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The Classical S-Matrix: ~Numerical Application

to Inelastic Collisions
William H. Miller

~ Contribution from the Inorganic Materials Research Divisions,
' ' Lawrence Radiation Laboratory,
and the Department of Chemistry,
' University of California,
Berkeley, California 94720

Abstract

A previousiy developed semiclassical theoryvof‘molequlaf collisions

: based on.exact classical mechanics is applied to.the‘linear'atom—diatom
_collisibﬁ (vibrational excitation). Classical, semiclassical, and unifofm
semiclassiééi:résults for individual vibrationalitranéition probabilitieé
corresponding to the H2 + He system -are presented and'compared to the
exact quantum mechanical resultsuof Secrest and Johnson. The purely
classical fésults (the classical limit of the exact quantum mechanical
transition r?obability) are seen 1o be accurate only in an averége éense;
the semiclaésical and wniform semiclassical results, which contain

. interference effécts omitted by the classical treatment, are in excellenﬁ
agreement (within a few percent) with the exact quantum transition
\'probabilities. An integral representation_for fhe S-matrix elements

is also developed which, although it involves only classical quantities,
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appears to hdve a reglon.of valldlty>beyond that of the semlclas ;céli:“
ﬁ, or unlform semlclas31cal expre531on themuelves ~The general conclu31on
:seems to be that the dynamlcs of these 1nelast1c colllslons is bas1callv
'cla851cal w1th all quantum.mechanlcal structure belng of a rathcr

fsimple 1nterference nature. .

-
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I. INTRODUCTION

In ap earller paperl (referred to hnreaftef as. I) it has been
‘shown how thc class1cal limit of the time-independent quantum mechanical
-matrlx (1 e., the class1cal S-matrlx) can be expressed in terms of
-quantltles dlrectly obtainable from the solutlon of the clas31cal
equatlons;of‘motlon for the collision system under con31deratlop.
The basiéxapproach in I is that one employs clééSical dynamics (equation p

of motion), but quantum mééhanical superpos 1tlon (addltlon of probab111ty

amplitudes for 1nd1st1ngulshable processes rathcr ‘than prdbabllltles
themselvesg). Invl;ght pf what has beenvlearned about the semiclassical
nature of simple elastic séatteringS, it was argued that many, if not
all, of tﬁe.quantum mechanical features in atomic and mplccular
collisions'should be accurately contained Within‘this framework. The
generalpresults of I apply to systems of any ﬁuﬁbéf of degrees of
freedom, apd detailed considerations were made for the atom—diétom
collision system. o

In_thévpresent paper we present the numerical'results of this
approach as applied to the linear atom-diatom COlllSlon (w1thout
reactlon), with just one internal degree of freedom (that of vibration)
this 1s,the simplest prototype‘lnelastlc colllslon.' The system is
precisely that_for which accurate quantunm mechanical éaléulations have
been carried out by Secrest and Johnsonu, and it is these essentially

exact quantum mechanical results to which we compare.
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o In ofdef to’piOQidéva Sévere test fér fhe Véribﬁs semiciéssicai
expfgssiqns {he mass ratio and potentlal plrameters were chosen. to
correspoﬁd:to a highly quantum~11kefsystem, H2 + He,. The results are
presented and discussed in follow1nc sectlons, and unlform, or eytended
semiclass1cal expressions are developed; in Sec. IV an 1nteora1
representatlon for the S matrlx is obtalned whlch appears to have an".
even w1der reglon of valldlty. s |

To summarlze our flndlngs briefly, there afe typlcally two
1ndependent clas51cal trajectories which contrlbuie to a partlcular
claSSicglly allowed' -transition (a term which~vill become clear in
Sec. II);_fﬁe purely Elassical approximation tq thé transitioﬁ
probabiiity:is_thé-SUm of a probability associétedlwith each of these
 tWo trajéctéries, and is accurate ohly in ﬁﬁ avéiége sense. Fiéure 1
shows tjbiCal‘results, and one sees quite cleariy;ﬁhe'failﬁré ofsﬁhe
_classical”apbroximation to account f6r individual trahéition probabilities.
The semicia#sical treatment takes 1acc6untiof éuaptum‘mechanical
intérferénéé between'thethO'trajectorigs and accurately reproduces
the exaétrquantum mechanical values, except for finél states.near.the
"classiééily forbidden" region; the uniform semi¢l§$s1cal expreésions
are vaiid ¢ven through this transition region,tsélthét on the scale
of Fig;_;jfhere ié'essentially nd difference between the uniform
semiclaésiCal and exact qﬁgntum results;'Table I gives the nﬁmerical
values.coffesponding,to Fig. 1. The conclusion seems td be, therefore,
that the Qynamics of these inelastic collisions:is essentially classical,
and’éll §ﬁantum mechanical structure is due to intérference between the

- several classical-like terms.
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,_'_iI- Description of the Collision System

and Classical Results.

. The linearly constrained atom-diatom collision system has been

étudied by'évhumber of authors '’

) using a varieﬁyfpf'techniQues.. Th¢
'pafticular.#efsion of the model we Ch00se is that ﬁééd by Secrest and
Johnéonh;'éhd;one should consult their paper fbf deﬁéils,‘su¢h as
reduction ﬁq dimensionless variablés, etec. The ﬁfiﬁéip&l features
of this y¢r5£on of the model are that the diatop7is_taken as a harmonic
oscillato?;,and the interaction is an exponentiélirepﬁlsion between the
atom and tﬁe’¢1osest'end of the diatom. . |

The:tf#ﬁSlational, or scatﬁering degree of_fréedom is characterized
by canonicélQVariablés R and P, where R is'the'ﬁsual center of mass
scattering.éﬁordinate and'_Pavis its COnjugaﬁe mgbéntum. Following
the'proceduréuin I, the.canonical variables for thé vibrational

degree of freedom are chosen to be action-angle variables_’7

q‘ and n;
q is thevphése of the oscillator, and n .is ité éonjugate momentum
(the clqssicél counterpart to the vibrational.quéntum numberB). The
relation Eetween the physical vibratioﬁal cobrdinate and these canonical
variables can be worked out from thelexpresSiqhé iﬁ I, but is well- |
known6 for éhe harmonic oscillator:

3

TeT S [(en + 1)/mw]

cosq, (1)
where m . is the reduced mass for the oscillator and ® ° the vibrational

