
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Hardware Acceleration Of Database Applications

Permalink
https://escholarship.org/uc/item/6pw111ns

Author
Moussalli, Roger

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6pw111ns
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Hardware Acceleration of Database Applications

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Roger Moussalli

March 2013

Dissertation Committee:

Dr. Walid Najjar, Chairperson
Dr. Vassilis J. Tsotras
Dr. Philip Brisk

Copyright by
Roger Moussalli

2013

The Dissertation of Roger Moussalli is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I am grateful to my advisor, Dr.Walid Najjar, whose invaluable guidance I will always

cherish; to Dr.Mazen Saghir without whose help and trust, I would not have been here;

and to Dr.Vassilis J. Tsotras, for all the kindness, help and advice.

iv

ABSTRACT OF THE DISSERTATION

Hardware Acceleration of Database Applications

by

Roger Moussalli

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2013

Dr. Walid Najjar, Chairperson

General purpose computing platforms have generally been favored over cus-

tomized computational setups, due to the simplified usability and significant reduction

of development time. These general purpose machines make use of the Von-Neumann

architectural model which suffers from the sequential aspect of computing and heavy

reliance on memory offloading.

This dissertation proposes the use of hardware accelerators such as Field Pro-

grammable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs) as a substi-

tute or co-processor to general purpose CPUs, with a focus on database applications.

Here, large amounts of data are queried in a time-critical manner. This dissertation

shows that using hardware platforms allows processing data in a streaming (single pass)

and massively parallel manner, hence speeding up computation by several orders of

magnitude when compared to general purpose CPUs. The complexity of programming

these parallel platforms is abstracted from the developers, as hardware constructs are

automatically generated from high-level application languages and/or specifications.

This dissertation explores the hardware acceleration of XML path and twig fil-

tering, using novel dynamic programming algorithms. Publish-subscribe systems present

v

the state of the art in information dissemination to multiple users. Current XML-based

publish-subscribe systems provide users with considerable flexibility allowing the formu-

lation of complex queries on the content as well as the (tree) structure of the streaming

messages. Messages that contain one or more matches for a given user profile (query)

are forwarded to the user.

This dissertation further studies FPGA-based architectures for processing ex-

pressive motion patterns on continuous spatio-temporal streams. Complex motion pat-

terns are described as substantially flexible variable-enhanced regular expressions over a

spatial alphabet that can be implicitly or explicitly anchored to the time domain. Using

FPGAs, thousands of queries are matched in parallel. The challenges in handling several

constructs of the assumed query language are explored, with a study on the tradeoffs

between expressiveness, scalability and matching accuracy (eliminating false-positives).

Finally, the first parallel Golomb-Rice (GR) integer decompression FPGA-

based architecture is detailed, allowing the decoding of unmodified GR streams at the

deterministic rate of several bytes (multiple integers) per hardware cycle. Integer de-

compression is a first step in the querying of inverted indexes.

vi

Contents

List of Figures x

1 Introduction 1
1.1 Related Work . 2
1.2 Contributions . 4
1.3 XML Filtering . 6
1.4 Querying Spatio-Temporal Databases . 9
1.5 Integer Decompression . 11

2 XML Path Filtering 13
2.1 Introduction . 13
2.2 Problem Definition . 15
2.3 Related Work . 18

2.3.1 Software Approaches to XML Filtering 18
2.3.2 Hardware-Accelerated Approaches to XML Processing 19

2.4 Parallel XPath Filtering Solution . 21
2.4.1 Pairs Matching . 21

2.4.1.1 Parent/Child Relationships 21
2.4.1.2 Ancestor/Descendant Relationships 23

2.4.2 Custom Stacks for Path Matching 26
2.4.3 Matching Stack Properties . 28
2.4.4 Inherent Parallelism . 29
2.4.5 Support for Predicate Expression Evaluation 30

2.5 XPath Filtering on FPGAs . 31
2.5.1 System Architecture . 31
2.5.2 Fully Customized FPGA Hardware 35

2.5.2.1 Matching XPaths Using Path Specific Stacks 35
2.5.2.2 Applied Optimizations for PSS Reduced Resource Uti-

lization . 36
2.5.3 Programmable FPGA Hardware for Fast Update Time 42

2.5.3.1 Programmable Path Specific Stacks 43
2.5.4 Performance Optimizations . 46
2.5.5 Query Compiler Overview . 47

2.6 XPath Filtering on GPUs . 48
2.6.1 Mapping Queries to Threads . 49
2.6.2 Mapping Queries to Blocks . 51

vii

2.6.2.1 Approach Overview . 51
2.6.2.2 Common Prefix Optimization 52

2.6.3 Streaming Processor Personalities 54
2.6.4 Efficient Use of the GPU Memory Hierarchy 55
2.6.5 Supporting Batches of XML Documents 56

2.7 Experimental Evaluation . 57
2.7.1 Experimental Evaluation of FPGA-Based Approaches 59

2.7.1.1 Setup and Platform . 59
2.7.1.2 Tradeoffs and Resource Utilization 60
2.7.1.3 Performance Evaluation 62

2.7.2 Experimental Evaluation of GPU-Based Approaches 66
2.7.2.1 Common Prefix Optimization Evaluation 67
2.7.2.2 Effect of the GPU Block Size 69
2.7.2.3 Mapping Queries to GPU Threads versus Blocks 70
2.7.2.4 Performance Evaluation 72

2.7.3 Performance of CPU-Based Approaches 74
2.7.4 Comparing FPGA, GPU and CPU-Based Filtering 76

2.8 Conclusions . 78

3 XML Twig Filtering 80
3.1 Introduction . 81
3.2 Holistic Twig Matching . 83

3.2.1 Push Stacks for Path Matching 84
3.2.1.1 Root-to-Leaf Path Matching 84
3.2.1.2 Supporting Ancestor/Descendant Relationships 85
3.2.1.3 Mapping Algorithm . 86

3.2.2 Pop Stacks for Joins . 86
3.2.2.1 Leaf-to-Split Node Matched Path Reporting 87
3.2.2.2 Pop Stack Properties 89
3.2.2.3 Supporting Ancestor/Descendant Relationships 91
3.2.2.4 Mapping Algorithm . 91

3.3 Breaking Twigs into Paths and/or Pairs 92
3.3.1 Advantages . 93
3.3.2 Disadvantages . 93

3.4 Filtering System Evaluation . 94
3.4.1 Hardware System Evaluation . 95
3.4.2 Hardware/Software Performance Evaluation 98

3.5 Conclusions . 102

4 Querying Spatio-Temporal Databases 104
4.1 Introduction . 104
4.2 Related Work . 107
4.3 The FlexTrack System . 109

4.3.1 Pattern Query Language . 109
4.3.2 Pattern Query Evaluation . 111

4.4 Proposed Hardware Solution . 113
4.4.1 Compiling Queries to Hardware 113
4.4.2 High Level Architecture Overview 114
4.4.3 Evaluating Patterns with No Variables 116

viii

4.4.4 Evaluating Patterns with Variables and without Wildstar/Wildplus
Predicates . 118

4.4.5 Evaluating Patterns with a Single Variable and with Wildstar/Wildplus
Predicates . 122

4.4.6 Evaluating Patterns with Multiple Variables and with Wildstar/Wildplus
Predicates . 122

4.5 Experimental Evaluation . 126
4.5.1 Dataset Description . 126
4.5.2 Setup . 127
4.5.3 Design Space Exploration . 128
4.5.4 Query Engine Implementations and False Positives 132
4.5.5 Performance Evaluation . 135

4.6 Conclusions . 136

5 Golomb-Rice Integer Decompression 138
5.1 Introduction . 138
5.2 Golomb-Rice Compression Overview . 140

5.2.1 Algorithm Description . 140
5.2.2 Parallelism and Challenges . 141

5.3 Related work . 142
5.4 Hardware Golomb-Rice Decompression 144

5.4.1 Parallel Extraction of Compressed Integers 145
5.4.2 No-Stall Architecture Overview 146

5.4.2.1 Delimiters Insertion . 146
5.4.2.2 Selector (and Spanning Bits Marker) Stage 148
5.4.2.3 Integer Builders . 150
5.4.2.4 Output Alignment Block 152

5.4.3 One-Integer Per Cycle Decoder Overview 152
5.4.4 Decoder Generator . 154

5.5 Experimental Evaluation . 155
5.5.1 Resource Utilization Study . 155
5.5.2 Performance Evaluation . 156

5.6 Conclusions . 160

6 Conclusions 161

Bibliography 166

A GPU Architectures and Programming Model 173

B Overview of FPGAs 176

ix

List of Figures

1.1 Architecture of a pub-sub system. Publishers feed a stream of messages
into the system; subscribers post their profiles (queries); an infrastruc-
ture matches subscriber interests with published messages and delivers
matched messages to the interested subscriber. 7

2.1 Example XML Document in (a) textual and (b) tree representations.
Sample XML Path Queries are displayed (c), querying the XML document. 17

2.2 Overview of the matching of pair {a/b}. Each step refers to an open(tag)
or close(tag) event, relative to the highlighted tag. A ‘1’ in the ‘b’ column
indicates a match. 23

2.3 Overview of the matching of pair {c//d}. Each step refers to an open(tag)
or close(tag) event, relative to the highlighted tag. A ‘1’ in the ‘d ’ column
indicates a match. 24

2.4 Sample XML document event (Open ‘b’) shown in (a) alongside corre-
sponding query stack updates at the respective top of the stacks (b) - (g).
Query nodes and relations are portrayed in gray above the column they
respectively map to. 24

2.5 Overview of the matching of XPath {a/c/a/c/b}. Each step refers to an
open(tag) or close(tag) event, relative to the highlighted tag. A ‘1’ in the
right-most column indicates a match. 27

2.6 High-level FPGA-based system overview. 32
2.7 Optional caption for list of figures . 35
2.8 Hardware logic depicting the implementation of the filtering engine re-

spective to query {a/c/a/c/b}, (a) without and (b) with the third stack
optimization. 42

2.9 Programmable FPGA hardware overview, with emphasis on the column
connections. The XML input passes through the parser and programmable
tag decoder. Every decoded tag bit is connected to the logic preceding
one column; every query node is mapped to a column. The connections
between two columns can be programmed by writing to the (striped) Flip-
Flops. A node can be a root node in the query (see Root above), can be
a wildcards (see ‘*’ above), can be followed by a parent/child relation or
ancestor/descendant (see ‘//’ above). The use of any of these is optional
and node-dependent. 43

x

2.10 Design space exploration on 2K queries mapped to customized stacks on
a Xilinx V6LX240T FPGA: as the cluster size is varied, the effect on
performance is studied. The low frequency in the inner fan-out region is
due to the many queries per cluster. Pipelining the input stream across
clusters will fight over-clustering (effect visible through a maintained high
frequency in the outer fan-out region). 46

2.11 The process of generating a hardware circuit description consists of the
user listing XPath queries, and setting compiler options as desired. Hard-
ware is automatically generated using a developed query compiler. . . . 47

2.12 Sample query set shown initially, followed by the stack column dependen-
cies for each query stack independently. A tree representation of all the
queries as grouped by common prefixes is then portrayed. Finally, the
query nodes are mapped to GPU blocks with a restriction on the block
size. 53

2.13 GPU Input format: (a) shows the storage format of every XML document
event as streamed to the GPU, whereas (b) depicts the format of SP
personalities, representing a query path node and its stack mapping. . . 55

2.14 GPU filtering framework: a CPU thread parses every XML document
and stores it in a format optimized for the GPU-based XML filter; a
parsed XML document is stored in a queue on the host (CPU RAM);
every parsed document is copied over to the GPU memory where query
filtering is performed, and results are streamed back to the host (CPU)
RAM. 57

2.15 Resource utilization (a), and operational frequency (MHz) (b), of FPGA-
based XML filtering approaches on a Xilinx Virtex 6 LX240T FPGA, as
part of a PICO M-501 platform. Lower frequencies are due to the larger
filtering circuits. 60

2.16 Throughput of the FPGA-based XML filtering approaches for (a) a batch
of 5K documents ≈220KB each, and (b) a batch of 500 documents,
≈2.2MB each. Throughput measured in XML Events/s can be directly
derived such that every 5.5 bytes of XML constitute one event (by design
of the test documents). 63

2.17 Percentage of reduced nodes vs. minimal tree, resulting from the common
prefix optimization, with varying block sizes, on 32,000 queries. The
mixed queries are generated from a set of four DTD’s. 67

2.18 Percentage of resulting remaining nodes when applying the common pre-
fix optimization, versus the original respective query sets (of size 32,000
queries each). The shown percentages includes empty GPU block nodes
due to fragmentation. 68

2.19 Total execution time filtering 32K queries over a 50MB DBLP XML doc-
ument, highlighting pre-processing time on the CPU (with the common
prefix optimization applied) , and GPU processing time (scaled by 1/4).
The query set consists of length (L) 4 and 8 queries, while varying block
sizes (B). 69

2.20 Speedup of mapping queries to GPU blocks versus mapping queries to
GPU threads. 71

xi

2.21 Throughput (MB/s) of the GPU-based approaches with queries mapped
to blocks, for queries of length 4 and 8, with respect to a batch of 5K
XML (small) documents of size 220KB each and 500 XML (medium)
documents of size 2.2MB each. 72

2.22 Throughput (MB/s) of the CPU-based approach (YFilter) for queries of
length 4 and 8 with 15% probability of occurrence of ‘*’ nodes and ‘//’
relations, and varying documents sizes (namely 5K documents ≈220KB
each, and 500 documents, ≈2.2MB each). 74

2.23 Speedup of the customized FPGA-based and the GPU-based approaches
over a CPU-based approach, for queries of length 4 and 8, with varying
document sizes. Slowdown is depicted for speedup values less than ‘1’. . 77

2.24 Speedup of the custom FPGA approach versus a multi-threaded version
of YFilter, running on a 12-core machine. 2K queries of length 8 are
assumed, with a 15% probability of occurrence of ‘*’ and ‘//’. Batches of
5K 220KB documents and 500 2.2MB documents are used. 78

2.25 Effects of the factors studied on the different filtering platforms. 79

3.1 An event by event overview of the matching of path a/c/a//s. c© 2011
IEEE. 84

3.2 Generic view of any XML document with regards to any matched path.
c© 2011 IEEE. 85

3.3 An event by event overview of the reporting of the matched state of path
a/c/a//s. c© 2011 IEEE. 87

3.4 Generic view of a holistic twig matching engine, using a push and a pop
stacks. c© 2011 IEEE. 90

3.5 Generic view of any XML document with regards to any matched path.
c© 2011 IEEE. 92

3.6 Experimental Parameters. c© 2011 IEEE. 94
3.7 The percentage of true matches as reported from several hardware ap-

proaches. c© 2011 IEEE. 96
3.8 Resource utilization of the proposed hardware architectures on a V5LX330

FPGA, targeting Dataset 2 (10% occurrence of ‘//’ and ‘*’ in the queries).
Note that the join step is not performed when using off-chip filtering
methods. c© 2011 IEEE. 97

3.9 Throughput of the proposed hardware architectures on a V5LX330 FPGA,
targeting Dataset 2 (10% occurrence of ‘//’ and ‘*’ in the queries). Note
that the join step is not performed when using off-chip filtering methods.
c© 2011 IEEE. 98

3.10 Efficiency of the proposed hardware architectures on a V5LX330 FPGA,
targeting Dataset 2 (10% occurrence of ‘//’ and ‘*’ in the queries). Note
that the join step is not performed when using off-chip filtering methods.
c© 2011 IEEE. 99

3.11 Throughput of FiST and YFilter when using 5, 25, and 50MB XML
documents, and queries for dataset 2 (10% occurrence of ‘//’ and ‘*’ in
the queries). c© 2011 IEEE. 100

3.12 Throughput of FiST and YFilter for a 25MB XML document, while
increasing the probability of occurrence of ‘//’ and ‘*’ in the queries.
c© 2011 IEEE. 101

xii

4.1 Generic overview of various steps performed in spatio-temporal querying
setups. 106

4.2 Query-to-hardware tool flow. 114
4.3 (a) query matching engines respective to the pattern query A.B.?*.A, and

(b) an event-by-event overview of the matching of the query. All cells in a
column are updated in parallel upon an event at the input stream. A ‘1’
in a cell indicates that the query has matched up to that node; for a query
to be marked as matched, a ‘1’ should propagate from the first node (top
row) to the last node (bottom row). Grey cell contents indicate matched
states that did not contribute to the detected matched query state in red,
but could contribute to later matches. 117

4.4 Query matching engines respective to the pattern query A.@x.B.@x, (a)
witout and (b) with a region set constraint {C,D,E} on @x. To handle
variables in hardware, the first instance of a given variable in a query for-
wards, alongside the incoming match state, (a) the event detector’s output
encoded (multi-bit) region-ID, and (b) a one-hot signal consisting of bits
respective to each region in the set of the variable. Every later instance
of that variable in the query (here, the last query node) would match
the event detector’s ((a) encoded, and (b) multiple decoded) region-ID
to the forwarded region-ID. If these match, then the region-ID is again
forwarded, and the variable instance indicates a matched state. 119

4.5 (a) query matching engine respective to the pattern query A.@x.B.@x
{@x:C,D,E}, such that the variable region set constraint is implemented
as a “relaxed” OR. This relaxation helps save considerable hardware re-
sources (compare to Figure 4.4(b)). (b) an event-by-event overview of the
matching of the query resulting in a false positive, due to the OR-based
implementation of the variable region set constraint. 121

4.6 Event-by-event matching of the pattern query @x.@y.?+.@x.@y {@x: A,
B, C, D} {@y: A, B, C, D}. The resulting match in (a) is a false posi-
tive; whereas enough state is saved in (b) at the aggregator node (?+) to
eliminate that false positive. 123

4.7 (a) resource utilization and (b) respective frequencies/throughput of the
hardware engines, such that the number of queries is doubled, the query
length is doubled, and variable usage is varied. When used, one variable of
region set 5 regions is assumed. Results are shown for a Xilinx V6LX240T
FPGA. 129

4.8 (a) the achievable frequencies and (b) corresponding resource utilizations
as a result of the clustering of 2K length 4 queries, with one variable
(region set size = 5); results are shown for a Xilinx V6LX240T FPGA.
We refer to a region ID decoder and its connected queries as a cluster.
Two clustering approaches are considered; in the first, all clusters receive
the input stream simultaneously (non-pipelined clusters); in the second,
clusters are pipelined, such that each cluster forwards the input stream
to the next. 130

xiii

4.9 Scalability of the each of the following three implementations of 100 length
6 queries holding variabes: (1) Variable as OR implementing the region
set constraints as ORs (resulting in most false positives); (2) Propagat-
ing buffer making use of propagating buffers (false positives arise only
when using multiple variables alongside wildstar/wildplus nodes); (3) All
combinations a brute-force mapping of each query as the combination
of all variable region sets (no false positives). Results are shown for a
target Xilinx V6LX240T FPGA. 133

4.10 Matching accuracy (100-false positives %) for each implementation of
100 long queries, over three datasets, namely Trucks, Buses and CabsSF.
Queries are synthetic, not biased, generated using our query generator
tool. They contain two variables each, as well as one or more aggregator
(?*/?+) nodes. 134

4.11 End-to-end (CPU-RAM to FPGA and back) throughput of length 4
queries with 1 variable. The throughput of the FPGA filtering core is
drawn in red. 136

5.1 Snapshot of a chunk of bits in a GR-encoded stream. Assuming inte-
gers are coded as the unary quotient followed by the k = 3 bits binary
remainder (from right to left), the above chunk can be decompressed in
several ways (two of which are shown); the correct decoding cannot be
determined without knowledge of all the prior contents of the encoded
stream. c© 2013 IEEE. 142

5.2 High-level overview of the no-stall GR decompression architecture, capa-
ble of sustaining a processing rate of N bits per cycle. c© 2013 IEEE. . . 142

5.3 Functionality and high-level implementation overview of a delimiter in-
sertion block. Given a chunk of GR-encoded data, delimiter flags, and
remainder flags, a delimiter insertion block is tasked with updating the
input flags by marking the last bit (delimiter) and remainder bits of the
next integer in the chunk, if any. c© 2013 IEEE. 145

5.4 Functionality and high-level implementation overview of the selector and
spanning bits marker stage. This stage is tasked with selecting the output
of one of the delimiters insertion pipelines (left), based on knowledge of
previously processed chunks (see the FSM transitions). All bits spanning
into the current chunk are marked as such using the outputted Spanning
flag bit vector (top). c© 2013 IEEE. 147

5.5 Functionality and high-level implementation overview of the integer builder
block. In the validation stage, one compressed integer from the input
chunk is selected for reconstruction, then invalidated when passed to the
following integer builder (if any). The unary quotient is converted to bi-
nary using a ones counter, whereas the remainder is simply multiplexed
using the remainder flags. c© 2013 IEEE. 149

5.6 Overview of a decoder with a peak throughput of one integer per cycle.
The main difference from the no-stall approach is the use of a single
(modified) integer builder, as well as the FIFOs and respective controllers
highlighted in dark grey. Back pressure is needed in between FIFOs to
avoid dropping compressed data chunks. c© 2013 IEEE. 153

xiv

5.7 Resource utilization (a) and throughput (b) of the hardware decoders are
shown, targeting a Xilinx V6LX240T FPGA, with k=3. The naive bit-
serial implementation is considered for comparison purposes. The no-stall
decoder processing 32 bits per cycle occupies only 10% of the (mid- to
low-sized) FPGA, and achieves a 7 Gbps throughput. c© 2013 IEEE. . . 154

5.8 The resource utilization of a (32 bit) no-stall hardware decoder is studied
as the number of remainder bits k is varied. Place and Route results are
shown targeting a Xilinx V6LX240T FPGA. As k increases, the number
of delimiter insertion pipelines directly increases, but the number of stages
in each pipeline directly decreases. Hence, the total number of delimiter
insertion stages remains constant as k varies. On the other hand, as
k increases, the number of integer builders decreases, thus leading to a
(considerable) drop in resource utilization. c© 2013 IEEE. 157

5.9 Throughput (Gbps) achieved by software and hardware decoders, as the
number of remainder bits k is increased. The performance of two hard-
ware decoders is reported here, namely (HW) No-stall 32 and No-stall 64,
each processing 32 and 64 bits per hardware cycle, respectively. PFOR is
considered as it has shown the best decompression performance in the lit-
erature [90]. TurboRice was introduced in [90] as a new approach combin-
ing the compression ratio of GR with the performance of PFOR. c© 2013
IEEE. 158

A.1 High-level GPU architecture overview. 174

B.1 Implementing a 2-input AND gate using a 2-input LUT. 177
B.2 Implementing f(A,B,C)=(A AND B) OR C, a 3-input boolean function,

using two 2-input LUTs. 177

xv

Chapter 1

Introduction

Due to their relative ease of use, general purpose processors are commonly fa-

vored at the heart of many computational platforms. These processors are deployed in

environments with varying requirements, ranging from personal electronics, to game con-

soles and up to server-grade machines. General purpose CPUs follow the Von-Neumann

model, and execute instructions sequentially. Furthermore, performance does not al-

ways linearly scale in multi-processor environments, mostly due to the challenges of

data sharing across cores. As it is non-trivial for these CPUs to satisfy the increasing

time-critical demands of several applications, they are often coupled with application-

or domain-specific parallel accelerators, such as Graphics Processing Units (GPUs) and

Field Programmable Gate Arrays (FPGAs), which strive given a certain class of instruc-

tions and memory access patterns.

Graphics Processing Units (GPUs) are emerging as computational platforms

comprising of several hundreds of simple processors operating in a parallel fashion.

While intended to be used solely for graphic applications, they are generally employed

to accelerate solving general purpose problems of SIMD (Single Instruction Multiple

1

Data) type, thus referred to as General Purpose GPUs (GPGPUs). GPGPUs are used

as co-processors to which the main CPU passes a stream of data; the GPGPU then

processes the data with minimal memory footprint, and returns the processing results

to the CPU. For additional details on the architecture and programming model of GPUs,

see Appendix A.

FPGAs consist of a fully configurable hardware platform, providing the flexi-

bility of software (programmability) and the performance benefits of hardware (paral-

lelism). The performance advantages of such platforms arise from the ability to execute

thousands of computations in parallel, relieving the application at hand from the sequen-

tial limitations of software execution on Von-Neumann based platforms. The processor

instructions are the logic functions processing the input data. Another strong advantage

of FPGAs is , depending on the application at hand, the ability to process streamed

data at wire speed, thus resulting in a minimal memory footprint. The aforementioned

advantages are shared with Application Specific Integrated Circuits (ASICs). FPGAs

however can be reconfigured, are more adaptable to changes in applications and spec-

ifications, and hence exhibit a faster time to market. This comes at a slight cost in

performance and a considerable one in area, where one functional circuit would run

faster on a tailored ASIC, and would require fewer gates. A brief overview of FPGAs is

provided in Appendix B.

1.1 Related Work

As traditional platforms are increasingly hitting limitations when processing

high volumes of streaming data, researchers are investigating GPUs and FPGAs for

database applications, for uses including enterprise data warehousing, business intelli-

2

gence, predictive analytics and business continuity planning. Recent work has focused

on the adoption of Field Programmable Gate Arrays (FPGAs) for the processing of

large data streams [75, 14, 74, 63, 61, 78, 68, 85]. Netezza [62] employs FPGAs as part

of their high-performance data warehouse appliances and advanced analytics solutions.

[75] proposes the use of FPGAs to achieve realtime analytics on enterprise data. The

FPGA-led performance boost up of compression/decompression has long been an ac-

tive field of research, with the main focus on speeding up low-latency storage access

[14, 74, 63]. The Glacier component library is presented in [61] which includes logic

circuits of common operators such as selection, aggregation, and grouping for stream

processing. [85] investigated the speedup of the frequent item problem using FPGAs,

while in [78] FPGAs are utilized for complex event detection which uses regular expres-

sions to represent events. Predicate-based filtering on FPGAs was investigated by [68]

where user profiles are expressed as a conjunctive set of boolean filters.

Though FPGAs have shown to provide advantages over traditional architec-

tures, they are limited by small resources and potentially expensive programming time.

These two limitations have led researches to examine GPUs, since they offer flexibility

of reprogramming.

GPUs have evolved to the point where many real-world applications are easily

implemented and run significantly faster than on multi-core systems, thus, a large num-

ber of recent work has investigated GPUs for the acceleration of database applications[26,

32, 25, 4, 35, 45]. In [32] the authors utilized GPUs to accelerate relational joins, while

in [25] GPUs are utilized for computing Fourier transforms. In [35] a CPU-GPU archi-

tecture is presented to accelerate tree-search, which was shown to have low latency and

support online bulk updates to the tree. Recently, [4] proposed the utilization of GPUs

to speed-up indexing by offloading list intersection and index compression operations to

3

the GPU. [45] proposed a similarity join algorithm designed to exploit the parallelism

and high data throughput on GPUs.

1.2 Contributions

This dissertation proposes the use of hardware accelerators such as Field Pro-

grammable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs) as a substitute

or co-processor to general purpose CPUs, with a focus on database applications. Here,

large amounts of data are queried in a time-critical manner. Specifically,

• This dissertation proposes the first stream-mode parallel approach for XML path

filtering, which does not result in false positives. Wildcard and recursion (nesting)

support is offered using this solution. The first implementation and study of

FPGA- and GPU-based adaptations of the aforementioned solution are described.

The FPGA approaches are shown to be up to 31X faster than software running

on 12 CPU cores.

• A novel method for performing ordered/unordered holistic twig XML matching on

FPGAs without any false positives is presented, based on the proposed path-style

query solution. As is the case with the path queries FPGA setup, the achieved

throughput is independent of the complexity of the user queries or the characteris-

tics of the input XML stream. Furthermore, experimental comparison of different

granularities of twig matching is presented, namely path-based (root-to-leaf) and

pair-based (parent-child or ancestor-descendant). Speedups of over three orders of

magnitude is achieved when compared to (single core) state-of-the-art CPU-based

approaches.

4

• The first study on FPGA-based architectures processing expressive, variable-enhanced,

motion patterns on spatio-temporal streams is offered. The challenges in handling

several constructs of the assumed query language are explored, with a study on the

tradeoffs between expressiveness, scalability and matching accuracy (eliminating

false-positives). A performance study is presented, where FPGA setups are shown

to outperform the current state-of-the-art CPU-based approaches.

• The first FPGA-based fully-parallel implementation of Golomb-Rice integer de-

compression engines is presented, where no assumptions and modifications are

made on the compressed stream. Compression helps increasing the effective band-

width from slower storage media. Hence, highly efficient decompression engines

help hiding the latency of reconstructing the stored data. The presented decoder,

capable of processing several bytes per cycle, is shown to outperform an efficient

Golomb-Rice CPU-based implementation by up to 52X, while outperforming the

high-performance PFOR technique by 4.7X.

The remainder of this dissertation is organized as follows: Sections 1.3, 1.4, and

1.5 respectively introduce each of the aforementioned applications. Chapter 2 describes

the novel XML path filtering algorithm as implemented on FPGAs and GPUs. Chapter

3 goes over the non-trivial extension of the path matching algorithm supporting to the

more complex twig queries, as applied to FPGAs. Chapter 4 goes over the FPGA

querying of spatio-temporal streams. Chapter 5 details the novel FPGA-based no-

stall parallel Golomb-Rice integer decompression architecture. Finally, conclusions are

presented in Chapter 6.

5

1.3 XML Filtering

Increased demand for timely and accurate event-notification systems has led

to the wide adoption of Publish/Subscribe Systems (or simply pub-sub). A pub-sub is

an asynchronous event-based dissemination system which consists of three components:

publishers, who feed a stream of documents into the system, subscribers, who post their

interests (also called profiles), and an infrastructure for matching subscriber interests

with published messages and delivering matched messages to the interested subscriber

(see Figure 1.1).

Pub-sub systems have enabled notification services for users interested in re-

ceiving news updates, stock prices, weather updates, etc; examples include alerts.go-

ogle.com, news.google.com, pipes.yahoo.com, and www.ticket-master.com. Pub-sub sys-

tems have greatly evolved over time, adding further challenges and opportunities in

their design and implementation. Earlier pub-subs involved simple topic-based com-

munication. That is, subscribers could subscribe to a predefined collection of topics or

channels (e.g., news, weather, etc.), and will receive every document published on the

channel. The second generation of pub-subs consists of predicate-based systems where

user profiles are described as conjunctions of (attribute, value) pairs, thus improving

profile selection. The wide adoption of the eXtensible Markup Language (XML) as the

standard format for data exchange, due to its self-describing and extensible nature,

has led to the third generation, namely XML-enabled pub-sub systems. Here messages

are encoded with XML and profiles are expressed using XML query languages, such as

XPath [88]. Such systems take advantage of the powerful querying that XML query

languages offer: profiles can now describe requests not only on the document values but

6

Figure 1.1: Architecture of a pub-sub system. Publishers feed a stream of messages into
the system; subscribers post their profiles (queries); an infrastructure matches subscriber
interests with published messages and delivers matched messages to the interested sub-
scriber.

also on the structure of the messages. Note that the terms “profile” and “query” are

used interchangeably.

XML-based pub-sub systems have been adopted for the dissemination of Mi-

cronews feeds, which are short fragments of frequently updated information in XML-

based formats such as RSS. Feed readers, such as Bloglines and NewsGator check the

contents of micronews feeds periodically and display the returned results to the user.

The core of the pub-sub system is the filtering algorithm, which supports the

complex query matching of thousands of user profiles against a high volume of published

messages. For each message received in the pub-sub system, the filtering algorithm deter-

mines the set of user profiles that have one or more matches in the message. Many soft-

ware approaches have been presented to solve the XML filtering problem [2, 16, 27, 40].

