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The Classical S-Matrix: . Numerical Application 

to Inelastic Collisions 

William H. Miller 

Contribution from the Inorganic Materials Research Divisions, 
Lawrence Radiation Laboratory, 

and the Department of Chemistry, 
University of California, 

Berkeley, California 94720 

Abstract 

A previously developed semiclassical theory of molecular collisions 

based on exact classical mechanics is applied to the linear atom-diatom 

collision (vibrational excitation). Classical, semiclassical, and uniform 

semiclassical results for individual vibrational transition probabilities 

corresponding to the H2 + He system 'are presented and compared to the 

exact quantum mechanical results of Secrest and Johnson. The purely 

classical results (the classical limit of the exact quantum mechanical 

transition r~obability) are seen to be accurate only in an average sense; 

the semiclassical and lmiform semiclassical results, which contain 

interference effects omitted by the classical treatment, are in excellent 

agreement (within a few percent) with the exact quantum transition 

probabilities. An integral representation for the S-matrix elements 

is also develop8d which, although it involves only classical quantities, 
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" 

appears to have a region of validity beyond that of· the semiclassical 

or uniform semiclassical expression themselves. The general conclusion 

seems to be that the dynamics of these inelastic collisions is basically 

classical,with all quantum mechanical structure being of a rather 

simple interference nature. 

. . 
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I. INTRODUCTION 

In an ~arlier paper
l 

(referred to hereafter as I) it has been 

shown how the classical limit of the time-independent quantum mechanical 

S-matrix (i. e., the classical S-matrix)" can be expressed in terms of 

quantities directly obtainable from the solution cjf the classical 

equations of motion for the collision system under consideration. 

The basic approach in I is that one employs classical dynamics (equation 

of motion), but quantum mechanical superposition (addition of probability 

amplitudes for indistinguishable processes rather 'than probabilities 
, 2 

themselves). In light of what ,has been learned about the semiclassical 

nature of simple elastic scattering3, it was argued that many, if not 

all, of the quantum mechanical features in atomic and molecular 

collisions should be accurately contained within this framevlOrk. The 

general results of I apply to systems of any number of degrees of 

freedom, and detailed considerations were made for the atom-diatom 

collision system. 

In the present paper we present the numerical results of this 

approach as applied to the linear atom-diatom collision (I'd thout 

reaction); with just one internal degree of freedom (that of vibration) 

this is the simplest prototype inelastic collision. The system is 

precisely that for which accurate quantum mechanical calculations have 

been carried out by Secrest and JOhnson4, and it is these essentially 

exact quantum mechanical results to vlhich we compare. 
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In order to provide a severe test for the various semiclassical 

expressions, the mass ratio and potential parameters were chosen to 

correspond to a highly·· quantum-like system, H2 + He. The results are 

presented and discussed in following sections, and uniform, or extended, 

semiclassical expressions are developed; in Sec. IV an integral 

representati6n for the S-matrix is obtained which appears to have an 

even vTider.region of validity~ 

TosUIlIDl3:rize our findings briefly,· there are typically tyro 

independent classical trajectories which contribute to a particular 

"classically allowed ll transition (a term which "Till become clear in 

Sec. II); the purely classical approximation to the transition 

probability is the sum of a probability associated with each of these 

two trajectories, and is accurate only in an average sense. Figure 1 

shows typical results, and one sees quite clearly the failure of the 

classical approximation to account for individual transition probabilities. 

The semiclassical treatment takes account of quantum mechanical 

interference between thet\vo trajectories and accurately reproduces 

the exa~t quantum mechanical values, except for final states near the 

"classically forbidden" region; the uniform semiclassical expressions 

are valid even through this transition region, so that on the scale 

of Fig. 1 there is essentially no difference between the uniform 

semiclassical and exact qu~ntum results; Table I gives the numerical 

values corresponding to Fig. 1. The conclusion seems to be, therefore, 

that the c1ynamics of these inelastic collisions is essentially classical, 

and all quantum mechanical structure is due to interference between the 

several classical-like terms. 

)' 

\ 
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II. Description of the Collision ~stem 

and Classical Results. 

The linearly constrained atom-diatom collisioh system has been 

studied bya number of authors4,5, using a variety of techniques. The 

particular version of the model ,,;e choose is that used by Secrest and 

4 
Johnson, and one should consult their paper for details, such as 

reduction to dimensionless variables, etc. The ,rihcipal features 

of this version of the model are that the diatom is taken as a harmonic 

oscillator, and the interaction is an exponential repulsion bebieen the 

atom and. the closest end of the diatom. 

The.translational, or scattering degree of freedom is characterized 

by canonical variables Rand P, where R is the usual center of mass 

scattering coordinate and P is its conjugate momentum. Following 

the procedure in I, the canonical variables for the vibrational 

f f d h t b t · 1 .. bl 6, 7 d degree 0 ree om arec osen 0 e ac lon-ang e varla es q an 

q is the phase of the oscillator, and n is its conjugate momentum 

8 
(the classical counterpart to the vibrational quantum number). The 

n" , 

relation between the physical vibrational coordinate and these canonical 

variables can be worked out from the expressions in I, but is well-
6 . 

known for the harmonic oscillator: 

1 

r - r = [(2n + 1)/m(J.)]2 cosq , eq (1) 

where ill is the reduced mass for the oscillator and (J.) the vibrational 

9 10 frequency. ' 

II 
! 
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In terms. of these canonical variables, and for the dimensionless 

system of ref. 4, the classical Hamiltonian is 

H(P, q) 
2 

(n +t) (2a) R, n, = P /2J..l + + V, 

where the interaction V is 

[- a.R+ a.(2n + 
1. 

