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Abstract 32 
To further the development of a downhole vibration based energy harvester, this study explores how fluid 33 
velocity affects damping in a fluid-conveying pipe stemming from a viscous annulus fluid.  A linearized 34 
equation of motion is formed which employs a hydrodynamic forcing function to model the annulus fluid.  35 
The system is solved in the frequency domain through the use of the spectral element method.  The three 36 
independent variables investigated are the conveyed fluid velocity, the rotational stiffness of the boundary 37 
(using elastic springs), and the annulus fluid viscosity.  It was found that, due to the hydrodynamic functions 38 
frequency-dependence, increasing the conveyed fluid velocity increases the systems damping ratio.  It was 39 
also noted that stiffer systems saw the damping ratio increase at a slower rate when compared to flexible 40 
systems as the conveyed fluid velocity was increased.  The results indicate that overestimating the stiffness 41 
of a system can lead to underestimated damping ratios and that this error is made worse if the produced 42 
fluid velocity or annulus fluid viscosity is underestimated.  A numeric example was provided to graphically 43 
illustrate these errors.  Approved for publication, LA-UR-15-28006. 44 
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1.0 Introduction 74 
The development of energy harvesters to power either commercially available or novel monitoring 75 
equipment has seen continued interest over the past decade [1-4].  Recently, the hydrocarbon industry has 76 
expressed interest in developing vibration based energy harvesters, capable of being deployed in the harsh 77 
downhole environment, to replace or supplement standard power sources currently in use.  One possible 78 
realization is shown in Figure 1 where a well configuration has been modified to include a piezoelectric or 79 
electromagnetic harvesting system [5-11].  Bracing elements have been included above and below the 80 
energy harvester to limit fatigue damage in adjacent components due to the assumed inclusion of a 81 
mechanical amplifier [12]. 82 

 83 

Figure 1. Modified Well Configuration. 84 

Two important factors affect the production rate of vibration energy harvesters: the natural frequency and 85 
the damping in the structural system to which the harvester is tuned [13].  For ideal (tuned) harvesting 86 
conditions, the targeted natural frequency of the system and energy harvester would coincide (i.e. 87 
resonance), and damping in the system would be minimized (i.e. the driving accelerations would be 88 
maximized).  Characterizing these two factors, then, is important in developing an optimum energy 89 
harvester for a given well configuration.   90 

A previous investigation explored the effect axial force, annulus fluid properties, and annulus geometry had 91 
on the natural frequency of a braced well [14].  The current investigation seeks to illustrate how a pipe’s 92 
conveyed fluid velocity affects damping stemming from a viscous annulus fluid.  To illustrate the behavior, 93 
three variables are parametrically explored in a simple single-span model (see Figure 2): the annulus fluid 94 
viscosity, the rotational stiffness of the boundary springs, and the conveyed fluid velocity.  While a multi-95 
span model could be utilized, a single-span model is the simplest model that illustrates the behavior this 96 
investigation seeks to demonstrate.   97 



Similar configurations have been previously investigated by others [15-23].  Kheiri et al. [24] investigated 98 
a fluid conveying pipe with flexible end restraints but did not account for a confined external fluid. Bao 99 
[25] studied submerged fluid conveying pipes on elastic supports but did not investigate damping to a 100 
significant degree.   101 

In the current study, an Euler-Bernoulli beam formulation is employed to model the system shown in Figure 102 
2. The spectral element method [26, 27] is used to solve the governing equation of motion.  The natural 103 
frequencies and damping ratios for various systems are explored by incrementing both the stiffness of the 104 
rotational boundary springs and the conveyed fluid velocity for various annulus fluid viscosities.   105 

A hydrodynamic forcing function is included in the model to account for viscous annulus fluid effects.  The 106 
hydrodynamic function was originally introduced by Stokes [28] and later investigated by others [29-31].  107 
Its effects have been extensively discussed and validated with experimentation [32] and finite element 108 
modeling for small amplitude vibrations [33].  It has been used by a number of researchers investigating: 109 
Fixed-Free beams [34, 35], Fixed-Pinned beams [36], and Fixed-Fixed beams [37].  Recently, the 110 
hydrodynamic function has been extensively used in investigations relating to the atomic force microscope 111 
and microcantilevers [38-42]. 112 

The following sections introduce the underlying theory and mathematical model, and then present the 113 
results of the study.  The results are presented in three parts.  First, the case of zero fluid flow is used to 114 
illustrate the frequency-dependent nature of the damping mechanism.  Second, the effect of non-zero fluid 115 
velocity on the system damping is presented.  This section also presents three-dimensional surfaces relating 116 
the conveyed fluid velocity with the two critical design parameters previously mentioned: the natural 117 
frequency and damping ratio.  Lastly, a numeric example that highlights the importance of the findings is 118 
given.   119 

 120 

Figure 2. System Configuration. 121 



2.0 Theory 122 
The linearized equation of motion for a pipe conveying inviscid or viscous fluid (originally derived by 123 
Païdoussis and Issid [43]) can be modified to include annulus fluid effects. Neglecting the gravity-induced 124 
tension term (which induces a negligibly small axial load for the geometries of interest) and taking the fluid 125 
flow to be steady plug-flow, the modified equation of motion is written as 126 