These memory-bound solutions, however, suffer from the Von Neumann bottleneck and

are unable to handle large volume of input streams. On the other hand, FPGAs have

been shown to be particularly suited for the stream processing of large amounts of data

and do not suffer from the memory offloading problem faced by software implementa-

tions. Furthermore, GPUs as co-processors are also a favorable option for applications

7

requiring massively parallel computations [32, 4, 35, 45], such that sequential computa-

tions are run on the CPU while the computationally-intensive part is accelerated by the

highly parallel GPU architecture.

This dissertation examines how to exploit the parallelism found in XPath fil-

tering. Using an incoming XML stream, parsing and matching with thousands of user

profiles are performed simultaneously by matching engines. We show the benefits and

tradeoffs of mapping the proposed filtering approach onto FPGAs, processing streams of

XML at wire speed, and GPUs, providing the flexibility of software. This is in contrast

to conventional approaches bound by the sequential aspect of software computing, as-

sociated with a large memory footprint. By converting XPath expressions into custom

stacks, the proposed solution is the first to provide support for complex XPath struc-

tural constructs, such as parent-child and ancestor-descendant relations, whilst allowing

wildcarding and recursion.

Chapter 2 goes over a novel stack-based dynamic programming filtering algo-

rithm targeting path queries, as applied to FPGAs and GPUs, and whose throughput

is independent of the complexity of the user queries or the characteristics of the input

XML stream. The measured speedups resulting from the GPU and FPGA accelerations

versus single-core CPUs are up to 6.6X and 2.5 orders of magnitude respectively. The

FPGA approaches are up to 31X faster than software running on 12 CPU cores. The

filtering algorithm, as described in Chapter 2, appears in [59, 56]. Furthermore, the

GPU mechanism described in that same chapter, appears in [56].

Chapter 3 describes non-trivial extensions to the path filtering algorithm to

support unordered holistic twig matching on FPGAs without any false positives. Ex-

perimental comparison of different granularities of twig matching is presented, namely

path-based (root-to-leaf) and pair-based (parent-child or ancestor-descendant). Com-

8

prehensive experiments are provided, comparing the throughput, area utilization and

the accuracy of matching (percent of false positives) of the holistic, path-based and

pair-based FPGA approaches. The proposed approach yields up to three orders of

magnitude higher throughput when compared to state-of-the-art single core CPU-based

filtering mechanisms. This work, as described in Chapter 3, appears in [57] c© 2011

IEEE.

1.4 Querying Spatio-Temporal Databases

In recent years, the wide and increasing availability of collected information

in the form of spatio-temporal data has lead to novel research advances in behavioral

aspects of the monitored subjects. Using trajectory data harvested by devices such as

GPS and cellular technologies, complex queries can be posed to detect specific motion

patterns.

In this dissertation, we describe an FPGA-based setup allowing users to query

spatio-temporal databases in a very powerful and intuitive way. As streams of trajec-

tory data are harvested from devices, such as GPS and cellular devices, coordinates are

then translated into semantic regions that partition the spatial domain; these regions

can be grid regions representing areas of interests (e.g., neighborhoods, school districts,

cities). Our work is based on complex pattern queries previously defined in [81, 82]

to search for specific motion patterns in trajectories. A pattern query is specified as a

combination of sequential spatio-temporal predicates, allowing the end user to search for

specific parts of interests in trajectory databases. For example, the pattern query “Find

all taxis (trajectories) that first were in downtown Munich in the morning, later passed

by Olympiapark around noon, and then were closest to the Munich airport” provides a

9

combination of temporal, range and Nearest-Neighbor (NN) predicates that have to be

satisfied in the specific order. Essentially, flexible patterns cover that part of the query

spectrum between the single spatio-temporal predicate queries, such as the range pred-

icate that covers certain time instances of the trajectory life (e.g., “Find all trajectories

that passed by the Deutsches Museum area at 11pm”), and similarity/clustering based

queries, such as extracting similar movement patterns from a trajectories that cover the

entire lifespan of the trajectory (e.g., “Find all trajectories that are similar to a given

query trajectory according to some similarity measure”).

Complex pattern queries can also have variable spatial predicates, and thus

substantially enhancing the flexibility and expressive power of the framework. An ex-

ample of a variable-enhanced query is “Find all trajectories that started in a region X,

then visited the downtown Munich, then at some later point visited X again”.

This work serves as a proof-of-concept on the performance benefits of evalu-

ating complex motion pattern queries using FPGAs. Here we explore the challenges of

supporting hundreds (up to thousands) of variable-enhanced flexible patterns on FPGAs

in streaming (fully-pipelined) fashion, with a study on the tradeoffs between expressive-

ness, scalability and matching accuracy (eliminating false-positives). Using FPGAs all

pattern query predicates are evaluated in parallel over sequential streams of trajectories,

hence resulting in considerable speedup over CPU-based approaches. This also holds

even when compared to CPU-based setups where the pre-processing of trajectories into

inverted indices is performed beforehand. To the best of our knowledge, this work is the

first detailing FPGA support for variable-enhanced flexible pattern queries.

10

1.5 Integer Decompression

The goal of data compression techniques is to reduce the storage space and/or

increase the effective throughput from the data source (such as a storage medium).

Other critical performance factors considered include code complexity and memory of-

floading requirements. Various compression techniques can be combined and are tailored

to perform best within certain classes of applications, where assumptions on the data

(format, range, occurrence, etc) hold. Examples of the latter are Run-Length Encoding

(RLE) [23] as used by image compression (JPEG), and Lempel-Ziv-Welsch [84] (LZW)

for text data.

Compression techniques can be mainly categorized as being lossy or lossless.

Generally, lossy techniques result in a higher compression ratio, and/or a faster pro-

cessing (compression/decompression) time. Lossy techniques are hence preferred when

the original data does not have to be exactly retrieved from the compressed data, and

differences with the original data are tolerable or non-noticeable (such is the case with

audio, video, etc).

Moreover, compression techniques can be further classified as being bit-wise or

byte-wise. Byte-wise (or byte-aligned, byte-granularity) approaches typically result in a

lower compression ratio due to the coarser granularity, but offer a considerably higher

compression/decompression throughput.

This dissertation focuses on the decompression of integers compressed using

the lossless bit-wise Golomb-Rice [23, 83] (GR) entropy method. GR compression is de-

signed to achieve high compression ratios on input streams with small integer ranges [51];

it is deployed in several applications, such as image compression [51, 36, 41, 79, 34, 42],

audio compression [44, 22], as well as the compression of streams of inverted indices

11

[48, 89, 90, 72], and ECG signals [7, 12, 50]. Inverted indexes require very fast pro-

cessing, and operate under low timing budgets as they are utilized in the querying of

high-volume data, as in (web) search engines [93]; however, even though GR offers high

compression ratios, other approaches are preferred due to the gap in decompression

performance [90]. Similarly, with the augmented resolution standards on video process-

ing and displays (Full-HD, Quad Full-HD), faster decompression is a must. Finally,

the complex processing of the increasing amounts of ECG data can be further reduced

using high-performance decoders, with decompression being a first step once data is

received. In all of the aforementioned applications, inefficient decompression limits the

input throughput to the computational pipelines.

We present a novel highly-parallel hardware core capable of decompressing

streams of GR-coded integers at wire speed with constant throughput, operating on

raw unmodified GR data. To the best of our knowledge, hardware and software (CPU-

based) GR decoders assuming unmodified GR data operate bit-serially on the com-

pressed stream, which highly bounds the achievable decompression speeds. On the other

hand, modifications to the algorithm and assumptions on the compressed format allow

the application of efficient optimizations [36, 90, 41], though the limiting assumptions

cannot be generalized . The proposed no-stall hardware solution is shown to outper-

form state-of-the-art software and hardware approaches, and achieves up to 7.8 Gbps

sustained decompression throughput while occupying 10% of the available resources on

a Xilinx Virtex 6 LX240T, a mid- to low-size FPGA. This work, as described in Chapter

5, appears in [58] c© 2013 IEEE.

12

Chapter 2

XML Path Filtering

2.1 Introduction

Increased demand for timely and accurate event-notification systems has led

to the wide adoption of Publish/Subscribe Systems (or simply pub-sub). A pub-sub is

an asynchronous event-based dissemination system which consists of three components:

publishers, who feed a stream of documents into the system, subscribers, who post their

interests (also called profiles), and an infrastructure for matching subscriber interests

with published messages and delivering matched messages to the interested subscriber.

Pub-sub systems have enabled notification services for users interested in re-

ceiving news updates, stock prices, weather updates, etc; examples include alerts.go-

ogle.com, news.google.com, pipes.yahoo.com, and www.ticket-master.com. Pub-sub sys-

tems have greatly evolved over time, adding further challenges and opportunities in

their design and implementation. Earlier pub-subs involved simple topic-based com-

munication. That is, subscribers could subscribe to a predefined collection of topics or

channels (e.g., news, weather, etc.), and will receive every document published on the

channel. The second generation of pub-subs consists of predicate-based systems where

13

user profiles are described as conjunctions of (attribute, value) pairs, thus improving

profile selection. The wide adoption of the eXtensible Markup Language (XML) as the

standard format for data exchange, due to its self-describing and extensible nature,

has led to the third generation, namely XML-enabled pub-sub systems. Here messages

are encoded with XML and profiles are expressed using XML query languages, such as

XPath [88]. Such systems take advantage of the powerful querying that XML query

languages offer: profiles can now describe requests not only on the document values but

also on the structure of the messages. Note that the terms “profile” and “query” are

used interchangeably.

XML-based pub-sub systems have been adopted for the dissemination of Mi-

cronews feeds, which are short fragments of frequently updated information in XML-

based formats such as RSS. Feed readers, such as Bloglines and NewsGator check the

contents of micronews feeds periodically and display the returned results to the user.

The core of the pub-sub system is the filtering algorithm, which supports the

complex query matching of thousands of user profiles against a high volume of published

messages. For each message received in the pub-sub system, the filtering algorithm deter-

mines the set of user profiles that have one or more matches in the message. Many soft-

ware approaches have been presented to solve the XML filtering problem [2, 16, 27, 40].

These memory-bound solutions, however, suffer from the Von Neumann bottleneck and

are unable to handle large volume of input streams. On the other hand, FPGAs have

been shown to be particularly suited for the stream processing of large amounts of data

and do not suffer from the memory offloading problem faced by software implementa-

tions. Furthermore, GPUs as co-processors are also a favorable option for applications

requiring massively parallel computations [32, 4, 35, 45], such that sequential computa-

14

tions are run on the CPU while the computationally-intensive part is accelerated by the

highly parallel GPU architecture.

This dissertation examines how to exploit the parallelism found in XPath fil-

tering. Using an incoming XML stream, parsing and matching with thousands of user

profiles are performed simultaneously by matching engines. We show the benefits and

tradeoffs of mapping the proposed filtering approach onto FPGAs, processing streams of

XML at wire speed, and GPUs, providing the flexibility of software. This is in contrast

to conventional approaches bound by the sequential aspect of software computing, as-

sociated with a large memory footprint. By converting XPath expressions into custom

stacks, the proposed solution is the first to provide support for complex XPath struc-

tural constructs, such as parent-child and ancestor-descendant relations, whilst allowing

wildcarding and recursion.

A novel stack-based dynamic programming filtering algorithm targeting path

queries is presented in this chapter, as applied to FPGAs and GPUs, and whose through-

put is independent of the complexity of the user queries or the characteristics of the input

XML stream. The measured speedups resulting from the GPU and FPGA accelerations

versus single-core CPUs are up to 6.6X and 2.5 orders of magnitude respectively. The

FPGA approaches are up to 31X faster than software running on 12 CPU cores.

2.2 Problem Definition

XML filtering is the core problem in a pub-sub system. Formally, given a

collection of user profiles and a stream of XML documents, the objective of the filtering

algorithm is to determine, for each document D, the set of profiles that have at least

one match in D.

15

An XML document has a hierarchical (tree) structure that consists of markup

and content. Markups, also referred to as tags, begin with the character ‘<’ and end

with a ‘>’. Nodes in an XML document begin with a ‘start-tag’ (for example <author>)

and end with a corresponding ‘end-tag’ (for example </author>). Figure 2.2(a) shows

a small XML document example, while Figure 2.2 (b) shows the XML document’s tree

representation. In this manuscript, we shall use the terms ‘tag’ and ‘node’ interchange-

ably. For simplicity, Figure 2.2(b) shows the tags/nodes (i.e. the structural relationship

between nodes) in the XML document of Figure 2.2(a), but not the content (values).

The values can be thought as special leaf nodes in the tree (not shown).

XPath [88] is a popular language for querying and selecting parts of an XML

document. Here, we address a core fragment of XPath that includes node names, wild-

cards, and the /child:: and /descendant-or-self:: axis. The grammar of the supported

query language is given below:

Path := Step | Path Step

Step := Axis NodeTest

Axis := ‘/′ | ‘//′

NodeTest := name | ‘∗′

The query consists of a sequence of location steps, where each location step

consists of a node test and an axis. The node test is either a node name, or a wildcard

‘*’ (wildcards can match any node name). The axis is a binary operator that specifies

the hierarchical relationship between two nodes. We support two common axes, the

parent/child axis (denoted by ‘/’), and the ancestor/descendant axis (denoted by ‘//’).

16

(a) XML Document (b) XML Tree Representation

(c) Path Queries

Figure 2.1: Example XML Document in (a) textual and (b) tree representations. Sample
XML Path Queries are displayed (c), querying the XML document.

Example path queries are shown in Figure 2.2 (c). Consider Q1 (/dblp/article/year)

which is a path query of depth three, and specifies a structure which consists of nodes

‘dblp’, ‘article’ and ‘year’ where each node is separated by a ‘/’ operator. This query is

satisfied by nodes (dblp, 1), (article,2), and (year, 5) in the XML tree shown in Figure

2.2(b). Q2 (/dblp//url) is a path query of depth two, and specifies a structure which

consists of two nodes, ‘dblp’ and ‘url’ are separated by the ‘//’ operator. Q2 specifies

that the node ‘url’ must be descendant of the ‘dblp’ node. The nodes (dblp,1) and

(url,8) in Figure 2.2(b) satisfy this query structure. Q3 (/dblp/*/title) specifies a struc-

ture that consists of two nodes and a wildcard. The nodes (dblp,1), (article,2), and

(title,4) satisfy one match, while nodes (dblp,1), (www,6), and (title,7) satisfy another

match for Q3.

In a pub-sub system, XML documents are received in a streaming fashion, and

they are parsed by a SAX parser [70], the latter generating startElement(name) and

17

endElement(name) events. Designing an XML pub-sub system raises many technical

challenges due to the high volume of XML messages and the complexity and size of user

profiles.

2.3 Related Work

2.3.1 Software Approaches to XML Filtering

The popularity of XML has triggered research efforts to build efficient XML

filtering systems. Several software-based approaches have been proposed and can be

broadly classified into three categories: (1) FSM-based, (2) sequence-based, and (3)

other.

Finite State Machine(FSM)-based approaches use a single or multiple machines

to represent the user profiles [3, 16, 27, 31, 55]. An early work, XFilter [3], proposed

building an FSM for each profile, such that each node in the XPath expression becomes

a state in the FSM. The FSM transitions are executed as XML tag events are generated.

The profile is as a match when the final state of its FSM is reached. YFilter [16] built

upon the work of XFilter and proposed a Non-Deterministic Finite Automata (NFA)

representation of user profiles (path expressions) which combines all profiles into a single

machine, thus reducing the number of states needed to represent the set of user profiles.

Whereas YFilter exploits prefix commonalities, the BUFF system builds the FSM in a

bottom-up fashion to take advantage of suffix commonalities in profiles [55].

Several other FSM-based approaches were introduced that use different types

of state-machines [27, 28, 64, 46]. In [27], the authors proposed a lazy Deterministic

Finite Automata (DFA) which has a constant throughput with respect to the size of the

query workload; however, lazy-DFA may suffer from state explosion depending on the

18

number of nodes and level of recursion in the XML document, and the maximum depth

of the XPath expressions. XPush [28] builds a single deterministic push down automaton

using a lazy approach, while [46] builds a transducer, which employs a DFA with a set

of buffers, and [64] employs a hierarchical organization of push down transducers with

buffers.

Sequence-based approaches as in [40, 69] transform the XML document and

user profiles into sequences and employ subsequence matching to determine which pro-

files have a match in the XML sequence. FiST [40] was the first to propose a sequence-

based XML filtering system which transforms the query profiles and XML streams into

Prufer sequences, then employs subsequence matching to determine if the query has a

match in the XML stream.

Several other approaches have been proposed [11, 9, 24]. XTrie [11] uses a

trie-based data structure to index common sub-strings of XPath profiles, but it only

supports the /child:: axis. AFilter [9] exploits both prefix and suffix commonalities in

the set of XPath profiles. More recently, Gou and Chirkova [24] have proposed two

stack-based stream-querying (and filtering) algorithms, LQ and EQ, which are based on

lazy strategy and eager strategy, respectively.

2.3.2 Hardware-Accelerated Approaches to XML Processing

Previous works [15, 19, 47] that have used FPGAs for processing XML docu-

ments have mainly dealt with the problem of parsing and validation of XML documents.

An XML parsing method which achieves a processing rate of two bytes per clock cycle

is presented in [19]. This approach is only able to handle a document with a depth

of at most 5, and assumes the skeleton of the XML is preconfigured and stored in a

19

content-addressable memory. These approaches, however, only deal with XML parsing

and do not address XPath filtering.

The work in [47] proposed the use of a mixed hardware/software architecture

to solve simple XPath queries having only parent-child axis. A finite state machine

implemented in FPGAs is used to parse the XML document and to provide partial

evaluation of XPath predicates. The results are then reported to the software for further

processing. This architecture can only support simple queries with only parent-child

axis.

When considering FPGAs, a tempting solution is to implement previously pro-

posed XML filtering approaches on hardware without modification. However, although

a given approach is efficient on traditional platforms, the same approach may not be

the best implementation in hardware, given that FPGAs have completely different de-

sign constraints. For instance, DFA was shown to provide advantages over NFA-based

approaches [27]. However, FPGAs are limited by area and DFAs may suffer from state

explosion, thus NFAs are a better approach when considering FPGAs.

Our previous work [53], was the first to propose a pure-hardware solution to

the XML filtering problem. We adopted an NFA approach to XML filtering by repre-

senting queries as regular expressions, and improvements of over one order of magnitude

were reported when compared to software. However, that method is unable to handle

recursion (nesting) in XML documents or wildcards ‘*’ in XPath profiles; such issues as

well as various optimizations are handled by the novel architecture we present in this

dissertation.

20

2.4 Parallel XPath Filtering Solution

We now introduce a solution that identifies the parallelism inherent in path

matching and thus applies to both FPGA and GPU approaches.

A user query expressed in the XPath language is comprised of J nodes, and

J-1 relations, where each pair of nodes shares a relationship: parent/child or ances-

tor/descendant. A path query of length J is said to have matched if a sequence of nodes

in the XML document sharing the same relations as the tags in the query has occurred;

this is only true if the sub-path of length J-1 has moreover matched. Below, we present

a stack-based generic XPath filtering algorithm which will be used for our parallel im-

plementations. We first focus on the matching of the base case (paths of length 2, or

simply pairs), and then extend it to general paths.

2.4.1 Pairs Matching

Using an XML stream as input, we look at the matching of pairs’ relationships.

2.4.1.1 Parent/Child Relationships

Consider first using Finite State Machines (FSMs) as the base structure for

the matching of XPaths [53]. Matching the pair {a/b} is achieved through three states:

as the XML document is streamed, the first state assumes the task of monitoring for

an open(a) event; upon satisfying that condition, the second state is activated, until

encountering a close(a) event. As long as the second state is activated, an open(b)

event will result in activating the third state, indicating that the query matched in the

document.

21

Such state machines fail however to successfully detect pairs in recursion-

enabled XML documents, where nested tags are allowed. We overcome this limitation

by introducing stacks.

Stacks are an essential feature of XML filtering systems, where the respective

states of all open (non-closed) nodes in the XML tree are saved. Using the presented

solution, an open(tag) is translated into a push event, and conversely, a close(tag) is

equivalent to a pop event. Matching for {a/b} now requires a stack as deep as the

maximal depth of the XML document, and as wide as 2: one column for each of ‘a’

and ‘b’. This is a binary stack that can be filled with 1’s and 0’s based on the match

state as explained below, where a ‘1’ indicates a match. A separate state for each query

node at every tree level, rather than a single state per query, enables recursion (nesting)

support.

Through the streaming of the XML document, for every open(a) event, a ‘1’ is

pushed on the first column (the ‘a’ column), indicating that ‘a’ has been opened at that

level. On the other hand, every time an open(b) event occurs, if the first column contains

a ‘1’ on the previous top of the stack, only then can a ‘1’ be pushed onto the second

column (diagonally upwards propagating ‘1’), indicating that ‘b’ as a child of ‘a’ has been

found. Checking for levels is implied since neighboring rows share a parent/child relation

by design. Note that, on each push event, all columns are simultaneously updated at

the top of the stack.

Figure 2.2 shows the event-by-event matching of the pair {a/b} in a sample

XML document. The XML document to be streamed is drawn on the left hand side,

whereas a stack of width 2 is shown to the right. Each column is labeled with the

corresponding tag of the {a,b} pair. Note that support for recursion is depicted under

22

Figure 2.2: Overview of the matching of pair {a/b}. Each step refers to an open(tag)
or close(tag) event, relative to the highlighted tag. A ‘1’ in the ‘b’ column indicates a
match.

event 3, where each occurrence of the ‘a’ tag in the XML document has a corresponding

state (row) in the stack.

2.4.1.2 Ancestor/Descendant Relationships

Using the stack-based approach, every ancestor/descendant pair is also mapped

to a two-column stack as deep as the XML document. When matching for {c//d}, a

‘1’ is pushed on the first column (the ‘c’ column) at every open(c) event. However, ‘d ’

does not require ‘c’ to be its parent, rather its ancestor; therefore, as long as ‘c’ has

not been closed, any open(d) event should result in a ‘1’ being written to the second

column. To highlight this property, a ‘1’ is allowed to propagate vertically upwards in

the column of the ancestor (here, the first column). It is also true that the top of stack

at both columns can be updated simultaneously. Figure 2.3 shows the event-by-event

matching of the pair {c//d} in a sample XML document.

Figure 2.4(a) shows the tree representation of a sample XML document as it

is processed. Figures (b) - (g) show several (two-node) queries and the top of the stack

filtering mechanisms as it is being updated upon an open ‘b’ event. Using Figure 2.4,

we visit some properties of path queries as applied to the stacks:

23

Figure 2.3: Overview of the matching of pair {c//d}. Each step refers to an open(tag)
or close(tag) event, relative to the highlighted tag. A ‘1’ in the ‘d ’ column indicates a
match.

(a) (b) (c) (d) (e)

(f) (g)

Figure 2.4: Sample XML document event (Open ‘b’) shown in (a) alongside correspond-
ing query stack updates at the respective top of the stacks (b) - (g). Query nodes and
relations are portrayed in gray above the column they respectively map to.

24

• path root nodes: as these do not depend on a previous node, a ‘1’ is pushed

onto their respective column of the stack (the first column) upon encountering a

node with similar tag as part of the XML document (left column of Figure 2.4(b),

vs. no effect in 2.4(d)).

• parent-child relations: these result in a diagonally upwards propagation of a ‘1’.

In Figure 2.4(c), a ‘1’ previously stored in the root column propagates upwards to

the right column upon a push, due to an open ‘b’ event. Note that an open ‘b’

event does not suffice to store a ‘1’ in a ‘b’ column (see of Figure 2.4(d)).

• ancestor-descendant relations: these result in a vertically upwards propagation

of a ‘1’ in columns to which query nodes followed by ‘//’ are mapped. Once a ‘1’

is pushed onto the column based on the two previously listed properties, and as

long as it has not been popped, the ‘1’ is always pushed onto higher following tops

of stack as the document is processed (see Figure 2.4(f)).

• path leaf nodes: A ‘1’ stored in the column to which a query leaf node is mapped,

implies a successfully matched query. This occurs through a ‘1’ propagating up-

wards from the root column, through all middle columns, to the leaf. Figures

2.4(c), (e) and (g) exhibit matched query states.

• wildcard nodes: these imply a level of freedom where any document node is

valid for a propagating ‘1’. See Figure 2.4(e).

Paths of any depth can be mapped to stacks, where each two columns are

related using the above properties, as is detailed next.

25

2.4.2 Custom Stacks for Path Matching

We can now move to general paths by considering their pairs. For instance,

the path {a/b//c/d} can be broken down into pairs {a/b}, {b//c} and {c/d}. The

mechanisms described in 2.4.1 hold for all pairs, where, based on the relation, a ‘1’ is

allowed to propagate vertically or diagonally upwards (or both). Matching a path of

length J requires a stack of width J columns (one for each node): all pair stacks are

merged at the common node’s columns. A ‘1’ in the j th column (j ≤ J) indicates that

the path of length j was found in the XML document. Thus, for a successful match to

occur, a ‘1’ has to propagate from the path’s root (1st column) to the leaf (J th column).

The equation applied to each cell Ctop,j on a push event, is given by:

Ctop,j =

1 if

Ctop−1,j−1 = 1 && tag of the node

mapped to the j th column was opened

OR

Ctop−1,j = 1 && the node mapped

to the j th column is followed by //

0 otherwise

where:

• top is the index of the new top of stack.

• 1 ≤ top ≤ maximum XML document depth.

• 1 ≤ j ≤ number of Path nodes.

Figure 2.5 shows an event-by-event overview of all the steps required for the

matching of the XPath {a/c/a/c/b}.

26

Figure 2.5: Overview of the matching of XPath {a/c/a/c/b}. Each step refers to an
open(tag) or close(tag) event, relative to the highlighted tag. A ‘1’ in the right-most
column indicates a match.

When the open(a) event takes place initially, the first column of the stack

would store a ‘1’. Consequently, with an open(c) event occurring, a ‘1’ is stored in the

second column, allowing the previous partial match stored in column 0 of the previous

top of stack to propagate diagonally upwards. In other words, an open(c) event alone

is not enough to validate the matching of tag ‘c’. The fourth column (under the same

event) demonstrates this behavior, for no matching was reported, due to no diagonally

propagating ‘1’.

Support for recursion is depicted under the third event, where both the first and

third columns indicate a match for tag ‘a’ simultaneously, thus, allowing two possible

matches of the same XPath to be in progress concurrently: one having started at event

1, the other at event 3.

27

With an open(c) as the fourth event, both previous partial possible matches

propagate diagonally. The occurrence of tags irrelevant to the XPath query has no

negative effect on the matching process. For instance, with ‘d ’ pushed onto the stack at

the fifth event, no partial matches are propagated. Moreover, roll-back to the previous

state took place with the close(d) event taking place, thus popping the top of stack.

A third partial possible match spawns off on at event 7 (first column), while

the first partial match that awaited an open(b) event had to stop propagation for the

moment being, and can only resume matching until the currently pushed ‘a’ is popped.

Propagation of partial matches resumes in event 8. Ultimately, a match has

been found in event 9, thanks to the partial matching starting propagation from event

3. A match can be seen as a diagonal of 1’s, ending in the fifth column.

2.4.3 Matching Stack Properties

We refer to our stacks as Path Specific Stacks (PSS), where every path is

mapped to a stack whose width is defined by the path length, and conditions to write

to every column are determined by the path nodes and the relations connecting them.

Here are some properties of the PSS:

• A PSS is written to on push events only.

• Pop events only affect the pointer to the top of the stack.

• A ‘1’ can propagate diagonally upwards from and to any two adjacent columns

connecting a parent or ancestor to a child or descendant, respectively.

• If the node mapped to a column is an ancestor, then a ‘1’ can propagate vertically

upwards; this helps indicating matches to all descendants.

28

2.4.4 Inherent Parallelism

Since an XML-enabled pub-sub system involves multiple profiles processed over

the same document data stream, it is possible to utilize parallel architectures for accel-

erating its filtering performance. Using our proposed stack-based approach, two levels

of parallelism can be pursued here:

1. Inter-query parallelism - where all queries (stacks) can be processed in a paral-

lel fashion, even when stack columns are shared among queries (e.g. when applying

the common prefix optimization). This parallelism is available due to the embar-

rassingly parallel nature of the filtering problem.

2. Intra-query parallelism - where updating the state of all nodes within a query

(top of stack at every column) can be achieved in parallel.

Each user profile can be implemented on the FPGA unit as a hardware datap-

ath circuit and with appropriate optimizations it is possible to fit up to tens of thousands

of queries on a single FPGA chip. Moreover, having the parallel processing modules im-

plemented on the same chip eliminates the need for expensive communications between

them. This in turn allows for full pipelining of the parsing and filtering processes: as

an event is produced by the parser it is immediately forwarded to the filtering module,

implemented on the same FPGA chip (added level of parallelism). Section 2.5 elaborates

on the details of a full-hardware XPath filtering engine using FPGAs.

Similarly, GPUs are suitable for general purpose applications where thousands

of simple computing cores perform one common operation (at a time). We look into

mapping query stacks and columns, to each of those computing cores to process XML

documents and perform filtering at a high throughput.

29

When mapped to FPGAs, the proposed approach has virtually no memory

footprint: as the XML document is streamed, filtering is performed in the FPGA at

wire speed without relying on external memory. Similarly for GPUs, memory offloading

is minimal, with stacks localized to low-latency shared memories, whereas pure CPU

approaches build data structures up to two orders of magnitude larger than the XML

document streamed.

2.4.5 Support for Predicate Expression Evaluation

The above discussion focused on identifying whether a profile structure appears

within a document. Nevertheless, user profiles can specify not only the XML structure,

but may also content predicate expressions. The XPath query language allows the

specification of predicates to filter the node set with respect to the current axis.

Predicate expressions perform comparisons using <, >, ≥, ≤, =, and ! =

operations, and these expressions can be combined by ‘and’ and ‘or’. Though the

XPath language provides support for even more complex functions, such as ‘mod’ for

evaluating numbers, generally simple predicate comparisons are most common for XML

filtering.

While structure evaluation is more challenging and requires the use of stacks

etc., predicate evaluation comprises of content identification, and can thus be migrated

to the parser. Predicates can then be treated as additional tag identifiers in inter-column

relations. Conditions to propagate a ‘1’ across two columns will be slightly modified to

incorporate predicates, thus, in the parser predicate output must also evaluate to ‘1’.

In addition, by migrating predicate evaluation to the parser, we can take advantage of

the commonalities in predicates across queries.

30

The work in this dissertation targets mainly the (more complex) filtering on

the structure of the XML profiles, rather than content; thus parsers are orthogonal to

our filtering system. High performance and optimized parsers can be deployed in our

system with minimal modification required.

2.5 XPath Filtering on FPGAs

Using an XML stream as input, we present a full-hardware XPath filtering

system on FPGAs; this section describes the details of the proposed approach. Two

implementations of the stack algorithm described in Section 2.4 are explored; the first

targeting setups where the query lifetime is considerably longer than that of the streamed

XML document (Section 2.5.2); the second implementation targets queries that are up-

dated regularly (Section 2.5.3). In the first approach, the soft circuit is fully customized

and thus, more profiles are “packed”; but to update profiles, one has to regenerate

the circuit description and go through the lengthy synthesis/place and route process.

Instead, the focus of the second approach is on supporting dynamic profile updating

through a generic circuit where each profile is configured, at the cost of fitting fewer

profiles on the FPGA.