) frequencyl9’lo



Sl
In terms of these Cdnonlcal varlables, and for the dimensionless

- system of ref 4, the classical Hamlltonlan is

e SR 2
H(P: R, n, q) =P /2p. + (n +%) '+"V)'_f : ,(23')
where the:iﬁﬁeractién V is

¥
' ' 1
V = exp [- aR + a(on + 1)2

cos al; (2b)
a and f faré the only two pafametefs of the modéit3 Most of the results
of this péper_ﬁse the values. p = % , @ = .3, 'whiph Secrest and

,Johnsqn’indicate corréspbnd to the H. + He system;fSec. IV presents

2
some results.for M =’% s @ = .1287 The classical equations of

motlon for these canonical varlables are

k= P/u S e
Beav. (@)
g=1+aV (2n+1) % cos q Q. 1?., B (3c)
n=av (2n + 1)2 sin q , -:'," _ o (34)

where V is given by Eq. (2b).

1 W™

the canonlcal varlables, and Eq. (3)4‘integréted numerically. The

Accordlng to I, 1n1t1al values. R, P. n, are assigned

pgrtlcular 1n1t1al value Rl’

taken sufficiently large so'that V ~ 0. Alsc, the value P is ' A

'automatlcally determined by energy conservation and the initial

~however, is unimportant ahd only need be

values of the 1nternal varlables; e.g., for flxed total energyll .E,

Pilmustjbeftaken as

ml»-f.

A I e ) L O
so that only the initial values 9, By remain to be chosen.
’ i ,i . ‘
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~ The phase variable q, however, is actually noﬁ.avconvenient.bne
.by which to spec:fy the initial condltlon, the reason being that q(t)
does not take on a constant value as t, » - o (before collision) or

1

ty ot (éfter‘eollision)- this is easily seen from Eq. (3c) since

the unperturbed (V = 0) soluﬁion for g(t) is
a(t) = t + constant.

To eliminate this unperturbed time*dependence we define the vibrational
phase shift q by
=q+upR/P; (5)
_since'
R(t) = ft/u + constant
is the solution for R in the asymptdtic region, it is clear that q(t)

does take on a constant value as t -+ o,

In summary, then, the initial values for the canonical varisbles are

Ry large ' S . (6a).

' 1 -
P, = __[29 (E - n, - %)JZI (6p)
Q=3 t RSP 8 (6¢)
ni =n, ; | - . (64a)

therefore, are the independent varlables by which the tzagectory
is specifled (E is a flxed parameter throughout the entire problem).

With these initial conditions Egs. (3) are integrated numericallyl? from

some initial time until the collision is over -- i.e., until P >0 and

R. ié sufficiently large so that V ~ O and thus g and n have taken

t
l
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on constant values, the final values for q and n, de31gnated
'&2, and n2 ,.are 1ndependent of the partncular time ,te or distance

R2 at whlch the trajectory is termlnated, Just as they are 1ndependent

of the,lnlt;al tlme‘ t, and initial dlstance R «- provided only

1 ' : NN
that Rl eand.SRe.'are sufficiently large. Wefwrite,vtherefore, "
| : o . o

‘to indicate that the final values of these quantities depend only on
ql- and n, (and, of course, the fixed

 total energy E) The functlonal relations in Eq (7) and the -

the independent variables

role played by the two functlons are analogous to that for the class1cal

' deflection functlon famlllar in potentlal scatterlnrf3 1n’that-the
functlonal dependence is determlned by the cla831cal tragectory connectlng
v the initial and flnal values of the class1cal quantltles

13

The-purely classical result for the'transition probability'is

expressed in terms of the function 'n2(§l , nl)'alone:

B 3 | R ®)

1

‘where: n, énd n, are integers (vibratidnal gquantum numbers) and -51-

is equal to. that value forvwhich
ny=n, (g 5 my) 5 (9

the sum in Eq} (8) is a sum over all different valnes of 51 (in its

domain O to‘én)'for which Eq. (9) is satisficd. Figure 2 shows the



function 'hé(il i nl) for the typical case 'nl =1 and E.= 10 (for

H, + He this is ~ 5 eV total energy); a dotted‘linejat né = 2 intersects
the curvenat:two points, indicating that there are fﬁo values of 51
which satisfy}Eq. (9). (It is clear that there Wiii'alWays be an even
numbér ofxtefms contributing in EqQ (8); tﬁis fdlléws éiﬁce 51 =0

and 51 = 2n ‘are physically the same, so“that -
n, (o, nl) =1, (er , nl)_; --.

Note that this ﬁust be the case for any t&pe of iﬂternal degree of
freedom éinéé,these properties of fhe action~angie variables for a
periodic degree of freedom are quite general6.)_ Fr@m the slope of

thé curvéfat these two points the 1 -2 transiinn‘probability_is
evaluated_according fo Eq. (8); the classical tfansition probaﬁilities'

for 1-n n, = 0 to L4, are all constructed similarly.

2’
Referring to Fig. 2, one sees that the 1 - 5 transition is not
possible since there is no value of 51 for which n, = 5 is reached;

- this transition is therefore classically fdrbiddén, whereas those

mentioned above are classically allowedlh. Suppose‘for the moment that

n, 1s a continuous variable, rather than quéhtized. Figure 3a indicates

2

the geﬁeral character of the transition probability for fixed ny and

continuously variable n.. The infinities occur because the zero slope

2
of the func£ion ne(fil R ni) at its extrema appears_in the denominator'

| in Eq. (8). This is a very typical “ciassical catastrophe" (cf. the WhB
wavefghction near a classiéal turning point and the classical”rainbow
efféct.in-potential scattering3); in fact, Fig. 3a looks very muc: 1iké

the classical probability distribution for a particle in a potential wellls?

the classically "allowed" and "forbidden" terminology being completely

analogous. It is not surprising, therefore, that the semiclassical, or
i . . . .
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,uniform sechlass1cal treatment w1ll replace Flg 3a by Flg 3b--
the cla831cally forbldden reglon belng not completely forbldden, and the .
class:cally allowcd reglon hav1ng 1nterference features

Flgure 1 shows the numerical results actually :obtained for P

n., n

2’ "1

in{this_ClasSical limit with n, = 0, 1, 2 at E = lO, as. compared to

1
the exactfduahtum mechanical values (which are-essentlally 1nd1stlhgulshahle
on'the scéiéer the drawing»from the uniform semlclassical’reSults);