V = exp 1)2 cos 0] . (2b) - , 

a. and J..l are the only b"o parameters of the model. . Most of the results 

2 of this paper use the values. J..l = -, a. = .3, which Secrest and 
. 3 

Johnson indicate corre~pond to the H2 + He system; Sec. IV presents 

some results for 1 
Jl = - , 2 

The classical equations of 

motion for ·these canonical variables are 

R = p/J..l 

P=a.V 
1 

~ = 1 + a. V (2n + 1)-2 cos q 
1 

~ = a. V (2n + 1)2 sin q , 

where V 'is given by Eq. (2b). 

(3a) 

(3b) 

(3c) 

(3d) 

According to I, initial values Rl~' PI' ql' nl are assigned 

the canonical variables, and Eq. (3) integrated numerically. The 

particular initial value Rl , however, is unimportant and only need be 

taken sufficiently large so that V '" O. Alse' , the value PI is 

automatically determined by energy conse:cvation and the initial 

values of the internal variables; 
. 11 

e.g., for fixed total energy E, 

PI must be taken as 

(4) 

so that only the initial values ql' nl remain to be chosen • 
. " 

.It 

~ 

,.. 
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The phase variable q, however, is actually not a convenient one 

by which to sped.fy the initial condition, the reason being that q( t) 

does not take on a constant value as t -. 
1 

- 00 (before collision) or 

t2 ... +.00 (after collision)- this is easily seen from Eq. (3c) since 

the unperturbed (V ::; 0) solution for q(t) is 

q(t) == t + constant. 

To eliminate this unperturbed time dependence we define the vibrational 

phase shift q by 

q :: q + I-! Rip 

since 

R(t) ::; Ft/l-! + constant 

is the solution for R in the asymptotic region, it is clear that q(t) 

does take on a constant value as t ... ± 00. 

In surirrnary, then, the initial values for the canonical variables are 

Rl large (6a) 
1 

p == - [21-! (E - n - t) ]2 (6b) 
1 1 

q ::; 
1 ql + I-! R-jPl (6c) 

n = 1 
nl ; (6d) 

-ql and n
l

, therefore, are the independent variables by which the trajectory 

is specified (E is a fixed parameter throughout the entire problem). 

With these' initial conditions Eqr. (3) are integrated nurJericallyl2 from 

some ini ti'li time until the collision is over -- i. e., until P > 0 and 

-R is. sufficiently large so that V '" 0 and thus q and n howe taken 
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on constant values; the final values for q and n, designated 

-q2 and n~ ,are independent of the particular time t2 or distance 

R2 at vlhich the trajectory is terminated, just as they are independent 

of the ,initial time tl and initial distance Rl --'provided only 

that Rl and R
2

are sufficiently large. We write, therefore, 

n2 = n2 (ql ' nl ) 

~ = q2 (ql ' nl ) , 

to indicate that the final values of these quantities depend only on 

the independent variables ql and nl (and, of course, the fixed 

total energy E). The functional relations in Eq. (7) and the 

role played by the two functions are analogous to that for the classical 

deflection function familiar i11 potential scattering3, in that the 

functional dependence is determined by the classical trajectory connecting 

the initial and final values of the classical quantities. 

The purely classical result13 for the transition probability is 

(8) 

where and nl are integers (vibrational quantum. numbers) and. ql 

is equal to that value for which 

the sum in Eq. (8) is a sum over all different values of ql (in its 

domain 0 to 2rc) for vrhich Eq. (9) is satisfied. FiGUre 2 shoHs the 
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n ;:: 1 and 
1 

E·- 10 (for 

H2 + He this:i.s '" 5 eV total energy); a dotted line at n
2 

-. 2 intersects 

the curve at ti'lO points, indicating that there are tvTO values of ql 

which satisfy Eq. (9). (It is clear that there ~lill always be an even 

number of terms contributing in Eq. (8); this follows since 

and q == 21! 
1 

are physically the same, so that 

q = 0 
1 

Note that this must be the case for an~ type of internal degree of 

freedom since, these properties of the action-angle variables for a 

6 ) , periodic degree of freedom are quite general. From the slope of 

the curve at these t"TO points the 1 ~ 2 transition probability is 

evaluated according to Eq. (8).; the classical transition probabilities 

for 1 ~n2' n
2 

= 0 to 4, are all constructed similarly. 

Referring to Fig. 2, one sees that the 1 ~ 5 transition is not 

possible since there is no value of ql for which n
2 

= 5 is reached; 

this transition is therefore classically forbidden, whereas those 

mentioned above are classically alloVTed
14. Suppose'for the moment that 

n
2 

is a continuous variable, rather than quantized. Figure 3a indicates 

the general character of the transition probability for fixed nl. and 

continuously variable n2 • The infinities occur because the zero slope 

of the function n2(Ql' nl ) at its extrema appears in the denominator 

in Eq. (8). This is a very typical "classical catastrophe" (cf. the I'Hili 

wavefunction near a classical turning point and the classical rainbow 

effect in potential scattering3); in fact, Fig. 3a looks very roue:: like 

the classical probability distribution for a particle in a potential well15, 

,the classically "allmTed" and "forbidden" terminology being completely 

analogous. It is not surprising, therefore, that the semiclassical, or 
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uniform seroJclassical treatment v!ill replace F'ig. ]a by Fig.3b--

the classically forbidden region being not completely forbidden, and the 

classically allowed region having interference features. 