2.5.1 System Architecture

Our hardware filtering architecture assumes an XML document stream as in-

put. As the document is streamed, it is being parsed on the fly, and open(tag) and

close(tag) events are generated and passed to the query matching engines (Path Specific

Stacks). Using these, all query matching engines are updating states to find occurrences

of paths within the streamed document. As a result, matching ends when the XML

31

Figure 2.6: High-level FPGA-based system overview.

32

stream is complete, and all match states can then be reported. Figure 2.6 illustrates a

high-level view of the system architecture.

Parsing is achieved using a hardware implementation of the Simple API for

XML (SAX) Parser [70]. The SAX parser is an event-driven XML parser, ideal for

streaming applications. Unlike other parsers (such as DOM [17]), where the entire XML

document needs to be stored in memory before processing can start, SAX Parsers would

generate open(tag) and close(tag) events on the fly.

With FPGAs being limited in hardware resources, a tag decoder is a desir-

able feature operating in conjunction with the SAX Parser. Since all query matching

engines would need comparisons against respective tags, all engines executing in a par-

allel fashion, many redundant comparisons would take place across several engines, thus

unnecessarily wasting resources. Decoders solve this issue by centralizing comparisons,

and mapping decoded tags into single bit lines. All remaining comparisons are then

translated into simple AND gates, hence, resulting in considerable savings in FPGA

resources, since tags are shared across several queries. Our tag decoder is inspired from

character decoding, the latter becoming conventional in pattern matching on FPGAs

[13], [53], and which was shown to offer up to 83% of area savings in [53]. The tag

decoder is implemented as a Content Addressable Memory (CAM) which, when given a

tag, searches through all entries in parallel, and requires a single cycle to generate the

decoded tag address.

Figure 2.6 shows how a tag decoder would operate in parallel with a SAX

Parser in order to generate open and close tag events, with a tag being a single bit line

out of the possible n decoded ones. Note that only one of those bit lines is high at a

given event, and all lines are cleared otherwise.

33

Since all stacks on chip would be updating concurrently, the top of stack address

(common to all stacks) is centralized, being generated from a common structure, which

in turn requires push (open) and pop (close) notifications from the SAX Parser. This

is depicted in Figure 2.6, where the top of stack (TOS) address is routed to a structure

referred to as the global stack, and to all remaining Path Specific Stacks.

The decoded tag ID output of the tag decoder is pushed onto the Global Stack

upon open() events. Moreover, the Global Stack uses the common top of stack address

structure, and passes its output to all the matching engines. The Global Stack is added

to keep track of the XML node at one level lower, and is only used in the matching

engines described in Section 2.5.2.2. The global stack is mapped to on-chip Block RAMs

(BRAMs) [8], highly configurable hard-wired memory blocks that are embedded in most

Xilinx FPGAs.

Finally, with up to tens of thousands of matching engines co-existing on chip,

reporting matches becomes a more complicated issue, where mapping each match signal

exclusively to an FPGA pin is not an option. Our previous approach [53] suggested the

use of priority encoders, where upon the event of a match, the unique encoded ID of the

expression is returned. However, such an approach fails to acknowledge multiple matches

occurring concurrently. XPath profiles {a//b} and {c/a/d/b} are such examples.

For the application of interest (filtering), the number of matches of each profile

is of no relevance, rather whether or not there was at least one match. Thus, the

matching logic is enhanced with one bit buffers relative to each PSS (Buffering Logic,

Figure 2.6); these buffers are connected serially. Upon the completion of the input

stream, all of these results would be streamed out in a pipelined fashion, with a single

bit port required. There would be N cycles of overhead required for this mechanism to

34

(a) (b)

Figure 2.7: Hardware logic connecting two PSS columns with the jth and j+1th column
sharing (a) a parent/child relation, and (b) an ancestor/descendant relation. If the
child/descendant node is a wildcard, the AND gate and a tag bit are not needed.

complete streaming out, with N being the number of profiles. This overhead is typically

minimal when compared to the size of the documents streamed through the FPGA.

2.5.2 Fully Customized FPGA Hardware

In this section, we describe the low-level implementation details of the Path

Specific Stacks (PSS), the matching engines as described in Section 2.4.

2.5.2.1 Matching XPaths Using Path Specific Stacks

Stacks are implemented using Distributed Memory blocks, memory structures

on Xilinx FPGAs that comprise of slice LUTs. The stack width (number of stack

columns) is equal to the length of the XPath mapped to it, whereas the stack depth

is the maximum streamed XML document depth. The latter is determined offline, at

compile time.

Based on the relation of every two nodes in the path mapped to the PSS, the

input to every column is determined as depicted in Figures 2.7(a) and 2.7(b). In case

of a parent/child relation (Figure 2.7(a)), a ‘1’ is pushed to the jth column :

35

• on the open() event of the tag mapped to the jth column (as determined by the

parser and decoder)

• only if a ‘1’ is stored at the top of stack of the j − 1th column.

On the other hand, in case of an ancestor/descendant relation (Figure 2.7(b),

where the jth node is an ancestor), the same conditions as a parent/child relation hold,

with the addition of OR-ing the output of the jth column to the output of the AND

gate, which would force pushing a ‘1’ once it was written, thus preserving the property

of the ancestor.

If the child/descendant node is a wildcard (e.g. {.../A/*/...}, {.../A//*/...}),

any tag would result in the propagation of the match from the j − 1th column. Thus,

there would be no need for a comparison with any decoder bit, resulting in the omission

of the AND gates shown in Figures 2.7(a) and 2.7(b). In the case of a parent/child

relation with a wildcard as child (Figure 2.7(a)), the output of the j − 1th column is

connected to the input of jth column, with no extra logic in between. In the case of an

ancestor/descendant relation with a wildcard as descendant (Figure 2.7(b)), the output

of the j − 1th column is connected to the OR gate preceding the jth column.

2.5.2.2 Applied Optimizations for PSS Reduced Resource Utilization

As described in Section 2.5.2.1, the width of every PSS is equivalent to the

depth of the XPath profile mapped to it. In this section, three optimizations are pro-

posed with the goal of minimizing the number of required stack columns, hence utilized

FPGA resources. We focus on optimizing the PSS mapping of the same XPath profile

used as a base example in Figure 2.5.

36

The first optimization relates to removing the column respective to the last

query node.

This is a simple optimization. When the last node is evaluated to match, the

match bit is instead stored in some buffering logic. There is no need to keep track of the

match state of the last node at every document level, since no other nodes depend on

it. Instead, all that is of interest is whether the last predicate was matched throughout

the document, reflecting if the query pattern appears in the streamed XML document.

The remaining two optimizations make use of the Global Stack, a structure

shared by all matching engines (hence global), first introduced in Section 2.5.1 and

Figure 2.6. At every open() XML event, the decoded representation of the respective

opened tag is pushed onto the Global Stack. Conversely, every close() XML event results

in popping from the Global Stack. The Top Of the global Stack output (TOS) is made

to reflect the parent tag of the currently active tag.

The second optimization relates to removing the column respective to the

query root node.

Using the Global Stack, the match state of the root node of each query is

reflected in a respective TOS bit. Evaluating the match state of the second node in a

query is achieved by reading the TOS bit of the root node, and the current decoded

tag. For instance, assuming a tag set of {A,B,C}, a TOS value of ‘010’ indicates that

B is the parent of the current active XML tag. A query starting with {B/A/...} would

depend on the second TOS bit (respective to B) for the matching of node A.

The benefits of this optimization are effective when several queries make use of

the Global Stack; this shared centralized structure merges and minimizes the information

needed by all query root matching logic.

37

The third optimization helps reduce the number of PSS columns to the

maximum number of node matches that can be set per XML event.

A given node in a query can become in a matched state if the previous node

is in a matched state, and if the current active XML document node’s tag matches that

of the node in question (as seen in Figure 2.7(a)). In other words : at a given node in

the XML document, the only query nodes that “could” result in being matched, are the

nodes whose tag is identical to the XML node’s tag.

For example, assuming queries Q1{A/B/C} and

Q2{D/C/E}; upon an open(C) XML document event, only nodes 3 of Q1 and node 2

of Q2 could result in being in a matched state (the nodes with tag C).

This implies that some column entries are not utilized, and this can be deduced

from the decoded XML tag at a given level, alongside the tag of the node mapped to this

given column. For instance, an entry in a ‘C’ column can be only set to ‘1’ (matched)

at a level where the XML document has a ‘C’ tag. The latter can be deduced from the

Global Stack.

Therefore, query nodes are non-conflicting if they cannot be in a matched

state at the same XML level. Non-conflicting nodes can share a stack column.

Wildcard and ancestor/descendant nodes conflict with any other node since

they can be in a matched state at any given XML node. Therefore, wildcard and

ancestor/descendant nodes can under no conditions share stack columns.

When building the PSS with the third optimization on, the added rule is to

map every node to the first column to which no conflicting nodes are mapped.

Tested columns for mapping start from the root of the query up to the node in question.

If no such column is found, a new column is instantiated.

38

Algorithm 1 details the path query node to stack column mapping algorithm,

with column compaction enabled. The basic rules state that nodes followed by ‘//’, and

wildcards, map to their own restricted columns. Moreover, nodes having similar tags

are not allowed to map to the same column. This algorithm returns the required stack

width for a given query, and the mappings of the nodes to stack columns.

Algorithm 1: Twig Node to Push Stack Column Mapping

1 GLOBAL stack width← 0 {Number of Push Stack Columns}

2 for every query node N do

3 if the node requires a single Push Stack column then

4 if the node is a wildcard, and-or is an ancestor of

other query node(s) then

5 stack width + +

6 Assign a new column restricted to this node

7 else

8 Map to the column given by Mapper(tag of N)

9 end if

10 else

11 • With regards to N// :

12 stack width + +

13 Assign a new restricted column

14 • With regards to N/, map to the column given by

Mapper(tag of N)

15 end if

16 end for

39

Algorithm 2: Mapper(tag T)

1 R← 0

2 Set R to be the stack column corresponding to the most recent

occurrence of T/ in the push stack

3 for each stack column C, s.t. R < C ≤ stack width do

4 if no ancestor or wildcard nodes map to this column then

5 return C

6 end if

7 end for

8 stack width + +

9 return stack width

We show in Figures 2.8(a) and 2.8(b) the hardware logic depicting the imple-

mentation of the PSS’s respective to query {a/c/a/c/d}, without and with the third

optimization on; the first two optimizations are applied to both implementations. Note

that the event-by-event detailed matching steps of this query were previously presented

in Figure 2.5.

Looking at Figure 2.8(a); matching for the first query node {a/} is achieved by

using the global stack, as described in the second optimization earlier. The advantage

of using a global stack is relevant with multiple query engines on the FPGA, rather

than just one. The last query node does not require a stack, as described by the first

stack optimization earlier. All other query nodes require a 2-input AND gate alongside

a stack column. When reading from the global stack and tag decoder, a single bit of

each tag is forwarded to the AND gate, based on the respective tag. Every AND gate

in Figure 2.8(a) reflects the node implemented through it.

40

On the other hand, when making use of the third stack optimization, the second

and third nodes ({c/} and {a/}) can share a stack column since they are non-conflicting.

The fourth node {c/} conflicts with the second, since they share the same tag. Thus,

two AND gates are connected at the input of the first column, with their outputs are

merged (OR’ed).

The AND gate respective to the node {a/} reads the output of the first column

(though it writes to it), while also reading the global stack tag(c) output bit; the latter

will ensure whether a match indicated at the output of the first column was resulting

from a previous {c} as a parent of the current XML document node.

Similarly, since the first column stores information respective to more than one

node, the AND gate reading from that first column requires a global stack bit to filter

out the matches resulting from the previous {c/} node.

Finally, since the second column stores the match state of only one node, the

AND gate reading from it does not make use of the global stack.

Savings in resources : every stack column is implemented through an FPGA

LUT (Look-Up Table); the number of LUTs needed to implement the logic between

columns is dependent on the number of unique input bits to this logic versus the physical

number of LUT input bits. For instance, a 6-input boolean function can be implemented

using one 6-input LUT, or two 5-input LUTs. The LUT size is a physical constraint

of the FPGA used. Typically, modern FPGAs make use of 5-input LUTs. Assuming

such LUTs, the PSS implementation in Figure 2.8(a) requires 7 LUTs (4 for logic, 3

for stack columns), while the implementation in Figure 2.8(b) requires 5 LUTs (3 for

logic, 2 for stack columns). These results were generated through Synplify Pro 2010-09

(synthesis) and Xilinx ISE 14 (PAR). Although LUT sharing did not take effect here,

41

(a) (b)

Figure 2.8: Hardware logic depicting the implementation of the filtering engine respec-
tive to query {a/c/a/c/b}, (a) without and (b) with the third stack optimization.

column optimizations would still result in area savings when LUT sharing is applied on

XPath queries.

2.5.3 Programmable FPGA Hardware for Fast Update Time

In this section we introduce an FPGA-based approach for XML filtering, tar-

geting applications requiring frequent query updates. In the approach presented in

Section 2.5.2, the profiles are identified prior to synthesis, and every hardware PSS is

connected to exactly the signals needed for filtering. Updating queries would require

an updated hardware description. Going from hardware description to FPGA configu-

ration includes synthesis/place and route, processes that can take up to several hours,

depending on the resulting circuit size. Here, the latter is mostly bound by the total

number of query profiles. Hence, using a fully-customized accelerator works well when

targeting applications where the lifetime of the query is much longer than that of the

document.

42

Figure 2.9: Programmable FPGA hardware overview, with emphasis on the column
connections. The XML input passes through the parser and programmable tag decoder.
Every decoded tag bit is connected to the logic preceding one column; every query node
is mapped to a column. The connections between two columns can be programmed
by writing to the (striped) Flip-Flops. A node can be a root node in the query (see
Root above), can be a wildcards (see ‘*’ above), can be followed by a parent/child
relation or ancestor/descendant (see ‘//’ above). The use of any of these is optional
and node-dependent.

2.5.3.1 Programmable Path Specific Stacks

For applications where user profiles are updated regularly, we present a generic

customizable PSS, whose functionality is similar to that of a custom non-optimized PSS.

So far, select wire signals are routed to each stack column from the tag decoder and

global stack. Here, focus is shifted to allow a stack column to match for any tag followed

by any relation. Every column will be programmed to support matching for one tag and

relation per configuration.

The optimization of mapping several distinct tags to one column, as described

in Section 2.5.2.2, is not applied to the programmable Path Specific Stacks. Instead,

exactly one query node is mapped to a respective column. A ‘1’ propagates diagonally

only between two adjacent columns.

The programmable FPGA logic consists of a set of stack columns connected

serially (see Figure 2.9). In between each two columns lies the programmable logic

implementing a single query node, enabling the propagation of ‘1’s.

43

The XML input stream passes through the parser and tag decoder. The tag

decoder is now made programmable, such that every tag decoded tag bit is connected

one query node. Hence, tag decoder contents could contain duplicates. The number of

tags in the decoder is equal to the number of available hardware columns.

Figure 2.9 shows the configurability of the connecting logic between two columns,

and the support for:

• Any tag: The tag required by a query node is stored in the programmable de-

coder, and forwarded to this column logic only.

• Roots: A query node can be a root by logically disconnecting it from the previous

column. A ‘1’ stored in the left most Flip-Flop would overwrite any output of the

previous column (see OR gate with ‘Root’).

• Wildcards: In case of a wildcard, a ‘1’ is stored in a Flip-Flop, and OR-ed with

the respective tag decoder bit (see OR gate with ‘*’). The OR gate has no effect

in case of a ‘0’ stored in the input Flip-Flop, and would otherwise nullify the effect

of the multiplexer output.

• Parent/Child Relations: As in the custom PSS, an AND gate is required to

ensure that a ‘1’ is stored in the top of stack of the previous column, and that the

required tag has been opened (see AND gate with ‘/’).

• Ancestor/Descendant Relations: Similar to a PSS, if a node mapped to a

column is an ancestor, then the input to the column is OR-ed with its top of stack

output. Support for ancestor/descendant relations is provided by using an OR

gate (labeled with ‘//’) that takes as input the output of a multiplexer. The select

bit (stored in a Flip-Flop) is used to forward to the OR gate either the output of

44

that column (feedback signal), or ground (a ‘0’), the latter having no effect on the

output of the AND gate.

Every column has a ‘match’ bit-buffer, indicating whether or not a match

occurred at its query node. Once streaming the XML document is completed, all the

column match bits are read as results. The match state of the leaf nodes would be of

interest.

All configuration Flip-Flops are shown as striped, and all Flip-Flops across

all tags in the decoder and all columns configuration Flip-Flops are connected as a

single shift register; generic stacks are programmed in a serial fashion. A query is now

represented as a sequence of bits that control the hardware. The FPGA logic needs to

be synthesized/placed and routed only once initially, and all query updates are applied

by streaming the bits that represent the queries, one bit at a time.

We provide in Chapter 3 a description of custom FPGA hardware for matching

queries expressed as twigs. These are more complex queries that require two types of

stacks: push stacks which are updated on push events as described earlier, and pop stacks

which update mostly on pop events. Twig queries are broken up as several split node

to split node paths; each path requiring one push stack and one pop stack for filtering.

As a first natural exploration step, we focus on adapting path queries to programmable

hardware and GPUs. Programmable twig query matching engines require a similar, yet

more complex, framework targeting twig queries. With twigs, the stacks respective to

the smaller broken-down paths should be connected. These connections between several

stacks should become programmable, which adds another level of complexity to the

resulting architecture. This discussion is however left out of this dissertation.

45

Figure 2.10: Design space exploration on 2K queries mapped to customized stacks on
a Xilinx V6LX240T FPGA: as the cluster size is varied, the effect on performance is
studied. The low frequency in the inner fan-out region is due to the many queries
per cluster. Pipelining the input stream across clusters will fight over-clustering (effect
visible through a maintained high frequency in the outer fan-out region).

2.5.4 Performance Optimizations

A limiting factor in FPGA performance is the frequency at which the circuit

will run on-chip. This operational frequency is bound by the length of the longest wire

(the critical path).

With respect to our design, the tag decoder and global stack outputs are for-

warded tens of thousands of matching engines. This creates a fan-out problem, where

a single wire is used all over the FPGA chip. In order to minimize the effect of fan-out,

we resort to clustering, by replicating the parser, tag decoder and global stack, and

distributing queries across clusters.

Figure 2.10 depicts a design space exploration to determine the adequate cluster

size in order to achieve a good balance between fan-out within clusters (too many queries

per cluster), and over-clustering (too few queries per cluster). Results are generate

using Synplify Pro 2010-09 (synthesis) and Xilinx ISE 14 (PAR) targeting a Xilinx

V6LX240T FPGA. While setting the total number of user profiles to 2K, the cluster

size was varied from 8 to 2K in steps of doubling the cluster size. The operational

46

Figure 2.11: The process of generating a hardware circuit description consists of the user
listing XPath queries, and setting compiler options as desired. Hardware is automatically
generated using a developed query compiler.

frequency peaks for clusters of size 256 (tolerable inner-fanout). As the number of

clusters doubles, this peak in operational frequency is only maintained when buffering

the XML stream across clusters; otherwise, the operational frequency deteriorates due

to over-clustering. Moreover, over-clustering increases resource utilization to replicate

the parser and global stack, and it reduces the opportunities to exploit commonalities

across queries if desired; this occurs when mapping less than 64 queries to a single

cluster. Therefore, we conclude that the cluster size should be of size 128 or 256 queries

in order to achieve resource/performance balance. Note that when doubling the query

size, the cluster size should be halved.

2.5.5 Query Compiler Overview

Hardware is automatically generated from user-defined XPath queries, using

a query compiler, developed in C++. The automatic hardware generation step re-

quires around one second. The most notable compiler options include setting a cluster

size (Section 2.5.4), generating custom (Section 2.5.2) or programmable (Section 2.5.3)

47

hardware, enabling column-level optimizations (Section 2.5.2.2), setting the max XML

document depth, and setting the number of stack columns (programmable stacks).

When specifying customized hardware, the query-to-hardware compilation is

required for every query set. Conversely, programmable stacks need to be generated

once, initially. Another tool is needed to generate the configuration bits for every query

set. This tool is aware of the underlying architecture specifications (number of columns,

number of configuration bits per column, etc), and generates configuration bits within

a second.

2.6 XPath Filtering on GPUs

With the filtering algorithm applied to an FPGA-based accelerator, the XML

documents are directly streamed to the accelerator, and no external memories are re-

quired. Stacks are implemented using custom circuitry, where several optimizations are

applied to reduce the width of stacks. Such a setup and optimizations are not directly

applicable to GPUs. Here, the XML document has to be parsed before being sent to

the GPU memory. Once the parsed XML document is in GPU memory, it is processed

by software implementations of the PSS. Stacks are stored in shared memory, and we

develop software kernels to implement different queries.

We investigate two mappings of the proposed parallel XPath filtering solution

to GPUs. In the first, the query stack is holistically processed by a single thread.

Whereas in the second, every block is associated with the task of updating a single

column at a time. The most notable differences are as follows:

• There is no inter-thread communication (through the shared memory) in the first

approach. This is not true in the second approach, as each column depends on

48

the preceding one, and they are each processed by a different thread; here, upon

every update, a look up in shared memory is required to read the value of at the

top of the previous column.

• Commonalities across queries cannot be extracted when mapping each query to a

thread (first approach). This will affect scalability, as optimizations can be applied

to reduce the query set.

In the remainder of this section, we go over the implementation details of both

approaches, and discuss applied optimizations.

2.6.1 Mapping Queries to Threads

As the XML document is processed, all columns in one path stack share the

partial matching info stored in the top of stack. In our first approach, every query is

processed holistically by a single thread. Even though no stack data is shared across

queries/threads, the stack of every query in a block is mapped to the low-latency shared

memory.

The kernel executed on every thread consists of a loop that computes, for every

XML event, the update at every cell (of each column) in the top of stack. The GPU

kernel executed per stack column is provided in Algorithm 3. Lines 4 through 14 are

repeated per thread for all each columns in a stack (inner for-loop not shown). There

is however one match state per query/thread (lines 17 through 19 are not needed when

mapping queries to threads). Once all XML events are processed, the match state of

the query is streamed back to the CPU.

With Streaming Processors (SPs) having hardware multithreading support,

every SP can process at a time as many queries as the number of available hardware

49

Algorithm 3: GPU kernel per stack column

1 current level← 0

2 matched← 0

3 for all XML document events do

4 if pop event then

5 current level - -

6 else

7 current level ++

8 if ‘1’ propagates diagonally upwards OR

vertically upwards then

9 stack[current column][current level]← 1

10 matched← 1

11 else

12 stack[current column][current level]← 0

13 end if

14 end if

15 end for

16

17 if current column is a leaf column then

18 match state[column ID]← matched

19 end if

20 return

50

threads. However, the number of queries processed simultaneously in a block is bounded

by the limitations in size of the shared memory; as every query makes use of a distinct

stack, no more than a certain number of queries can be processed at once. That is

true unless the stack is mapped to the global device memory. In that case, the stack

limitations are lifted, but the performance at least halves.

2.6.2 Mapping Queries to Blocks

Another approach to query filtering on GPUs is to assign the processing of

each stack column to a block, such that all the stack updates occur in a single Stream-

ing Multiprocessor (SM), across threads. The stack is again mapped onto the shared

memory.

2.6.2.1 Approach Overview

For every XML event, each thread updates the top of one column, and data is

passed across threads through the shared memory. A synchronization event is required

at each thread after every XML event, in order to have all the contents of the top of

stack updated before proceeding to the next XML event.

Details of the GPU kernel executed by every thread, are provided in Algorithm

3. The main difference with the previous approach is that every thread will not loop

for all query nodes (stack columns). Another difference is that a match state is kept

for every query column, though only leaf columns report their match state to global

memory (lines 17-19).

51

2.6.2.2 Common Prefix Optimization

Figure 2.12 depicts a sample set of queries to be filtered on the GPU. The stack

column dependencies are shown for each query stack separately; these dependencies

determine the propagating path (through columns) of a ‘1’ within each stack. One

observation is that Q0 and Q1 share the prefix a/b/c/, and thus the first three columns

of their respective stacks behave identically. On the other hand, Q2 shares the prefix

a/b/ with both Q0 and Q1.

A tree representing all stacks merged at the common prefix nodes can be con-

structed, such that tree nodes represent stack columns and query nodes (see Figure

2.12). This tree will consist of the minimum number of stack columns required to match

all queries. Queries Q0, Q1 and Q2 require at least 6 stack columns for filtering, in

contrast to the initial 11 when not merged.

Nonetheless, this minimum might not be achieved in practice, since not all

queries on the GPU can communicate through the localized shared memories; only

queries evaluated in one block can share stack columns (unless the stacks are mapped

to the high-latency global memory). Figure 2.12 depicts the mapping of query nodes

with the applied optimization, and a block size of 5 (in practice, the block size can be

up to several hundreds).

The fixed-sized block limitation implies that some of the minimal tree nodes

will be mapped to more than a single block when the block is smaller than the tree; for

instance, a/b/ was computed in both blocks.

We look into the problem of mapping query nodes into blocks, while minimizing

the number of required blocks. The minimal tree is taken as a reference, even though

52

Figure 2.12: Sample query set shown initially, followed by the stack column dependencies
for each query stack independently. A tree representation of all the queries as grouped
by common prefixes is then portrayed. Finally, the query nodes are mapped to GPU
blocks with a restriction on the block size.

this minimum cannot be achieved, as the assumed query set size is much larger than

the maximum block size (tens of thousands of queries vs. block size at most 512).

The first approach employed executes the following steps:

1. Sort all queries (by tag ID)

2. Instantiate a new GPU block

(a) Pop the query at the top of the sorted list

(b) Find the block offset of the last common tag with the previously inserted

query (if any)

(c) Append the remaining query nodes to the block, linking the first suffix node

to the node at the index as found in (b)

(d) Repeat (a)-(c) until the popped query doesn’t fit in the block

3. Repeat step 2 on the remaining queries

Nodes are linked using the ‘previous column index’ portion of the representation

described in Figure 2.13(b). Stack columns of a single query are no longer contiguous in

the shared memory, as columns are now shared across tags. The sorting step will insure

that queries popped linearly will share prefix nodes.

53

We also looked into a variant of that approach, where, instead of linearly pop-

ping queries from the sorted list, we greedily pick the query sharing the longest common

prefix with its neighbor, place it in the block, and fill the block with its neighboring

queries. This approach runs much slower than the initial one (few seconds vs. tens of

seconds), while providing minimal improvement. Therefore, for the remainder of this

discussion, we focus on the initial placement technique.

One artifact of placing queries into blocks is fragmentation. Here, blocks ex-

hibit empty slots where queries wouldn’t otherwise fit. However, as will be shown later

in our experimental evaluation and using the above approaches, the average wasted

nodes per block was a little over a single node. Therefore, we deduce that the effect of

fragmentation is minimal.

A larger block size naturally results in more commonalities exploited. However,

the block size should be also set to maximize the occupancy on the GPU. Maximizing

the occupancy can help to cover latency during global memory loads that are followed

by a synchronization instruction. The occupancy is determined by the amount of shared

memory and registers used by each thread block.

Note that the common prefix optimization cannot be applied to the first ap-

proach, where each SP holistically processes a query.

2.6.3 Streaming Processor Personalities

Every instance of the GPU kernel requires knowledge of the query node mapped

to the stack column it processes. The CPU parses all queries and transmits to the GPU

device memory a pre-processed form of all the queries as an array, where each entry

represents a query node, and corresponds to a single kernel instance. Figure 2.13(b)

54

(a) (b)

Figure 2.13: GPU Input format: (a) shows the storage format of every XML document
event as streamed to the GPU, whereas (b) depicts the format of SP personalities,
representing a query path node and its stack mapping.

represents a generic view of a query node representation, namely thread personality, on

which the kernel instance functionality depends.

A personality consists of a single bit to indicate whether the node is a query

leaf, one bit to indicate the relationship (parent, ancestor) between the node and the

following one in the query, and a 7-bit representation of the tag ID. The previous column

index entry refers to the index of the previous stack column in the block; 5-9 bits are

required since GPU blocks can hold 32 to 512 kernel instances. We represent fields using

the minimum number of bits and compact them into the smallest data types. This is

in contrast to using one distinct variable per field of the personality. The 14-18 bit

personality will be implemented as a 32-bit number, in contrast to several chars and

integers. This would potentially reduce the storage requirement and memory transfers

by half.

2.6.4 Efficient Use of the GPU Memory Hierarchy

The proposed GPU-based filtering algorithm only depends on the events and

tags of XML documents, rather than content. In order to minimize transfer from CPU

to GPU and utilized memory space, the CPU would compress the XML document events

into an optimized representation that is then transferred to the GPU. Each compressed

55

entry is 8-bit wide as shown in Figure 2.13(a), with one reserved bit indicating the event

type (push/pop), and the remaining seven bits representing the corresponding tag ID.

Every XML document node is translated into such an entry.

The pre-processed XML is transferred to the global device memory of the

GPU, in order to be read by all threads. Since the XML document is read-only, small

documents could fit into the cached constant memory. However, our experiments show

that minimal speedup was achieved with such small documents mapped to the constant

cache. We thus only utilize the global memory to map XML streams of all sizes.

Thread personalities are also transferred to the global memory of the GPU.

However, since every thread will read its personality once, this is done initially, and the

personality is stored in the thread registers.

As noted earlier, stacks are stored in the low-latency shared memory of every

block. The maximum stack depth is set at compile time to allocate the required amount

of shared memory.

With the completion of processing on the GPU, the match state of every query

is written once to the global memory and streamed back to the CPU.

2.6.5 Supporting Batches of XML Documents

The previous discussion considered handling a single document. In real life

pub-sub applications, we have witnessed that the incoming stream consists of batches of

small documents. Supporting such batches represents an additional challenge for GPUs

because of the decoupled nature of the CPU and GPU. The parsing of every XML

document has to be performed on the CPU; the latter parses all the XML documents,

and then streams to the GPU a processed representation of that document; the GPU

56

Figure 2.14: GPU filtering framework: a CPU thread parses every XML document and
stores it in a format optimized for the GPU-based XML filter; a parsed XML document
is stored in a queue on the host (CPU RAM); every parsed document is copied over to
the GPU memory where query filtering is performed, and results are streamed back to
the host (CPU) RAM.

then performs filtering for all user profiles on the received document. Once filtering is

completed, filtering results are streamed back to the CPU which would be idle otherwise.

Figure 2.14 depicts the GPU filtering framework we deploy to handle document

batches: a CPU thread parses every XML document and stores it in a format optimized

for the GPU-based XML filter; a parsed XML document is stored in a queue on the host

(CPU RAM); every parsed document is copied over to the GPU memory (not shown);

query filtering is performed, and results are streamed back to the host (CPU) RAM.

This cycle is repeated for every XML document. Using this scheme, parsing and

filtering are performed in parallel; however, filtering can only start after the document

is parsed (and then copied to the GPU memory).

2.7 Experimental Evaluation

In this section, the performance of all the aforementioned FPGA approaches is

evaluated, alongside an adaptation of our filtering mechanism on GPUs, and two state

of the art software (CPU-based) approaches, namely YFilter [16] and FiST [40].

For the performance experiments, we utilize the DBLP DTD provided by [80]

to generate XML documents and user profiles. XML documents of maximum depth 16

57

and varying sizes were generated using the ToXGENE XML Generator [6]. We make

use of two main batches of documents for our experiments:

• Batch ‘small documents’ : 5,000 documents of average size 220 KB each.

• Batch ‘medium documents’ : 500 documents of average size 2.2 MB each.

Each XML document consists only of open and close tag events, one per line.

