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Abstract 
We propose a crowd sensing system to capture certain dynamics of public participation in a 
city. Crowd sensing systems (CSS) attempt to capture the opinions of local publics from web-
resources. We define our CSS using a spatially-situated social network graph where users 
along with different variables, such as time, location, social interaction, service usage, and 
human activities can be studied and used to identify experts or influential citizens who are 
relevant to municipal affairs. 

1. Introduction 
In the fields of engineering and the computational sciences, the term crowd sensing 
represents a popular area of research (Cardone et al. 2013). Similar to citizen sensing, urban 
sensing and participatory sensing, we broadly define crowd sensing systems (CSS) as being 
an integrated hardware and software architecture designed to collect user-generated content 
for a specified topic, issue or theme. In this paper, we introduce a portion of our conceptual 
CSS, which describes several social and spatial interactions within a local population (i.e., 
connections between individuals and locations of communities-of-interest), establishes place-
based topics across a city from user-generated content (e.g., geotagged posts from social 
media), and identifies various forms of activity across specific geographies (e.g., patterns of 
urban travel). The CSS combines methods of natural language processing, spatial analysis, 
and graph theory to create a data structure with possible value when used to inform local 
decision makers. 

Our work builds on smart city initiatives, data-science and Web 2.0 literature that seek to 
revise traditional forms of public participation (Cardone et al. 2013). In particular, these 
difficulties can be assuaged by integrating data-driven techniques that automatically extract 
“similar” information (i.e., topical pubic opinions) from user-generated content. 

2. Crowd Sensing Systems as Tripartite Network 
Public participation in municipal affairs is often seen as a product of stakeholders and interest 
groups, which are spatially distributed across a city. Choosing to model public participation 
digitally, requires representing relationships between structured and unstructured content, 
deriving explicit and implicit social interactions, and inferring frames of context through 
shared interests and co-location. Like other social networks, our CSS network graph (G) 
contains nodes and edges G = (N, E). The graph is further divided into three subgraphs 
containing unique node and edge types defined as U = (Un, Ue), C = (Cn, Ce) and T = (Tn, 
Te), where Un, Ue are nodes and edges of the user profiles in subgraph U; user-generated 
content forms the subgraph C consisting of nodes Cn and edges Ce; and a “geotopics” 
subgraph T contains spatially located nodes Tn with temporally weighed edges Te. These 
connected subgraphs as shown in Figure 1, can form spatially-situated networks constructed 
from what we call Social Signals (SocSigs, see below). SocSigs information contained in 
each of the connected sub-graphs include a user-network U (i.e., social-network among 
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citizens with ties representing relationships from social affiliations or topical/interest 
similarities), content-network C (i.e., unstructured text) and a topic-network T (i.e., content 
nodes derived from secondary data). This latter subgraph contains geographical ties to 
relevant locations within the city, as well as two extra sets of bridge edges representing 
semantic similarity to data in the content network and/or related to the interests of users in the 
user network. 

 
Figure 1 Example of CSS data-structure situated over Montreal, QC. Red nodes are 

Users in subgraph U, with content connections to subgraph C (blue) shown in orange, 
and aggregated ‘geotopic” nodes of T seen in yellow.  

 
All edges within a single sub-graph are undirected. Bridge edges connecting different sub-
graphs are defined as directed-edges so to limit the connectivity of G. Using both undirected 
and directed edges allows for calculating different network measures on specific graph 
components (De Meo et al. 2014). For example, network communities can be found either by 
using only connections in the U sub-graph or by including all “in-edges” to the content-graph 
C as available paths between users. A mixed-edge graph design containing undirected and 
directed edges should provide a network-structure that is sensitive to variances in interaction-
flows at both local and global levels (De Meo, Ferrara, Fiumara, & Provetti, 2014).  

2.1 Relevant Social Signals: A Balance of Context and Content 
SocSigs are informative signals that can directly or indirectly provide contextual meaning for 
interactions, relationships, and behaviours observed from user-generated content (Sheth 
2009; Golbeck 2013). We chose four SocSigs variables relevant to our efforts of capturing 
interests held by a local network members. The first is content, which contains unstructured 
text (e.g., social media posts and status updates). The second is users, who are seen as the 
producers and consumers of the content. We include available characteristics about them, as 
well as connections to other people and content (e.g., “friends” or “followers”, “Likes” or 
“Shares”). The third is space-time, which joins location and time attached to a collected 
dataset where geotagged content is collected at (x,y). In this instance, the locational content is 
time stamped with the time it is created. Fourth, is strength which includes the frequency of 
spatial and social connections among different users, their locations, and topics found in their 
content. 
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2.2 Citizen Centrality and Social Influence 
Centrality, in graph theory, is a measure of a node’s importance to the structure of a graph 
(Scott and Carrington 2011). Centrality has been used for identifying influential people (i.e., 
opinion leaders) in various kinds of social networks (Golbeck 2013). It is relevant to public 
participation because participatory activities can be understood, in part, as multiple actors 
interacting in relational systems. The centrality of the interactions about a user-node within a 
network resembles concepts found in participation literature like “opinion-leaders”, 
gatekeepers, and stakeholders (Dubois and Gaffney 2014). 

Centrality measures within our CSS represent the importance of a node in each of the 
sub-graphs without the inclusion of bridge links to other graph components. We use centrality 
to find salient content, users, and locations. The more central a node is, the more it can be 
said to represent important topics or people relative to other topics and people. Node 
influence determines how a combination of connections both within a sub-graph and to other 
components represent the leading topics important to citizens and opinion-leaders (Dubois 
and Gaffney 2014), and provides a means to estimate how the opinions of one user may 
affect the views of others. 

2.3 Community Detection and Description 
Community is often viewed as possessing a certain physicality, for example, a jurisdictional 
bounding of city blocks that comprise a neighbourhood. Individuals in this CSS can become 
community members by expressing shared interests, behaviours, and affiliations throughout 
the evolution of a network (e.g., increased social similarity between content or co-location 
patterns). In social network analysis, a community is a set of nodes with strong connections 
and that contain frequent interactions between members (Fortunato 2010). Community 
detection in our CSS attempts to decompose a complex network into groups of nodes and 
edges that are densely connected. Using either direct edge-connections or by including 
similarity measures between graph-components, grouped elements are considered to have 
similar interests including topics, activities, and locations (Clauset, Newman, and Moore 
2004). Communities can overlap if they comprise a threshold number of nodes or edges that 
are members of two or more communities. 

3. Conclusion 
Automatically connecting citizens and governments is a form of automated public 
participation, which can be provided by a CSS (Cardone et al. 2013). We see a CSS as a 
computational instrument, composed of computers, sensors, software and algorithms. The 
instrument can automatically harvest posts, locations, times, and connections among streams 
of citizen's data to derive insights on the public intent. This process aligns with a big data and 
smart city vision as data provide access to localized “Citizen Sensor Networks” to 
computationally facilitate public participation (Koch et al. 2013). Future work will be the 
critical investigation of these systems, the algorithms applied to these network structures and 
datasets, and the implications of transitioning to a “coded form” of public participation. 
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