Figure 1 sho,V's the numerical results actually obtained for P n2, nl 
:i.n this classical limit with nl = 0, I, 2 at E= 10, as compared to 

the exact quantum mechanical values (iV'hich are essentially indistinguishable 

on the scale of the drawing from the uniform semiclassicalr.esults); 

Table I gives the mllnerical values corresponding to Fig. 1, and Table II 

gives similar results for the lower energy E = 6. Although the classical 

approximation does indeed describe the exact transition probability 9E. 

the average, it is clear from Fig. 1 just how important are the 
... 

interference features which are omitted in the purely classical treatment. 

If, however, the particular experimental conditiOns do not select 

individual quantum states and the observed transition probabilities 

(or cross sections) are thus averaged quantities, then it is of course. 

q1.1ite possible that the classical result will be all that is actually 

required. If one is interested in the magnitude and trends of 

individual transition probabilities, though, it is clear that the purely 

classical results are completely unsatisfactory. 

lIT. Semiclassical and Uniform Semiclassical Results. 

The basic reason for the failure of the purely classical approximation 

is that clessical superposition is built into it; 1. e., in Eq. (8) one 

adds the probabilities associated i'lith the t\'lO independent trajectories 

which contribute to the transition. The semiclassical result 

is obtained by using classical quantities still, but quantum superposition. 

r" 

." 
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According to I, the transition probability is the square modulus 

of a transition amplitude, or S-matrix element: 

(10) 

where 

n1 ~L: [2' Cln
2 (ql ' nil J 1 i CP{ql n

l
) 

S 
-2 , 

n2 ' e , (11) 
dql 

and, as above, the sum in Eq. (11) is a sum over all the independent 

values of ql which satisfy Eq. (9) (tvTO for the typical situation); the 

magnitude of each term in Eq. (11) is the square root of the corresponding 

16 
term in the classical expression [Eq. (8) ] , and the phase is given by 

(RE> +.qn). (12) 

Just as the classical functions in ECl· (7) are inciepenclent of t l , t2 ' 

RI ' and R2 , so is the phase function in Eq. (12); this is easily seen 
. 

since P :;:: n = 0 in the asymptotic region. 

Comb~ning Eqs. (10) - (12), the semiclassical expression for the 

transition probability is 

1 

= PI + P2 + 2 (P2 PI) 2 sin (.6 <t» , (13) 

PI andP2 are the square modulus of each term in Eq. (11), and.6~ is 

their phase difference; PI + P
2 

is the classical result of Eq. (8). The 

interference term is proportional to sin (.6<t», rather than cos (.6<P), 

due to the -f ph3.se difference resulting because dn2 (q]. ' nl)/dql 

has a different sign for the two terms in Eq. (11). The sign of 
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. . 17 
may be determined unambiguously by the method of Pechukas , 

but a simpler procedure is possible on the basis of rcsQlts to be 

developed below. 

Tables 1 and 11 display the results ofEq~ (13) for energies E = 10 

and E =6; except for the largest and smallest classically allowed value 

of n2 , the semiclassical results are within a few percent of the exact 

quaritum resuits; the transition probability to all classically forbidden 

final states is still identically zero. These results are entirely 

consistent with one '.s previous knowledge of s'emiclassical phenomena 

and the . correspondence principle in general. The "breakdown" of results 

near classically forbidden regions is expected; it is analogous to the 

"primitive" semiclassical description of the rainbow effect in potential 

scattering3 -- the interference effects not too close to the rainbow 

angle (the classical/non-classical boundary) are treated correctly, but 

not the transition region itself. It is clear, therefore, that 

"special techniques" must be introduced to hal".dle the transition and 

classically forbidden regions correctly. Here we give a heuristic 

presentation of the uniform, or extended semiclassical expressions; a 

rigorous derivation is possible by using the integral representation for 

the S-matrix developed in Sec. IV and the general results of the Appendix. 

The presentation below is useful in showing how one can essentially guess 

the appropriate uniformly valid expression from the primitive semiclassical 

result itself. 

Since 

sin (6 ¢) = sin
2 (~ + ~) - C03

2 (r + ~<b) 

1 = sin2~+ ~¢)+ C03
2 (~ + %~) , 

The semiclassical expression in Eq. (J.3) :is equivalent to 

j 

.. .. 
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[ 
. 2 (IT 6¢) sJ.n ."4 +2" 2 (h 6<>\J + cos 4 + T) 

2 IT 6.cfJ (. l~ cos. "4 + -2" . 

The oscillatory functions in Eq. (14) may be recognized, hmlcver, 

as the asymptotic forms of the two kinds of Airy function
18 

where 

sin2(~ + ~~) '" ~ z t Ai
2 

(-z) 

cos 
2 (~ + ~~ ) '" ~ z ~ Bi 

2 
(-z), 

(
3 .) 2/3 

z = '4 6¢ . 

For large 6¢ (or z), therefore, Eq. (14) is equivalent to 

(Pl + P2) I J( Z 

1 
~ B· 2 ( _z)] p = 2 Ai2 (-z) + J( Z 

n2 ' n
l 

: J. 

+ 2(Pl P
2
)! [J( 

1 1. ( -z)] z 2 Ai2 (-z) - J( Z 2Bi2 

or 
1 1 1 

P = (P1
2 + 2)2 n z 2 Ai2 ( -z) 

n2 ' n
l 

P2 

+ 
! ~. 2 

(Pl .... P2 ) J( Z ! Bi2 (_z). 