Each tag was replaced with a 2-byte ID. Using this scheme, the number of XML events

per document can be deduced, by dividing the document size (bytes) by 5.5, the latter

being the average line size: an open tag is 5 bytes long ‘< >\n ’, whereas a close tag is

6 bytes long ‘</ >\n ’. The total size of all documents of each batch is around 1100

MB; hence, every batch corresponds of around 200 million events, across all documents.

Query datasets, each containing distinct queries, with varying depth, percent-

age occurrence of ancestor-descendant axis and wildcards, were generated using the

YFilter query generator [16].

The properties of query profiles are as follows:

• Max query depth = 4 or 8 nodes.

• Number of queries = 32, 64, 128, 256, . . . 32K.

• Percent occurrence of ancestor-descendant axis (‘//’) and wildcard path nodes

(‘*’) = 5, 15 & 25 % occurrence.

Due to the streaming nature of pub-sub systems, throughput (MB/s) is used in

our experiments as a performance metric. Throughput is inversely proportional to the

wall-clock running time, and is derived using the total size of all documents per batch.

Throughput denotes how much information can be processed per unit time. Here, a

58

filtering setup with higher throughput is one less likely to drop packets, and able to

process documents faster.

End-to-end performance is measured for all platforms (FPGA, GPU, CPU),

such that the XML documents start off as located on the CPU RAM, filtering is per-

formed, and finally the filtering results would reside on the CPU RAM. Since XML

parsing is orthogonal to this work, parsing time is not included in performance measure-

ments (though parsing is carried out on the FPGA, with no impact on throughput).

2.7.1 Experimental Evaluation of FPGA-Based Approaches

A study on the resource utilization and performance of the proposed FPGA-

based solutions follows.

2.7.1.1 Setup and Platform

Our FPGA platform consists of a Pico M-501 board connected to an Intel Xeon

processor via 8 lanes of PCI-e Gen. 2 [66]. We make use of one Xilinx Virtex 6 FPGA

LX240T, a low to mid-size FPGA relative to modern standards. The PCIe hardware

interface and software drivers are provided as part of the Pico framework.

Our hardware filtering engines communicate with the input and output PCIe

interfaces through one stream each way, with dual-clock BRAM FIFOs in between our

logic and the interfaces. Hence, the clock of our filtering engine is independent of the

global clock. The PCIe interfaces incur an overhead of≈8% of available FPGA resources.

The RAM on the FPGA board is not residing in the same virtual address

space of the CPU RAM. Data is streamed from the CPU RAM to the FPGA. Since the

proposed solution does not require memory offloading, RAM on the FPGA board is not

used (note that stacks are built using the FPGA logic).

59

Figure 2.15: Resource utilization (a), and operational frequency (MHz) (b), of FPGA-
based XML filtering approaches on a Xilinx Virtex 6 LX240T FPGA, as part of a PICO
M-501 platform. Lower frequencies are due to the larger filtering circuits.

Synplify Pro 2010-09 is used for synthesis, and Xilinx ISE 14 for PAR. FSM ex-

ploration, resource pre-packing and resource sharing optimizations are activated during

synthesis.

2.7.1.2 Tradeoffs and Resource Utilization

Resource utilization is shown in Figure 2.15 (a), corresponding to the three

implementations of the filtering algorithm on FPGAs, namely:

1. Customized (Query length = 4): An implementation of the custom hardware

approach described in Section 2.5.2, with PSS optimizations on, clusters of size

256 queries.

60

2. Customized (Query length = 8): An implementation of the custom hardware

approach described in Section 2.5.2, with PSS optimizations on, clusters of size

128 queries.

3. Programmable: An implementation of the programmable hardware approach

described in Section 2.5.3, with a cluster size of 128 columns.

Note that the programmable implementation makes use of smaller clusters

(size 128) than the customized counterpart. This smaller cluster size is preferable, since

programmable clusters are bigger (use more resources) than customized ones, hence

negatively affecting the critical path.

The XML maximum depth is assumed to be 16, a relaxed limitation on the

average XML document depth to be processed. Deeper XML documents can be sup-

ported with minimal penalty on resource utilizations, due to the availability of 32-row

LUTs on modern FPGAs.

The data depicted in Figure 2.15 (a) is respective to query nodes rather than

queries. The programmable hardware consists of hardware columns, regardless of the

number of queries or size of the queries mapped. Moreover, looking from a node perspec-

tive, we can see that stack optimizations are more effective with longer queries, saving

around 25% in resources when supporting the same number of nodes (custom length 8

vs. length 4).

As expected, the custom hardware benefits from the reduced resource utiliza-

tion, and that is not solely due to the PSS optimizations. Custom hardware uses on

average 7 times less resources than a programmable approach (up to 12 times less).

Note that we can further optimize the custom circuitry by making use of the common

prefix optimization. This optimization can be combined with the stack optimizations

61

presented in Section 2.5.2.2. The expected reduction in query nodes would be as studied

in Section 2.7.2. We omit further exploration of this option here for brevity.

Doubling the query length requires on average 2 times more resources with

the programmable implementations, and that is due to the doubling of the stack size

(number of columns), and the resulting need for inter-column logic. Conversely, doubling

the query length will incur on average 1.4 times more resources when considering custom

logic. This ratio is smaller than that of generic hardware due to stack compaction which

minimizes stack depth for any query width. Note that non-linear behavior in resource

utilization while doubling the number of queries, is due to the heuristic-based nature of

the tools. Moreover, in case of a circuit easily fitting on chip, certain resource utilization

optimization constraints are relaxed, in order to achieve higher performance at the cost

of added resources.

Though custom hardware approaches utilize considerably less resources than

their programmable counterpart, this comes at the cost of high reconfiguration time,

where updating queries in the custom hardware reconfiguration requires a new run

through the synthesis, place and route tools, which could take hours to complete with

larger designs. On the other hand, updating queries in the programmable architecture

requires updating the configuration stream and streaming it to hardware, a process

requiring less than a second overall.

2.7.1.3 Performance Evaluation

The filtering mechanisms on the FPGA chip depict respective deterministic

throughputs; this is in contrast to CPU and GPU-based filtering, where throughput is

affected by the document size and contents.

62

(a) Batch of 5K documents, ≈220KB each

(b) Batch of 500 documents, ≈2.2MB each

Figure 2.16: Throughput of the FPGA-based XML filtering approaches for (a) a batch
of 5K documents ≈220KB each, and (b) a batch of 500 documents, ≈2.2MB each.
Throughput measured in XML Events/s can be directly derived such that every 5.5
bytes of XML constitute one event (by design of the test documents).

63

The parser deployed on the FPGA is able to process a stream of up to 1 charac-

ter (8 bits) per hardware cycle, generating events (push/pop) that are then forwarded to

the stacks. The latter guarantee processing one event per cycle, as no memory external

to the FPGA chip is used (also note that XML events are less frequent than document

characters). As a result, the throughput of the filtering mechanisms is deterministic,

and is independent of the document size and contents. However, the throughput of the

FPGA platform as a whole is not deterministic, since data has to be sent from the CPU

to the FPGA, and filtering results back to the CPU memory. Communication between

the CPU and FPGA is penalized by the setup time of every transfer, and the amount

of transfers.

Reading an XML document, parsing it and filtering are all performed in paral-

lel, a noted advantage versus CPU and GPU-based approaches. Furthermore, since the

input and output PCIe interfaces are independent, streaming results back to the CPU

can also be parallelized with the parsing/filtering, as long as match states are buffered.

The operational frequencies at which the FPGA filtering circuits run, are shown

in Figure 2.15(b). The physical platform limitation on the operational frequency is

250MHz, which is easily achieved by many filtering circuits (for 1K query nodes and

less, and 2K custom FPGA query nodes). As the FPGA utilization increases through

doubling the number of queries, the frequency then deteriorates due to the added com-

plexity and area (longer delays) of the resulting circuits.

Figures 2.16(a) and 2.16(b) depict the throughput of FPGA-based XML filter-

ing approaches for a batch of 5K small (≈220KB), and 500 medium (≈2.2MB) XML

documents, respectively. Measuring performance in XML Events/s can be directly de-

rived such that every 5.5 bytes of XML constitute one event (by design of the test

documents). Throughput includes the end-to-end time of streaming the XML docu-

64

ments from CPU RAM to the FPGA, filtering, and reading the results back for each

document from the FPGA, to the CPU RAM. Note that filtering results can be kept on

the local FPGA memory (and not streamed to a CPU host memory) in case the routing

mechanism to subscribers is implemented on-chip (this is not applicable to GPU filtering

systems).

Initially, the throughput of individual architectures is limited by the maximum

operational frequency, in addition to a small overhead incurred for transfer setup and

reading back results from the FPGA. As noted earlier, the on-chip throughput is inde-

pendent of the document size and contents. Nonetheless, performance deteriorates for

batches of small documents with a high number of query nodes (≥ 16K), where the time

to report matches becomes comparable to the time to receive each document. This is

in contrast to the performance noted for larger documents (Figure 2.16(b)), where the

operational frequency is always the main limitation, regardless of the number of matches

to report, being minimal compared to each document. Also, since there are fewer 2.2MB

documents than 220KB ones, there will be fewer transfers to/from the FPGA respective

to the former.

The next consideration is the effect of wildcards and ancestor-descendant re-

lations on the FPGA resource utilization and performance (operational frequency). By

design, no effect is to be witnessed on the programmable FPGA approach, where sup-

port for ‘*’ and ’//’ is deployed by default for all stack columns, even when not used

by a given configuration. We ran several experiments to study the effect of varying

the percentage of occurrence of wildcards and ancestor/descendant relationships on the

customized approach (data omitted for brevity). The witnessed fluctuations in resource

utilization and operational frequency were minimal and subsumed by the heuristic na-

65

ture of the synthesis/place-and-route tools. As a result, all FPGA architectures were

not affected by wildcards and ancestor-descendant relations.

It should be noted that the performance of our filtering system can be further

improved through the use of high-performance XML parsers, as in [19]. Such parsers are

able to sustain a processing rate of of two bytes per cycle, on average. This would double

the maximum filtering throughput. High performance XML parsers can be deployed in

our system with little modification required. Another approach would be to run the

parser at a higher frequency than the filtering mechanism, a highly plausible approach

since XML events are less frequent than document characters. Nonetheless, such parser

optimizations are orthogonal to our work, and are out of the scope of this dissertation.

Using optimized parsers would help fight the lower operational frequency of certain

circuits (Figure 2.15(b), >16K customized and 2K programmable nodes), and would

help filter at higher bandwidth links when needed (10G ethernet).

2.7.2 Experimental Evaluation of GPU-Based Approaches

The performance of the GPU-based approaches is measured on an NVIDIA

TESLA C1060 GPU; a total of 30 Streaming Multiprocessors (SMs) comprising of 8

Streaming Processors (SPs) each are available.

The remaining discussion in this section relates to the evaluation of the (node

reduction) efficiency of the common prefix optimization, a study on the effect of the

GPU block size, comparing the mapping of queries to GPU threads versus blocks, and

end-to-end GPU throughput measurements.

66

Figure 2.17: Percentage of reduced nodes vs. minimal tree, resulting from the common
prefix optimization, with varying block sizes, on 32,000 queries. The mixed queries are
generated from a set of four DTD’s.

2.7.2.1 Common Prefix Optimization Evaluation

In this section, we evaluate the common prefix optimization, while mapping

queries to blocks. Distinct queries are generated using the YFilter query generator [16],

based on the following DTD’s:

• DBLP, representing bibliographic information and tends to have more bushy trees

[80].

• Treebank, representing tagged English sentences and tends to have deep recursive

subtrees [80].

• SwissProt, a curated protein sequence database providing a high level of anno-

tations, a minimal level of redundancy and high level of integration with other

databases [80].

• XMark, as part of the XML Benchmark Project [87].

Several DTD’s are used such as to ensure that the efficiency of the common

prefix optimization is not biased towards a given class of XML documents.

67

Figure 2.18: Percentage of resulting remaining nodes when applying the common prefix
optimization, versus the original respective query sets (of size 32,000 queries each). The
shown percentages includes empty GPU block nodes due to fragmentation.

We show in Figure 2.17 the percentage of reduced nodes compared to the min-

imal tree, resulting from the common prefix optimization, with varying block sizes. We

perform our study on 32,000 queries of length 4 and length 8, while doubling the block

size; queries are of class DBLP, Treebank and Mixed queries, the latter consisting of un-

related queries as generated by four DTD’s (DBLP, Treebank, SwissProt, XMark). The

purpose of the Mixed query set is to study the effect of the common prefix optimization

on an un-biased set of queries exhibiting fewer overall commonalities.

As expected, larger block sizes provide more improvement, as there are fewer

replicated nodes across blocks. Blocks of size 256 and 512 nodes result in an almost

minimum number of nodes based on the minimum tree. On the other hand, length 4

and length 8 queries exhibit similar respective behavior, such that length 8 queries are

always one step (block size) behind in terms of improvement; that is due to the fact

that length 8 queries are likely to result in double the amount of query nodes.

Figure 2.18 shows the overall resulting remaining nodes from applying the

common prefix optimization, as percentage of the original query set, with varying block

sizes. The remaining nodes are nodes to be computed on the GPU, including the empty

68

Figure 2.19: Total execution time filtering 32K queries over a 50MB DBLP XML docu-
ment, highlighting pre-processing time on the CPU (with the common prefix optimiza-
tion applied) , and GPU processing time (scaled by 1/4). The query set consists of
length (L) 4 and 8 queries, while varying block sizes (B).

block nodes resulting from fragmentation. For all used query sets, length 4 queries result

in the most reduction (mean of 71%). On the other hand, length 8 queries result in an

average of 45% reduction, less than length 4 queries, due to the longer suffixes. This

reduction will almost linearly affect the execution time, as discussed next.

2.7.2.2 Effect of the GPU Block Size

When applying the common prefix optimization, increased block sizes result

in a further reduced query set, as seen earlier. However, due to the contention on the

available computing resources and the limited amount of available shared memory per

SM, larger block sizes can negatively affect performance when executing on the GPU.

We show in Figure 2.19 the total execution time required to filter 32K queries

over a 50MB DBLP XML document, while highlighting pre-processing time on the CPU

(with the common prefix optimization applied) , and the corresponding GPU processing

time (scaled by 1/4 for presentation purposes). The query set consists of length 4 (L4)

and length 8 (L8) queries, while varying the GPU block size (B32 . . . B512).

69

The pre-processing time depends solely on the query set, and requires an av-

erage of 750ms for queries of length 4, versus 1,040ms for length 8 queries, less than 4%

on average of the overall execution time.

On one hand, while resource contention is less considerable, a block size of

32 results in the most processing time due to the least optimized query set. However,

utilizing larger block sizes can negatively affect GPU processing time, even though the

resulting query set is smaller. Block sizes of 64 and 256 result in the least processing

time for queries of length 4 and 8, respectively.

For the remainder of this study, we set the block size to 128, as being a middle

point, providing effective common prefix optimization (Figures 2.12, 2.18), and less

resource contention than in larger block sizes.

2.7.2.3 Mapping Queries to GPU Threads versus Blocks

Figure 2.20 depicts the speedup of mapping queries (of length 8) to GPU

blocks versus one query per thread , with (Opt) and without (No Opt) the common

prefix optimization applied, for a 220KB and a 2.2MB XML document (no batches).

Note that the common prefix optimization is not applicable to the query set when one

query is matched per thread.

With too few query matching engines on the GPUs (less than 1K queries),

the GPU is underutilized, and the speedup is highest. At 1K queries, we exhibit a

breaking point, where speedup lowers due to the over-utilization of the GPU; more

parallelism (queries) results in linearly more time (less speedup) due to the unavailability

of processors.

70

Figure 2.20: Speedup of mapping queries to GPU blocks versus mapping queries to GPU
threads.

Mapping queries to blocks results in speedup initially (around 2.9X) due to

the fact that the parallelism offered by the GPU is exploited in a more efficient manner.

For instance, when mapping 32 queries of length 8 to threads, 32 SPs are used (out of

the available 240). On the other hand, when mapping 32 queries of length 8 to blocks,

more SPs are used (one per column), and more columns can be evaluated in parallel.

This advantage is exploited less with more stack columns to be evaluated.

Furthermore, from Figure 2.20, we observe that the document size has virtually

no effect on speedup, until the breaking point, where a larger document results in more

speedup.

The common prefix optimization results in less stack columns, hence less work

to be done on the GPU. This in turn results in more speedup, notably at 1K queries

where speedup remained almost constant for a 2.2MB document; and beyond 16K

queries, where slowdown is depicted with No Opt and a 220KB document.

For the remainder of this study, we will only consider mapping queries to GPU

blocks (one stack column per GPU kernel), with the common prefix optimization applied.

71

Figure 2.21: Throughput (MB/s) of the GPU-based approaches with queries mapped
to blocks, for queries of length 4 and 8, with respect to a batch of 5K XML (small)
documents of size 220KB each and 500 XML (medium) documents of size 2.2MB each.

2.7.2.4 Performance Evaluation

Figure 2.21 depicts the GPU filtering throughput (MB/s) for queries of length

4 and 8, with respect to a batch of 5K XML (small) documents of size 220KB each

and 500 XML (medium) documents of size 2.2MB each. Throughput measured in XML

Events/s can be directly derived such that every 5.5 bytes of XML constitute one event

(by design of the test documents). This metric is relevant to the GPU platform because

it only receives events from parsed documents, and no XML data.

As XML parsing is orthogonal to our work, throughput measurements do not

include the time to parse XML documents. Throughput includes the time to send parsed

documents from the CPU RAM to the GPU, and to retrieve the parsing results back to

the CPU RAM.

Throughput here is much lower from the throughput provided by the FPGA-

based XML filters; when filtering using GPUs, throughput of few MB/s is witnessed,

versus hundreds of MB/s when using FPGA-based filtering. Even though GPUs offer a

certain level of parallelism, all processing cores are general purpose cores, whereas the

circuitry on the FPGA is highly optimized for the application at hand. Also, in spite of

72

GPUs being able to (virtually) filter any number of queries, the parallelism provided by

FPGAs is not bound by time multiplexing, where a single computing module is used by

different queries at different time instances. Hence, all queries on the FPGA are being

filtered in parallel, and the document is being read exactly once. Finally, (all the) GPU

processors have to read the document from global memory, thus limiting performance.

Throughput starts off as constant, until reaching a breaking point where the

GPU becomes over-utilized. Beyond the breaking point, throughput almost halves as

the number of queries doubles. The breaking point affects queries of length 8 earlier

than queries of length 4, since queries in length 8 imply almost double the number of

stack columns (effective GPU work), with minor differences due to the common prefix

optimization. The throughput of queries of length 4 is approximately one step behind

that of length 8 queries, in terms of deterioration. Making use of a GPU with more

cores, while using the same architecture and memory hierarchy, will not result in a better

performance prior to the breaking point. However, it would linearly help delaying the

occurrence of the breaking point (moving the breaking point to the right of the plot).

For a given query set, throughput is minimally higher for larger documents.

This is due to the extra CPU-GPU communication implied by using smaller documents,

since the latter are more in number than the larger documents. However, as seen in

Figure 2.21 (gap in the throughput between length 4 queries, and gap in the throughput

between length 8 queries) this overhead is minimal, and we can deduce that the time to

send documents to the GPU and receive filtering results back is minor compared to the

filtering time spent on the GPU. The CPU-GPU send-receive time was measured to be

less than 0.2% of the overall filtering time (data omitted for brevity).

We ran several experiments varying the percentage of occurrence of ‘*’ and ‘//’

(results omitted due to the lack of space). Negligible fluctuations in performance were

73

Figure 2.22: Throughput (MB/s) of the CPU-based approach (YFilter) for queries of
length 4 and 8 with 15% probability of occurrence of ‘*’ nodes and ‘//’ relations, and
varying documents sizes (namely 5K documents ≈220KB each, and 500 documents,
≈2.2MB each).

witnessed (average < 1%). Increasing the percentage of occurrence has no effect, since

‘*’ and ’//’ are supported by default for all stack columns.

2.7.3 Performance of CPU-Based Approaches

Numerous software approaches have been proposed for the XML filtering prob-

lem. Here, two leading software approaches are considered: YFilter and FiST, that are

representative of the different strategies proposed for XML filtering. Despite their dif-

ferences, for each XML stream event consumed, both approaches identify a set of active

states, the event buffered, and the next set of active states are maintained in memory

before the next input event is considered. Our results showed that the maintenance

and processing of a large number of active states degrades the performance of these ap-

proaches. The number of active states increases when query complexity (query length

or percentage occurrence of ‘//’ and ‘*’) or XML document size is increased, incurring

more than 7 GB memory footprint, and reducing the throughput. The memory usage

increases slightly when doubling the number of queries, but is more sensitive to the

document size.

74

The CPU-based approaches were run on a single core of a 2.33GHz Intel Xeon

machine with 8GB of RAM running Linux Red Hat 2.6. In our experiments, YFilter and

FiST exhibited comparable performance and behavior; hence, for the remainder of this

section, we will only show results for the YFilter approach. Since YFilter and FiST are

optimized to run on single processors, we first run software experiments on a single CPU,

as intended by design. These numbers give us a good understanding of the characteristics

of the three used platforms (summarized in Table 1). We later show many (independent)

instances of YFilter running on a multi-core, splitting the document set equally among

all YFilter threads/instances (Figure 2.24). As XML parsing is orthogonal to this work,

throughput measurements do not include parsing time; further, prior to filtering, XML

documents reside on the CPU RAM.

Figure 2.22 depicts the throughput using YFilter with input XML document

sizes of ≈220KB (5K documents) and ≈2.2MB (500 documents) respectively, both for

queries of depth of 4 and 8, whilst doubling the number of queries.

Three main observations can be made from Figure 2.22. First, the performance

slowly deteriorates while doubling the number of queries, and unlike the GPU-based ap-

proaches, there is no breaking point ; CPU-based approaches are able to scale very well

with added queries due to the optimized data structures used. These cannot be mapped

as-is on the GPU due to the nature of the memory hierarchy and the lack of paral-

lelism offered by the CPU-approaches (complexity vs parallelism trade-off). Second:

document size has a considerable effect on throughput; larger documents resulted in an

average 2.8X slowdown. This is in contrast with FPGA and GPU filtering, where larger

documents resulted in a higher throughput, since CPU-accelerator communication is

minimized with larger documents. On the other hand, YFilter is negatively affected by

larger documents, since larger data structures need to be maintained. Third, doubling

75

the query length results in an average 28% slowdown. This is in contrast to the GPU

accelerator, where throughput halves after the breaking point (and is not affected oth-

erwise); similarly for the FPGA accelerators, doubling the query length has minimal

effect on the operational frequency, until most of the FPGA resources are utilized.

Finally, the effect on performance of varying percentages of ‘*’ and ‘//’ was

studied by varying the percentage of occurrence of ‘*’ and ’//’ from 5% to 25% (data is

not shown for brevity). Increasing the percentage showed to constantly have a negative

effect by deteriorating performance anywhere from 6% to 30% by 10% more ‘*’ and ‘//’

in a given query set. This is due to the added level of freedom, hence complexity, to be

supported.

2.7.4 Comparing FPGA, GPU and CPU-Based Filtering

We proceed with the performance comparison of the customized FPGA circuit

to the GPU-based filtering, and to a reference CPU-based approach (YFilter), while

setting the percentage of occurrence of ‘*’ and ‘//’ to 15%.

Speedup (on a log scale) is shown in Figures 2.23(a), 2.23(b) for the customized

FPGA and GPU-based approaches over the CPU-based approach for batches of XML

documents of size 220KB and 2.2MB, respectively. Slowdown is depicted for speedup

values less than ‘1’.

Overall, using FPGAs provides up to 2.5 orders of magnitude speedup (average

of 79X and 225X for batches of 220KB and 2.2MB documents, respectively). On the

other hand, using GPUs provides up to 6.6X speedup (average of 2.7X) before the

throughput saturation at the breakpoint. Prior to hitting the break point, speedup

slightly increases gradually, since the GPU throughput is constant, whereas that of the

CPU-based approaches is not. Moreover, speedup is higher for length 8 queries prior to

76

(a) Batch of 5K documents, ≈220KB each

(b) Batch of 500 documents, ≈2.2MB each

Figure 2.23: Speedup of the customized FPGA-based and the GPU-based approaches
over a CPU-based approach, for queries of length 4 and 8, with varying document sizes.
Slowdown is depicted for speedup values less than ‘1’.

the breaking point, which is reached faster with length 8 queries. Slowdown is witnessed

beyond 8K queries for batches of 220KB documents, and at 32K queries of length 8 for

batches of 2.2MB documents.

We (naively) extended YFilter to run on multi-cores by filtering every docu-

ment using a separate thread. Hence, every thread is practically an instance of YFilter,

and filtering for a single document is performed on a single core.

Figure 2.24 shows the speedup of the custom FPGA approach versus the multi-

threaded version of YFilter, running on a 12-core machine. 2K queries of length 8 are

77

Figure 2.24: Speedup of the custom FPGA approach versus a multi-threaded version
of YFilter, running on a 12-core machine. 2K queries of length 8 are assumed, with a
15% probability of occurrence of ‘*’ and ‘//’. Batches of 5K 220KB documents and 500
2.2MB documents are used.

assumed, with a 15% probability of occurrence of ‘8’ and ‘//’. Batches of 5K 220KB

documents and 500 2.2MB documents are used.

Making use of more CPU cores will almost linearly result in a higher perfor-

mance from YFilter, until the number of threads exceeds the number of CPU cores. The

custom FPGA approach is still 17X and 31X faster than YFilter, when all 12-cores are

used, for batches of 200KB and 2MB documents, respectively.

In summary, the effects of the factors studied on the different filtering platforms

are encapsulated in Figure 2.25.

2.8 Conclusions

This work examines how to exploit the parallelism found in XPath filtering

systems using accelerators. By converting XPath expressions into custom stacks, our

architecture is the first providing support for complex XPath structural constructs,

such as parent-child and ancestor descendant relations, whilst allowing wildcarding and

recursion. We also present a novel method for matching user profiles that supports

dynamic query updates using a programmable FPGA. This is in addition to the GPU-

78

Figure 2.25: Effects of the factors studied on the different filtering platforms.

based filtering based on the presented filtering algorithm. An exhaustive performance

evaluation of all accelerators is provided with comparison to state-of-the-art software

approaches.

Using an incoming XML stream, thousands of user profiles are matched si-

multaneously with minimal memory footprint by stack-based matching engines. This

is in contrast to conventional approaches bound by the sequential aspect of software

computing, associated with a large memory footprint (over 7 GB).

On average, using customized circuitry on FPGAs yields speedups of up to 2.5

orders of magnitude, whereas using GPUs provides up to 6.6X speedup, and in some

cases slowdown, versus software running on a single CPU core. The FPGA approaches

are up to 31X faster than software running on 12 CPU core. Finally, a novel approach

for supporting on-the-fly query updates on the FPGA was presented, resulting in an

average of 7X more resources than the custom FPGA approach.

79

Chapter 3

XML Twig Filtering

In Chapter 2, a stack-based approach to XPath processing was presented, al-

lowing the use of ‘/’ and ‘//’ axises, as well as wildcard nodes in the query profile, and

recursion (nesting) in the XML document. This method proved to consume less area on

the FPGA and provide higher throughput, when compared to the implementation pro-

posed in [53]. However, to process a complex twig structure, one common approach is to

break a twig into into root-to-leaf paths, and an extra join step is required to join the re-

sults. The YFilter system takes such an approach by breaking twigs into absolute paths

and inserting each path into the NFA to be matched. The match location for each path

is recorded and utilized during the post-processing phase, where the Nested Path Filter

is applied to join the paths. However, we are unable to adopt such an approach since the

match location for each step in the XPath expression must be stored, and FPGAs have

limited resources. In this chapter, we present a method which performs twig matching

holistically on the FPGA by compiling each query profile into a hardware circuit. We

also provide a dynamic programming formulation for the stack operations, as explained

in Section 3.2. We compared this approach against other FPGA-based possible ap-

80

proaches, such as root-to-leaf path matching or parent-child/ancestor-descendant pair

matching. These approaches require less area, however, introduce false positives. This

comparison covers the full spectrum of granularity matching when considering XML

filtering on FPGAs.

The FPGA setup used is as described in Section 2.5, such that the path query

matching engines are replaced with the more complex twig query matching engines.

3.1 Introduction

Increased demand for timely and accurate event-notification systems has led

to the wide adoption of Publish/Subscribe Systems (or simply pub-sub). A pub-sub is

an asynchronous event-based dissemination system which consists of three components:

publishers, who feed a stream of documents into the system, subscribers, who post their

interests (also called profiles), and an infrastructure for matching subscriber interests

with published messages and delivering matched messages to the interested subscriber.

Pub-sub systems have enabled notification services for users interested in re-

ceiving news updates, stock prices, weather updates, etc; examples include alerts.go-

ogle.com, news.google.com, pipes.yahoo.com, and www.ticket-master.com. Pub-sub sys-

tems have greatly evolved over time, adding further challenges and opportunities in

their design and implementation. Earlier pub-subs involved simple topic-based com-

munication. That is, subscribers could subscribe to a predefined collection of topics or

channels (e.g., news, weather, etc.), and will receive every document published on the

channel. The second generation of pub-subs consists of predicate-based systems where

user profiles are described as conjunctions of (attribute, value) pairs, thus improving

profile selection. The wide adoption of the eXtensible Markup Language (XML) as the

81

standard format for data exchange, due to its self-describing and extensible nature,

has led to the third generation, namely XML-enabled pub-sub systems. Here messages

are encoded with XML and profiles are expressed using XML query languages, such as

XPath [88]. Such systems take advantage of the powerful querying that XML query

languages offer: profiles can now describe requests not only on the document values but

also on the structure of the messages. Note that the terms “profile” and “query” are

used interchangeably.

XML-based pub-sub systems have been adopted for the dissemination of Mi-

cronews feeds, which are short fragments of frequently updated information in XML-

based formats such as RSS. Feed readers, such as Bloglines and NewsGator check the

contents of micronews feeds periodically and display the returned results to the user.

The core of the pub-sub system is the filtering algorithm, which supports the

complex query matching of thousands of user profiles against a high volume of published

messages. For each message received in the pub-sub system, the filtering algorithm deter-

mines the set of user profiles that have one or more matches in the message. Many soft-

ware approaches have been presented to solve the XML filtering problem [2, 16, 27, 40].

These memory-bound solutions, however, suffer from the Von Neumann bottleneck and

are unable to handle large volume of input streams. On the other hand, FPGAs have

been shown to be particularly suited for the stream processing of large amounts of data

and do not suffer from the memory offloading problem faced by software implementa-

tions. Furthermore, GPUs as co-processors are also a favorable option for applications

requiring massively parallel computations [32, 4, 35, 45], such that sequential computa-

tions are run on the CPU while the computationally-intensive part is accelerated by the

highly parallel GPU architecture.

82

This dissertation examines how to exploit the parallelism found in XPath fil-

tering. Using an incoming XML stream, parsing and matching with thousands of user

profiles are performed simultaneously by matching engines. We show the benefits and

tradeoffs of mapping the proposed filtering approach onto FPGAs, processing streams of

XML at wire speed, and GPUs, providing the flexibility of software. This is in contrast

to conventional approaches bound by the sequential aspect of software computing, as-

sociated with a large memory footprint. By converting XPath expressions into custom

stacks, the proposed solution is the first to provide support for complex XPath struc-

tural constructs, such as parent-child and ancestor-descendant relations, whilst allowing

wildcarding and recursion.

