an arm and its telomere, whereas with
duplications, both homologs are intact. Both types of events
have important consequences for the genome as a whole. The
translocations involving duplications commonly involve large
portions of the arms of other chromosomes, and therefore
generate allelic imbalances involving a large number of
genes. On the other hand, NRTs result in the loss of a telomere
on the donor chromosome, resulting in its instability and
the eventual acquisition of a telomere through translocations
from other chromosomes. In fact, in one cell this transfer of
instability was found to involve six different chromosomes,
demonstrating that the loss of a single telomere can result
in instability involving multiple chromosomes. Therefore,
in addition to amplification of DNA at the end of a chrom-
osome that has lost a telomere, once initiated, B/F/B cycles
can result in other rearrangements, not only involving the
chromosome that initially lost its telomere, but other chromo-
somes as well. In view of the fact that B/F/B cycles can
continue for many cell generations, the loss of even a single
telomere can generate a wide variety of chromosomal changes
in the cell population.

Taken together, the above results demonstrate that loss of
telomeric function—whether due to loss of sequence or loss of
structure—and the ensuing instability and chromosomal rear-
rangements, can be expected to have a dramatic impact on the
stability of the genome. Therefore, in view of increasing
evidence implicating genomic instability in carcinogenesis
(153,154), telomere loss is likely to be a significant contribut-
ing factor. A role for loss of functional telomeres in the chro-
mosome instability commonly associated with cancer is
supported by the large increase in human-like carcinomas
in mice deficient in both telomerase and p53, and the presence
of chromosome rearrangements typical of B/F/B cycles in
these tumors (146,147,155,156). Understanding the mecha-
nisms of telomere maintenance and the various factors that
promote telomere instability should therefore provide valuable
insights into both human genetic disease and cancer.

ACKNOWLEDGEMENTS

The work in the laboratory of S.M.B. was supported by NASA
grant NNJ04HD83G; additional support from Dr Robert L.
Ullrich NIH grant CA43322 and DOE grant DE-FG03-
01ER63239 is also gratefully acknowledged. S.M.B. thanks
Drs E.H. Goodwin and T. de Lange for cell lines. The work
in the laboratory of J.P.M. was supported by National Institute
of Environmental Health Science Grant No. RO1 ES008427,

and National Cancer Institute Grant No. RO1 CA69044. The
Open Access publication charges for this article were waived
by Oxford University Press.

Conflict of interest statement. None declared.

REFERENCES

1. Muller,H.J. (1938) The remaking of chromosomes. The collecting
net-Woods Hole, 13, 181–198.

2. McClintock,B. (1941) The stability of broken ends of chromosomes in
Zea mays. Genetics, 41, 234–282.

3. Cornforth,M.N., Meyne,J., Littlefield,L.G., Bailey,S.M. and
Moyzis,R.K. (1989) Telomere staining of human chromosomes and the
mechanism of radiation-induced dicentric formation. Radiat Res.,
120, 205–212.

4. Bailey,S.M., Meyne,J., Chen,D.J., Kurimasa,A., Li,G.C., Lehnert,B.E.
and Goodwin,E.H. (1999) DNA double-strand break repair proteins are
required to cap the ends of mammalian chromosomes. Proc. Natl Acad.
Sci. USA, 96, 14899–14904.

5. Gilley,D., Tanaka,H., Hande,M.P., Kurimasa,A., Li,G.C.,
Oshimura,M. and Chen,D.J. (2001) DNA-PKcs is critical for telomere
capping. Proc. Natl Acad. Sci. USA, 98, 15084–15088.

6. Hsu,H.-L., Gilley,D., Galande,S.A., Hande,M.P., Allen,B., Kim,S.-H.,
Li,G.C., Campisi,J., Kohwi-Shigematsu,T. and Chen,D.J. (2000) Ku
acts in a unique way at the mammalian telomere to prevent end joining.
Genes Dev., 14, 2807–2812.

7. Samper,E., Goytisolo,F.A., Slijepcevic,P., van Buul,P.P. and
Blasco,M.A. (2000) Mammalian Ku86 protein prevents telomeric
fusions independently of the length of TTAGGG repeats and the
G-strand overhang. EMBO Rep., 1, 244–252.

8. Meyne,J., Ratliff,R.L. and Moyzis,R.K. (1989) Conservation of the
human telomere sequence (TTAGGG)n among vertebrates.
Proc. Natl Acad. Sci. USA, 86, 7049–7053.