(14) 

(15) 

(16a) 

(16b) . 

Not only is Eq. (16) equivalent to the semiclassical expression 

for large phase differences, hovTever, but it is also well-behaved in the 

transition rCGion and is actually thc uniform semiclassical expression vie seek. 
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In the transition region (n
2 

near an extremu.m of .n
2
{til ' n

l
) 

Pl~· P2 ' so that Eq. (16b) becomes 

where p is the common value of p and p. 
1 . .2 

As approaches 

an extremuInof n
2
(Ql' n

l
), p becomes infinite, as discussed above; 

the phase difference 6 ¢, hovTever, goes to zero, and the zero of 

6¢ (andth,us z) in Eq. (17) exactly cancels the infinity in p. The 

appropriate limiting expression can be derived by approximating n)Ci
l 

,n
l

) 

as a quadratic about its extremum and .¢ (ql ' n:)..) as a cubic about this 

particular value of ql; if use is made of Eq. (23a) in Sec. IV, the 

result is 

Ai2 [(n2
X 

n2)/a
l
/ 3] 

= 
I ~ I I a 1

2
13 

, (18) 

where 

o...v-.d. 
02n2 (Cil ' n ) 

" 1 
n2 = 0- 2 

ql 

0- C- ) ~ ql' nl 
~ = 

oQl 
, 

• 

with the derivatives evaluated at the extremma of n2(Cil , n
l

) this 

result is valid for 
x 

n
2

· a maximum or minimum. 

Eq. (18) clearly exhibits the transition from oscillatory character 

in the classically allo\'Tcd region to· exponentially decaying character in 

the classically forbidden region; this is directly analozcJus to the rainhmT 

effect :i.npotential scatterin[!;3, near the rainboVT anzle. 
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The results in Tables I and TI under the "Uniformj
• colwnn were all 

obtained fromEq. (16) for the classically aliovicdt:r;-ansitions, and 

Eq. (18) for the classically forbidden transitions. The semiclassical 

and uniform semiclassical results are, as expected, essentially the 

same for cla,ssically allrnfed transitions not close to the transition 

region; the general agreement between the uniform semiclassical and 

exact quantum mechanical results has been noted above. 

The values in Tables I and II for the classically forbidden transitions, 

while quite good, are not of as high accuracy as fo;rthe classically 

allowed transitions. One reason for this lovler accuracy is that Eq. (18) , 

is an approximation to the unifor-mexpression in Eq. (16). One may 

apply Eg. (16) more accurately to obtain better results for the 

classically forbidden transitions. Although for classically forbidden 

transitions there are no real values of iil which satisfy Eq. (9), 

there are complex roots; Eg. (18) may be obtained by approximating 

n
2
(ql ' nl ) as a quadratic at its extremum, s':>lving for the complex 

roots of Eg. (9), and then applying Eg. (16). One can solve Eq.' (9) 

for its complex roots more accurately, hrnfever, by expanding n
2
(Ql' nl ) 

as a polynomial of higher order19, or by fitting n2(Ql' n
1

) to some 

functj.onal form and solving the transcendental equations numerically. 

In either event the two roots of Eq. (9) will be complex conjugates 

of each other, and the second term in Eq. (16b) l"i11 be absent ( it would 

be exponentially increasing if it were present). This more accurate 

treatment for the classically forbidden t:r-ansitions has not been carrie:'t 

out, but "lOuld certainly be expected to give results improved over Eg. (18). 
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In concluding this section ",e point out that even Eq. (16) 

fails (or at best becomes difficult to apply) in the case that 

all transitions are highly forbidden classically~ Figure 4 shm1S the 

function n~(ql' nl ) for nl = 1 at energy E = 3; classically the 

vibrational quantum number can change from its initial value only a 

small fraction of a whole quantwn, so that all transitions are 

forbidden..The extrema are so far from n = 0 and 2 that the quadratic 
~ 2 

approximation to n (q-' , n
l

) at its. extrema is -quite poor,' 'Table III 2·1 
shows the classical, semiclassical, and uniform semiclassical results 

for this case, as compared to the exact quantum results. The procedure 

introduced in the next section, however, is successful in describing 

even thesehighl.y non-classical transitions. 

IV. The Initial Value Representation. 

Here w,e derive an expression for the S-matrixinterms of 

classical quantities "'hich is more general than any yet presented; on 

the basis of it the uniform semiclassical expressions of the previous 

section can be . rigorously obtained, and the highly non-classical 

transitions discussed above are more accurately treated. 

Consider first some properties of the phase function defined by 

Eq. (12); as pointed out
16, this is actually the phase of the propagator 

in the momentwn representationl . If all four momenta (tYlO initial and 

two final) are considered to be independent variables, therefore, the 

phase satisfies the following general rel.ationsl ,20 
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- R 
2 

(19b) 

(19c) 

(19d) 

where the quantities on the RHS of EqS.(19) are functions of these four 

independent variables. As was noted in Sec. II, however, .if one enforces 

energy conservation (as we do), then 

(20a) 

(20b) 

so that the phase 1s a function only of n
2 

and ,nl 

(21) 

furthermore, Eqs. (19) - (21) and the chain rule imply 

0 
l/> (n2 ' nl ) - q2 + ~ R2/PZ dn2 

= (22a)· 

0 
l/> (n2 ' n1) ql - ~ RlfP1 • dnl 

= (22b) 

Recalling the definition of the phase shift in Eq. (5), Eqs. (22) become 

0 
¢(n2 ' n1) -

dn2 
.- - q2 (23a) 

0 
¢ (n2 ' nl ) 

-., 
dnl 

.- q' 
.1 (23b) 
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In Sec. II and -ql ' rather than n
2 

and 'nl ,,,rere chosen as 

the two independent variables, and the phase ¢ (ql ' 

preciselyciesignated by. 