Table I gi§és'£he humerical values correSpohding‘to Fig. 1, and Table II
gives siﬁilar'results for the lower energy E =.6; ‘Although the classical
approx1matlon does indeed describe the exact trans1t10n probablllty on

the average,»,lt is clear from Fig. 1 Just how 1mportant are the
vlnterference features which are. omltted in the purely classical treatment.
If, however,-the partlcular experlmental condltlons do not select
1ndIV1dual quantum states and the observed trans1tlon probabllltles'

(or cross sectlons) are thus averaged quantltles, then 1t is of course.
qulte posslble that the classical result will be all that is actually
.requ1red. If one is 1nterested in the magnltude and trends of

1nd1Vldua1 trans1t10n probabllltles, though, it 1s clear that the purely

class1cal results are completely unsatlsfactory

ITI. Semiclassical and Uniform Semiclassical Results.

The hasic reasoh for the,failure of the purely classical approximatlon
is that.clessical_SUPerpositionhis huilt into it; i.e., in Eq. (8) one
adds the'prOhabilities associated with the two independent trajectories
which contribute to the ny ~ N, otransition. The semiclassical result

is obtained by using classical'quantities'still;vhutvquantum superposition.
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According to I, the.transition probability is'the square modulus
of a transition amplitude, or S-matrix element:
Pn n =

s o (10)

where

o o F O, (@ ,n) -k 10(d, ,n) |

S, ~ 3 A RO AR S et M |

..-'n-e’nl".Z[e“ 52 © 2 (12)
ST a4y

and, as-aboﬁe, the sum in Eq. (11) is a sum over aii the independent

'~ values of'.al which satisfy Eq.'(9) (two for the typical situation); the

‘magnitude ¢f each term in Eq. (11) is the square root of the corresponding

- 6
term in the classical expression [Eq. (8)], and the phasel is given by

t A :
2 : .

¢>(<’11 y nl) = - j; at (rP +.qh). (12)
1

Just as:thé classical funqtions in Eq. (7) are indepéndent of tl 5 t2 )
Ri s and'fRé , S0 is the phase functio;'in Eq. (12); this is easily seen
since P ;“ﬁ = 0 in the asymptotic region. | j
Combining Egs. (lO) - (12), the semiclassiéal expressioh-for the

transitioh probability is

P = + + : < sir .
Po,,m TRLTRTE (p, p)? sin (& ¢) s (13)
Pl and ’PQ are the squére modulus of each term in Eq. (11), and A ¢. is

their phéSe difference; 'pl + p_ is the classical result of Eg. (8). The

2
interference term is proportional to sin (A ¢), rather than cos (A®),
due to the - phase difference resulting because Bn2 (QJ s nl)/ail

‘has a different sign for the two terms in Eq. (11). The sign of
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,£>¢,:may be:detérmined unambiguouslyfby'thé_meéhOd'of Péchukasl7,

bu£ a simpler prbéedure is posSible:on the 5ésis of‘resulfsutd be

:-developed beiow. ' | | |
o ,Taﬁles- T and IT display the results of Eq. (13) for éﬁergies F = 10"

and E =:§; except for the largest and smallest_Claésicaily aliowéd value

of n2 ,_the SemiciaSSical'reSults»aré within a:feﬁ percent of the exact
quantum results; the traﬁéitioh probabiiity to.all'cléssicélly forbidden -
final states is still'identicailyrzefo} These résﬁlﬁs are entirely

-conSistenthith onefs previous knéwledge of sémiciassiéal phenomena

» and theféofréspondence principle in'ggneral. Thé‘ﬁbreakdown" of fesults
near claééically forbidden régions.is ekpectéd;1it is anélogoﬁs to the 
nprimitiﬁe" semiclassical description of the rainbow.effect in potential
sCatteriﬁg3'A;Ithe'interfefehCe effects not'tdq close to the rainbow -
angle (thé‘élassicaL/non-classical boundary) ére.treated corfectl&, but
noﬁ the transition region itself. It is clear;'fhérefore; that

"special teéhniques" must be intréduéed to handle'fhevtransitiOn and
claésically:forbidden regions correctly. ‘HereIWé give a heuristic
vpresentaﬁion of.fhe uniforh, or extendéd'semicléséical'expressions; a
rigoroﬁS'derivation is possible by using thé integral repreSentation for
the S—maﬁrix developed in Sec. IV'énd the génefél results of-the Appendix.
The.preséﬁtétion below is useful in showing how‘oné can esséhtially guess.

the appropriate uniformly valid expression from the primitive semiclassical'

result itself.

Since
. S s
sin (A 9) - sin° (’%+ %?)-cos (L}+Aé)
e (L A¢d 2 Ad
1l = sin <—h + —é—)+ cos (‘Ew‘ “é‘) ’

The semiélassical'éxpression-in Eq. (13) is equivalent to
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S | ' L2 I Ao é"ﬂ Ad
Pn p T (pl + pe) [vs1n .(hf.—-é-)& CF’S_(Q +—5~)]

e’ "1
| ' L1r.ofn ae\ L ofn sl ,
+ 2(pl p2)2 [snrl (E + —2—>- c_og (-H- + ~2———>J

The oscillai_:or"y functions in Eq. (14) may be i‘eco_gnized,'hoxvréver,

(14)

as the asymffdtic forms of the two kinds of Airy:fuﬁcﬁionlg;
e Ady

s;n (h + 2) ~ %

vc.ose'n+é—? = ¢

\y ")

| '2/3 . _ '

z=(% A¢) . (15)

For large A¢{(or z), therefore, Eg. (14) is equivalent to

- ‘
n

N (_Z) |

ol
no

Bi (-z),

where

P._ , . | o ‘% .
Fa, nl= (pl+p2) [nz A" (-2) +nz_:Bl.(,z)]
S T ST S (162)
+ 2(Pl P2) [ﬂ z A" (-2) -z Bi (..z)]
or X . L
i L i .
= 2 2 . 2
Pn ,n = (Pl. + Py )" nz @Al (-_-z) |
IR o
| SE_ %2 i 2, (160) "
Ct (py® = pp%)" w2 2 Bi" (-2).