This chapter presents a non-trivial extensions to the path filtering algorithm

(Chapter 2) to support unordered holistic twig matching on FPGAs without any false

positives. Experimental comparison of different granularities of twig matching is pre-

sented, namely path-based (root-to-leaf) and pair-based (parent-child or ancestor-descendant).

Comprehensive experiments are provided, comparing the throughput, area utilization

and the accuracy of matching (percent of false positives) of the holistic, path-based

and pair-based FPGA approaches. The proposed approach yields up to three orders of

magnitude higher throughput when compared to state-of-the-art single core CPU-based

filtering mechanisms.

3.2 Holistic Twig Matching

In this section, we present a detailed overview of the proposed filtering mech-

anism.

83

Figure 3.1: An event by event overview of the matching of path a/c/a//s. c© 2011
IEEE.

3.2.1 Push Stacks for Path Matching

Matching for a twig consists of two parts working conjointly, namely, matching

the root-to-leaf paths of the twig (Chapter 2), and appropriately joining the matched

paths while reporting back to the root (Section 3.2.2).

3.2.1.1 Root-to-Leaf Path Matching

In order to successfully match a twig, the partial matching of every path from

root to leaf belonging to that twig should be achieved. The matching of each root-to-leaf

path requires what we refer to as a push stack. These are detailed in Section 2.4.

Figure 3.1 depicts an event-by-event example of the matching of the path

a/c/a//s, as a sample XML document is being traversed. Notice how, from the 3rd

to the 4th event, a ‘1’ was allowed to propagate horizontally upwards in the 3rd column.

An in-depth overview of push stacks is provided in Section 2.4

84

Figure 3.2: Generic view of any XML document with regards to any matched path.
c© 2011 IEEE.

3.2.1.2 Supporting Ancestor/Descendant Relationships

The matching state of a sub-path ending in a ‘//’ relation should be reported

to any node in the XML tree, after the leaf (followed by ‘//’) of the sub-path has been

matched, and prior to popping it.

In Figure 3.2, sub-trees numbered according to the order by which they are

encountered while streaming the XML doc. Moreover:

• The Matched Sub-Path can consist of 1 or more nodes.

• Any of T0 . . . T6 could consist of zero or more nodes.

• The Path To Root can consist of 0 or more nodes.

Reporting the matched state of sub-paths having a leaf that is followed by ‘//’

to descendants using push stacks takes place as such:

85

• T0, T1, and T2 will not see a matched sub-path because by then the latter would

have not matched; even after being in a match state, none of those subtrees are

visited again.

T3 is visited after the matched sub-path is matched, and the matched state of

that sub-path is visible to this subtree, since push stacks report matches on pop,

and T3 is reached after a series of push events.

•• T4, T5, and T6 are visited after the matched sub-path is matched, and following a

series of pop events. However, the matched state of the matched sub-path is also

not visible here, as the leaf of the latter would be popped then, and the matched

state of the sub-path with it.

Thus, the matched state can only be seen by any node visited after the leaf of

the matched sub-path, and prior to popping the leaf of the latter.

3.2.1.3 Mapping Algorithm

The algorithm for mapping path nodes to push stack columns is covered in-

depth in Section 2.5.2.2. Stack compaction optimizations are introduced to reduce to

overall number of required stack columns. This is in contrast to the naive mapping,

where each query node is coupled with a corresponding stack column.

With respect to twigs, nodes that are followed by both ‘/’ and ‘//’ in a twig

require two push stack columns.

3.2.2 Pop Stacks for Joins

Recall that matching a twig consists of two parts working conjointly, namely

the push stack , and the pop stack, as seen in Figure 3.4. Using the push stack, matching

86

Figure 3.3: An event by event overview of the reporting of the matched state of path
a/c/a//s. c© 2011 IEEE.

any root-to-leaf path is achieved. However, matching all paths in a twig does not imply

matching the twig, unless all paths match in the correct positions in order to form the

twig at hand. The pop stack helps us achieve this task.

For the remainder of this section, we show why a pop stack is needed, and its

properties.

3.2.2.1 Leaf-to-Split Node Matched Path Reporting

Let us assume a simple twig of the form a[b/c]/d/e that appears in a streamed

XML document. Thus, (assuming) the path a/b/c will be visited first, then each of c

and b will be popped (in that order), thus rendering the twig root node a at the top of

the stack again. At this point, there is no way to tell whether the twig will be found in

the document, since the path a/d/e would not have matched yet. However, when the

leaf node c was encountered, it was noted in the push stack that the first path matched.

This information has been lost when c was popped. A pop stack is needed here to report

back to the twig root that the first path matched.

Figure 3.3 illustrates an event-by-event example of the reporting of the matched

state of path a/c/a//s, following what was shown in Figure 3.1.

87

In more generic terms, the initial task of the pop stack is to report the matched

state of a root-to-leaf path, to the nearest split node(s), corresponding to the leaf of

that path. In a pop stack, a split node is in a matched state only if all of its chil-

dren/descendants have been reported as being matched.

This is achieved through the use of dynamic programing, where the dynamic

programming table is a stack, whose top of stack address is given by the address gen-

erator. Every stack column represents a path node, and every stack row represents a

document node.

For simplicity, let us assume that queries are broken down into P exclusive

split-node (or inclusive root) to inclusive split-node (or leaf) paths. Let us also assume

that each path utilizes its own push and pop stacks.

Each path K is mapped to both the Kth push and Kth pop stacks, and is of

length NK .

For the Kth path, the recurrence equation applied to each cell Di,j,k of the pop

stack- representing the reported match state of node nj,k - on a pop event is given by:

Di,j =

1 if

(a)Ci+1,NK ,K = 1 if ((j = NK) and

nNK ,K is a twig leaf)

(b)Di+1,0,L = 1 ∀ L ∈ {children of nNK ,K}

if ((j = NK) and

nNK ,K is a split node)

(c)Di+1,j+1,K = 1 if (j < NK)

OR

(d)Di+1,j,K = 1 && nNK ,K is preceded by //

0 otherwise

where:

88

• Ci,j,K represents a cell in the Kth push stack

• 1 ≤ i ≤ maximum XML document depth

• 1 ≤ j ≤ NK

The recurrence equation encapsulates four main cases to report matches on a

pop. If a node is a leaf in the twig (a), then a match is reported by propagating the

corresponding output from the push stack. If a node is a split node (b), then a match

can be reported only if all of its children/descendants in the twig respectively report

matches. Otherwise (c), a match is reported by propagating the reported match state

of the node’s single child/descendant. Matching for unordered twigs is supported, since

in (b), checking for all children is achieved with no enforced order.

Only if a node is preceded by ‘//’ (d), then the reported match state is al-

lowed to propagate vertically downwards. A ‘1’ propagating diagonally left from a node

preceded by ‘//’ requires an extra check from the push stack, to ensure that the ‘1’ is

propagating to a valid path node.

Figure 3.4 illustrates a high-level view of the underlying matching mechanism

when targeting the matching of a twig as a whole. Here, a single push stack is required,

the width of which is defined by the mapping algorithm (introduced in 3.2.1.3), and a

single pop stack, the width of which is the number of nodes in the twig. The split nodes

matching logic consists of the AND-ing logic as noted in (b) as part of the recurrence

equation. This logic further requires some cells from the push stack to help determining

the exact position of the split node in the document.

3.2.2.2 Pop Stack Properties

Here are the properties of Pop Stacks:

89

Figure 3.4: Generic view of a holistic twig matching engine, using a push and a pop
stacks. c© 2011 IEEE.

• Pop stacks update both on push and pop events, s.t.:

– On a push, always force writing a ‘0’ (to reset to a new state).

– On a pop, only a ‘1’ can propagate downwards, but never a ‘0’ (in order to

not erase previous states).

• A ‘1’ propagates diagonally from and to any column connecting a parent or an-

cestor to a child or descendant, respectively.

• Only in a ‘//’ column, a ‘1’ propagates vertically downwards, to indicate matches

to all ancestors residing only on the path from root to the node mapped in that

respective column (see Section 3.2.2.3 and the supporting Figure 3.2).

90

3.2.2.3 Supporting Ancestor/Descendant Relationships

Reporting the matching state of a sub-path preceded by a ‘//’ should be visible

to the ancestor of that sub-path. Referring to Figure 3.2, using pop stacks, reporting

matched path rooted by a node preceded by ‘//’ occurs as such:

• T0, T1, and T2 will not see a matched path because by then the latter would have

not matched; even after being in a match state, none of those subtrees are visited

again.

T3 is visited after the matched path is matched; however, the matched state of

that path is not visible to this subtree, since pop stacks report matches on pop,

and T3 is reached after a series of push events.

•• T4, T5, and T6 are visited after the matched path is matched, and following a

series of pop events. However, the matched state of the matched path is also not

visible here, as some push events are required to go into the tree nodes, and pop

stack contents do not propagate on pushes.

Thus, the matched state can only be seen by the root and the path to root as

illustrated above, given that this path includes the ancestor of the sub-path.

3.2.2.4 Mapping Algorithm

Here, the mapping of twig nodes to pop stack columns is kept simple, where

each node maps to its own respective column. Thus, the width of pop stacks is defined

by the number of nodes to each twig mapping to that stack. We keep the exploration

of pop stack column compaction as part of future investigation.

91

Figure 3.5: Generic view of any XML document with regards to any matched path.
c© 2011 IEEE.

3.3 Breaking Twigs into Paths and/or Pairs

In this section, instead of processing a twig holistically, we consider different

granularities of twig matching. Based on the following approach, the twig profile is

decomposed into smaller parts, and the ‘filtering’ algorithm is performed on the smaller

parts. We have considered two methods:

• Path matching: Each twig profile is broken down into root-to-leaf paths. For

instance, the twig {a/b[c]//a} is broken down into paths {a/b/c} and {a/b//a}.

• Pairs matching: Each twig profile is broken down into parent-child or ancestor-

descendant pairs. For instance, the twig {a/b[c]//a} is broken down into pairs

{a/b}, {b/c} and {b//a}.

Note that for both methods, paths and pairs may be common among twig profiles;

specifically, pairs are more common among twigs, than are paths. Thus, this approach

exploits commonality among profiles.

Figure 3.5 provides an overview of the Path/Pair filtering approach. Twigs are

split into several root-to-leaf paths or parent-child/ancestor-descendant pairs. Every

92

path/pair matching engine is followed by a match state buffer. In case a path/pair

match state is true, that state is held for the document’s entirety. After the document

is processed, a join step is required to verify all parts (paths or pairs) that represent a

twig profile were matched. Thus, every twig requires a single AND gate in order to join

all the partial paths/pairs that constitute it. In case of a single path/pair not matching,

the twig’s matching state is marked as false.

3.3.1 Advantages

The path/pair approaches provide several advantages when compared with

holistic matching. Here, a push stack suffices to match a path/pair, since no join step

is required to match each of the latter. Therefore, no pop stack is required. More-

over, the smaller granularities constituting a twig profile may be common across the

profile collection, thus exploiting commonalities. Therefore, the representation of more

paths/pairs and ultimately more profiles on a single FPGA is achieved when compared

to the holistic approach.

Finally, since each of the matching engines requires simpler hardware, a higher

throughput can be achieved on the FPGAs.

3.3.2 Disadvantages

Although the path/pair approaches have advantages in area utilization and

higher throughput, false positives are also introduced. Note, the join step performed is

simply checking that all parts (paths/pairs) of a profile were matched; however, this step

does not verify that these parts matched at the correct locations. Hence, the reported set

of matched profiles will include a percentage of false positives. Thus, this technique has

93

Figure 3.6: Experimental Parameters. c© 2011 IEEE.

advantageous for applications where false positives are allowed or when the verification

cost of the reduced profile set is small.

3.4 Filtering System Evaluation

In this section, we evaluate the proposed hardware architectures, and compare

them to two of the state-of-the-art software counterparts, namely FiST [40] and YFilter

[16]. For the experiments, we utilized the DBLP DTD provided by [80] to generate

XML documents and user profiles. XML documents and query profiles were generated

using the ToXGENE XML Generator [6] and YFilter query generator [16], respectively.

Furthermore, in all datasets, we set the number of unique tags to 64, each consisting of

two bytes. The experimental parameters are listed in 3.6. We make use of four datasets,

namely, Datasets 1 - 4, where the probability of occurrence of ‘*’ and ‘//’ in the queries

is set to 5%, 10%, 15% and 20%, respectively.

94

3.4.1 Hardware System Evaluation

Our hardware platform consists of a Xilinx Virtex 5 LX330 FPGA [86]. All

the push and pop stacks are implemented using on-chip Distributed Memory (DMEM)

blocks, available on Xilinx FPGAs. We provide a thorough evaluation of the five hard-

ware approaches that have been presented so far in this chapter. These are:

• Holistic: each query is mapped onto both a push and pop stack.

• Pairs offChip: each query is split into pairs, but the join step is not implemented.

• Pairs onChip: each query is split into pairs, with the join step implemented on

the same FPGA.

• Paths offChip: each query is split into paths, but the join step is not imple-

mented.

• Paths onChip: each query is split into paths, with the join step implemented on

the same FPGA.

Excluding the join step in two of the designs is, first, aimed at providing a

better study of the effect of the join step on resource utilization and throughput, and

second, proposed for designs where the join step is not needed, or can be performed off

chip on a second FPGA, or in software, depending on the requirements of the application

at hand.

We show in Figure 3.8 the resource utilization percentage on the target FPGA,

while doubling the number of twigs. In Section 3.4.1, we make use of query Dataset 2,

having 10% occurrence of ‘//’ and ‘*’. Typically, the percentage of occurrence of ‘//’

and ‘*’ has minimal (negligible) effect on the FPGA-based approaches.

95

Figure 3.7: The percentage of true matches as reported from several hardware ap-
proaches. c© 2011 IEEE.

The holistic approach is the least scalable, in contrast with the breaking of twigs

into paths and pairs, where the commonalities across queries are exploited. Naturally,

there are more common pairs than there are paths. However, looking at Figure 3.7, the

percentage of false positives is largest when using pairs. The holistic approach, on the

other hand, yields no false positives.

In Figure 3.9, while doubling the number of queries, we show the throughput

of all proposed approaches, assuming a stream of one byte per cycle. As the FPGA

utilization increases, the throughput decreases, as the task of placement and routing

of components on the FPGA is hardened. For a given number of queries, the holistic

approach exhibits the lowest throughput, being the more complex of all five. The pairs

however, being the simplest, almost always demonstrates a higher throughput for a given

query set.

96

Figure 3.8: Resource utilization of the proposed hardware architectures on a V5LX330
FPGA, targeting Dataset 2 (10% occurrence of ‘//’ and ‘*’ in the queries). Note that
the join step is not performed when using off-chip filtering methods. c© 2011 IEEE.

With regards to the pairs, excluding the join step shows to benefit throughput

by much when compared to the inclusive join step approach. That behavior is however

not always true with paths, as there are fewer paths than pairs, and the effect of the join

step is not as harsh. Overall, almost all approaches record a throughput higher than

150 MB/s, and averaging more than 200 MB/s.

In order to further study all five approaches, we define the true work per

unit area as:

Throughput×Number of Queries× (1− False Positives(%))

Area Utilization(%)

Hence, as the throughput and the number of queries handled increases, true

work per unit area of a given approach increases. Conversely, as the area utilization and

the percentage of false positives increases, the true work per unit area decreases.

We plot this metric in Figure 3.10. As the Holistic approach is mostly affected

by high resource utilization across all query sets, the true work per unit area is the

97

Figure 3.9: Throughput of the proposed hardware architectures on a V5LX330 FPGA,
targeting Dataset 2 (10% occurrence of ‘//’ and ‘*’ in the queries). Note that the join
step is not performed when using off-chip filtering methods. c© 2011 IEEE.

least of all approaches.. On the other hand, the pairs approaches dominate, even while

exhibiting the highest percentage of false positives. The high scalability aspect of this

approach is due to both the low resource utilization, and the superior throughput. The

pairs approaches’ depict an almost constantly boosting true work per unit area with the

number of queries increasing; as the number of queries increases, for a given label set,

the number of common pairs across queries also increases, thus rendering this approach

the most scalable. However, it should be kept in mind that offChip approaches do not

perform a join step.

3.4.2 Hardware/Software Performance Evaluation

Next, the proposed hardware approaches are compared against two state of the

art software approaches, namely, YFilter [16] and FiST [40]. These approaches where

chosen since they represent the two main techniques used for the XML filtering problem.

The software approaches were run on a quad core 2.33GHz Intel Xeon machine with 8GB

of RAM running Linux Red Hat 2.6. YFilter supports unordered query matching by

98

Figure 3.10: Efficiency of the proposed hardware architectures on a V5LX330 FPGA,
targeting Dataset 2 (10% occurrence of ‘//’ and ‘*’ in the queries). Note that the join
step is not performed when using off-chip filtering methods. c© 2011 IEEE.

breaking twigs into root-to-leaf paths and building a unified NFA over the set of paths.

After path matching, an additional join step is required to join the paths at the split

nodes. FiST, on the other hand, only supports ordered query matching. The XML

document and set of queries are transformed into their Prufer sequence representation

and subsequence matching is performed to determine if a match exists. FiST also

requires a post-processing phase to filter false positives.

The throughput of YFilter and FiST is shown in Figure 3.11. On average,

YFilter achieves a throughput of 1.7, 1.2 and 0.3 MB/s for 5, 25 and 50 MB documents,

respectively. FiST achieves a higher throughput of 3.88, 2.58, 1.40 MB/s for 5, 25,

and 50MB documents, respectively, since it processes twigs in a holistic manner rather

than processing individual paths. Although YFilter and FiST scale with increasing

query workload, it is clear, however, that both approaches do not scale with increasing

document size. In comparison, the holistic FPGA-based approach achieves an average

of 200x speedup for 1K queries, and up to three orders of magnitude speedup.

99

Figure 3.11: Throughput of FiST and YFilter when using 5, 25, and 50MB XML docu-
ments, and queries for dataset 2 (10% occurrence of ‘//’ and ‘*’ in the queries). c© 2011
IEEE.

It should be noted that XML stream parsing is not the bottleneck for the

software approaches. For the given experimental setup, using the Xerces Java parser,

we were able to achieve a throughput rate of 23.1, 57.5, and 72.2 MB/sec for 5, 25 and

50 MB documents, respectively. Thus, the profile matching process is contributing to

the low throughput of the software approaches, not the XML parsing. Whereas, for the

FPGA-based approaches that we present, parsing is now the bottleneck, as the overall

throughput is directly proportional to the number of bytes of XML that can be parsed

per cycle. The query matching engines can process up to one SAX event per cycle;

however, in practice, every event requires at least three bytes of XML (‘<’, ‘>’, and a

one-byte label). Nevertheless, the XML parsing problem is orthogonal to our current

research, and other researchers have proposed complex FPGA-based parsers which are

able achieve an average throughput of two bytes of XML per cycle (a peak 4 bytes per

cycle) [19]. The proposed approaches in this dissertation are able to take advantage of

all the effective bandwidth provided by these high-performance parsers.

100

Figure 3.12: Throughput of FiST and YFilter for a 25MB XML document, while in-
creasing the probability of occurrence of ‘//’ and ‘*’ in the queries. c© 2011 IEEE.

In Figure 3.12, we show the effect of increasing the probability of occurrence

of ‘//’ and ‘*’ in the query dataset, on software throughput, for a 25MB XML docu-

ment. The performance of both YFilter and FiST highly depends on the complexity

of the queries. As the occurrence of ‘//’ and ‘*’ reaches 15%, the software throughput

degrades. As both YFilter and FiST are composed of two phases, query matching and

verification/join phase, high occurrence of ‘//’ and ‘*’ lends to less selective queries and

introduces more false positives in the query matching phase; thus more computation

time is reuired for the verification/join phase. Furthermore, high occurrence of ‘//’ and

‘*’ degrades performance of the software approaches since expensive computations are

performed to verify the specified pattern is satisfied. This performance degradation is

not applicable to FPGA-based systems where the circuitry is the same for dealing with

any tag, or any relation. Here, at 1K queries of dataset 4, the holistic FPGA-based

approach yields an acceleration of 7000X and 2300X when compared to YFilter and

FiST, respectively.

101

It should be noted that FiST only deals with ordered twigs, where the order

of the subtrees under a split node is enforced. This can be seen as a set-back for

applications where the extra flexibility level is desired. Nonetheless, while our current

approach addresses unordered twig matching, enforcing order can be trivially achieved

through the addition of more checks at the recurrence equation level. Specifically, the

match state of the root of a subtree under a split node would not report diagonally left

in a pop stack, unless all previous sibling subtrees would be indicated as matched. As

it suffices to test the previous sibling alone, this check can be achieved almost for free

in terms of resources, with no accompanying performance penalty.

3.5 Conclusions

In this work, we presented a novel FPGA-based architecture to address the

XML filtering problem. Using custom stack generation, our architecture is the first pro-

viding full support for twig pattern matching, including parent-child (‘/’) and ancestor-

descendant (‘//’) axes, wildcard nodes, and accounting for recursion in the XML doc-

ument and queries. Hardware architectures do not suffer from the memory bottleneck

problem (better known as the Von Neumann bottleneck), since they are highly suit-

able for stream processing; they would also not suffer from the limitations of sequential

processing, as the proposed architecture would support thousands of twig matching en-

gines operating in a parallel fashion. In addition to being able to match thousands all

queries in parallel, through dynamic programming on FPGAs, we exploit parallelism by

simultaneously matching for all nodes in the query.

We were able to show that holistic twig matching on the FPGA achieves an

average of 175MB/s throughput for 1K queries. Compared to state of the art software

102

approaches, the holistic FPGA-based approach yields up to three orders of magnitude

throughput increase. We note that the performance of the software approaches do not

scale when the size of the input stream increases, and as the queries are more complex,

while the throughput of the FPGA-based approach is constant.

Furthermore, we presented a comparison of our holistic FPGA-based approach

against path-based and pair-based approaches, which break twigs into root-to-leaf paths

and parent-child/ancestor-descendant pairs, respectively. We compared the various ap-

proaches based on the true work per unit area on the FPGA. Our comprehensive ex-

periments on the different granularities of query matching considers throughput, area

utilization and false positives generated by the approaches, thus allowing the selection

of the most suited approach for the application on hand.

103

Chapter 4

Querying Spatio-Temporal

Databases

4.1 Introduction

Due to their relative ease of use, general purpose processors are commonly fa-

vored at the heart of many computational platforms. These processors are deployed in

environments with varying requirements, ranging from personal electronics, to game con-

soles and up to server-grade machines. General purpose CPUs follow the Von-Neumann

model, and execute instructions sequentially. Furthermore, performance does not al-

ways linearly scale in multi-processor environments, mostly due to the challenges of

data sharing across cores. As it is non-trivial for these CPUs to satisfy the increasing

time-critical demands of several applications, they are often coupled with application-

or domain-specific parallel accelerators, such as Graphics Processing Units (GPUs) and

Field Programmable Gate Arrays (FPGAs), which strive given a certain class of instruc-

tions and memory access patterns.

104

FPGAs consist of a fully configurable hardware platform, providing the flexi-

bility of software (e.g., programmability) and the performance benefits of hardware (e.g.,

parallelism). The performance advantages of such platforms arise from the ability to

execute thousands of computations in parallel, relieving the application at hand from

the sequential limitations of software execution on Von-Neumann based platforms. The

processor “instructions” are now the logic functions processing the input data. Another

strong advantage of FPGAs is, depending on the application, the ability to process

streamed data at wire speed, thus resulting in a minimal memory footprint. The afore-

mentioned advantages are shared with Application Specific Integrated Circuits (ASICs).

FPGAs however can be reconfigured, are more adaptable to changes in applications and

specifications, and hence exhibit a faster time to market. This comes at a slight cost

in performance and a considerable one in area, where one functional circuit would run

faster on a tailored ASIC and require fewer gates.

As traditional platforms are increasingly hitting limitations when processing

large volumes of streaming data, researchers are investigating FPGAs for database appli-

cations. Recent work has focused on the adoption of FPGAs for data stream processing

[61, 78, 68, 85]. The Glacier component library [61] proposed logic circuits of common

operators, such as selection, aggregation, and grouping for stream processing. [78] in-

vestigated the speedup of the frequent item problem using FPGAs, while [85] proposed

FPGAs for complex event detection using regular expressions. Predicate-based filtering

on FPGAs was investigated by [68], where user profiles are expressed as a conjunctive

set of boolean filters.

In this paper, we describe an FPGA-based setup allowing users to query spatio-

temporal databases in a very powerful and intuitive way. Figure 4.1 depicts a generic

overview of the various steps performed in spatio-temporal querying setups. Streams

105

Figure 4.1: Generic overview of various steps performed in spatio-temporal querying
setups.

of trajectory data are harvested from devices, such as GPS and cellular devices. Co-

ordinates are then translated into semantic regions that partition the spatial domain;

these regions can be grid regions representing areas of interests (e.g., neighborhoods,

school districts, cities). Our work is based on complex pattern queries previously de-

fined in [81, 82] to search for specific motion patterns in trajectories. A pattern query

is specified as a combination of sequential spatio-temporal predicates, allowing the end

user to search for specific parts of interests in trajectory databases. For example, the

pattern query “Find all taxis (trajectories) that first were in downtown Munich in the

morning, later passed by Olympiapark around noon, and then were closest to the Munich

airport” provides a combination of temporal, range and Nearest-Neighbor (NN) predi-

cates that have to be satisfied in the specific order. Essentially, flexible patterns cover

that part of the query spectrum between the single spatio-temporal predicate queries,

such as the range predicate that covers certain time instances of the trajectory life (e.g.,

“Find all trajectories that passed by the Deutsches Museum area at 11pm”), and sim-

ilarity/clustering based queries, such as extracting similar movement patterns from a

trajectories that cover the entire lifespan of the trajectory (e.g., “Find all trajectories

that are similar to a given query trajectory according to some similarity measure”).

106

Complex pattern queries can also have variable spatial predicates, and thus

substantially enhancing the flexibility and expressive power of the framework. An ex-

ample of a variable-enhanced query is “Find all trajectories that started in a region X,

then visited the downtown Munich, then at some later point visited X again”.

This work serves as a proof-of-concept on the performance benefits of evalu-

ating complex motion pattern queries using FPGAs. Here we focus on the challenges

of supporting hundreds (up to thousands) of variable-enhanced flexible patterns on FP-

GAs in streaming (fully-pipelined) fashion. Using FPGAs all pattern query predicates

are evaluated in parallel over sequential streams of trajectories, hence resulting in con-

siderable speedup over CPU-based approaches. This also holds even when compared

to CPU-based setups where the pre-processing of trajectories into inverted indices is

performed beforehand. To the best of our knowledge, this work is the first detailing

FPGA support for variable-enhanced flexible pattern queries.

The remainder of this paper is organized as follows: related work is introduced

in Section 4.2, and the query language is detailed in Section 4.3; Section 4.4 goes over the

FPGA-based querying architecture; experimental evaluation is provided in Section 4.5,

and conclusions appear in Section 4.6.

4.2 Related Work

Single predicate queries (Range and NN queries) for trajectory data have been

well studied in the past (e.g., [65, 77]). To make the evaluation process more efficient,

trajectories are approximated using Minimum Bounding Regions (MBR) to be then

indexed using hierarchical spatiotemporal indexing structures [30, 76]. However, these

solutions are efficient only to evaluate single predicate queries. For moving object data,

107

patterns have been examined in the context of query language and modeling issues

[20, 54, 5] as well as query evaluation algorithms [29, 18, 60].

The FlexTrack system [81, 82], which our work is based on, provides a more

general and powerful query framework than previous approaches. In FlexTrack , queries

can involve both fixed and variable regions as well as regular expression structures (e.g.,

repetitions, negations, optional structures) and explicit ordering of the predicates along

the temporal axis. This system uses a hierarchical region alphabet, where the user has

the ability to define queries with finer alphabet granularity (zoom in) for the portions

of greater interest and higher granularity (zoom out) elsewhere. In order to efficiently

evaluate flexible pattern queries, the FlexTrack system employs two lightweight index

structures in the form of ordered lists that are stored in addition to the raw trajectory

data. Given these index structures, two different algorithms for evaluating flexible pat-

tern queries are provides: the Dynamic Programming Pattern (DPP), and the Index

Join Pattern (IJP) algorithms. In the next section we describe the IJP algorithm in

more details, since we use it to evaluate our proposed solution.

The use of hardware platforms for pattern matching has been recently proposed

in the past. Evaluating regular expressions on FPGAs has been explored by many studies

such as in [73, 52, 39, 85]. Most of these works focus on deep packet inspection and

security as applications of interest. Using FPGAs, speedups of up to two orders of

magnitude versus CPU-based approaches is achieved, as every data element in stream

can be processed in a single hardware cycle.

The work in [59, 56, 57] presents a novel dynamic programming, push down

automata approach for matching path and twig type patterns in the structure of XML

documents, using FPGAs (path, twig) and GPUs (path). Using the massively parallel

108

solution running on parallel platforms, up to three orders of magnitude speedup versus

state-of-the-art CPU bases approaches was achieved.

In [73], the authors detail the NFA implementation of regular expressions on

FPGAs. The authors in [52] propose generating hardware code from Perl Compatible

Regular Expressions. The work in [39] focuses on the DFA implementation of regular

expressions, while merging commonalities among multiple DFAs. [85] proposes the use

of regular expressions for the representation of spatio-temporal queries. An FPGA

implementation is detailed, allowing the sharing of query evaluation engines among

several trajectories, with a minor impact on performance. The authors in [10] investigate

the use of GPUs for the fast computation of proximity area views over streams of spatio-

temporal data. Our work differs from the above from the perspective of the query

language, described in Section 4.3. Specifically, an investigation of the FPGA-based

support of variable-enhanced patterns is offered here.

4.3 The FlexTrack System

In this section we provide a briefly description of the query language syntax,

as well as the key elements in the FlexTrack system.

4.3.1 Pattern Query Language

A trajectory Tid is defined as a list of locations collected for a specific moving

object over an ordered sequence of timestamps, and is stored as a sequence of n pairs

{(ls1, ts1),. . . (lsn, tsn)}, where lsi ∈ Rd is the object location recorded at timestamp

tsi (tsi−1 < tsi). In the FlexTrack , the spatial domain is partitioned by a fixed set Σl of

109

non-overlapping regions. Regions correspond to areas of interest (e.g. school districts,

airports) and form the alphabet Σ =
⋃

l Σl = {A,B,C, ...} of the language.

In the FlexTrack query language, a spatio-temporal predicate P is defined by a

triplet 〈op,R[, t]〉, where R corresponds to a predefined spatial region in Σ or a variable

in Γ (R ∈ {Σ∪Γ}), op describes the topological relationship (e.g. meet, overlap, inside)

that the trajectory and the spatial region must satisfy over the (optional) time interval t

(t := (tfrom : tto) | ts | tr). A predefined spatial region is explicitly specified by the user

in the query predicate (e.g. “the downtown area of Munich’). In contrast, a variable, e.g.

“@x”, denotes an arbitrary region using the symbols in Γ = {@a,@b, ...}. Conceptually,

variables work as placeholders for explicit spatial regions and can be bound to a specific

region during the query evaluation.

In the FlexTrack language, a pattern query Q = (S [∪ D]) is defined as a

combination of a sequential pattern S and an optional set of constraints D, where a

trajectory matches Q if it satisfies both S and D parts. D part of Q allow us to

describe general constraints. For instance, constrains can be distance-based constraints

among the variables in S and the predefined regions (for more details, see [81]). And

S := S.S | P | !P | P# | ?+ | ?∗ corresponds to a sequence of spatio-temporal predicates,

while D represents a collection of constraints that may contain regions defined in S.

The wild-card “?” is also considered a variable, however it refers to any region without

occurring multiple times within a S.