(24) 

21 Eg. (23) is the basic relation we sought ; ,it has the form 

o~ the usual canonical transformation 20 but is ~ctually some"lhat 

different. The variable q(t) is not conjugate to net) in the usual 

sense (the variable q(t) is). Using energy conservation to eliminate 

the canonical variables of the translational degree of freedom as 

independent variables, hOI-leVer, has the effect' of causing qto bep-ave 
" . 

in the asymptotic region as though it were the variable conjugate to 

n (in the sense of Eq. (23). 

On. the basis of Eq. (23) one may define the S:':':inatrix in the q 

representation 

the inverse transformation is 

(26) 

If the iritegrals in Eq. (25) are evaluated by stationary phase, then in ~ 

view of Eg. (23) one obtains 
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S-
~ 

where til = ni (Ci2 ' ql)' n2 :: n2 (q2 ,ql) (q2 and ql are the 

independent variables of the trajectory in this case). If Eq. (27) is 

substituted into Eq. (26) and integration over q2 and ql performed 

by stationary phase, then it is clear that Eq. (11) 'is recovered~ 

Suppose, however, only the integration over ql is performed by 

stationary phase; the result is 

1 f-S ' :: -- dq n2 ,nl 
2rt2 

[ dql (!= ' nll]' ~ 
~ 

" nl )', nl ) + ~ [n2 (Ci2 ' n1) -

, 

-

(28) 

where ~ and n
1 

are the independent variables specifying the trajectory 

in the integrand. With n
l 

fixed one can use the relations 

- - (ql n
l

) q2 :: q2 , 

dq2 oQ2 (ql ' n
1

) 
- :: 

dg
l oql 

to change variables of j.ntegration, so that Eq. (28) becomes 



= 1
21f 
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21f 0 

-18-

the independent variables specifying the trajectory in the integrand of 

Eq. (29) are and 

Eq.· (29) is the desired integral representation, and vle refer to it 
. 22 

as the initia.l value representation of the S-matrix. Why is it any 

better than any of the other representations discussed? In short, it is 

because the initial values ql and n
1 

must necessarily determine a 

unique classical trajectory; this is not so for other pairs of boundary 

conditions. (n
2 

and -
~ and , and and n

2
). ,Thus in 

Eq.(ll) one must sum. over several (Le., two) terms corresponding to 

different values of ql which satisfyEq. (9); i.e., ql (n2 ', Ill) is 

a multivalued function, which is'another way of saying that and 

do not determine a unique classical trajectory. In like manner, 

n2 (q2 , ql) can be multi valued, so that Eq. (27) would have to contain 

several terms, one for each branch of this multi valued function. It is· 

interference bet",-een these several terms, hOvlever, which causes 

problems-~particularly so when two terms coalesce, as they do in the 

transition region. The important feature of Eq. (29) is that all the 

functions which appear in the integrand. are necensarily single-valued 

and determine a unique trajectory), so that there is 

·just the one term in the integrand. 

If one proceeds to evaluate Eq. (29) by stationary phase, the 

stationary phase requirement is 

II 

'''. 
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~ { ~(ql ' n1)+ q2 (ql ' n1) [ n2 (ql' n1) - n~}"' 0 

" 
but fromEq.(23) .one sees that23 

.= - , (30) 

so that this requirement is equivalent to Eq. (9) and one recovers Eq. (lJ.). 

This must be true since, as pointed out in I, all semiclassical representations 

of the S-matrix are equivalent provided one uses the stationary phase 

approximation to transform from one representation to another. If one 

evaluates the integrals more accurately than by stationary phase, 

hOVlever, all representations are no longer equivalent. On the basis of 

the above arguments we have chosen Eq. (29) to be the more fUndamental 

representation of the S-matrix in terms of the classical trajectory 

functions. 

The uniform semiclassical expressions [Eq. (16) J. can be obtained 

b t · ht f 1" t" f th t h" . 2tl..,26 1 t" y a s ralg - oTITard app lca lon 0 . e ec nlques for eva ua lng 

an integral which contains two possibly coalesCing points of stationary 

phase; details of this technique are given in the Appendix. Eq. (18), 

which is valid for n
2 

not too far from an extremum of n
2 

(ql ,nl ), 

is readily obtained from Eq. (29) by expanding n2(Ql' nl ) as a 

quadratic at its extremum and ~(Ql' nl ) as a linear function. 

In the case that all transitions are highly forbidden classically 

it has been noted that Eqs. (16) and (18) are not useful. One m8.y ask 

if this is due to the complete invalldity of classical dynamics under 

these conditions, or if Eq. (29) is still valid and the failuTeof 

Eqs. (16) and (18) due only to the inaccurate evaluation of the integral 

in Eq. (29). When many final states are classically allmled, direct 
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numerical integration of Eq. (29) vlould be extremcly difficult because 

the phase of the integrand is large and quite rapidly varying--vlhich is 

\-Thy, of course, the uniform stationary phase evaluation is accurate in 

this case. When all transitions are highly forbidden, however, the 

phase varies much more moderately , so that directnUlnerical integration 

is f'easible; Table IV shm-ls the results of this procedure applied 

to several situations in which all, or most, of the transitions are 

classically forbidden. Except for transitions ~lith extremely small 

probability, the accuracy of the results indicates that Eq. (29) does 

indeed have a range of' validity beyond-the semiclassical and uniform 

semiclassical expressions. 