9. Moyzis,R.K., Buckingham,J.M., Cram,L.S., Dani,M., Deaven,L.L.,
Jones,M.D., Meyne,J., Ratliff,R.L. and Wu,J.-R. (1988) A highly
conserved repetitive DNA sequence, (TTAGGG)n, present at the
telomeres of human chromosomes. Proc. Natl Acad. Sci. USA,
85, 6622–6626.

10. Blackburn,E.H. (1991) Structure and function of telomeres. Nature,
350, 569–573.

11. Makarov,V.L., Hirose,Y. and Langmore,J.P. (1997) Long G tails at
both ends of human chromosomes suggest a C strand degredation
mechanism for telomere shortening. Cell, 88, 657–666.

12. Wellinger,R.J. and Sen,D. (1997) The DNA structures at the ends of
eukaryotic chromosomes. Eur. J. Cancer, 33, 735–749.

13. Huffman,K.E., Levene,S.D., Tesmer,V.M., Shay,J.W. and
Wright,W.E. (2000) Telomere shortening is proportional to the
size of the G-rich telomeric 30-overhang. J. Biol. Chem., 275,
19719–19722.

14. Griffith,J.D., Comeau,L., Rosenfield,S., Stansel,R.M., Bianchi,A.,
Moss,H. and de Lange,T. (1999) Mammalian telomeres end in a large
duplex loop. Cell, 97, 503–514.

15. Olovnikov,A.M. (1971) Principle of marginotomy in template
synthesis of polynucleotides. Dokl. Akad. Nauk. SSSR, 201,
1496–1499.

16. Watson,J.D. (1972) The origin of concatemeric T7 DNA. Nature,
239, 197–201.

17. Lingner,J., Cooper,J.P. and Cech,T.R. (1995) Telomerase and DNA
end replication: no longer a lagging strand problem? Science,
269, 1533–1534.

18. Chakhparonian,M. and Wellinger,R.J. (2003) Telomere maintenance
and DNA replication: how closely are these two connected?
Trends Genet., 19, 439–446.

19. Greider,C.W. and Blackburn,E.H. (1985) Identification of a specific
telomere terminal transferase activity in Tetrahymena extracts.
Cell, 43, 405–413.

20. Greider,C.W. and Blackburn,E.H. (1987) The telomere terminal
transferase of tetrahymena is a ribonucleoprotein enzyme with two
kinds of specificity. Cell, 51, 887–898.

21. Teixeira,M.T., Arneric,M., Sperisen,P. and Lingner,J. (2004) Telomere
length homeostasis is achieved via a switch between telomerase-
extendible and -nonextendible states. Cell, 117, 323–335.

Nucleic Acids Research, 2006, Vol. 34, No. 8 2413



22. Harley,C.B., Futcher,A.B. and Greider,C.W. (1990) Telomeres shorten
during ageing of human fibroblasts. Nature, 345, 458–460.

23. Bodnar,A.G., Ouellette,M., Frolkis,M., Holt,S.E., Chiu,C.-P.,
Morin,G.B., Harley,C.B., Shay,J.W., Lichtsteiner,S. and Wright,W.E.
(1998) Extension of life-span by introduction of telomerase into normal
human cells. Science, 279, 349–352.

24. Jiang,X.-R., Jimenez,G., Chang,E., Frolkis,M., Kusler,B., Sage,M.,
Beeche,M., Bodnar,A.G., Wahl,G.M., Tlsty,T.D. et al. (1999)
Telomerase expression in human somatic cells does not induce
changes associated with a transformed phenotype. Nature Genet., 21,
111–114.

25. Shay,J.W. and Bacchetti,S. (1997) A survey of telomerase activity in
human cancer. Eur. J. Cancer, 33, 787–791.

26. Murnane,J.P., Sabatier,L., Marder,B.A. and Morgan,W.F. (1994)
Telomere dynamics in an immortal human cell line. EMBO J., 13,
4953–4962.

27. Bryan,T.M., Englezou,A., Gupta,J., Bacchetti,S. and Reddel,R.R.
(1995) Telomere elongation in immortal human cells without
detectable telomerase activity. EMBO J., 14, 4240–4248.

28. Neumann,A.A. and Reddel,R.R. (2002) Telomere maintenance and
cancer—look, no telomerase. Nature Rev. Cancer, 2, 879–884.

29. Dunham,M.A., Neumann,A.A., Fasching,C.L. and Reddel,R.R. (2000)
Telomere maintenance by recombination in human cells. Nature
Genet., 26, 447–450.

30. de Lange,T. (2002) Protection of mammalian telomeres. Oncogene, 21,
532–540.