Not only is Egq. (16) equivalent to the semiclassical expression
- for lar.gev phase differ'enées, however, but it is also well-behaved in the

transition region and is actually the uvniform semiclassical expression we seek.
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In the tran51tlon reglon (n

o near an extrenun of 1, (ql , n ))

pl ~ P, s so that Eq (16b) becomes
P N h Pz 3 Aif (-z) : (17)
Ny s 1y S

where p' istfh¢ common value of ‘pl ~and 92-‘ As :n2 vapproqches‘

an extremumiéf' né(al ,‘nl); p becomes infinité;jaS'discussed above;

the phasétdifféréncé Ad howe&er, goés to zerd,'énd the cho of

A (and'thﬁs z) in,ﬁq. (lf) exactly“cancelé'the ihfinity in p.. The
approprlate llmltlng cxpress1on can be derlved by approx1mat1ng n, (ql ;' N )

as a quadratlc about 1ts extremum and ¢ (ql , n ) as a cubic about thns

partlcular'value of ql ; if use.ls made of Eq. (23a) 1n_Sec. v, the

‘result is o ; s
' x 1/3]
N _ N [(n2 - ng)/a 4N (18)
n2 ) nl ‘ N ﬂ; . 2/3 ’ . S .
- Loy || a]™3
where - |
' n 12
a 5.n2,/ 2 q;-
and -
" e Py (3 5 my)
2 5.2

: 1
L ¥, (5, )
% 2,

2

7‘ wifh thé §erivatives eﬁaluated at the extremum of’ ng(al', nl) ; this
result is‘Valid for 'nex_ a maximum or mlnlmum |

.. (18) clearly exhibits the tran51t10n from oscillatory character
in the classically allowved reglon.to exponentlally decaying character in

the classically fofbidden region; this is -direclly analogous to the rainbow

Aeffect in potential scattering3’ near the rainbow angle.

-
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The results in Tables I and’IIunder.the "Unlfofmh'co]umn were allv’
obtained from Eq. (16) for the classically allovcd tran31t10ns, and
vK. (18) for the classically forbidden tran51t10ns. The semiclassical
and unlform.semlclass1cal results are, as expected,'essentielly'the
same for classically allowed transitions.not closejto'the transition
'region;'the.general agreement between tne uniform seniclassical énd |
exact quantum mechanical results has been noted above.

The values in Tables I and II for the class1cally forbidden transitions,
while quite good are not of as high accuracy as for the classlcally
allowed tran51tlons. One -reason for this lowver accuracy is that Eq. (18)
is an appronination-to the uniform expression in Eq.,(l6). One may
apply Eq:f(lG) more accurately to obtain better results‘fOr the
_Classically}fonbidden transitions. Although for classically forbidden
transitiOns'there ere no real values of al' whicnjsatisfy Eq. (9),
there are complex roots; Eq. (18) may be obtained oylapproximating
'n2(al ,'ul)’as a quadratic at its extremum, soluing_for the"complen
roots of‘Eq. (9), and then applying Eq. (16). One canvsolve Eq. (9)

- for lts_complex roots mone sccurately, however, by expanding 'ne(il 3 nl)

19

as a polynomial of higher order “, or by fitting ”né(al 3 nl) to some
functional form and solving the transcendental eQuétions'nUmerically.

In eitherveVent the tuo roots of Eq. (9) will be complex conjugates

.of each other, and the second term in Eq. (16v) will be absent ( it would
 be exponentlally ‘increasing if it were present) This more accurate

“treatment for‘the classically forbidden transitions has not been cafried

.out, but.would,certainly be expected to give results improved over Eq. (18).
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In conclud1n~ this scctlon e poxnt out that evcn Eq. (16)
‘ falls (or at best becones dlfflcult to apply) 1n the case that
all tran81t10ns are highly forbidden cla581cally. Flgure Y shows the

function'vnf(al , n ) for n, =1 at energy E 33 cla051ca11y the

1
v1brat10nal quantum number can change from its 1n1t1al value only a

small fractlon of a whole quantum, so that all transxtlons are
'forbldden._iThe.extrema are so far from n2 =0 ;end: 2 that the quadratic
appro#imation to ne(ii , ni) at i#sbextrema is gﬁite poor;fTeble IIT
shows éﬁe'olassical; semiclassicel and uniform Semiclassical resulte

for this case, as compared to the exact quantum results. The procedure

1ntroduced in the next sectlon, however, is successful in descrlblng

even these;hlghly non-classical transitions.

IV. The Initial Value Representation.

'Here we'derive an expression for the'S—matfixeineterms of
classical Quaotities which is more general than=eny.yet presented; on
thevbasis:of it the uniformisemiclassical expreesions of the previous
sectionﬁoaﬁvbe‘rigorously obtained;‘end the higﬂl&-noneoiaseical
ﬁrahsitioﬁsldisoussed above are more accuratel&.ffeated.

COneider first some properties of the'phese function defined by

(lQ);oas poihted outl6, this is actually the phase of the propagator >
'iﬁ the'ﬁomentum representationl. If all four momenta (two initial and
’ two flnal) are considered to be 1ndependent varlables, therefore, the

phase satlsfles the follow1ng general relatlonsl’go

3
2

Sag Pl By B = - 9 o G

rl
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3

Sap $ps BomuP)=g ()
5?:[ 4’(”2_ 2 _Pz » By P.J_)»»: Ry _' (194)

- where the quahtities on the RHS of Egs.(19) are functions of_ these four

‘independent' variables. As was noted in Sec. II, however, if one enforces

energy conservation (as we do), then

en e [aeon -0 e
: P2=‘ Pe (né) - [QPA(E.-‘ngl_"" %)]% s - (20Dp)

so that ’phe"_phase' is a function only of n, and  n, :

| ¢ (n2 E 'nl) = ¢[n2 s P2 (na) s ,Pl(nl)], (21)

furthermore, Egs. (19) - (21) and the chain rule imply

8’% ¢ (n, :_DJ_) = -t RZ/PZ D (e2a) -
3 | . B . " ‘ v.
5—;; q)(ne "nl) =q - K Rl 1 (2_2b)

Recalling the definition of the phase shift in Eq. (5), Egs. (22) become. .

| O 4 .')~:"‘ . (e
| . gﬁ_—ne’nl ’ql "‘ (3)

r v 1
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In Sec.>Ii n, and al , rather than né' and fni‘;"were chosen as