One may observe that Eq. (29) does not identically obey microscopic 

reversibility (the property P n2 ' nl :: Pnl , n
2
); the degree of this 

f'ailure can·be 'used in practice to estimate the overall accuracy one 

expects for the nUlnerical results obtained from Eq. (29). It is interesting 

to note, and may be significant, that in Table IV the agreement with 

the quantum results is best when the initial quantum nUmber is the 

larger of' the two. 

In concluding this section we would 'like to suggest that it 

may of'tenbe quite useful to employ approximate classical dynamics 

(e. g., sudden, impulse;a- or adiabat:i..l approximations) to generate the 

trajectory functions n2 (eil ,nl ) and q2 (ql ,n1) (and thus ¢ 23), 

and then use Eq. (29) to obtain the S-matrix. For example, for 101'1 

energies the trajectory functions are often well approximated by 
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from "'hich .. <fJ (ql ' ni) may be obtained
23

. With these ap[Jroxi1l1atJons 

Eq. (29) is recognized as an integral representatlon for a Bessel 

function of order n
2 

- n
l 

I , and the transition probability becomes 

[A(E)] 

this does indeed approximate the transition 'probability for this 

case reasonably well. 

Internal Degree of Freedom. 

Many features of the present problem carryover quite directly 

to general 'collision problems with more than one internal degree of 

freedom27• The reason is that all internal degrees of freedom are 

quantized (quantum mechanically), or periodic (classically), and in 

terms of action-angle variables all such degrees of freedom are essentially 
. . 6 

of the same type ; the canonical momentum for each degree of freedom is 

the corresponding quantum number, and the canonical coordinate is the 

phase of the periodic motion. For the ith internal degree of freedom 

the canonical coordinate q.(t) has the asymptotic solution 
.l. . 

ro. t + constant , 
l. 

and this unperturbed time dependence can be removed by defining the phase 

shift for each degree of freedom, q.(t) , just as in Sec. II. 
l. 

The total phase in Eq. (12) and the derivative relations in Eq. (23) 

are generalized in the obvious m3.nner. 
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The classical [Eq. (8)] and semiclassfcal [Eq.(ll)] expressions 

for theS-ma1;,rix apply for systems vTi th more degrees of ;freedom VIi th 

obvious generalizations, but not. so for the uniform semiclassical 

results--the reason being that there may be more than tvTO terms in Eq. (11). 

If only two of these terms are coalescent (Le., in the transition region), 

hOVlever, one can still use Eq. (16) to handle this pair-\'lise coalescense 

of terms. It does not . appear , though, that one would be able to treat 

the situation in which three or more terms are simultaneously in the same 

t OtO .• 28 
rans~ ~on reg~on 

The initial value representation in Eq. (29) is also generalizable 

in the obvious manner; it is now a multi-dimensional integral, hovrever, 

so that dil~ect numerical integration will be of more limited usc. 
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Appendix: Uni.!~ Stationary Phas'e Integration. 

The following procedure is essentially that due to carrier24 • 

Consider an integral I of the form 

·r = fdx. g(x) eif(x) , (AI) 

and suppose that there exist t"ro points of stationary phase--i. e., that 

there are two roots of the equation 

fl(x) = 0, (A2) 

and f"(x) must have different signs, 
2 

and for definiteness we take the former to the positve and the latter 

negative. 

If the usual method of stationary phase is used separately at 

where 

I == r + I 
1 2 

, (A4) 

(A5a) 

(A5b) 



These results come about byexpandingf(x)as a quadratic about. 

each extremum; if it is expanded as. a cubic, Eq. (A3) pertains but with 

Eq. (A5) replaced by 

1 1 1 i(f
1 

+ ~l) 
.11= gl 1 2rr./f II 12 2;( 2 Z 11 e Ai( -Zl) 1 1 

(A6a) 

1 1. 1 1(f - ~ ) 
12 ,= g2 1 2;(/f II 12 2rr. 2 Z 4e 2 2 Ai( -z ) 

2 2 . 2 , 

where Ai 
18 . 

is the regular Airy function ,and 

= (fk")2 ( 2 )4/3 
zk 2 P 

k 

, (A8) 

for k = 1, 2. For large zk one may employ the asymptotic form of the 

Airy function, and· Eq. (A6) becomes 

(A9a) 

(A91) 



... , 

...... 

-25-

i.e., Eq. (A5) j.s recovered,· plus a spurious, highly oscillatory term. 