The use of the same set of variables in describing both the topological predi-

cates and the numerical conditions provides a very powerful language to query trajec-

tories. To describe a query in FlexTrack , the user can use fixed regions for the parts

of the trajectory where the behavior should satisfy known (strict) requirements, and

110

variables for those sections where the exact behavior is not known but can be described

by variables and the constraints between them.

In addition to the query language defined previously, we introduce the variable

region set constraint. A region set constraint V ∈ Σ can be only applied to variable

predicates, having the purpose of limiting the region values that a given variable can

take. Region set constraints are optional, per variable, and are defined after the query

pattern.

Consider the following query pattern and region set over @x, A.B.@x.C.?+.@x

{@x : A, D, E}. Here, @x is constrained by the regions {A,D,E}. In practice, a variable

can be limited to the neighboring regions of the fixed query predicates. Other constraints

can be set by the user, hence, limiting the number of matches of interest. From a

performance perspective, the use of variable regions set constraints greatly simplifies

hardware support for variable predicates separated by wildcards ?+/?*, as detailed in

Section 4.4.

4.3.2 Pattern Query Evaluation

The FlexTrack system employs two lightweight index structures in the form of

ordered lists that are stored in addition to the raw trajectory data. There is one region-

list (R-list) per region and one trajectory-list (T-list) per trajectory. The R-list LI of

a given region I ∈ Σ acts as an inverted index that contains all trajectories that passed

by region I. Each entry in LI contains a trajectory identifier Tid, the time interval

(ts-entry :ts-exit] during which the trajectory was inside I, and a pointer to the T-list

of Tid. Entries in a R-list are ordered first by Tid and then by ts-entry.

In the FlexTrack system we use a uniform non-overlapping grid to partition

the space and we overestimate the regions in Σ by approximating each one of them with

111

the smallest collection of grid cells that completely encloses the region. Because of the

overestimation, false positives may be generated from regions that do not completely fit

the set of covering grid cells. They, however, can be removed with a verification step

using the original trajectory data.

In order to fast prune trajectories that do not satisfy S, the FlexTrack system

uses the T-list, where each trajectory is approximated by the sequence of regions it

visited in each level of the partitioning space. A record in the T-list of Tid contains the

region and the time interval (ts-entry :ts-exit] during which this region was visited by

Tid, ordered by ts-entry. In addition, entries in T-list maintain pointers to the ts-entry

part in the original trajectory data. With these index structures, there are four different

strategies for evaluating flexible pattern queries:

1. Index Join Pattern (IJP): this method is based on a merge join operation per-

formed over the R-lists for every fixed predicate in S. The IJP uses the R-lists

for pruning and the T-lists for the variable binding;

2. Dynamic Programming Pattern (DPP): this method performs a subsequence match-

ing between every predicate in S (including variables) and the trajectory approx-

imations stored as the T-lists. The DPP uses mainly the T-lists for the subse-

quence matching and performs an intersection-based filtering with the R-lists to

find candidate trajectories based on the fixed predicates in S;

3. Extended-KMP (E-KMP): this method is similar to DPP, but uses the Knuth-

Morris-Pratt algorithm [38] to find subsequence matches between the trajectory

representations and the query pattern;

4. Extended-NFA (E-NFA): this is an NFA-based approach to deal with all predicates

of our proposed language. This method also performs an intersection-based prun-

112

ing on the R-lists to fast prune trajectories that do not satisfy the fixed spatial

predicates in S.

4.4 Proposed Hardware Solution

4.4.1 Compiling Queries to Hardware

In this work, pattern queries are evaluated in hardware on an FPGA device.

As trajectories are compared against hundreds and potentially thousands of pattern

queries, manually developing custom hardware code becomes an extremely tedious (and

error prone) task. Unlike software querying platforms, where a single generic kernel

(or set of) can be used for the evaluation of any query pattern, hardware is at an

advantage when each query pattern is mapped to a customized circuit. Customized

circuitry has the benefits of only utilizing the needed resources out of all (limited) on-chip

resources. Furthermore, the throughput of the query evaluation engines is limited by

the operational frequency (hardware clock) which can in-turn be optimized to maximize

performance.

For this purpose, a software tool written in C++ was developed from scratch

(more than 6,500 lines of code), taking as input a set of user-specified pattern queries,

and automatically generating a customized Hardware Description Language (HDL) cir-

cuit description (see Figure 4.2). A set of compiler options can be specified, such as

the degree of matching accuracy (reducing/eliminating false positives), and whether to

make use of certain resource utilization (common prefix) and performance (clustering)

optimizations.

113

Figure 4.2: Query-to-hardware tool flow.

Utilizing a query compiler provides the flexibility of software (ease of expression

of queries from a user perspective), and the performance of hardware platforms (higher

throughput), while no compromises are introduced.

4.4.2 High Level Architecture Overview

As depicted in Figure 4.2, assuming an input stream of pairs 〈 location, times-

tamp 〉, the first step consists of translating the location onto semantic data; specifically,

the region-IDs are of interest, using which the query patterns are expressed. The com-

putational complexity of translating locations to regions depends on the nature of the

map, and are discussed below:

• In the case of regions defined by a grid map, simple arithmetic operations are

performed on the locations. These can be performed at wire speed (no stalling)

on an FPGA.

• In the case of polygon-shaped regions, there are several well-defined point-in-

polygon algorithms and respective hardware implementations in the literature (for

instance, see [21, 33, 37, 71]). However, none of these can operate at wire speed

when the number of polygons is large. Here, the locations of vertices are stored

114

off-chip in carefully designed data structures. The latter are traversed to locate

the minimal set of polygons against which to test the presence of the locations.

As the design of an efficient location-to-region-ID block is orthogonal to pattern

query matching, in this work, a grid map is assumed, and the location-to-region-ID

conversion is abstracted away and computed offline. The input stream to the FPGA

consists of 〈 region-ID, timestamp〉 pairs. A high level overview of the generated FPGA-

based architecture is depicted at the right-hand side of Figure 4.2.

An event detector controller translates the 〈 region-ID, timestamp〉 pairs to

〈 region-ID, entry-timestamp, exit-timestamp 〉 tuples. The latter are then passed to

decoders which transform the region-ID into a one-hot signal, and evaluate comparisons

on entry and exit timestamps as needed by pattern queries. Making use of decoders

greatly reduces resource utilization on the FPGA, as computations are centralized and

redundancies are eliminated.

Next, a set of motion pattern query evaluation engines are deployed, providing

performance benefits through the following two parallelization opportunities:

1. Inter-pattern parallelism: where the evaluation of all pattern queries is

achieved in parallel. This parallelism is available due to the embarrassingly parallel

nature of the pattern matching problem.

2. Intra-pattern parallelism: where the match states of all nodes within a pattern

are evaluated in parallel.

The throughput of pattern query matching engines is limited to one event per

cycle. Given the current assumed streaming mechanism, events are less frequent than

region-IDs.

115

Lastly, once a trajectory is done being streamed into the FPGA, the match

state of each pattern query is stored in a separate buffer. This in turn allows the match

states to be streamed out of the FPGA from the buffer as a new trajectory is queried

(streamed in), hence, exploiting one more parallelism opportunity.

A description of the hardware query matching engines follows. While the dis-

cussion focuses on predicate evaluation, timing constraints are evaluated in a similar

manner in the region-ID decoder, and are hence left-out of the discussion for brevity.

4.4.3 Evaluating Patterns with No Variables

We now describe the case of simple patterns with no variables. This approach

is borrowed from the NFA-based regular expression evaluation as proposed in [52, 73].

Figure 4.3(a) depicts the matching engine respective to the pattern query A.B.?*.A,

and Figure 4.3(b) details the matching steps of that query given a stream of region-ID

events. Each query node is implemented as:

• A one-bit buffer (implemented using a flip-flop, depicted in grey), indicating

whether the pattern has matched up to this node. All nodes are updated si-

multaneously, upon each region-ID event detected at the input stream.

• Logic preceding this buffer, to update the match state (buffer contents).

As each buffer indicates whether the pattern has matched up to that predicate,

a query node can be in a matched state if and only if:

• All previous (non-wildstars) predicates up to itself have matched. Wildstars are

an exception since they can be skipped by definition (zero or more). See the node

116

(a)

(b)

Figure 4.3: (a) query matching engines respective to the pattern query A.B.?*.A, and
(b) an event-by-event overview of the matching of the query. All cells in a column are
updated in parallel upon an event at the input stream. A ‘1’ in a cell indicates that
the query has matched up to that node; for a query to be marked as matched, a ‘1’
should propagate from the first node (top row) to the last node (bottom row). Grey cell
contents indicate matched states that did not contribute to the detected matched query
state in red, but could contribute to later matches.

bypass in Figure 4.3(a). To perform this check, it suffices to check the match state

of the first previous non-wildstar node.

• The current event (as noted by the region-ID decoder) relates to the region of that

respective node. Wildcards are an exception, since by definition, they are not tied

to a region-ID. Centralizing the comparisons and making use of a decoder helps

considerably reducing the FPGA resource utilization respective to this inter-node

logic (see the AND-gates in Figure 4.3(a)). This is in contrast to reading the

multi-bit encoded region-ID and performing a comparison locally.

117

• It is a wildstar/wildplus, and it was in a match state at some point earlier. Wildstar

and wildplus are aggregation nodes that, once matched, will hold that match

state. See the OR-gate prior to the ?* node in Figure 4.3(a).

Looking closer at Figure 4.3(b), each cell reflects the match state of a query

node. All cells in a column are updated in parallel upon an event at the input stream.

A ‘1’ in a cell indicates that the query has matched up to that node; for a query to

be marked as matched, a ‘1’ should propagate from the first node (top row) to the last

node (bottom row). The ‘1’ depicted in red in Figure 4.3(b) indicates that the query

was detected in the input stream.

As wildstar (and wildplus) nodes act as aggregators, they hold a matched state

once activated; hence, a ‘1’ can propagate “horizontally” only at wildstar (and wildplus)

nodes. Grey cell contents indicate matched states that did not contribute to the detected

matched query state in red, but could contribute to later matches.

4.4.4 Evaluating Patterns with Variables and without Wildstar/Wildplus

Predicates

Supporting variables in pattern query matching requires an added level of mem-

ory saving. The basic rule of variables is that all instances of a given variable need to

match the same region-ID for a variable to be in a match state. When no aggrega-

tor nodes (?+/?*) are used, the distance between these two region-IDs occurring is the

number of nodes between the variable instances in the query.

One possible way for software systems to handle this would be to store, at

each variable node (in a matched state), all the region-IDs encountered throughout the

stream. A post-processing step would carefully intersect, for each variable, all stored

118

region-IDs vectors. While that is a valid approach, storing region-IDs for each variable

node of each pattern query is problematic as streams are longer. Furthermore, this

is not needed unless aggregator nodes (?+/?*) occur in between variable occurrences;

these cases are detailed in Sections 4.4.5 and 4.4.6. As FPGAs allow the deploying

of custom matching engines for each pattern, matching pattern queries at streaming

(no-stall) mode can be achieved here, with no post processing.

(a)

(b)

Figure 4.4: Query matching engines respective to the pattern query A.@x.B.@x, (a)
witout and (b) with a region set constraint {C,D,E} on @x. To handle variables in
hardware, the first instance of a given variable in a query forwards, alongside the in-
coming match state, (a) the event detector’s output encoded (multi-bit) region-ID, and
(b) a one-hot signal consisting of bits respective to each region in the set of the variable.
Every later instance of that variable in the query (here, the last query node) would
match the event detector’s ((a) encoded, and (b) multiple decoded) region-ID to the
forwarded region-ID. If these match, then the region-ID is again forwarded, and the
variable instance indicates a matched state.

To handle variables in hardware, the first instance of a given variable in a

query would forward the event detector’s output encoded (multi-bit) region-ID alongside

119

the incoming match state (see the second node in Figure 4.4(a)). Some cycles later

(depending on the location of variable instances in the pattern), every instance of that

variable in the query would match the event detector’s region-ID to the forwarded region-

ID. If these match, then the region-ID is again forwarded, and the variable instance

indicates a matched state. Stated in other terms, at a variable node (instance) in a

query, a match state is indicated if the current region was encountered earlier (given a

fixed implied distance), and all match state propagation checks in between were valid

(implying the distance).

Note that an encoded region-ID is used since it is smaller in bit size than a

decoded ID, and any region can potentially satisfy the query variable (variables are

essentially a subset of wildcards). Also note that non-variable predicates buffer the

forwarded region-ID, though no manipulation of the latter is required. Also note that

one set of region-ID buffers is required per variable, starting from the first occurrence

of that variable.

The same solution is applicable to pattern queries containing variables with

region sets. Figure 4.4(b) shows the matching logic for the pattern A.@x.B.@x where

@x is constrained by the regions {C,D,E}. Here, instead of storing the encoded region-

ID in the variable buffers, the latter would hold, for each region in the set, a single bit. At

the first occurrence of a variable, the buffer holds a one-hot vector, because input stream

events are relative to one region only. Upon later instances of that variable, AND-ing

the incoming region set buffer with specific bits of the region-ID decoder output will

help indicating for which regions (if any) the pattern matches.

The above approach is similar to replicating the matching engine for each region

in the variable region set constraint. For instance, the query in Figure 4.4(b) can be seen

as three queries, namely A.C.B.C, A.D.B.D and A.E.B.E. However, the above approach

120

offers much better scalability when multiple variables are used per pattern: replicating

the pattern for each combination of variable regions would result in an exponential

increase in resource utilization versus employing the aforementioned style of propagating

buffers. Another advantage of the propagating region set variable buffers is detailed

below, when dealing with wildstar/wildplus pattern predicates.

(a) (b)

Figure 4.5: (a) query matching engine respective to the pattern query A.@x.B.@x
{@x:C,D,E}, such that the variable region set constraint is implemented as a “relaxed”
OR. This relaxation helps save considerable hardware resources (compare to Figure
4.4(b)). (b) an event-by-event overview of the matching of the query resulting in a false
positive, due to the OR-based implementation of the variable region set constraint.

An alternative “relaxed” implementation of the variable region set constraint

is described next, with the goal of saving considerable hardware resources, though at the

expense of introducing false positives. Instead of keeping a propagating buffer holding

information on each region in the set, the match state can be updated if any of the

regions in the set are decoded, using a simple OR-gate. Figure 4.5(a) depicts the gate-

level implementation of the query A.@x.B.@x {@x:C,D,E}, such that the variable region

set constraint is implemented as an OR. Thus, history keeping is minimized, as no exact

region information is kept per variable. While this mechanism introduces false positives

(as described in Figure 4.5(b)), the latter can be tolerable, depending on the application.

Otherwise, a post-processing software step can be performed only on the patterns marked

121

as matched by the FPGA hardware. This approach however helps fitting substantially

more query engines on the FPGA, a benefit accentuated as the number of variables and

the variable region sets’ size increase.

4.4.5 Evaluating Patterns with a Single Variable and with Wildstar/Wildplus

Predicates

The remainder of this discussion is applicable to both wildplus and wildstar

query nodes.

As detailed earlier (Figure 4.3(a)), wildplus nodes act as aggregator nodes.

When no variables are used, the only propagating information across nodes is a single

bit value. In that case, a simple OR gate would suffice for aggregation (state saving).

When a wildplus predicate is located in between two instances of a variable, all

values of the region-ID buffer should be stored, and forwarded to the next stages (nodes).

Keeping that history is required in order not to result in false negatives. However, due to

performance and resource utilization constraints, storing all that history is not desired.

Using variable region set constraints, this limitation can be overcome by simply

OR-ing the propagating buffer similarly to the match state buffer. This approach would

store the information needed, and no history is lost. No false positives would result, and

pattern evaluation is achieved at streaming mode.

4.4.6 Evaluating Patterns with Multiple Variables and with Wild-

star/Wildplus Predicates

When more than one variable is used in a pattern, and with wildplus nodes

in between instances of both these variables, the previous mechanism can lead to false-

positives, as even more state should be saved than discussed earlier.

122

Figure 4.6(a) shows an event-by-event example of a pattern matching resulting

in a false positive. Each cell in the grid holds the values stored inside each respective

variable buffer. Buffers for the variable @x are used at each pattern node, whereas

buffers for the variable @y span from the second pattern node (i.e. the first @y node),

up to the last pattern node.

(a)

(b)

Figure 4.6: Event-by-event matching of the pattern query @x.@y.?+.@x.@y {@x: A, B,
C, D} {@y: A, B, C, D}. The resulting match in (a) is a false positive; whereas enough
state is saved in (b) at the aggregator node (?+) to eliminate that false positive.

123

As described earlier, the wildplus node is the only node in the pattern query

allowing horizontal propagation of match states. This is due to the nature of wildplus

nodes which hold a matched state. As the variable buffers are OR-ed at that wildplus

node, they will store the information of the union of all variable buffers encountered at

that node. Looking at the ?+ row, notice that the variable buffers for both @x and @y

hold an increasing number of regions. That level of stored information is not sufficient,

as it will be shortly shown to result in a false positive.

Upon the D event, both variable buffers did not propagate to the second in-

stance of @x. That is because the @x variable buffer does not reflect that the previous

instance of @x held the value of D (yet). However, on the next event (A), the vari-

able buffers propagated, and the @x variable buffer was masked with the event region.

Hence, B was removed from the @x variable buffer. The @y variable buffer remains

un-modified, since the @x node is not allowed to modify it.

Finally, at the last event (C), focusing at the second instance of @y (i.e. the last

pattern predicate), a match is shown for @x=A and @y=C. While @x and @y did hold

these values at some point, looking closer at the input stream, A and C were initially

separated by B, though the query requires that the distance between @x and @y is 1

(back-to-back regions visited).

In order not to result in false positives, the level of history kept at the ag-

gregator node has to be increased. Instead of only storing the union of all variable

buffers, the information at the wildplus node should be the set of all variable buffers

encountered. To reduce storage, that solution can be simplified such that, for each @x

variable value, a list of all corresponding @y values are stored. Figure 4.6(b) depicts

this solution. Focusing on the aggregator row, every value of @x is associated with a

list of @y values. These can be deduced from the propagating variable buffers into the

124

wildplus node. Note that @x=A is associated with @y=B. Therefore, the tuple @x=A,

@y=C cannot result in a match, as is the case in Figure 4.6(a).

Nonetheless, implementing this solution in hardware is extremely costly in

terms of resource utilization (and impact on the critical path/performance), especially

with larger region sets and more variables per pattern. Furthermore, this solution does

not scale with more variables, and does not hold with more aggregator nodes.

Another approach to eliminate false positives in such cases is a brute-force

implementation of each query using all variable region-set combinations. For instance,

the query @x.@y.?+.@x.@y {@x:A,B} {@y:C,D} can be implemented as four simpler

queries, namely:

• A.C.?+.A.C.

• A.D.?+.A.D.

• B.C.?+.B.C.

• B.D.?+.B.D.

This approach is encouraging when the number of variables and the size of

the region sets is relatively small. Otherwise, the implied resource utilization explodes,

even though each query is built using simple matching engines (no propagating variable

buffers). Nonetheless, the common prefix optimization helps with the scalability.

A study on the resulting false positives versus resource utilization is performed

in Section ?? to better evaluate the benefits of each approach. To recapitulate, when

pattern queries make use of two or more variables, and with an aggregator node in

between the occurrences of these variables, the proposed approaches are:

125

• Making use of propagating variable buffers. This approach results in the least false

positives.

• Implementing region set constraints as an OR. The number of false positives here

is a superset of the above case, and resource utilization is minimal. False posi-

tives are a superset, since the condition (OR check) to allow a match to propagate

through a variable node is a superset of the first approach’s variable node condi-

tions (propagating buffers).

• A brute-force mapping of each query as the combination of all variable region-sets.

This approach has no false positives, but does not scale well with more variables

and larger region sets.

4.5 Experimental Evaluation

In this section we provide an extensive experimental evaluation of the pro-

posed hardware architecture. The datasets used are first described, followed by the

experimental setup. A thorough design space exploration on the proposed architecture

is presented, alongside a study on matching accuracy. Performance measurements are

then provided.

4.5.1 Dataset Description

In our experimental evaluation, we use four real trajectory datasets. The first

two datasets are the Truck and Buses trajectorial data from [1]. Both datasets represent

moving objects in the metropolitan area of Athens, Greece. The Truck dataset has 276

trajectories of 50 trucks where the longest trajectory timestamp is 13,540 time units.

The Buses dataset has 145 trajectories of school buses with maximum timestamp 992.

126

The third dataset consists of GPS coordinates of 483 cabs operating in the San Francisco

area [67] collected over a period of almost a month. The fourth dataset, Geolife [92, 91],

was collected as GPS trajectory data in a period of over three years. The dataset

contains 17,621 trajectories with a total distance of about 1.2 million kilometers and a

total duration of more than 48,000 hours.

4.5.2 Setup

For simplicity of the experimental evaluation, we partition the spatial domain

in uniform grid sizes. These grid cells become the alphabet for our queries. In order

to generate relevant query patterns, we randomly sample and fragment the trajectories.

The length and location of each fragment are randomly chosen. These fragments are

then concatenated to create a query. We generated queries with different number of

predicates, variables, and wildcards. The location of each variable and wildcards inside

the query were randomly chosen.

Our FPGA platform consists of a Pico M-501 board connected to an Intel Xeon

processor via 8 lanes of PCI-e Gen. 2 [66]. We make use of one Xilinx Virtex 6 FPGA

LX240T, a low to mid-size FPGA relative to modern standards. The PCIe hardware

interface and software drivers are provided as part of the Pico framework.

The hardware engines communicate with the input and output PCIe interfaces

through one stream each way, with dual-clock BRAM FIFOs in between our logic and

the interfaces. Hence, the clock of the filtering engine is independent of the global clock.

The PCIe interfaces incur an overhead of ≈8% of available FPGA resources.

The RAM on the FPGA board is not residing in the same virtual address

space of the CPU RAM. Data is streamed from the CPU RAM to the FPGA. Since the

127

proposed solution does not require memory offloading, RAM on the FPGA board is not

used.

Xilinx ISE 14 is used for synthesis and place-and-route. Default settings are

set.

4.5.3 Design Space Exploration

A study on the resource utilization and achievable performance (throughput)

of the hardware engines follows.

Figure 4.7 shows (a) the resource utilization and (b) respective frequencies of

the hardware engines, such that the number of queries is doubled (32, 64, 128 ... 2K),

the query length is doubled (4, 8 nodes) and variables usage is varied: when used, one

variable with a region set of 5 regions is assumed.

As the query compiler applies the common prefix optimization, and further re-

source sharing techniques are exercised by the synthesis/place-and-route tools, resource

utilization does not double as the number of queries is doubled. Rather, a penalty of

approximately 70% occurs.

Similarly, as the query length is doubled, an average increase of 80% in re-

sources is found. However, adding one variable to each query results in doubling re-

source utilization on average. Note that the propagating buffer approach is employed

for variable matching, and that these buffers propagate from the first occurrence of the

variable, to the last.

Overall, up to several thousands of query matching engines can fit on the target

Xilinx V6LX240T FPGA, a mid- to low-size FPGA.

128

(a)

(b)

Figure 4.7: (a) resource utilization and (b) respective frequencies/throughput of the
hardware engines, such that the number of queries is doubled, the query length is dou-
bled, and variable usage is varied. When used, one variable of region set 5 regions is
assumed. Results are shown for a Xilinx V6LX240T FPGA.

While these numbers address the scalability of the proposed matching engines,

Figure 4.7(b) details the respective achievable performance in terms of:

• Operational frequency (MHz): measured as a function of the critical path, i.e. the

longest wire connection of the FPGA circuit. This number is obtained post the

place-and-route process of the FPGA tools.

• Throughput (GB/s): as the query matching engines process one 〈 region ID, times-

tamp 〉 pair per hardware cycle, the FPGA throughput can be deduced from the

129

(a)

(b)

Figure 4.8: (a) the achievable frequencies and (b) corresponding resource utilizations as
a result of the clustering of 2K length 4 queries, with one variable (region set size = 5);
results are shown for a Xilinx V6LX240T FPGA. We refer to a region ID decoder and
its connected queries as a cluster. Two clustering approaches are considered; in the
first, all clusters receive the input stream simultaneously (non-pipelined clusters); in the
second, clusters are pipelined, such that each cluster forwards the input stream to the
next.

circuit’s operational frequency, given that the size of each input pair is 8 bytes (2

integers). Nonetheless, this computed throughput is respective to the FPGA cir-

cuitry, and might not reflect the end-to-end (CPU-FPGA and back) performance,

which is platform dependent. End-to-end measurements are available further be-

low.

130

As the number of queries increases, frequency/throughput is initially around

the 250MHz/2GBs mark. Fluctuations are due to the heuristic-based nature of the

FPGA tools, though generally a trend is deduced. As the number of queries becomes

too large, frequency drops considerably for queries with variables. The drop is not as

steep for queries with no variables; the reason being that queries with variables can be

thought of as longer queries (due to the propagating buffers). This drop in frequency

occurs because of the large fan-out from the region ID decoder to the many sinks, being

the query nodes and propagating buffers.

Replicating the region ID decoder (and event detector) helps reducing fan-out,

and will potentially eliminate it. Each region ID decoder is then connected to a set of

queries. We refer to a region ID decoder and its connected queries as a cluster. Note

that each query belongs to exactly one cluster. The query compiler is developed to take

as input parameter the cluster size, as a function of query nodes.

Figure 4.8 shows (a) the achievable frequencies and (b) corresponding resource

utilizations as a result of the clustering of 2K length 4 queries, with one variable (region

set size = 5). Two clustering approaches are considered; in the first, all clusters receive

the input stream simultaneously (non-pipelined clusters); in the second, clusters are

pipelined, such that each cluster forwards the input stream to the next. Advantages

(and disadvantages) of the latter are presented below.

Focusing on Figure 4.8(a), the number of nodes per cluster is doubled, starting

from 16, and up to the maximum of 8K (due to the set of 2K queries of length 4

each). The frequency of non-pipelined clusters starts off as low, then exhibits an increase

towards clusters of size 128 nodes, to then drop back to low levels. On the other hand, the

frequency of pipelined clusters starts off as high with small clusters, then only gradually

drops when clusters become too large.

131

For a fixed number of queries (here 2K), smaller clusters simply means more

clusters. This translates into another performance problem, where a fan-out is created

from the input stream to the clusters’ region ID decoders. Since pipelined clusters

forward the input stream to adjacent clusters, this issue does not apply, which can

be seen in Figure 4.8(a) where the frequency starts off as high for pipelined clusters.

However, when clusters become too large, both clustering approaches become inefficient.

The frequency peak of non-pipelined clusters occurs outside of the “excessive load”

regions (too many clusters, too many nodes per cluster), such that the synthesis/place-

and-route FPGA tools were able to take advantage of the combination of the number

of clusters and cluster size. This peak can only occur here.

The resulting area (%) due to clustering is shown Figure 4.8(b). With non-

pipelined clusters, the area is almost constant, as the FPGA synthesis/place-and-route

tools are able to detect shared resources across clusters. On the other hand, as each

pipelined cluster receive its input in a different cycle from other clusters, the FPGA

tools are not able to optimize across clusters. This leads to resource blow-out, when too

many clusters are deployed. Nevertheless, as deduced from Figure 4.8(a) (and supported

by Figure 4.7(b)), clusters need not hold less than 1K or even 512 nodes. This in turn

limits the clustering penalty on resource utilization to a minimum, while still achieving

good performance.

4.5.4 Query Engine Implementations and False Positives

As described in Sections 4.4.4 through 4.4.6, a query holding variables can be

evaluated in one of three ways, namely (1) implementing the region set constraints as

ORs (resulting in most false positives); (2) making use of propagating buffers (false

132

Figure 4.9: Scalability of the each of the following three implementations of 100 length 6
queries holding variabes: (1) Variable as OR implementing the region set constraints
as ORs (resulting in most false positives); (2) Propagating buffer making use of
propagating buffers (false positives arise only when using multiple variables alongside
wildstar/wildplus nodes); (3) All combinations a brute-force mapping of each query
as the combination of all variable region sets (no false positives). Results are shown for
a target Xilinx V6LX240T FPGA.

positives arise only when using multiple variables alongside wildstar/wildplus nodes);

(3) a brute-force mapping of each query as the combination of all variable region sets

(no false positives). A study is presented next on the scalability of each approach as the

number of variables and the region set size are increased.

Figure 4.9 illustrates the resource utilization of 100 length 6 queries holding

variables, implemented in each of the aforementioned three approaches. The varied

factors are the number of variables in each query patterns, and the respective region set

size.

When implementing a variable as OR, each variable node is replaced with a

simpler OR node. Thus, as expected (see Figure 4.9), increasing the number of variables

has almost no effect on resource utilization. The same applies to increasing the region

set size.

On the other hand, the propagating buffer technique starts off as utilizing

slightly less than double the resources of the variable as OR approach. Furthermore,

133

Figure 4.10: Matching accuracy (100-false positives %) for each implementation of 100
long queries, over three datasets, namely Trucks, Buses and CabsSF. Queries are syn-
thetic, not biased, generated using our query generator tool. They contain two variables
each, as well as one or more aggregator (?*/?+) nodes.

doubling the region set size results in a 50% area penalty. Doubling the number of

variables per pattern query exhibits similar behavior.

Finally, when transforming a query into a set of queries based on all combina-

tions of the region sets, resource utilization starts off as more than double that of the

propagating buffer technique. Doubling the number of variables naturally has a steeper

effect than doubling the region set size on resource utilization. Note that the common

prefix optimization helps with the scalability this approach. Nonetheless, when using

two variables of with 15 regions in the set, the resulting circuitry did not fit on the

FPGA. Practically, it is best to make use of this approach for critical pattern queries

where false positives are not tolerated.

A study on the resulting false positives of each of the three query engine imple-

mentations is provided in Figure 4.10, where the matching accuracy (100-false positives

%) is recorded for each implementation of 100 long queries, over three datasets, namely

Trucks, Buses and CabsSF. Queries are synthetic, not biased, generated using our query

generator tool. They contain two variables each, as well as one or more aggregator

134

(?*/?+) nodes. Note that the Propagating buffers approach does not result in any false

positives, unless multiple variables are used alongside aggregators.

The All combinations approach results in no false positives, by design. How-

ever, while the Variable as OR technique results in the most false positives (as expected),

the matching accuracy varies from high (93.2%), to somewhat low (48.8%). On the

other hand, matching accuracy is close to perfect (> 99.8%) for the Propagating buffers

implementation, even as false positives increase as a result of the Variable as OR im-

plementation. No false positives were recorded on the Trucks dataset when making use

of the emphpropagating buffers.

While the mileage of the Variable as OR implementation may vary, its scala-

bility is key. Even when false positives are not tolerable, query matching engines can

employ this technique, where the FPGA would be used as a pre-processing step with the

goal of reducing the query set. The same applies for the propagating buffers implemen-

tation technique, where the query set would be reduced the most. Since the performance

of CPU-based software approaches scales linearly with the number of pattern queries,

reducing the query set has desirable advantages, especially that the time required for

this pre-processing FPGA step is negligible.

4.5.5 Performance Evaluation

Figure 4.11 shows the end-to-end (CPU-RAM to FPGA and back) throughput

of length 4 queries with 1 variable. The throughput of the FPGA filtering core is drawn

in red. Throughput is lower from the FPGA filtering core for smaller trajectory files

since steady state is not reached, and communication setup penalty is not hidden. For

larger files, throughput is closer to the FPGA core’s, while being limited by the physical

135

Figure 4.11: End-to-end (CPU-RAM to FPGA and back) throughput of length 4 queries
with 1 variable. The throughput of the FPGA filtering core is drawn in red.

link’s throughput. Furthermore, end-to-end performance includes the penalty of the

drivers and buffer on both of the FPGA and CPU. Nonetheless, the throughput of the

FPGA querying cores is independent of the trajectory file contents, as well as query

structure (given a certain operational circuit frequency).