1
-the two 1ndepcndent varlables, and the phase ¢ (ql s ) is more

pre01sely de51gnated by -
(a5 m) = en, (35 m) 5 my) - (24)

EqQ-kEé) is the basic relation we'sougthI;;ifzﬁaS fhe'ggzg
of fhe usua;Kcanbnical transformation 20 but isjeetﬁelly-somewhaf
different;fnfhe ?afieble | a(t)'is not conjugaﬁe.to n(t)‘inkthevusual
sense (the'variable a(t) is). VUsing energy censeivation to eliminate
_the canonlcal varlables of the translational degree of freedom as |
vlndependent varlables, however, has the effect of cau31ng q to behave
in the asymptotlc reglon as though it were the varlable ‘congugate to

(1n the sense of Eq. (23)) J

On. the ba51s of Eq. (23) one may define the S-matrlx in the a

A representatlon ”
ig. (n. + & LT i.- .
o - AP N
q2 2 ql -—-fdn ﬁn ""‘-r né':' nl"',""'i 3 (25)
(2n)2 ST (en)? '
the in#erse'transformation is
_1q2 (n + 1) ' lql (n + 2)
S >0y qu Jai, =5 7 8g,, -t (26)
- (Eﬂ)2 (2 ) .

" If the integrals in Eq. (25)_are evaluated by stationary pﬁase,'then in -

. view of Eq. (23) one obtains
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»l}é:. o [jbnz (52 ’ al)/zﬁ] 5 . [¢(n2 , N )
BRI 33,

_ . - (27)
fq2<n2+%->~ql<nl+%>]» |

1

where nl-; n; (q2 s ql) » By =n, (q2 s ql)‘ (q2 gnd a, are the
independent variables of the trajectory in this case). If Eq. (27) is

' substltuted ‘into Eq. (26) and 1ntegratnon over q2 and ql performed

by statlonary phase, then it is clear that Eq (ll) is recovered.

Suppose,‘however, only the integration over ql is performed by

'stationary'phase; the result is

| = = 1
1 - aql (qQ » nl) "2

Snv ‘n. 5; d92 ' - »
2’7 , : : .

B 0q, .
' 3 {¢(n (q2 ; 1 ) > m) + q2 [n (q2 >,y ) - n ] }

J

(28)

where ae and n, are the independent variables spécifying the trajectory

in the integrand. With ny fixed one can uSe-the”relations

q2 = q2 (ql" nl)

dae' aag_(al J nl) .:".

1

- to change variables of'integraﬁioh, so that Eq. (28) becomes
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5 L  “ o | Qﬂ :
..ﬁ g _ 1 ' a aq2 (ql s n )

o . B . , (29)
. i{ ¢ (a'l ’ nl) + 812 (al 2 nl) [né (Eil b4 ﬁnl_) - n2] } ’
.,;e.., - | T T ?

- the 1ndependent varlables spec1fy1ng the tra3ectozy in the 1ntegrand of
(29) are l and n;..

(29) is the de81red integral representatlon, and we refer to 1t

as the 1n1t1al value representat10n22 of the S—matrlx. Why is 1t any

better than any of the other representations discussed? In short, it is .

1

unigue classical trajectory; this is not so_fér;dther pairs of boundary

becausé-théfinitial values 51 and n, must nécéssérily.détermine a

.c0nditioné}(n end n, , q, and g, , and g, and né)._'Thgs in
(ll) one must sum over several (i.e., two)"térms corresponding to
different values of ql which satlsfy Eq. (9), i. e., ql (ne , n ) is
a multlvalued functlon, whlch is ‘another way of saylng that n, and ny
_do not determlne a unique classical tragectory. ‘In like manner,
| _n2v(§2'{,ai)acan be mgltivalued} s0 that.Eq. (27)2wquld h;ve to chtain
bseveral'térms, one for each branch of this mulﬁiﬁéerd funétiOn. It is
interfeféhcé between thése éeveral terms, however,;which causes
problems-—partlcularly so when two terms coalesce, as they do in the
trans1tlon region. The 1mportant feature of Eg. (29) is that all the
.functlonsvwhlch appear in the integrand.are necevsarily single-valued

1

“Just thevbne term in the integrand.

(since_fail and n. determine a unique trajectory), so that there is

If one proceeds to evaluate Eq. (29) by stationary phase, the

stationary phase requirement is
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a - - - N |

but from‘Eq;-(23),one sees that23

o | 3, (@ 5 n)
S - N 2112

. (0

so that this requirement is equi&alent to Eq.'(9) aﬁd one recoveré Eq. (11).
This must be true since, as pointed out in I, ali'éemiélassical representations
of the S—métrix areequivalent provided one uSes'fﬁé:stationary phase.
‘approximat;b@ to transform from one representatipn ﬁo another. If one
e#aluates fhé integrals more accurately %han by:sfationary phase,
however;'ali'repfesentations are no longer equivélént. On the basis of
thé abofé:a;guments we have chosen Eq. (29) to be the more fundamentél
representation of the S-metrix in terms of the ciassical trajectory
functibns.w

The uniform‘éemiclassical expreSsionsH[Eq..(16)]“¢an'be obtained
'by a sﬁraight;fofward>application of the techniQﬁeé?hﬁe6 for evaluating
an intégral'which contains two possibly coaleséi@gfpoints‘of étatidnary
‘phase; details of this technique are given in the Appendix. Eq. (18),
' which ié'valid for 'n2 nqt too far from an extremum of n, (il,’vnl)’
is readilyVObtained frém Eq. (29) by expanding hg(ii s ni) as a
quadratié.at its extremum and az(al s nl) as é linear function.

In thé‘case thalt all transitions are highly forbidden classically
it has bgen°noted.that Eqs. (16) and (18) are not useful. One méy ask
‘if this is due to thevcomplete invalidity of classical dynamics-under
these conditions, or if Eq. (29) is still valid and the failvre of
Egs. (16):and (18) due only to the inaccurate evaluation of the integral

in Eq. (29). When many final states are classically allowed, direct
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numerlcal 1ntc"ratlon of Eq. (29) would be extremcly dlfflcul* because
the phase of ‘the integrand is large and qulte rdp1dly varylng--whlch is
vhy, of course, the unlform stationary phase evaluatlon is accurate in
bthls case. When all tranultlons are h:ghly forbldden, howevcr, the
phase varlcs ‘much more moderately, so that dlrect numer;cal integration
‘is fea31ble, Table IV shows the results of thls procedure applied
to severalvsltuatlons in whlcn all, or most, of:tneotran51tlons are
classicallj forbidden. Eﬁcept for transitions>with;extremely small
probability,.the accuracy of the results indicates that Eq. (29) does
indeed have a range of validity beyond-the sem1c1a351cal and. unlform
sem1class1cal express1ons.