In Eq. (A9a),. for example, the second term ·in the exprcRsion fcif~ II is 

actually a crude approximation to 1
2

, and one does bettel' by simply 

discarding it. This can be accomplished more generally by \·;r:i.tting 

the Airy functions in Eq. (A6) as the sum of two terms, 

Ai( _z) == ~ [Ai ( -z) +' i Bi( -z)] 

+ ![ Ai(-z) - i Bi(-Z)] , (A.10) 

since for large z 

[ Ai( -z) ±i 
±~(JI e) e .L.,"4-~ , (All) 

one can identify the spurious term and discard it. 'l'he result is that 

Eq. (A6) is replaced by 

(A12a) 

(A12b) 

Eq. (A12), with Eq. (A3), is a uniform approximation to the integral I, 

but is actually not the most useful result--thc reason being that it is 

necessary to evaluate the third derivatives of f(x) at Xl a?,d x
2 

in order to obtain the qua'ntities zk and ~ k ' defined by Eqs. (A7) and 

(A8), which are required in Eq. (A12)., The fact is, hmrever, that these 

third deriva.tives are not needed with high accuracy unless zl and 

z2 are small; this follovls since Eq. (A12) reduces to Eg. (A5) if zl and z2 

" " I 
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are large, irrespective of their specif1.c values .. It is only vThen 

x
2 

and xl. begin to coalcscethat Eq. (A12) dl.ffers.significantly 

from Eq. (A5) 

The thlrd derivatives are therefore approximated by 

(A13) 

which implies that £"1 (x) is constant, or thatf(x) is a cubic; 

it is clcar that Eq. (Al3) is essentially exact for small I x2 - Xl 

Within this approximation it is easy to ShOH that 

£ II = 
1 

-f II 

2 

£ "' = 
.1 

£ II, 

2 

from which· it follows that. 

3 2 = - (f - f )/(x - x ) 2 2 1 2 1 

= -3 (f . - f )/(x - x )3 
2 1 2 1,' 

Z = Z = 1 2 

(A15) 

With Eqs. (A14) and (A15) replacing (A7) and (AB), the final resUlt becomes 

(Al6a) 

(Al6b) 

"There 

(A17) 
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The virtue of Eq. (A16) over (A12) is that no quantities are 

required .inEq. (A16) other than those which are needed in the sh1plest 

approxj.mation, Eq. (A5); the accuracy of Eg. (A16)is essentially 

equal to that of Eq. (A12) sincE' the approximation of the third derivatives 

by Eq. (A13) is poor only when z is large and not accurately required. 

For (x
2

-x
1

) small both of these uniform approximations reduce to 

(A18) 

where x is the value of x for vlhich f" (x) == 0 (the coalesced value o. 

of Xl and x2)· 

Application of these results to ,the integral representation of the 

S-matrix in Sec. IV gives the uniform semiclassical expressions in 

Sec. III. One word of caution is necessary, hOlvever; the primitive 

semiclassical expression in Eq. (11) is invariant to the replacements 

I::,. ¢ -> I::,. 1> + 2krc (A19a ) 

I::,. ¢ --)0 (2k +l)rc - 1::,.1> , (A19b) 

where k is any integer; the value of Z == (~1>/4)2/3, of course, is 

not invariant to such a replacement. To obtain the proper value of z 

it is sometimes necessary to use Eq. (A19) to modify the value of ~~ 

obtained directly from the calculation. The reason for this is that 

for some trajectories, particularly those at high energy, the function 

q2 (q1 ' n) changes abruptly by ± 2rc (as a function of (1)' and the phase 

1> (iiI'· nl ) undergoes a corresponding jump of :!:. 2rr [n2 (Ci1 ' n
1

) + -~-] 

at the srune point. This causes no real problems} hO':lever, for 
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n
2 (gJ. , n ) 

1 
is completely smooth at this point, so that the phase 

of the integrand in Eq. (29) changes by'; 2rt: (n2 -n ) 
1 

, which has 

no effect· on the integrand because 

±2rt:i(n
2 - n

1
) 

1. e = 

The magnitude of the integrand in Eq. (29) behaves like [0 (ql - a)] t , 
where a. is the point of discontinuity in q2 (ql ' nl ) , and since 

j €dx 

-€ 

1 
O(X)2::0 

as € ... 0, the region of the discontinuity makes no contribution to the 

integral-The phase difference 6q, is modified according to Eq. (Al9) , 

therefore,to make it a continuous function of this is appropriate 

in the sense that 6q, is actually being used to approximate higher 

derivatives of the phase of the integrand. One can avoid this 

problem of identifying the proper.6<1> by using Eq. (Al2) which employs 

the higher derivatives themselves; for Eq. (29) of Sec. rv the higher 

derivatives of the phase of the integrand are given by 

f" == q I n I 

2 2 

fill == q In" + 2q II n ' 
. 2 2 2 2 

In practice) ho",ever, we found it easier to identify the proper 6<1> 

than to evaluate these derivatives. 

,.j, 

.... 
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0- 0 

0-1 

0-2 

0-3 

o -4 

1 - 0 

1 - 1 

1 - 2 

1 - 3 

1 - 4 

1 -5 

2 - 0 

2 - 1 

2 - 2 

·2 "- 3 
4l1,' 

2 - 4 

" .. j 2 - 5 

2 - 6" 
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Table I. 

'l'ransition Probabilities for 

fJ. == e /3, a ;:::: o. 3 , E ;:::: 10 . 

C1assica1
b 

Semiclassical
c 

0 0 

0.356 0.422 

0.212 0.416 

0.232 0·359 

0 0 

0.356 0.423 

0.158 0.290 

0.130 0.009 

0.128 0.168 

0.159 0.285 

0 0 

0.212 0.416 

0.130 0.009 

0.109 0.208 

0.105 0.020 

0.114 0.165 

0.169 0.262 

0 0 

Uniform d 
Quantum e 

0.058 (0.060) 

0.211 0.218 

0.381 0.366 

0.266 0.267 

0.075 0.089 

0.2ll 0.218 

0.287 (0.286) 

0.011 0.009 

0.174 0.170 

0.240 0.240 

0.062 0.077 

0.381 0.366 

0.011 0.009 

0~206 (0.207) 

0.017 0.018 

0.170 0.169 

0.194 0.194 

0.045 0.037 
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a These are the .initial and final vibrational quantum numbers, ill - n:2~ . 

b Results are all from Eq. (8). 