We ran through several issues with regards to the available FlexTrack code.

Hence, software performance will be studied as part of our future work. Note that where

the FPGA end-to-end execution time is in the milliseconds range, preliminary results

show that software operates in the tens and hundreds of seconds range, and is greatly

affected by the query structure and document contents. Thus, the presented FPGA

setup results in considerable speedup (several orders of magnitude) and benefits with

respect to immunity against query/trajectory characteristics.

4.6 Conclusions

The wide and increasing availability of collected data in the form of trajectory

has lead to research advances in behavioral aspects of the monitored subjects. Using

trajectory data harvested by devices, such as GPS and mobile devices, complex pattern

136

queries can be posed to select trajectories based on specific events of interest. However,

as the complexity of the posed queries increases, so do computational requirements,

which are not easily met using traditional CPU-based software platforms.

In this work, the first proof-of-concept study on FPGA-based architectures

for matching variable-enhanced complex patterns is presented, with a focus on stream-

mode (single pass) filtering. A tool for automatically generating hardware constructs

using a set of queries is presented, abstracting away ramifications of hardware code

development and deployment. A thorough design space exploration of the hardware

architectures shows that the presented solution offers good scalability, fitting thousands

of query matching engines on a Xilinx V6LX240T FPGA, a mid- to low-size FPGA.

Increasing the number of variables and wildcards is shown to have linear effect on the

resulting circuit size, and negligible on performance. That is unlike CPU-based solutions,

where performance is greatly affected from such query characteristics.

When handling queries with (a) no variables, (b) one variable, or (c) no wild-

cards with two or more variables, the proposed hardware architecture is able to process

the trajectory data in a single pass. When two or more variables are used alongside

wildcards, the proposed solution will result in false positives, though these are minimal

in practice. Nonetheless, a no-false-positive solution is proposed, though being limited

in scalability.

As part of our future work, we will be enhancing the proposed framework to

allow online query updates. The deployed generic query engines would support ”any”

query structure and node values. A stream of bits forwarded to the FPGA would

program the connections between deployed query nodes. This approach should not be

confused with Dynamic Partial Reconfiguration (DPR), where the bit configuration of

the FPGA itself is updated.

137

Chapter 5

Golomb-Rice Integer

Decompression

5.1 Introduction

The goal of data compression techniques is to reduce the storage space and/or

increase the effective throughput from the data source (such as a storage medium).

Other critical performance factors considered include code complexity and memory of-

floading requirements. Various compression techniques can be combined and are tailored

to perform best within certain classes of applications, where assumptions on the data

(format, range, occurrence, etc) hold. Examples of the latter are Run-Length Encoding

(RLE) [23] as used by image compression (JPEG), and Lempel-Ziv-Welsch [84] (LZW)

for text data.

Compression techniques can be mainly categorized as being lossy or lossless.

Generally, lossy techniques result in a higher compression ratio, and/or a faster pro-

cessing (compression/decompression) time. Lossy techniques are hence preferred when

the original data does not have to be exactly retrieved from the compressed data, and

138

differences with the original data are tolerable or non-noticeable (such is the case with

audio, video, etc).

Moreover, compression techniques can be further classified as being bit-wise or

byte-wise. Byte-wise (or byte-aligned, byte-granularity) approaches typically result in a

lower compression ratio due to the coarser granularity, but offer a considerably higher

compression/decompression throughput.

This chapter focuses on the decompression of integers compressed using the

lossless bit-wise Golomb-Rice [23, 83] (GR) entropy method. GR compression is de-

signed to achieve high compression ratios on input streams with small integer ranges [51];

it is deployed in several applications, such as image compression [51, 36, 41, 79, 34, 42],

audio compression [44, 22], as well as the compression of streams of inverted indices

[48, 89, 90, 72], and ECG signals [7, 12, 50]. Inverted indexes require very fast pro-

cessing, and operate under low timing budgets as they are utilized in the querying of

high-volume data, as in (web) search engines [93]; however, even though GR offers high

compression ratios, other approaches are preferred due to the gap in decompression

performance [90]. Similarly, with the augmented resolution standards on video process-

ing and displays (Full-HD, Quad Full-HD), faster decompression is a must. Finally,

the complex processing of the increasing amounts of ECG data can be further reduced

using high-performance decoders, with decompression being a first step once data is

received. In all of the aforementioned applications, inefficient decompression limits the

input throughput to the computational pipelines.

We present a novel highly-parallel hardware core capable of decompressing

streams of GR-coded integers at wire speed with constant throughput, operating on

raw unmodified GR data. To the best of our knowledge, hardware and software (CPU-

based) GR decoders assuming unmodified GR data operate bit-serially on the com-

139

pressed stream, which highly bounds the achievable decompression speeds. On the other

hand, modifications to the algorithm and assumptions on the compressed format allow

the application of efficient optimizations [36, 90, 41], though the limiting assumptions

cannot be generalized. The proposed no-stall hardware solution is shown to outperform

state-of-the-art software and hardware approaches, and achieves up to 7.8 Gbps sus-

tained decompression throughput while occupying 10% of the available resources on a

Xilinx Virtex 6 LX240T, a mid- to low-size FPGA.

5.2 Golomb-Rice Compression Overview

5.2.1 Algorithm Description

Golomb-Rice, or simply GR, or Rice coding is a lossless bit-granularity inte-

ger compression approach, which performs best with datasets where the probability of

occurrence of small numbers far exceeds that of large values. It is shown that for such

input sets, GR coding has compression efficiency close to the more complex arithmetic

coding, and comparable to Huffman coding, while no code tables are required, formerly

a potential bottleneck in the hardware compression/decompression process [51].

In Golomb coding, given a divisor d, each input integer is encoded into two

parts: a unary quotient q, and a binary remainder r. GR coding is a subset of Golomb

coding, restricting divisors to powers of two. This implies that for a give d, the number

of bits required to encode the remainder portion is fixed to k = log2(d) bits (otherwise

variable with Golomb coding). This simple assumption/restriction has a practical negli-

gible negative impact on compression ratio, and greatly simplifies the encoding/decoding

process, by allowing the use of simple shift operations instead of the more complex divi-

sion. Good choices of d (hence k) greatly affect the compression ratio, and d is generally

140

picked as factor of the average of the input integer set [93, 90]; this discussion is however

out of the scope of this dissertation.

Resulting from GR coding is the fact that integers smaller than d are encoded

using k + 1 bits, being a single unary bit and the remainder bits; furthermore, the

compression of (infrequent) large numbers can result in more bits than the original

uncompressed number, due to the inefficient coding of the unary quotient.

5.2.2 Parallelism and Challenges

GR-coded streams offer great opportunity for parallel decompression, since

integers can be decoded independently. However, finding the end of a compressed integer

and the start of the next is non-trivial, and cannot be determined without knowledge of

all prior stream contents.

Figure 5.1 shows a snapshot of a chunk of bits in a GR-encoded stream, with

k = 3 (remainder) bits. Integers are coded as the unary quotient (variable number of

1’s followed by a 0) followed by the binary remainder bits, from right to left.

The first 0 bit in Figure 5.1 starting from the right (underlined) could reflect

the last unary quotient bit, which would result in the reconstruction of integers i and

i+1 as illustrated under the stream (note that unary values end with a 0 bit). On the

other hand, this 0 bit could reflect the second remainder bit, leading to integers i and

i+1 as depicted above the stream.

In other words, a decoder processing an N-bit chunk of compressed data per

cycle cannot assume independent chunks, since compressed integers are not contained

within these chunks (integers span across chunks). Furthermore, in order to process

a given N-bit chunk, the decoder has to process all previous compressed data in the

stream.

141

Figure 5.1: Snapshot of a chunk of bits in a GR-encoded stream. Assuming integers are
coded as the unary quotient followed by the k = 3 bits binary remainder (from right to
left), the above chunk can be decompressed in several ways (two of which are shown);
the correct decoding cannot be determined without knowledge of all the prior contents
of the encoded stream. c© 2013 IEEE.

Figure 5.2: High-level overview of the no-stall GR decompression architecture, capable
of sustaining a processing rate of N bits per cycle. c© 2013 IEEE.

To the best of our knowledge, no (hardware and/or software) approach in the

literature allows the processing of stream chunks in parallel. Section 5.4 details our

proposed mechanism which overcomes this challenge.

5.3 Related work

The FPGA-led performance boost up of compression/decompression has long

been an active field of research, with the main focus on speeding up low-latency storage

142

access [14, 74, 63]. In this section, we focus on providing an overview of the application

and implementation of Golomb-Rice coding in several fields.

Inverted indexes: [48] and [72] provide an overview of inverted index query-

ing, as well as the description and performance of several compression techniques, such

as variable length integers, Elias Gamma, Delta coding and Golomb-Rice. The authors

in [89, 90] provide a thorough performance and compression ratio study of several com-

pression approaches, as applied to the inverted index problem. A novel compression

technique is presented with focus on performance, combining PForDelta with GR cod-

ing. The intuition is to partition input integers into blocks, such that the compressed

output of each block contains all remainder bits first, followed by the unary quotients.

This allows the fast retrieval of the fixed-length remainders through simple lookups.

The extraction of the contiguous variable-length unary quotient values is also achieved

through smart lookup functions. However, this approach is limited by the scalability of

the lookup (limited further performance enhancements), as well as the modifications to

the input format required. All the implementations of this work are open source, and

will be used in the performance evaluation of our proposed hardware architecture.

Image/video: [51] proposes the use of GR coding to compress the Discrete

Cosine Transform (DCT) coefficients found in JPEG-LS (lossless). The authors in

[41, 42] propose novel frame-recompression algorithms targeting MPEG-2 and H.264

videos, respectively. The MPEG-2 FPGA-based decoder makes use several assumptions

to implement a parallel GR decoder; for instance, integers are compressed into words

of fixed size 21 bits, containing exactly 7 integers each; furthermore (importantly), the

boundary of compressed integers is fixed within these 21 bits, and a (small) maximum

unary size is assumed. While these assumptions hold in this case, they are not charac-

teristics of GR streams. Similarly, [36] presents a GR-based novel color image FPGA

143

CODEC. A parallel decoder is presented, assuming modified compressed GR format, as

well as small independent words containing a fixed number of compressed integers each.

The authors in [79] describe the hardware implementation of a novel proposed compres-

sion codec targeting advanced-HD video, utilizing GR coding. FELICS, a lossless image

compression format utilizing GR coding was introduced in [34].

Audio: [44] describes the use of GR coding in the the lossless audio MPEG-

LS format; similarly, the Free Lossless Audio Codec (FLAC) [22] uses GR compression

internally.

ECG signals: [7] and [12] detail the compression of DCT coefficients in Elec-

trocardiography (ECG) signals using the lossless GR method. The work in [50] describes

the FPGA implementation of a multi-bit per cycle GR compressor of ECG signals. Note

that compression is orthogonal to decompression (the problem studied in this work). The

described FPGA decompressor operates in a bit-serial manner.

Miscellaneous: [49] thoroughly studies the adaptive combination of Run-

Length to Golomb-Rice coding; the intuition is that unary quotients resulting from

GR consist of long streams of 1’s, and can be efficiently compressed with run-length

encoding. The authors in [43] propose the use of GR coding in conjunction with A/D

converters. A detailed CMOS-level implementation is provided, showing the ease and

advantages of integration of A/D converters to GR encoders.

5.4 Hardware Golomb-Rice Decompression

In this section, an overview of how parallel GR decompression can be achieved

is provided, followed by an in-depth description of the proposed parallel hardware GR

decompression engine.

144

Figure 5.3: Functionality and high-level implementation overview of a delimiter insertion
block. Given a chunk of GR-encoded data, delimiter flags, and remainder flags, a
delimiter insertion block is tasked with updating the input flags by marking the last
bit (delimiter) and remainder bits of the next integer in the chunk, if any. c© 2013
IEEE.

5.4.1 Parallel Extraction of Compressed Integers

As described in Section 5.2.2, a decoder cannot process an N-bit chunk of

compressed data without any knowledge on prior contents of the compressed stream.

Hence, processing an N-bit chunk should be delayed after all previous data is decoded.

In reference to Figure 5.1, this would indicate the property (unary or remainder) of the

highlighted 0 bit.

However, given that k=3 (number of remainder bits), the highlighted 0 bit can

only one of the following: (1) a unary bit, the last to be exact; (2) the first remainder

bit; (3) the second remainder bit; and (4) finally, the third and last remainder bit. Note

that option (2) is trivially dismissed since the previous bit is a 1, which cannot indicate

the end of a unary (unaries end with a 0). However, for the sake of a generic example,

any given (0 or 1) bit in a stream can have one of only k+1 properties, as indicated

earlier.

145

Assuming a decoder capable of processing a chunk of N GR-compressed bits in

parallel: the ith chunk of size N bits can be speculatively processed in k+1 ways, where

each would be an assumption on the property of the first bit in that chunk. Once the

previous i− 1th chunk is decoded, k computations are dismissed and one is committed.

This will in turn allow the i+ 1th chunk to commit, and so on, for the remainder of the

compressed stream.

Since GR coding mainly targets integers with small ranges, k is generally kept

small; it is theoretically maximally less than the integer bit size (64 for double precision).

Therefore, the k+1 design space is limited. The choice of N depends on several physical

constraints and performance requirements, as detailed in this section and Section 5.5.

Encoded integers potentially span across (two or more) chunks, either because

their encoding starts towards the end of a chunk, and/or because the unary portion

is long. This will require some data of consecutive chunks to be combined in order to

reconstruct compressed integers.

5.4.2 No-Stall Architecture Overview

The remainder of this section details a parallel no-stall hardware GR decom-

pression architecture based on the observations described above.

5.4.2.1 Delimiters Insertion

Figure 5.2 illustrates a high level overview of the proposed architecture, of

which the first portion is delimiters insertion. As an N-bit chunk of compressed GR

data is received, it is forwarded to k+1 pipelines. Each of these pipelines holds an

assumption on the input chunk, and receives masks (labeled remainder flags) indicating

whether each chunk bit is a remainder or a unary. This mask naturally differs from one

146

Figure 5.4: Functionality and high-level implementation overview of the selector and
spanning bits marker stage. This stage is tasked with selecting the output of one of the
delimiters insertion pipelines (left), based on knowledge of previously processed chunks
(see the FSM transitions). All bits spanning into the current chunk are marked as such
using the outputted Spanning flag bit vector (top). c© 2013 IEEE.

pipeline to the next, as illustrated in Figure 5.2. The top pipeline assumes that the

unary of the previous chunk spans into the received chunk (remainder flag is all 0’s).

The pipeline below it assumes that only one remainder bits spans (remainder flag of all

0’s and a single 1); and so on until the bottom pipeline which assumes that all remainder

bits span from the previous chunk (remainder flag of all 0’s first, then k 1’s). Given

its respective assumption, each pipeline outputs the received data chunk, alongside a

mask (flags) indicating all remainder bits in the received data chunk, as well as a mask

indicating the delimiters (last bit) of each encoded integer in the chunk. These masks

147

would allow the fast extraction of individual integers in a chunk, as detailed in later

stages.

As depicted in Figure 5.2, each of the delimiters insertion pipeline consists of⌈
N
k+1

⌉
blocks, where the latter indicates the maximum number of encoded integers in

a chunk (an encoded integer consists of at least k remainder bits and one unary bit).

A ceiling notation is used to reflect the case of a compressed integer spanning into the

next chunk, of which less than k+1 bits are in this chunk.

The functionality and high-level implementation overview of each block is

shown in Figure 5.3. Given a chunk of GR-encoded data, delimiter flags, and remainder

flags, a delimiter insertion block is tasked with updating the input flags by marking

the last bit (delimiter) and remainder bits of the next integer in the chunk, if any.

Having
⌈

N
k+1

⌉
delimiter insertion blocks per pipeline guarantees that all delimiters and

remainder bits in the input chunk will be marked.

Note that for the sake of delimiters insertion, the case of a chunk with no

bits spanning into it is treated as a chunk with unary bits spanning into it (top-most

delimiters insertion pipeline).

5.4.2.2 Selector (and Spanning Bits Marker) Stage

This is the next stage in the decompression pipeline, following the delimiters

insertion. As the name indicates it, it is tasked with selecting the output of one of the

delimiters insertion pipelines, based on knowledge of previously processed chunks.

The first chunk received by this stage is fully aligned, meaning that there are

no bits spanning into it from the previous chunk. Therefore, the (flag vectors) output of

the top-most delimiters insertion pipeline is selected, where the unary was assumed to

148

Figure 5.5: Functionality and high-level implementation overview of the integer builder
block. In the validation stage, one compressed integer from the input chunk is selected
for reconstruction, then invalidated when passed to the following integer builder (if any).
The unary quotient is converted to binary using a ones counter, whereas the remainder
is simply multiplexed using the remainder flags. c© 2013 IEEE.

be spanning. Then, by inspecting the last delimiter flag bit, the last data bit, and the

last k-1 remainder flag bits, the selector FSM can determine the state (hence multiplexer

select value) respective to the next received chunk. This process is then repeated for

every chunk received.

Figure 5.4 details the functionality and high-level implementation of the selec-

tor stage. The left hand side represents the output of each delimiters insertion pipeline,

labeled with the initial assumption of every pipeline (unary spanning, one remainder

bit spanning, etc). The output of the pipelines is multiplexed using the selector FSM.

149

The latter can be in one of k+2 states (fully aligned, unary spanning, one remainder bit

spanning, two remainder bits spannings, etc), and the conditions for transitions across

states are as shown in Figure 5.4.

The selector stage is further tasked with flagging spanning bits (bits in this

chunk belonging to an integer starting in a previous chunk); the use of this flag will be

clearer in the next decompression stages. Depending on the state of the current chunk,

a set of spanning flags is chosen from, as shown in the top portion of Figure 5.4. In

case the current chunk is fully aligned, then no bits span into it, and the spanning flag

is set to all 0’s. If remainder bits spans into the chunk, then depending on the number

of remainder bits spanning, some of the least significant bits of the flag are set to 1. A

constant flag exists for each of the aforementioned cases. On the other hand, when the

(variable length) unary is spanning, the number of spanning bits is unknown, and has

to be computed on the fly. As shown in Figure 5.4, a data bit is unary and spanning if

there are no delimiters before it (which for every compressed data bit, is equivalent to

looking for data bits with value 0 before it).

The output of the selector stage consists of a data chunk, delimiter, remainder

and spanning flag vectors respective to each of the data bits. These signals are forwarded

to a pipeline of integer builders.

5.4.2.3 Integer Builders

As shown in Figure 5.2 following the selector stage, a pipeline of
⌈

N
k+1

⌉
integer

builder blocks is deployed. The task of each integer builder is to reconstruct one of

the integers in the chunk. Making use of
⌈

N
k+1

⌉
blocks guarantees the handling of all

potential integers in a chunk. Each integer builder selects one integer from the chunk

for reconstruction, then invalidates it, and forwards the chunk with updated valid flags

150

to the next integer builder. Invalidating an integer to be decoded ensures that no two

integer builder process the same integer. Rules for choosing a compressed integer to

decode are described below. Note that depending on the input stream, some integer

builders are potentially idle in many cycles; that is because not all input chunks will

contain bits of
⌈

N
k+1

⌉
compressed integers.

Figure 5.5 details the implementation of an integer builder. The latter com-

prises of three main stages, namely the validation, unary and remainder extraction, and

integer reconstruction stages.

In the validation stage, a compressed integer from the input chunk is selected,

and its corresponding valid bit flags are cleared then forwarded alongside the data chunk

to the next integer builder (if any). Initially, an integer builder picks the first non-

spanning (valid) integer in the chunk. In case that integer is found to span (the last

data bit is not delimited), then the integer builder will next select the spanning integer,

in order to complete the reconstruction. This approach guarantees that no two integer

builders will target the same compressed integer.

Once a compressed integer is selected (if spanning then through multiple cy-

cles), the unary portion is converted back to binary through a one’s counter. The

remainder bits are selected using the remainder flag bits. The integer reconstruction

stage handles the case of integers potentially spanning across multiple chunks.

The output of the integer builder block is a reconstructed integer (concate-

nated binary quotient and remainder), alongside a single bit flag indicating whether the

compressed integer was spanning across two or more input chunks. This flag is used by

the (next) output alignment block.

151

5.4.2.4 Output Alignment Block

The output alignment block adds buffers after every integer builder, such that

the output of all integer builders in a given cycle reflects the processing of the same

input data chunk. The number of buffers after an integer builder is simply the number

of integer builders following it. Furthermore, reconstructed integers are re-ordered such

that the integer spanning in the chunk is placed before others from that chunk. This is

achieved using the was-spanning flag outputted with every reconstructed integer (Fig-

ures 5.2 and 5.5). Note that only one integer can be spanning in a given chunk. Also,

even though the spanning integer is the first in a chunk, it is not necessarily processed

by the first builder, since its processing could have started by a later builder with the

previous chunk. Since some integer builders are idle in certain cycles, their output is

disregarded by the output alignment block.

5.4.3 One-Integer Per Cycle Decoder Overview

Based on the no-stall architecture, a smaller one-integer per cycle architecture

is presented as depicted in Figure 5.6. The main difference from the no-stall approach

is the use of a single (modified) integer builder, as well as the FIFOs and respective

controllers highlighted in dark grey. As a data chunk is received, the number of integers

it contains is computed, and that many cycles are spent processing it, prior to moving

onto the next chunk. Therefore, wire speed throughput is not maintained, and a FIFO

(with corresponding controller FSM) is inserted between the (modified) integer builder

and the delimiter insertion pipelines. A back pressure signal is propagated from that

FIFO to the controller of another FIFO at the input of the decompression block, with

the goal of avoiding dropping compressed data chunks.

152

Figure 5.6: Overview of a decoder with a peak throughput of one integer per cycle.
The main difference from the no-stall approach is the use of a single (modified) integer
builder, as well as the FIFOs and respective controllers highlighted in dark grey. Back
pressure is needed in between FIFOs to avoid dropping compressed data chunks. c© 2013
IEEE.

This architecture is presented and studied as it requires less resources than a

no-stall decoder accepting similar-sized input chunks; furthermore, it outperforms the

bit-serial implementation (the only implementation in the literature with no assumptions

on the compressed stream).

This one-integer-per-cycle architecture is mainly useful when the remainder size

k is comparable to N. For instance, the one-integer-per-cycle decoder assuming chunks

of size N uses less resources than a similar no-stall due to the fewer integer builders.

The minimum throughput offered by the one-integer-per-cycle decoder is comparable

to that of a no-stall accepting chunks of size k ; and depending on the dataset, the

one-integer-per-cycle could provide higher effective throughput than the latter.

153

(a) (b)

Figure 5.7: Resource utilization (a) and throughput (b) of the hardware decoders are
shown, targeting a Xilinx V6LX240T FPGA, with k=3. The naive bit-serial implemen-
tation is considered for comparison purposes. The no-stall decoder processing 32 bits
per cycle occupies only 10% of the (mid- to low-sized) FPGA, and achieves a 7 Gbps
throughput. c© 2013 IEEE.

5.4.4 Decoder Generator

A (C++) tool has been developed to generate the HDL of the decompression

pipeline, using certain parameter inputs. These include the input bit-width N (chunk

size); the GR parameter k (number of remainder bits); whether to make use of a no-

stall decoder, a single integer builder, or a bit-serial decoder (for testing purposes); the

option to further pipeline certain stages; the option to deploy a multi-integer per cycle

arbiter at the output, to match the bit-width of the interface of the block following the

decompression pipeline (RAM, PCIe, computational core, etc); as well as other knobs

useful to hardware designers. This (7000 lines of C++) tool was implemented from

scratch.

154

5.5 Experimental Evaluation

In this section, an experimental evaluation of the proposed hardware GR de-

coder is carried out. A performance study versus state-of-the-art software decoders is

further detailed.

5.5.1 Resource Utilization Study

The hardware decoders were tested on a Pico Computing M-501 board [66],

connected to a host CPU via PCIe. The M-501 board includes a Xilinx Virtex 6 LX240T

FPGA, which is assumed for the remainder of this study.

Figure 5.7(a) reports the resulting (post-place and route) resource utilization

of the no-stall decoders, on the target V6LX240T FPGA. The Xilinx ISE v14.4 tools are

used for synthesis/place and route, with the optimization goal set to speed (normal).

With the number of remainder bits k=3, each decoder is tailored for N, being

the number of bits processed per cycle. A bit-serial decoder is included for comparison

purposes.

The fully parallel no-stall architectures processing 8 and 16 bits per cycle oc-

cupy minimal FPGA resources (< 3%). Generally, as N is doubled, the resulting decoder

is around 4X larger, with the exception of No stall-128. In the case of the latter, we

suspect that the effort of the tools was higher for area, due to the size of the design

(potentially not fitting). Furthermore, this 128-bit pipeline cannot be used on the tar-

get FPGA, though it fits; this is because any logic connecting the FPGA to peripheral

devices (ethernet, DDR, PCIe, etc) would potentially require more than the remaining

resources.

155

Figure 5.8 shows the resource utilization of a (32 bit) no-stall hardware decoder

as the number of remainder bits k is varied. As k increases, the number of delimiter

insertion pipelines (k+1) directly increases; conversely, the number of stages in each

pipeline (
⌈

N
k+1

⌉
) directly decreases. Hence, the total number of delimiter insertion stages

remains constant (equal to N) as k varies. On the other hand, as k increases, the

number of integer builders (
⌈

N
k+1

⌉
) decreases, thus leading to a considerable drop in

resource utilization (up to 40%). The effect of varying k on the operational frequency

is marginal; as k increases, the critical paths in the delimiter insertion logic and integer

builder increase (data omitted for brevity).

Resource utilization of the one-integer-per-cycle decoders (Section 5.4.3) is

comparable to that of a no-stall decoder of the same bit-width, with large k assumed.

For instance, a 32-bit one-integer-per-cycle decoder occupies around 6.5% of the FPGA

logic, comparable to a 32-bit no-stall decoder with k=21. On the other hand, since a

single integer builder block is used, and because varying k has no effect on the number

of delimiter insertion stages, k has minimal impact on the overall resource utilization of

the one-integer-per-cycle decoders. Data has been omitted due to space limitations.

5.5.2 Performance Evaluation

In this section, throughput is measured at the input of the studied decoders.

In other words, it is measured as a function of the time required to process a compressed

document, regardless of the rate at which uncompressed integers are generated at the

output. The latter has been used (in addition to the former) as s metric in some studies

such as in [90].

156

Figure 5.8: The resource utilization of a (32 bit) no-stall hardware decoder is studied as
the number of remainder bits k is varied. Place and Route results are shown targeting
a Xilinx V6LX240T FPGA. As k increases, the number of delimiter insertion pipelines
directly increases, but the number of stages in each pipeline directly decreases. Hence,
the total number of delimiter insertion stages remains constant as k varies. On the
other hand, as k increases, the number of integer builders decreases, thus leading to a
(considerable) drop in resource utilization. c© 2013 IEEE.

The performance of the bit-serial and no-stall architecture hardware decom-

pression cores is studied, as shown in Figure 5.7(b) , where k=3. Throughput is measured

as a function of the operational frequency, and the number of bits processed per cycle;

throughput does not increase linearly with the number of bits processed per cycle, due

to the negative impact on the operational frequency of the decompression circuit.

The critical path of the no-stall decoders resides in the unary and remainder

extraction stage of the integer builder. Specifically, the extraction of the remainder

bits limits performance. Nonetheless, this block can be trivially pipelined further. The

next long wire is found in the delimiter insertion stage; the latter can also be triv-

ially pipelined, as it contains no control logic. Since the developed decoders achieve

good performance, further pipelining is not applied here, due to the added penalty on

resources.

157

Figure 5.9: Throughput (Gbps) achieved by software and hardware decoders, as the
number of remainder bits k is increased. The performance of two hardware decoders
is reported here, namely (HW) No-stall 32 and No-stall 64, each processing 32 and 64
bits per hardware cycle, respectively. PFOR is considered as it has shown the best
decompression performance in the literature [90]. TurboRice was introduced in [90] as a
new approach combining the compression ratio of GR with the performance of PFOR.
c© 2013 IEEE.

Note that the performance of the one-integer-per-cycle decoders depends on the

data set; here, the sustained throughput is bound by k+1 bits per cycle (the minimum

compressed integer size) and N (the number of bits read per cycle).

We next compare the performance of the proposed decoders to state-of-the-art

high performance CPU-based software decoders. We make use of the open source (C++)

software decoders described in [90]. Three software decoders are considered, namely (1)

Rice, a highly efficient implementation of the base GR coding; (2) TurboRice, a newly

proposed approach in [90], combining the compression ratio benefits of GR coding, with

the performance of the PFOR method; (3) PFOR, a compression mechanism that targets

blocks of integers at a time (hence neither bit- nor byte-granularity). Other CPU-based

approaches were studied (variable byte, S9, S16), and their performance was within the

range or Rice, TurboRice, and PFOR; hence, only the latter are reported here.

158

All CPU-based approaches were ran on a CentOS 5 server with an Intel Xeon

processor running at 2.53 GHz, with 8MB of L3 cache, and 36 GB of RAM. Synthetic

datasets containing 500 million integers each were generated, while varying the range of

the integers (hence k). A large set of integers is assumed in order to ensure that steady-

state performance is measured. Throughput is measured as a function of the wall-clock

time, such that the compressed and resulting uncompressed data reside in the CPU

RAM. Moreover, throughput is measured as a function of the size of the compressed

data, respective to each software approach.

Figure 5.9 shows the throughput (Gbps) achieved by software and hardware

decoders, as the number of remainder bits k is increased. The performance of two

hardware decoders is reported here, namely (HW) No-stall 32 and No-stall 64. As

discussed earlier, varying k has marginal impact on the performance of the hardware

decoders. On the other hand, CPU-based approaches perform better as k increases.

As k is increased from 3 to 15, the throughput of the CPU approaches increases by

an average of 4X. This is because the implementation of the CPU-based approaches

processes encoded data 4 bytes at a time (one integer). As the remainder size increases,

the number of (individual) unary bits to be processed per 4 bytes decreases. Nonetheless,

data to be compressed by GR is generally small, and large remainder values are not

assumed.

The proposed no-stall 32 and 64 architectures provide a higher throughput than

PFOR (average of 3X and 4.7X speedup respectively), as well as TurboRice (average of

6.8X and 10.4X speedup respectively). Furthermore, the only software approach that

operates on unmodified GR data is Rice, where the no-stall 32 and 64 architectures are

respectively up to 52X and 79X faster, as well as respectively 34X and 51.5X faster on

average.

159

5.6 Conclusions

A novel highly-parallel hardware core capable of decompressing streams of

Golomb-Rice-coded integers at wire speed (no-stall) with constant throughput is pre-

sented, operating on raw unmodified GR data. To the best of our knowledge, hardware

and software (CPU-based) GR decoders assuming unmodified GR data operate bit-

serially on the compressed stream, which highly bounds the achievable decompression

speeds. Hence, even though GR offers high compression ratios, other approaches are

preferred due to the gap in decompression performance. The presented decoder, capable

of processing several bytes per cycle, is shown to outperform an efficient GR CPU-based

implementation by up to 52X, while utilizing 10% of resources available on a Xilinx

V6LX240T FPGA. Furthermore, when operating on 64 bits per cycle, the presented

decoder provides average speedups of 4.7X and 10.4X when respectively compared to a

software implementation of the high-performance PFOR and TurboRice de/compression

methods.