One may .observe’ that Eq. (29) does not 1dent1cally obey mlcroscoélc
. ’I%LE Pnl , N ) the degree. of this’

fallure can be used in practice to estlmate the overall ‘accuracy one

revers1b111ty (the properuy-Pn

expects for the numerical results obtained from Eq. (29)._ It is 1ntereStingb
to note, end-may‘ne significant, that in Table iV the egfeemenﬁ with |
vﬁhe'quantum results is best whenvthe initiel Quentum number is the
larger of the two. | | | |

In concludlng thls sectlon we would llke to suggest that it
may often’ be guite useful to employ approx1mate cla381cal dynamlcs
(e g., sudden, 1mpulse?ior adlabat1c7approx1mat10ns) to generate the ‘
tragectory functlons n, (ql , n ) and q2 (ql s, n ) (and thus ¢ 23),

and then use Eq. (29) to obtain the S-matrix. For example, for low

energles the tragectory functlons are often well approximated by
a, (ql ’ nl) > g + constent

n, (ql ’ nl) = n, + A (E) cos (ql + constant),'
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from which. ¢(a1 , ni) may be obtained=3. With these approximations

. Eq. (29) is recognized as an integral representqti6n for a Bessel

functionfdfforder _l'n

2'- n, | , and the transitioﬁ probability becomes.

P

_ 5
.ne >y (E) =J

[a®]
this does'iﬁdéed approximate theitransition probability for this
case reasonably well.

N

V. Systéms with More than One - ..

Internal Degree of Freedom. =

- Many features of the present problem carry over quite directly
to generalfcollision problems with more than'one_internal degree of
freedom27{,_The_réason'is that all internal degrees of freedom are

quantized (quantum mechanically), or periodic (c;assically), and in

terms of action-angle variables all such degrees Of-freedom are essentially 

' ) o 6 _ .
- of the same type ; the canonical momentum for eacli degree of freedom is

the corresponding'quantum number, and the canonibal_coordinate‘is the

‘ phase of the periodic_motion. For the ith internal'degrée,of freedom

the canohical coordinate qi(t) has the asymptotic solution

qi(t)'='aﬁt + constant ,

and this unperturbed time dependence can be removed by defining.the phase
shift for each degree of freedom, ai(t) , just as in Sec. II.

The total phase in Eq. (12) and the derivative relations in Eq. (23)

are generalized in the obvious manner.
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' The classical [Eq. (8)] and semiclassical [Eq} (ll)] expressions
for the Sﬁmaﬁfix spply for systems with more degrecs of freedom with

obvious generalizations, but not. so for the uniform semiclassical

results--the reason being that there may be more thaﬁ_two_térms in Fq. (11).

If only tWoiQf;these terms are coalescent (i.e;, ih’the transition region),
however; 6ne:éan still use Eq. (16) to handle'thié-pai}-wise‘coalesCénSe
of terms.-~1ﬁ-does not -appear, théugh, thafjone_wpﬁld-be able tb_treat
the situaﬁi§n'in which three or mére terms are simﬁlténéouslj in the same
transition‘fégionQH; )

The initiél value representatibn‘in Eq. (29) is élso generalizable
in the obvipus?manner; it.is now a multi~dimensiqﬁgl integral, however,

so that diiéct numerical integrafion will be of mbféiiimitediuse.
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' Appendix: - Uniform Stationary Phase Inﬁegration; .

.- The following pfocedure is essentialiy.that due to Carriereh.,

Considerﬁaﬁ.integral I of the form

E f ax g(x) T, (a2)
and sﬁppbse ﬁhat'there exiét two points of stationary phasew-i}e., that
there are ﬁwo;roots of the equation

f'(x) =0 ;‘ : “1 I' ". : (A2)

i: and X5 f"(ki)x and 'f"(xz) must have different signs,

and for definiteness we take the former to the positve and the latter

designated x

négative._
If the usual method of stationary phase is uéed separatelyvat

then

#1 and %éa
I=v11412- B I .(A3)
" where : |
nee (B, W

k = 1,.2{ éndf'fk = f(xk), & = g(xk){ £ =1 (xk); for the present case

: i(f '+-£[-) -
| N . o
1= 8 | 2n/flv']2 e * ' ' (A5§)
. JU
l(fe.j Iy )

- |
R (L -3 : o o
I, =&, | 21r/f2 [2 e - | (A5b).
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Thésefresults coric -about by,ekpandinv f(x) as a quadratlc about
'eaéh'extrémumj if it is expandéd asfa CUblc, Eq. (A3) pertains'but with

Eq. (A5) replaced by

) » |
=g | ex/r," |2 2 2e T Al(—z ) (a62) .
- -12 .,=_ &, | 21r/f2 [2on 22 o' e ._i-.f‘l_.(-zz) , _V(IA b) .
where Al is the regular Airy function™ , and
] ’ £ 1y 2 7 h‘/?) . - |
o . k. 2 e ;
xT3% - e
for k = 1;12. For large Zk one may employ the asymptotlc form of. the
Airy - functlon, and  Egq. (A6) becomes o '
j y i(f -+j:)
~ n |2 : 1
I, =9 En/fl I € _
s Ly iy v2g) —-{1[‘) T (%)
+3¢"_21t/fl | e - o
1
l | é l(f2 -T) __
I, =y 27/ £, e | _
| G ) | ~
’ 1 by - + =
-+3i\2n/f2' 12 e e s o (Agr)
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i.e., Eq. (AS)-is recovered,:plus a sburiéus, highly.bécillatory tefm.
In.Eq. (A9a)é:£or exanmple, the secdna term -in ﬁhgvexpression £oh Il is
~actually a'cfude approximation tovIQ, and oné doe$ Eetter by simply

discarding it. This can be accomplished more generally by writting

the Airy functions in Eq. (A6) as the sum of two'térms,
hi(-z) = %[Ai(-z) +1 ,Bi.(,—z)] s