31. de Lange,T. (2005) Shelterin: the protein complex that shapes and
safeguards human telomeres. Genes Dev., 19, 2100–2110.

32. Chong,L., van Steensel,B., Broccoli,D., Erdjument-Bromage,H.,
Hanish,J., Tempst,P. and de Lange,T. (1995) A human telomeric
protein. Science, 270, 1663–1667.

33. Zhong,Z., Shiue,L., Kaplan,S. and de Lange,T. (1992) A mammalian
factor that binds telomeric TTAGGG repeats in vitro. Mol. Cell. Biol.,
12, 4834–4843.

34. Bilaud,T., Brun,C., Ancelin,K., Koering,C.E., Laroche,T. and
Gilson,E. (1997) Telomeric localization of TRF2, a novel human
telobox protein. Nature Genet., 17, 236–239.

35. Broccoli,D., Smogorzewska,A., Chong,L. and de Lange,T. (1997)
Human telomeres contain two distinct Myb-related proteins, TRF1 and
TRF2. Nature Genet., 17, 231–235.

36. Loayza,D., Parsons,H., Donigian,J., Hoke,K. and de Lange,T. (2004)
DNA binding features of human POT1: a nonamer 50-TAGGGTTAG-
30 minimal binding site, sequence specificity, and internal binding to
multimeric sites. J. Biol. Chem., 279, 13241–13248.

37. Baumann,P. and Cech,T.R. (2001) Pot1, the putative telomere
end-binding protein in fission yeast and humans. Science, 292,
1171–1175.

38. Kim,S.H., Kaminker,P. and Campisi,J. (1999) TIN2, a new regulator of
telomere length in human cells. Nature Genet., 23, 405–412.

39. Kim,S.H., Beausejour,C., Davalos,A.R., Kaminker,P., Heo,S.J. and
Campisi,J. (2004) TIN2 mediates functions of TRF2 at human
telomeres. J. Biol. Chem., 279, 43799–43804.

40. Ye,J.Z., Donigian,J.R., van Overbeek,M., Loayza,D., Luo,Y.,
Krutchinsky,A.N., Chait,B.T. and de Lange,T. (2004) TIN2 binds
TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on
telomeres. J. Biol. Chem., 279, 47264–47271.

41. Houghtaling,B.R., Cuttonaro,L., Chang,W. and Smith,S. (2004) A
dynamic molecular link between the telomere length regulator TRF1
and the chromosome end protector TRF2. Curr. Biol., 14, 1621–1631.

42. Liu,D., Safari,A., O’Connor,M.S., Chan,D.W., Laegeler,A., Qin,J. and
Songyang,Z. (2004) PTOP interacts with POT1 and regulates its
localization to telomeres. Nature Cell Biol., 6, 673–680.

43. Ye,J.Z., Hockemeyer,D., Krutchinsky,A.N., Loayza,D., Hooper,S.M.,
Chait,B.T. and de Lange,T. (2004) POT1-interacting protein PIP1:
a telomere length regulator that recruits POT1 to the TIN2/TRF1
complex. Genes Dev., 18, 1649–1654.

44. Li,B., Oestreich,S. and de Lange,T. (2000) Identification of human
Rap1: implications for telomere evolution. Cell, 101, 471–483.

45. O’Connor,M.S., Safari,A., Liu,D., Qin,J. and Songyang,Z. (2004)
The human Rap1 protein complex and modulation of telomere length.
J. Biol. Chem., 279, 28585–28591.

46. Blasco,M.A. (2005) Telomeres and human disease: ageing, cancer and
beyond. Nature Rev. Genet., 6, 611–622.

47. Karlseder,J., Hoke,K., Mirzoeva,O.K., Bakkenist,C., Kastan,M.B.,
Petrini,J.H. and de Lange,T. (2004) The telomeric protein TRF2 binds
the ATM kinase and can inhibit the ATM-dependent DNA damage
response. PLoS Biol., 2, E240.

48. Verdun,R.E., Crabbe,L., Haggblom,C. and Karlseder,J. (2005)
Functional human telomeres are recognized as DNA damage in G2 of
the cell cycle. Mol. Cell, 20, 551–561.

49. Morin,G.B. (1996) Telomere integrity and cancer. J. Natl Cancer Inst.,
88, 1095–1096.

50. Harley,C.B., Vaziri,H., Counter,C.M. and Allsopp,R.C. (1992) The
telomere hypothesis of cellular aging. Exp. Gerontol., 27, 375–382.

51. Jeggo,P.A., Taccioli,G.E. and Jackson,S.P. (1995) Menage à trois:
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