160

Chapter 6

Conclusions

Due to their relative ease of use, general purpose processors are commonly fa-

vored at the heart of many computational platforms. These processors are deployed in

environments with varying requirements, ranging from personal electronics, to game con-

soles and up to server-grade machines. General purpose CPUs follow the Von-Neumann

model, and execute instructions sequentially. Furthermore, performance does not al-

ways linearly scale in multi-processor environments, mostly due to the challenges of

data sharing across cores. As it is non-trivial for these CPUs to satisfy the increasing

time-critical demands of several applications, they are often coupled with application-

or domain-specific parallel accelerators, such as Graphics Processing Units (GPUs) and

Field Programmable Gate Arrays (FPGAs), which strive given a certain class of instruc-

tions and memory access patterns.

This dissertation proposes the use of hardware accelerators such as Field Pro-

grammable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs) as a substitute

or co-processor to general purpose CPUs, with a focus on database applications, where

161

large amounts of data are queried in a time-critical manner. Specifically, the hardware

acceleration of four applications is studied, namely:

• XML Path Filtering: This dissertation examines how to exploit the parallelism

found in XPath filtering systems using accelerators. By converting XPath expres-

sions into custom stacks, our architecture is the first providing support for complex

XPath structural constructs, such as parent-child and ancestor descendant rela-

tions, whilst allowing wildcarding and recursion. A novel method for matching

user profiles that supports dynamic query updates using a programmable FPGA

is presented. This is in addition to the GPU-based filtering based on the presented

filtering algorithm. An exhaustive performance evaluation of all accelerators is

provided with comparison to state-of-the-art software approaches.

Using an incoming XML stream, thousands of user profiles are matched simulta-

neously with minimal memory footprint by stack-based matching engines. This is

in contrast to conventional approaches bound by the sequential aspect of software

computing, associated with a large memory footprint (over 7 GB).

On average, using customized circuitry on FPGAs yields speedups of up to 2.5

orders of magnitude, whereas using GPUs provides up to 6.6X speedup, and in

some cases slowdown, versus software running on a single CPU core. The FPGA

approaches are up to 31X faster than software running on 12 CPU core. Fi-

nally, a novel approach for supporting on-the-fly query updates on the FPGA was

presented, resulting in an average of 7X more resources than the custom FPGA

approach.

• XML Twig Filtering: In this work, we present a novel FPGA-based architec-

ture to address the XML twig filtering problem. Using custom stack generation,

162

our architecture is the first providing full support for twig pattern matching, in-

cluding parent-child (‘/’) and ancestor-descendant (‘//’) axes, wildcard nodes, and

accounting for recursion in the XML document and queries. In addition to being

able to match thousands all queries in parallel, through dynamic programming on

FPGAs, we exploit parallelism by simultaneously matching for all nodes in the

query.

We were able to show that holistic twig matching on the FPGA achieves an average

of 175MB/s throughput for 1K queries. Compared to state of the art software ap-

proaches, the holistic FPGA-based approach yields up to three orders of magnitude

throughput increase. We note that the performance of the software approaches do

not scale when the size of the input stream increases, and as the queries are more

complex, while the throughput of the FPGA-based approach is constant.

Furthermore, we present a comparison of our holistic FPGA-based approach against

path-based and pair-based approaches, which break twigs into root-to-leaf paths

and parent-child/ancestor-descendant pairs, respectively. We compare the various

approaches based on the true work per unit area on the FPGA. Our comprehensive

experiments on the different granularities of query matching considers throughput,

area utilization and false positives generated by the approaches, thus allowing the

selection of the most suited approach for the application on hand.

• Querying Spatio-Temporal Databases: The wide and increasing availability

of collected data in the form of trajectory has lead to research advances in be-

havioral aspects of the monitored subjects. Using trajectory data harvested by

devices, such as GPS and mobile devices, complex pattern queries can be posed to

select trajectories based on specific events of interest. However, as the complexity

163

of the posed queries increases, so do computational requirements, which are not

easily met using traditional CPU-based software platforms.

In this work, the first proof-of-concept study on FPGA-based architectures for

matching variable-enhanced complex patterns is presented, with a focus on stream-

mode (single pass) filtering. A tool for automatically generating hardware con-

structs using a set of queries is presented, abstracting away ramifications of hard-

ware code development and deployment. A thorough design space exploration of

the hardware architectures shows that the presented solution offers good scalabil-

ity, fitting thousands of query matching engines on a Xilinx V6LX240T FPGA, a

mid- to low-size FPGA. Increasing the number of variables and wildcards is shown

to have linear effect on the resulting circuit size, and negligible on performance.

That is unlike CPU-based solutions, where performance is greatly affected from

such query characteristics.

When handling queries with (a) no variables, (b) one variable, or (c) no wildcards

with two or more variables, the proposed hardware architecture is able to process

the trajectory data in a single pass. When two or more variables are used alongside

wildcards, the proposed solution will result in false positives, though these are

minimal in practice. Nonetheless, a no-false-positive solution is proposed, though

being limited in scalability.

As part of our future work, we will be enhancing the proposed framework to

allow online query updates. The deployed generic query engines would support

”any” query structure and node values. A stream of bits forwarded to the FPGA

would program the connections between deployed query nodes. This approach

164

should not be confused with Dynamic Partial Reconfiguration (DPR), where the

bit configuration of the FPGA itself is updated.

• Golomb-Rice Integer Decompression: A novel highly-parallel hardware core

capable of decompressing streams of Golomb-Rice-coded integers at wire speed

(no-stall) with constant throughput is presented, operating on raw unmodified GR

data. To the best of our knowledge, hardware and software (CPU-based) GR

decoders assuming unmodified GR data operate bit-serially on the compressed

stream, which highly bounds the achievable decompression speeds. Hence, even

though GR offers high compression ratios, other approaches are preferred due to

the gap in decompression performance. The presented decoder, capable of pro-

cessing several bytes per cycle, is shown to outperform an efficient GR CPU-based

implementation by up to 52X, while utilizing 10% of resources available on a Xil-

inx V6LX240T FPGA. Furthermore, when operating on 64 bits per cycle, the

presented decoder provides average speedups of 4.7X and 10.4X when respectively

compared to a software implementation of the high-performance PFOR and Tur-

boRice de/compression methods.

165

Bibliography

[1] Chorochronos. http://www.chorochronos.org/, 2013.

[2] Shurug Al-Khalifa, H.V. Jagadish, Nick Kodus, Jignesh Patel, Divesh Srivastava,
and Yuqing Wu. Structural Joins: A Primitive for Efficient XML Query Pattern
Matching. In ICDE: Proceedings of the 18th International Conference on Data
Engineering, page 141, Washington, DC, USA, 2002. IEEE Computer Society.

[3] Mehmet Altinel and Michael J. Franklin. Efficient Filtering of XML Documents
for Selective Dissemination of Information. In VLDB: Proc. of the 26th Intl. Conf.
on Very Large Data Bases, pages 53–64, San Francisco, CA, USA, 2000. Morgan
Kaufmann Publishers Inc.

[4] Naiyong K. Ao, Fan Zhang, Di Wu, Douglas Stones, Gang Wang, Xiaoguang Liu,
Jing Liu, and Lin Sheng. Efficient Parallel Lists Intersection and Index Compression
Algorithms using Graphics Processing Units. In VLDB: Very Large Databases,
2011.

[5] Mahmoud Attia Sakr and Ralf Hartmut Güting. Spatiotemporal pattern queries in
secondo. In Proc. of the Int’l Conf. on Advances in Spatial and Temporal Databases
(SSTD), pages 422–426. Springer, 2009.

[6] Denilson Barbosa, Alberto Mendelzon, John Keenleyside, and Kelly Lyons. ToX-
gene: a Template-Based Data Generator for XML. In SIGMOD: Proc. of the ACM
SIGMOD Intl. Conf. on Management of Data, pages 616–616, New York, NY, USA,
2002. ACM.

[7] LV Batista, LC Carvalho, and EUK Melcher. Compression of ECG Signals based
on Optimum Quantization Of Discrete Cosine Transform Coefficients and Golomb-
Rice Coding. In Engineering in Medicine and Biology Society, 2003. Proc. of the
25th Annual Int. Conf. of the IEEE, volume 3, pages 2647–2650. IEEE, 2003.

[8] Block RAM v1.00a. http://www.xilinx.com.

[9] K. Selçuk Candan, Wang-Pin Hsiung, Songting Chen, Junichi Tatemura, and Di-
vyakant Agrawal. AFilter: Adaptable XML Filtering with Prefix-Caching Suffix-
Clustering. In VLDB: Proceedings of the 32nd international conference on Very
large data bases, pages 559–570. VLDB Endowment, 2006.

[10] Jonathan Cazalas and Ratan Guha. GEDS: GPU Execution of Continuous Queries
on Spatio-Temporal Data Streams. In IEEE/IFIP 8th Int’l Conf. on Embedded and
Ubiquitous Computing (EUC), pages 112–119, 2010.

166

[11] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient Filtering of XML
Documents with XPath Expressions. The VLDB Journal, 11(4):354–379, 2002.

[12] J. Chen, J. Ma, Y. Zhang, and X. Shi. ECG Compression based on Wavelet Trans-
form and Golomb Coding. Electronics Letters, 42(6):322–324, 2006.

[13] C.R. Clark and D.E. Schimmel. Efficient Reconfigurable Logic Circuits for Match-
ing Complex Network Intrusion Detection Patterns. In 13th Intl. Conf. on Field
Programmable Logic and Applications, pages 956–959. Springer, Lisbon, 2003.

[14] D.J. Craft. A Fast Hardware Data Compression Algorithm and Some Algorithmic
Extensions. IBM Journal of Research and Development, 42(6):733–746, 1998.

[15] Zefu Dai, Nick Ni, and Jianwen Zhu. A 1 Cycle-Per-Byte XML Parsing Accelerator.
In FPGA: Proc. of the 18th Intl. Symposium on FPGAs, pages 199–208, New York,
NY, USA, 2010. ACM.

[16] Yanlei Diao, Mehmet Altinel, Michael J. Franklin, Hao Zhang, and Peter Fischer.
Path Sharing and Predicate Evaluation for High-Performance XML Filtering. ACM
Trans. Database Syst., 28(4):467–516, 2003.

[17] W3.org on DOM. http://www.w3.org/DOM.

[18] Cédric du Mouza, Philippe Rigaux, and Michel Scholl. Efficient evaluation of pa-
rameterized pattern queries. In Prov. of the ACM Int’l Conf. on Information and
Knowledge Management (CIKM), pages 728–735, 2005.

[19] Fadi El-Hassan and Dan Ionescu. SCBXP: An Efficient Hardware-Based XML
Parsing Technique. In SPL: 5th Southern Conference on Programmable Logic, pages
45–50. IEEE, April 2009.

[20] M. Erwig and M. Schneider. Spatio-temporal predicates. IEEE TKDE, pages 881–
901, 2002.

[21] Joshua Fender and Jonathan Rose. A High-Speed Ray Tracing Engine Built on a
Field-Programmable System. In IEEE Int’l Conf. on Field-Programmable Technol-
ogy (FPT), pages 188–195, 2003.

[22] Free Lossless Audio Codec. http://www.xiph.org/flac.

[23] S. W. Golomb. Run-Length Encodings. Information Theory, IEEE Trans. on,
12(3):399, 1966.

[24] Gang Gou and Rada Chirkova. Efficient Algorithms for Evaluating XPath Over
Streams. In SIGMOD: of the 2007 ACM SIGMOD international conference on
Management of data, pages 269–280, New York, NY, USA, 2007. ACM.

[25] Naga K. Govindaraju, Brandon Lloyd, Yuri Dotsenko, Burton Smith, and John
Manferdelli. High Performance Discrete Fourier Transforms on Graphics Processors.
In Proc. of the 2008 ACM/IEEE Conf. on Supercomputing, SC ’08, pages 2:1–2:12,
Piscataway, NJ, USA, 2008. IEEE Press.

167

[26] Naga K. Govindaraju, Brandon Lloyd, Wei Wang, Ming Lin, and Dinesh Manocha.
Fast Computation of Database Operations Using Graphics Processors. In Proc. of
the 2004 ACM SIGMOD Intl. Conf. on Management of data, SIGMOD ’04, pages
215–226, New York, NY, USA, 2004. ACM.

[27] Todd J. Green, Ashish Gupta, Gerome Miklau, Makoto Onizuka, and Dan Suciu.
Processing XML Streams with Deterministic Automata and Stream Indexes. ACM
Trans. Database Syst., 29(4):752–788, 2004.

[28] Ashish Kumar Gupta and Dan Suciu. Stream Processing of XPath Queries with
Predicates. In SIGMOD: Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 419–430, New York, NY, USA, 2003.
ACM.

[29] Marios Hadjieleftheriou, George Kollios, Petko Bakalov, and Vassilis Tsotras. Com-
plex spatio-temporal pattern queries. In Proc. of the Intl. Conf. on Very Large Data
Bases (VLDB), pages 877–888, 2005.

[30] Marios Hadjieleftheriou, George Kollios, Vassilis Tsotras, and Dimitrios Gunopulos.
Indexing spatiotemporal archives. VLDB J., pages 143–164, 2006.

[31] Bingsheng He, Qiong Luo, and Byron Choi. Cache-Conscious Automata for XML
Filtering. IEEE Trans. on Knowl. and Data Eng., 18(12):1629–1644, 2006.

[32] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong Luo, and
Pedro Sander. Relational Joins on Graphics Processors. In Proc. of the 2008 ACM
SIGMOD Intl. Conf. on Management of data, SIGMOD ’08, pages 511–524, New
York, NY, USA, 2008. ACM.

[33] Paul S Heckbert. Graphics Gems IV, volume 4. Morgan Kaufmann, 1994.

[34] P.G. Howard and J.S. Vitter. Fast and Efficient Lossless Image Compression. In
Data Compression Conf., 1993. DCC’93., pages 351–360. IEEE, 1993.

[35] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony Nguyen,
Tim Kaldewey, Victor Lee, Scott Brandt, and Pradeep Dubey. FAST: Fast Architec-
ture Sensitive Tree Search on Modern CPUs and GPUs. In SIGMOD: Proceedings
of the 2010 ACM SIGMOD international conference on Management of data, 2010.

[36] H.S. Kim, J. Lee, H. Kim, S. Kang, and W.C. Park. A Lossless Color Image Com-
pression Architecture Using a Parallel Golomb-Rice Hardware CODEC. Circuits
and Systems for Video Technology, IEEE Trans. on, 21(11):1581–1587, 2011.

[37] Sung-Soo Kim, Seung-Woo Nam, and In-Ho Lee. Fast Ray-Triangle Intersection
Computation Using Reconfigurable Hardware. Computer Vision/Computer Graph-
ics Collaboration Techniques, pages 70–81, 2007.

[38] D. Knuth, J. Morris, and V. Pratt. Fast pattern matching in strings. SIAM J. on
Computing, 1977.

[39] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and Jonathan
Turner. Algorithms to Accelerate Multiple Regular Expressions Matching for Deep
Packet Inspection. In ACM SIGCOMM Computer Communication Review, vol-
ume 36, pages 339–350, 2006.

168

[40] Joonho Kwon, Praveen Rao, Bongki Moon, and Sukho Lee. FiST: Scalable XML
Document Filtering by Sequencing Twig Patterns. In VLDB: Proc. of the 31st Intl.
Conf. on Very Large Data Bases, pages 217–228. VLDB Endowment, 2005.

[41] T.Y. Lee. A New Frame-Recompression Algorithm And Its Hardware Design For
MPEG-2 Video Decoders. Circuits and Systems for Video Technology, IEEE Trans.
on, 13(6):529–534, 2003.

[42] Y. Lee, C.E. Rhee, and H.J. Lee. A New Frame Recompression Algorithm Inte-
grated with H.264 Video Compression. In Circuits and Systems, 2007. ISCAS 2007.
IEEE Int. Symp. on, pages 1621–1624. IEEE, 2007.

[43] W.D. Leon-Salas, S. Balkir, K. Sayood, and M.W. Hoffman. An Analog-to-Digital
Converter with Golomb-Rice Output Codes. Circuits and Systems II: Express
Briefs, IEEE Trans. on, 53(4):278–282, 2006.

[44] T. Liebchen and Y.A. Reznik. MPEG-4 ALS: An Emerging Standard for Lossless
Audio Coding. In Data Compression Conf., 2004. Proc. DCC 2004, pages 439–448.
IEEE, 2004.

[45] M.D. Lieberman, J. Sankaranarayanan, and H. Samet. A Fast Similarity Join
Algorithm Using Graphics Processing Units. In Data Engineering, 2008. ICDE
2008. IEEE 24th Intl. Conf. on, pages 1111–1120. IEEE, 2008.

[46] Bertram Ludäscher, Pratik Mukhopadhyay, and Yannis Papakonstantinou. A
Transducer-Based XML Query Processor. In VLDB: Proceedings of the 28th inter-
national conference on Very Large Data Bases, pages 227–238. VLDB Endowment,
2002.

[47] J. V. Lunteren, T. Engbersen, J. Bostian, B. Carey, and C. Larsson. XML Acceler-
ator Engine. In 1st Intl. Workshop on High Performance XML Processing. Springer
Berlin / Heidelberg, 2004.

[48] A.K. Mahapatra and S. Biswas. Inverted Indexes: Types and Techniques. Int.
Journal of Computer Science, 8(1):384–392, 2011.

[49] H.S. Malvar. Adaptive Run-Length/Golomb-Rice Encoding of Quantized General-
ized Gaussian Sources with Unknown Statistics. In Data Compression Conf., 2006.
DCC 2006. Proceedings, pages 23–32. IEEE, 2006.

[50] M.M. Meira, J.A.G. de Lima, and L.V. Batista. An FPGA Implementation of
a Lossless Electrocardiogram Compressor based on Prediction and Golomb-Rice
Coding. In Proc. V Workshop de Informática Médica, 2005.

[51] N. Memon. Adaptive Coding of DCT Coefficients by Golomb-Rice Codes. In Image
Processing, 1998. ICIP 98. Proc. 1998 Int. Conf. on, volume 1, pages 516–520.
IEEE, 1998.

[52] Abhishek Mitra, Walid Najjar, and Laxmi Bhuyan. Compiling PCRE to FPGA for
Accelerating SNORT IDS. In Proc. of the ACM/IEEE Symp. on Architecture for
Networking and Communications Systems (ANCS), pages 127–136, 2007.

169

[53] Abhishek Mitra, Marcos R. Vieira, Petko Bakalov, Walid Najjar, and Vassilis J.
Tsotras. Boosting XML Filtering Through a Scalable FPGA-based Architecture.
In CIDR: 4th Conference on Innovative Data Systems Research. ACM, 2009.

[54] Hoda Mokhtar, Jianwen Su, and Oscar Ibarra. On moving object queries. In Proc.
of the ACM Symp. on Principles of Database Systems (PODS), pages 188–198,
2002.

[55] Mirella M. Moro, Petko Bakalov, and Vassilis J. Tsotras. Early Profile Pruning on
XML-Aware Publish-Subscribe Systems. In VLDB: Proc. of the 33rd Intl. Conf.
on Very Large Data Bases, pages 866–877. VLDB Endowment, 2007.

[56] R. Moussalli, R. Halstead, M. Salloum, W. Najjar, and V.J. Tsotras. Efficient XML
path filtering using GPUs. In ADMS: Workshop on Accelerating Data Management
Systems, 2011.

[57] R. Moussalli, M. Salloum, W. Najjar, and V.J. Tsotras. Massively Parallel XML
Twig Filtering Using Dynamic Programming on FPGAs. In ICDE: 2011 IEEE 27th
International Conference on Data Engineering. IEEE, 2011.

[58] Roger Moussalli, Walid Najjar, Xi Luo, and Amna Khan. A High Throughput No-
Stall Golomb-Rice Hardware Decoder. In Field-Programmable Custom Computing
Machines (FCCM), 2013 IEEE 21st Annual Intl. Symp. on. IEEE, 2013.

[59] Roger Moussalli, Mariam Salloum, Walid Najjar, and Vassilis Tsotras. Accelerating
XML Query Matching Through Custom Stack Generation on FPGAs. In HiPEAC:
High Performance Embedded Architectures and Compilers, pages 141–155. Springer
Berlin / Heidelberg, 2010.

[60] Cédric Mouza and Philippe Rigaux. Mobility patterns. Geoinformatica, 9(4):297–
319, 2005.

[61] Rene Mueller, Jens Teubner, and Gustavo Alonso. Streams on Wires: a Query
Compiler for FPGAs. Proc. VLDB Endow., 2(1):229–240, 2009.

[62] Netezza. http://www.ibm.com/software/data/netezza/.

[63] J. Núñez, C. Feregrino, S. Jones, and S. Bateman. X-MatchPRO: A ProASIC-
based 200 Mbytes/s full-duplex lossless data compressor. In Field-Programmable
Logic and Applications, pages 613–617. Springer, 2001.

[64] Feng Peng and Sudarshan S. Chawathe. XPath Queries on Streaming Data. In SIG-
MOD: Proceedings of the 2003 ACM SIGMOD international conference on Man-
agement of data, pages 431–442, New York, NY, USA, 2003. ACM.

[65] D. Pfoser, C. Jensen, and Y. Theodoridis. Novel approaches in query processing for
moving object trajectories. In Proc. of the Intl. Conf. on Very Large Data Bases
(VLDB), pages 395–406, 2000.

[66] Pico Computing M-Series Modules. http://www.picocomputing.com/m series.html.

[67] Michal Piorkowski, Natasa Sarafijanovoc-Djukic, and Matthias Grossglauser. A
Parsimonious Model of Mobile Partitioned Networks with Clustering. In The
First International Conference on COMmunication Systems and NETworkS (COM-
SNETS), January 2009.

170

[68] Mohammad Sadoghi, Martin Labrecque, Harsh Singh, Warren Shum, and Hans-
Amo Jacobsen. Efficient Event Processing Through Reconfigurable Hardware for
Algorithmic Trading. In VLDB: Intl. Conf. on Very Large Data Bases (VLDB),
2010.

[69] Mariam Salloum and V.J. Tsotras. Efficient and Scalable Sequence-Based XML Fil-
tering System. In WebDB: Proc. of 12th Intl. Workshop on the Web and Databases.
ACM, 2009.

[70] Simple API for XML. http://sax.sourceforge.net.

[71] Jörg Schmittler, Sven Woop, Daniel Wagner, Wolfgang J Paul, and Philipp
Slusallek. Realtime Ray Tracing of Dynamic Scenes on an FPGA Chip. In Proc.
of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware
(HWWS), pages 95–106, 2004.

[72] F. Scholer, H.E. Williams, J. Yiannis, and J. Zobel. Compression of Inverted
Indexes for Fast Query Evaluation. In Proceedings of the 25th Annual Int. ACM
SIGIR Conf. on Research and Development in Information Retrieval, pages 222–
229. ACM, 2002.

[73] Reetinder Sidhu and Viktor K Prasanna. Fast regular expression matching using
fpgas. In Proc. of the the Annual IEEE Symp. on Field-Programmable Custom
Computing Machines (FCCM), pages 227–238, 2001.

[74] B. Sukhwani, B. Abali, B. Brezzo, and S. Asaad. High-Throughput, Lossless
Data Compresion on FPGAs. In Field-Programmable Custom Computing Machines
(FCCM), 2011 IEEE 19th Annual Int. Symp. on, pages 113–116. IEEE, 2011.

[75] Bharat Sukhwani, Hong Min, Mathew Thoennes, Parijat Dube, Balakrishna Iyer,
Bernard Brezzo, Donna Dillenberger, and Sameh Asaad. Database analytics accel-
eration using FPGAs. In Proceedings of the 21st Intl. Conf. on Parallel Architectures
and Compilation Techniques, pages 411–420. ACM, 2012.

[76] Y. Tao and D. Papadias. MV3R-Tree: A spatio-temporal access method for times-
tamp and interval queries. In Proc. of the Intl. Conf. on Very Large Data Bases
(VLDB), pages 431–440, 2001.

[77] Y. Tao, D. Papadias, and Q. Shen. Continuous nearest neighbor search. In Proc.
of the Intl. Conf. on Very Large Data Bases (VLDB), pages 287–298, 2002.

[78] Jens Teubner, René Müller, and Gustavo Alonso. FPGA Acceleration for the Fre-
quent Item Problem. In ICDE: 26th International Conference on Data Engineering
Conference, pages 669–680, 2010.

[79] T.H. Tsai and Y.H. Lee. A 6.4 Gbit/s Embedded Compression Codec for Memory-
Efficient Applications on Advanced-HD Specification. Circuits and Systems for
Video Technology, IEEE Trans. on, 20(10):1277–1291, 2010.

[80] University of Washington XML Repository. http://www.cs.washington.edu/re-
search/xmldatasets.

171

[81] Marcos R. Vieira, Petko Bakalov, and Vassilis J. Tsotras. Querying Trajectories
Using Flexible Patterns. In Proc. of the 13th Int. Conf. on Extending Database
Technology (EDBT), pages 406–417, 2010.

[82] Marcos R. Vieira, Petko Bakalov, and Vassilis J. Tsotras. FlexTrack: a System
for Querying Flexible Patterns in Trajectory Databases. In Proc. of the Int’l Conf.
on Advances in Spatial and Temporal Databases (SSTD), pages 475–480. Springer,
2011.

[83] M.J. Weinberger, G. Seroussi, and G. Sapiro. LOCO-I: A Low Complexity, Context-
Based, Lossless Image Compression Algorithm. In Data Compression Conf., 1996.
DCC’96. Proc., pages 140–149. IEEE, 1996.

[84] TA Welch. A Technique for High-Performance Data Compression. Computers,
IEEE Trans. on, 17(6):8–19, 1984.

[85] Louis Woods, Jens Teubner, and Gustavo Alonso. Complex Event Detection at
Wire Speed with FPGAs. In VLDB: Proc. of the 2010 Very Large Data Bases
(VLDB), 2010.

[86] XILINX DELIVERS 65nm VIRTEX-5 LX330. http://www.xilinx.com.

[87] The XML Benchmark Projcet. http://www.xml-benchmark.org.

[88] XML Path Language Version 1.0. http://www.w3.org/TR/xpath.

[89] H. Yan, S. Ding, and T. Suel. Inverted Index Compression and Query Processing
with Optimized Document Ordering. In Proc. of the 18th Int. Conf. on World Wide
Web, pages 401–410. ACM, 2009.

[90] J. Zhang, X. Long, and T. Suel. Performance of Compressed Inverted List Caching
in Search Engines. In Proc. of the 17th Int. Conf. on World Wide Web, pages
387–396. ACM, 2008.

[91] Yu Zheng, Yukun Chen, Xing Xie, and Wei-Ying Ma. Geolife2. 0: a location-based
social networking service. In Mobile Data Management: Systems, Services and
Middleware, 2009. MDM’09. Tenth International Conference on, pages 357–358.
IEEE, 2009.

[92] Yu Zheng, Xing Xie, and Wei-Ying Ma. Geolife: A collaborative social network-
ing service among user, location and trajectory. IEEE Data Engineering Bulletin,
33(2):32–40, 2010.

[93] J. Zobel and A. Moffat. Inverted Files for Text Search Engines. ACM Computing
Surveys (CSUR), 38(2):6, 2006.

172

Appendix A

GPU Architectures and

Programming Model

Graphics Processing Units (GPUs) are emerging as computational platforms

comprising of several hundreds of simple processors operating in a parallel fashion. While

intended to be used solely for graphic applications, they are generally employed to

accelerate solving general purpose problems of SIMD (Single Instruction Multiple Data)

type, thus referred to as General Purpose GPUs (GPGPUs).

GPGPUs are used as co-processors to which the main CPU passes a stream of

data; the GPGPU then processes the data with minimal memory footprint, and returns

the processing results to the CPU.

Figure A.1 shows a high level view of a generic GPU architecture; note that we

are making use of the NVIDIA CUDA model and terminology. Streaming Processors

(SPs) are simple processor cores that are clustered. Each cluster of SPs is referred to as

a Streaming Multiprocessor (SM), such that all SPs within one SM execute instructions

173

Figure A.1: High-level GPU architecture overview.

from the same memory block. When used with SIMD applications, all SPs on the GPU

perform one common operation (at a time) on thousands of data elements.

Furthermore, all SPs within one SM communicate using a low latency shared

memory structure. The SM also comprises of a constant cache, being a low-latency

read-only memory, caching a (limited by size) read-only portion of the device global

memory. The constant cache can be used for broadcast-type read operations, where

all SPs require reading the same element from global memory. Finally, communication

across SPs is achieved through the high latency global memory.

The programmer specifies the kernel that will be running on each of the

SPs; however, when spawning the kernels onto the GPU, more instances of the ker-

nel (threads) can be executed than the number of physical processing elements (SPs).

The GPU manages switching threads on and off. Moreover, the number of physical

cores is abstracted away from the programmer, and is only used at runtime.

174

Finally, the programmer specifies the number of instances of the kernel that

are grouped to execute on a single SM. This group of kernels is referred to as the block.

As the block size grows, the amount of shared memory available per block is reduced,

and contention to computing resources increases; on the other hand, as the block size

shrinks, the computational resources are under-utilized. The block size is determined

per application basis, as to maximize occupancy (utilization).

175

Appendix B

Overview of FPGAs

Field Programmable Gate Arrays (FPGAs) are integrated circuits consisting

of up to hundreds of thousands of small (in the order of 3,4-input) memory blocks and

numerous configurable interconnects. Each N-input memory block, also known as a Look

Up Table (LUT), can be used to implement any N-input boolean function. Figure B.1

shows a 2-input LUT configured as an AND gate. When combined, LUTs can represent

more complex logic functions. We show in Figure B.2 the implementation of the 3-

input logic function f(A,B,C) = (A AND B) OR C, using two 2-input LUTs. For the

purpose of more generic platforms, this is achieved through the use of the configurable

interconnects, also known as switch matrices. Furthermore, the output of LUTs can be

programmed to be connected to flip-flops, which helps saving state and implementing

synchronous logic elements.

In addition to the programmable elements, hard-wired components are added

to FPGAs, such as embedded memory blocks and floating point cores. Hard-wired

components operate at a higher clock frequency than their soft-logic counterparts, while

176

Figure B.1: Implementing a 2-input AND gate using a 2-input LUT.

Figure B.2: Implementing f(A,B,C)=(A AND B) OR C, a 3-input boolean function,
using two 2-input LUTs.

occupying a fraction of the resources. These are typically utilized by several classes of

applications, and are simply bypassed if not used.

As hardware designers express the functionality of their circuit in a hardware

descriptive language (VHDL, Verilog, etc), their code (description) is passed through

complex tools that will analyze the user’s circuit description, optimize it for the FPGA

at hand, and map it to the available hardware resources. The bit file is now the list of

initialization bits of all LUTs and configuration bits of switch matrices.

The performance advantages of such platforms arise from the ability to exe-

cute thousands of computations in parallel, relieving the application at hand from the

sequential limitations of software execution on Von-Neumann based platforms. The pro-

cessor “instructions” are the logic functions processing the input data. Another strong

advantage of FPGAs is the ability to process streamed data at wire speed, thus result-

ing in a minimal memory footprint. The aforementioned advantages are shared with

Application Specific Integrated Circuits (ASIC). FPGAs however can be reconfigured,

177

are more adaptable to changes in applications and specifications, and hence exhibit a

faster time to market. This comes at a slight cost in performance and a considerable

one in area, where one functional circuit would run faster on a tailored ASIC, and would

require fewer gates.

178