+‘%[Ai(-z) - i Bi(—z)]' K " (A10)
since fofflarge z | '

L
2

x z~llI [Ai(—z)

+

I -
i Bi(;z)] ~ e%,l(: - &) , (m1)

one can idéhtify the spurious term and discard it. The result is that

Eq. (46) ié“replaced by

| Il =g | 2n/‘fl [ =2 Zlu e - : [Ai(-zi)+ irBi(-zl)] _ _(Alga)
oL oa i(f, - 8) ST
I, =g, _li21r/f2 |2 ﬂezgu e - [Ai(~z2) - i Bi(—_zg)J . (A12b)

Eq. (Al2), with Eq. (A3), is a uniform approximation to the integral I,
but is actually not the most uSeful result—fthe reason beiﬁg'that it is

necéséary to evaluate the third derivatives of _f(x) at x, and x

1 2

in'order,to'dbtain the quantities Zy and ¢ K ;'defined.by Egs. (A7) and

(A8)j which are required in Eq. (Al2). The fact is, however, that these

third derivatives are not needed with high accuracy unless zi and

' ‘are small; this follows since Eq. (Al2) reduces to Eg. (A5) if =z, and 2,

Zo 1 2
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aré‘large;'ifréspQCtive of their;specifié_valués;. I£,is only vhen

.xe_ and xlﬁ

”Begih to coalesce that Eq. (Al2) différsjsignificantly'
'from Eq* (AS);_ . .

The third derivatives are therefore approximﬁted byi

' ._ nt "'. ~ . ’ " _ " . _ . -
I P € )/(?‘2 | vx_l),_; | (A13) .
which implies that f™ (x) is constant, or that f(x) is a cubic;
it is cleaf'fﬁat‘ Eq. (Al3) is essehtially exact for,small | X, = X, l
Within thi$ approximation it is easy to show that.
"o o_p ot o_ _3_ ‘ _ _._ 2
£, = ~fp" =g (fp = 1))/ (g - %)”
£ £ = 23 (f - 1)/ (x, - x)
St 2 2 1Yo oAl v
from which it follows that.
- 2/3 -
3
= = | = - }
2, =2, [u (£, fl)] (21)
£ =§ - e - ) DU o (a15)
17527 2V T o | ,
With Eqs; (Alh) and (A15) replacing (A7) and (AS);:the final result beéoﬁes
. - 1 1 1 i(f2 + fl)/2 F ' _ - . B n
I. =g, | ex/£." |2 =2zt e Ai(-z) + i Bi(-z){ (A16a)
178 LEY & °e
: o . ' -1‘ . k
11 1(f2+fl)/2" o : o
I =g, | on/f," |2 2z e _ Ai(-z) —i Bi(-2z)} , (Al6D)
o~ Bp | Mg et N4 | .
vhere

T [% <f2'-fi>]2/3 L -
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‘The v1rtue of Eq. (A16) over (Alc) is thdt no quantltles are

requlred 1n Fq. (A16) other than those which are: needed in the simplest

_ approxnmatlon, Eq. (A5); the accuracy of hq (A16) is esuentlally

equal to that of Eq. (Al2) since the approx1mat;on_pf the thlrd derivatives
by Eq. (Al3)iis poor only when 2z is large and not accurately required.

Foi v(xei_iki) small both of these uniform approximations reduce to
- if s 1 1/3 [ (oje w3
I=g e 02m | 2/s," | / Al[fo (g/_fo ") /] s (A18)

where xo'eis the value of x for which f£"(x) = O (the coalesced value

£ and
of x, x )
v Appllcatlon of these results to the 1ntegral representatlon of the

S—matrlx-ln Sec. IV gives the unlform semlclasslcal_express1ons in

Sec. III.»'One word of caution is necessary, however' the primitive

sem1c1a551ca1 express1on in Eq. (11) is 1anr1ant to the replacements
AP A +2kn | (A19a)
A® o (2k + )n - AS, o (A19b)

2/3

where k. is any integer; the value of 2 = (3Aub/h) , of course, is
not invafiant to such a replacement._ To obtain the proper value of z’

it is sometimes necessary to use Eq. (Al9) to modify the value of A¢

'obtained directly from the ealculation. The reason for this is that'

for some trajectories, particularly those at high energy, the function

.62 (ii , ni) changes abruptly by + 2r (as a function of ﬁl), and the phase

¢ (al ;:nl) undergoes a corresponding jump of + 2x [hQ (il s nl) + %]

at the same point. This causes mo real problems, however, for
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ene (ql PO o ) is completely smooth at thls p01nt, so that the phase

of the 1ntegrand in Eq. (29) changes by + 2x (n _nl) , which has
"no effect'oh the integrand because

t2xi(n. - n_)
e e l = J.

o

The magnitﬁde’bf,the’integrand in Eq. (29) béha#eShlike, [6 (al - a{, ,

where a ' is the point of discontinuity in ae (il ) nl) » and since

1
ax 8(x)? =
-€

as € - O; the region of the-discentinuity makés,nohcontribution to the

integral;'fihe phase difference A¢ is modified according to Eq. (A19),

therefore,;to make it a'continuoﬁs function of lal ; this is apprOpriate

in the éehse that A¢ is actually being used td apprbximate higher
derlvatlves of the phase of the 1ntegrand One can’ av01d thls
problem of 1dent1fy1ng the proper Aq’ by using Eq. (A12) which employs
the hlgher‘derlvatlves themselves; for Eq. (29) QfsSec._IV the higher

derivativesjbf the phase of the integrand are giveﬁ by

o ] 1
f = 45 ne.

tHy — t
T =a,

1

+ 2q2 ,2 C .

In practice, hbwever, we found it easier to identify the proper”lﬁ¢

than to -evaluate these derivatives.
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Transition Probabilitieé fbf 
h=23a=03,E=1

-295.f. 

. Table I. .