C Results are all from Eqs. (10), (11), and (13). 

d ResUlts are from Eq. (16) for the classically al101-lcd transitions 

and Eq.(18) for the classically forbidden transitions. 

e Results;()f Secrest and Johnson, ref. 4; the figures in parenthesi.s .. rere 

obtained by subtractine; from 1 the sum of transition l1robabilitics 

for all possible transitions out of the initial state, and, thus is 

an upper bound to the correct diagonal transition probability. 
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Table H.· 

Transition Probabilities for 

11 :: 2/3 , a := 0.3 , E := 6 ' 

------
... . b , d T 't' a Semiclassica1

c e ranSJ_ ~on . Classical Un~form Quantum 

... 
0-0 0.401 0.672 0.534 (0.538) 

0-1 0·360 0.546 0·397 0.394 

0-2 0 0 0.059 0.068 

1 - 0 0·360 0·546 0·397 0.394 

1 - 1 0.228 0.210 . 0.223 (0.224) 

1 - 2 0·302 0.470 0.349 o. 3!~5 

1 - 3 0 0 0.061 0.037 

2 - 0 0 0 0.059 0.068 

.2 - 1 0·302 0.470 0·349 0.345 

2 - 2 0.242 0·333 0.344 (0. 3!~8) 

2 - 3 0.607 0.659 . 0.239 0.233 

2 - 4 0 0 0.029 0.006 

abc d e 
, , J , See the notes at the bottom of Table I .. 
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Table III. 

Transition Probabilities for 

. ~ ::. 2/3·, a. = o. 3 i E = 3 

Classicalb Semiclassicalc 

o o 

1.633 2.251 

o o 

d Uniform 

0.012 

... 0.013 

a, b, c, d, e $ee the notes at the bottom of Table I. 

. e 
Quantum 

0.022 

0.001 
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Table rv. 

Transition Probabilities via·· 

the Initial Value Representation 

. Transitiona 

~ - 0 

1- 1 

1 - 2 

1 - 0 

1 -1 

1 - 2 

1 - 3 

~ = 2/3 , ~ = 0.3 , E = 6 

0.025 

0·973 

0.0016, 0.0004 

~ =2/3 , ~ ~ 0.3 , E = 8 

. 0.117 

0.826 

0.052, 0.044 

2.l.xl0~4 

c 
Quantum 

0.022 

0.0009 

0.108 

(0.856) 

0·.042 

1.5xl0-5 

~ = 1/2 , ~ = 0.1287 , E = 12.8365 

0-0 0·974 

0-1 0.019, 0.016 

0-2 -5 ' -5 2.lxl0 ,3.4xl0 

0.014 

-5 ·3·2xl0 
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Table IV. (continued) 

Transition 
a IVR

b Quantum c 

~ = 1/2 J ~ = 0.1287 J E = 16.8365 

1 - 6 0.069 0.063 

.. 1- 1 0.860 (0.874) 

1 - 2 0.069 0.063 

2 - 0 0.0015 0.0011 

2 I 0.067 0.063 

2 2 0.886 (0.896) 

. 2 - 3 0.045 0.040 

a SE;!e note a at the bottom of Table r. 

b These values were obtained by numerical integration of 

the initial value representation, Eq.(29). Where 

there are two values, the second is for· the inverse 

transition; these should be equal, o:fcourse, but 

Eq. (29) does not exactly obey this inicroscopic 

reversibility requirement. 

c See note e at the bottom of Table I. 

'~;'I 
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Figure Captions 

1. Transition probabilities for J.l = 2/3, ex. =0. 3( corresponding 

to H2 +' He) ~t E = 10 ("" 5 eV total energy for H2 + He) with 

the initial vibrational quantum number nl = 0 (top), 1, and 2 

(bottom) • The dotted lines connect the results of the purely 
, " 

classical approximation CEq. (8)], and the solid lines connect 

the exact quantum results of ref. 4; on the scale of the drawing 

these quantum results are essentially the same as the uniform 

semiclassical results of Eqs. (16) and (18). 'The numerical 

values corresponding to this Figure are contained in Table I. 

2. The trajectory function ,n2 (gl ,nl ) for J.l = 2/3, ex. = 0·3, 

'with E = 10 and initial vibrational quantum number n = 1; 
1 

this function is the final vibrational quantum number of the 

classical trajectory with initial conditions (ql ,n
l
)· The 

dotted line at n
2 

= 2 ~ndicates the graphical solution for the 

two values of the multi-valued function ql (il2 ' nl ) , here with 

n2 = 2, ill = 1. 

3. (a) A sketch of,the classical approximation for the transition 

probability [Eq. (8)] for continuously variable n2 , at fixed 

min max 
n2• and n2 indicate the extrema of the function 

n2 (ql ' ill) for fixed ill (such as in Fig. 2). (b) A sketch of 

the uniform semiclassical result for the transition probability 

[Eqs • (16) and ( 18) ] • 
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4. Same as Fig. 2, except for total energy E :::3. There are no 

classical trajectories at this energy forwhicl1 the quantum number 
, , , .. . , 

can change by an integral amount from it initial _ (n
1 

::: 1) value;-

. all tr~nsitions are therefore classically forbip,den. 

"1-
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa­
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in­
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro­
vides access to, any in forma tion pursuan t to his employmen t or con tract 
with the Commission, or his employment with such contractor. 
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