Transiﬁion?- Classical®  Semiclassical®  Uniforn)  Quantun®
0-0 0 0 0.058 (6.060)
0-1 b.356'v 0.4eo - o.end 0.218
0 12  0.212 | 0.416 | }._0.381 | 0.366

0-3 o.232 0.359 o 0.266 0.267
0 'ﬂ'l, 0 0 0.075 0.089
1-0 10.356 - 0.h23 10.211 .0.218

1.1 0.158 0.290 . 0.287 (0.286)
1': o 0.130 | 0.009 - "6.011 0.009
1 '3f‘ 0.128 0.168 B 0.174 0.170

1-y £ 0.159 0.285 ~ o.240 0.240
1-5 0 0 - 0.062 0.077
2.0 0.212 0.416 0.381 0.366
2 -1 0.130 0.009 o.011 0.009

2.2 0.109 0.208 0.206 (0.267)"

=-2:'131} 0.105 0.020 o.017. 0.018

2 'h)" 0.114 0.165 6.170 0.169
2.5 0.169 0.262 ' 0.194 0.194
2.6 0 0 o.ou5 0.037
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_ These : are the initial and flnal v1brat10nal quantum Dumbers, n, - n

A 2 .
Results are all from Eq. (8). '

Results are all from Eqs (lO), (ll), and (13)

Results are from Eq. (16) for the clas31cally allowed transitions

and Eg. - (18) for the cla381cally forbidden tran51t10ns.
ResultsJof.Secrest and Johnson, ref. L; the flgures in parenthesis were
obtaihéd by subtfacting from 1 the sum of trénéiﬁion»probabilifies

for éll;ééssible transitions out of the initiéllétate; and. thus is

" an upper Eound to the correct diagonal transition probability.

-



Transition Probabilities for

-31-

Table II.r

4 =2/3,a=0.3,E=6

Transitioné}v’ Classicalb Semiclassicalc _‘Uhiformd Quaﬁtume
0-0 0.401 0.672 | " 0.534 (0.538)
0-1 0.360 0.546 . 0.397 0.394
0-2 0 , o  0.059 0.068
1-0 0.360 0.546 ©0.397  0.39L
1-1 0.208 0.210 7 0.223 (0.224)
1.2 0.302 0.470 - 0.349 0.345
1-3 0 0 . 0.061 0.037
2.0 o 0 0.059 0.068
2 -1 0.302 0.470 1 0.349 0.345
2.2 0.242 0.333 0344 (0.348)
2-3 1 0.607 0.659 o 0.239 0.233
2 -1 o 0 0.029 0

.006

a, b, c,‘d{.e See the notes at the bottom of»Téble.I.'
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Table III.

Transition Pfobabilities fof_-*:~

H=2/3,a=03,F=3

crs B
‘Transition " . -~

Classicall

. . e
Semiclassical

-¥]Uhiformd

Quantume

1-0 -

1-1

'f_l ,.2'1'

o
1.633

o)

2.251

""Q;012
  ~1.h57 

. 0.013

0.022
- (0.977)

0.001-

a, b, ¢,

d, e

See' the notes at the bottom of TablefI;
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Table IV. -

Transition Probabilities via

“the Initial Value Representétion

foénsitioha IVRb v -:' Qﬁantumc

o p=2/3,a=0.3,E =»6 :‘

1-0 0.025 .f f_°@%

1-1 o973 (0.9

1.2 0.0016, 0.000k T 0.0009
hW=2/3,a0=03,E=8

1-0 co0.117 . 0.108

1-1 0.826 | . (0.856)

1-2 0.052, 0.044 - 0.042

1-3 2.1x20™ 2.5x107°

p=1/2, a=0.1287 , E = 12.8365

0-0 0.974% . (0.98)

0-1 0.019, 0.016  0.014

0-2 ‘ 2,1x10‘5,°3.uxlof5 - ']3}2x10'

5



Taﬁlékiv. (continued)

"Trénsitiona A , VR : ﬂ - Quantum®

= 1/é , a=0.1287 , E = 16,8365:'
_‘f1 - 0 -~ 0.069 R 'f1 'v' 0.063
1.1 o860 o (0.87h)
B . 0.069 . 0.063
,,2:—”6 ) ,:0.0015 . » »v.v. . ,b.oOll.
‘_72;- 1 0.067 'f;_? - 0.063
} ff2.- 2 0.886 - f ' (0.896)

o 3. 0.045 | _ o - 0.0k

:a;SQe note a  at the boﬁtom.of Table f{:

b ihese values were dbtainedvﬁy nﬁﬁéricél;integratién 6f-ﬁ
., ;£he initial value representation, Eq}ﬁ(ég); Where
f:}there are twp\v#lues, the‘second is.féfltﬁe‘inverse

tfahsition; these should be eqﬁal, of édu}sé,rbut

:.Eq. (29) does not éxéétl& obey thié miqrdééopic

' peversibility requirement. |

é See note e at the bottom of Table i.
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Figure Captions |

Transition probabilities for p = 2/3, « =fO}3;(corresponding
+He) at E = 10 (~ 5 eV total energy for H, + He) with

2 2

1 = 0 (top), 1, and 2

(vottom). The'dotted'liﬁeSICOnnect the results of the purely

classical approximation [Eq. (8)1], and the solid lines connect

the exééf'quantum»results of ref. k; on the”scale'of the drawing

.theéefﬁuantum results are esséntially the same as the uniform

semiclassical results of Egqs. (16) and (18).  The numerical -

values'éorresponding to this Figure are contained in Table I.

The tragectory function n, (ql , n ) for p =2/3, a = 0.3,
L =15
this functlon is the final vibrational quantum number of -the

classical'trajectory with initial conditions (51.’ n ). The

dotted llne at n, = 2 1ndlcates the graphlcal solutlon for the

two values of the multl-valued functlon ql (n2 s N ) , here with

n, =2, l = 1.

(a) A sketch of.the.classicél'approximation for the transition

probability [Eq. (8)] for continuously variable 'ng , at fixed
3 ’neﬁln and hemax indicate the extrema of the.function;

n, (ii R nl) for fixed n (such as in Fig. 2). (b) A sketch of

1.
the uniform semiclassical result for the transition probability

[Egs. (26) and (28)].
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cla831cal traaectorles at thls energy for whlch the quantum number -

.fall trdns1tlons are therefore cla351cally forbldden

. -ho; ufe

'Same as Flg 2, except ‘for total energy E= 3 "'There afe'no"

D

..can change by an 1ntegral amount from 1t 1n1t1al (n l) value, ‘
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LEGAL NOTICE

This report was prepared as an account of Govérnment sponsored work.
~ Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission’’
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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