 
𝐸𝐼𝑤!!!! + {𝑀"𝑈# − 𝑇* + 𝑝̅𝐴"(1 − 2𝜈𝛿)}𝑤!! + 2𝑀"𝑈𝑤̇! + (𝑀" +𝑚)𝑔𝑤! + 𝑐𝑤̇ + (𝑀" +
𝑚)𝑤̈ − 𝑓$%&'( = 0, (1) 

where prime and dot indicate derivatives with respect to spatial location and time, respectively, and 127 
positive	𝑈 indicates a flow in the direction of gravity.  The forces represented include a flexural restoring 128 
force, centrifugal force, externally applied tension force, tension stemming from a fluid pressure 129 
differential, Coriolis force, gravity, external viscous damping, inertia, and the hydrodynamic force 130 
generated by the annulus fluid.  If desired, other flow profiles can be considered by modifying the 131 
centrifugal force with a flow-profile-modification factor [44]. 132 

 The general form of the hydrodynamic force can be written as [32] 133 

 𝑓$%&'( = −i𝜌)𝜋𝑑#𝜔𝛤𝑈*e+,-, (2) 

where 𝑈*e+,- is the velocity of the oscillating pipe.  The complex hydrodynamic function (𝛤) and the 134 
assumptions used in the derivation of the hydrodynamic force (i.e. Eq. (2)) have been provided in Appendix 135 
A.  It is well known that the real part of the hydrodynamic function (𝛤') contributes an added mass to the 136 
system while the imaginary part (𝛤") contributes a velocity proportional viscous drag [34].   137 

It is important to recognize the limits of applicability of Eq. (2).  The fluid equations, representing the 138 
behavior of the viscous annulus fluid, were linearized by assuming small vibration amplitudes, permitting 139 
the form of Eq. (2) presented.  For large motions or behavior beyond the critical fluid velocity (i.e. 140 
divergence), the assumptions made in the derivation of the hydrodynamic forcing are violated, and Eq. (2) 141 
is no longer valid.  For instance, large deflections may cause the annulus fluid to separate from the pipe’s 142 
outer surface thereby changing the flow regime and violating the derivation assumptions. 143 

Since the equation of motion is now frequency-dependent through the hydrodynamic forcing, Eq. (1) is 144 
Fourier transformed into the frequency domain 145 

 𝐸𝐼𝑊F !!!! + {𝑀"𝑈# − 𝑇* + 𝑝̅𝐴"(1 − 2𝜈𝛿)}𝑊F !! + {2i𝜔𝑀"𝑈 + (𝑀" +𝑚)𝑔}𝑊F ! + {i𝜔𝑐 −
(𝑀" +𝑚)𝜔# − 𝜌)𝜋𝑑#𝜔#𝛤}𝑊F = 0. 

(3) 

Rewriting the hydrodynamic function as 𝛤 = 𝛤' − i𝛤" and regrouping terms  146 

 𝐸𝐼𝑊F !!!! + {𝑀"𝑈# − 𝑇* + 𝑝̅𝐴"(1 − 2𝜈𝛿)}𝑊F !! + {2i𝜔𝑀"𝑈 + (𝑀" +𝑚)𝑔}𝑊F ! + {i𝜔(𝑐 +
𝜌)𝜋𝑑#𝜔𝛤") − (𝑀" +𝑚 + 𝜌)𝜋𝑑#𝛤')𝜔#}𝑊F = 0  

(4) 

the added mass and viscous drag terms become apparent. The spectral element method is employed to solve 147 
for the natural frequencies of the system [26].  The general solution to Eq. (3) is assumed to be  148 



 𝑊F = 𝐶e+./, (5) 

where 𝐶 is a constant and 𝑘 a wavenumber, leading to the dispersion relation 149 

 𝐸𝐼𝑘0 − {𝑀"𝑈# − 𝑇* + 𝑝̅𝐴"(1 − 2𝜈𝛿)}𝑘# + {2i𝜔𝑀"𝑈 + (𝑀" +𝑚)𝑔}i𝑘
+ {i𝜔𝑐 − (𝑀" +𝑚)𝜔# − 𝜌)𝜋𝑑#𝜔#𝛤} = 0. 

(6) 

This fourth order equation leads to four frequency-dependent wavenumbers (𝑘' , 𝑟 = 1…4) and a new form 150 
of Eq. (5) 151 

 𝑊F = ∑ 𝐶'e+.!/0
'12 = 𝐞𝐂, (7) 

where 152 

 
𝐞 = Qe+."/	e+.#/	e+.$/	e+.%/R, 

𝐂 = {𝐶2, 𝐶#, 𝐶3, 𝐶0}. 
(8) 

For a single spectral element, the nodal degrees of freedom and force vectors can be written as 153 

 
𝐝 = Q𝑊F (0),𝑊F !(0),𝑊F (𝐿)),𝑊F !(𝐿))R, 

𝐟 = {𝑄(0), −𝑀(0), −𝑄(𝐿)),𝑀(𝐿))}, 
(9) 

with the force relations given as [45] 154 

 
𝑄 = 𝐸𝐼𝑊F !!! − 𝑇*𝑊F !, 

𝑀 = 𝐸𝐼𝑊F !!. 
(10) 

Eq. (9) can be rewritten as 155 

 
𝐝 = Q𝑊F (0),𝑊F !(0),𝑊F (𝐿)),𝑊F !(𝐿))R = {𝐞(0), 𝐞!(0), 𝐞(𝐿)), 𝐞!(𝐿))}𝐂 = 𝐇𝐂, 

𝐟 = {𝑄(0), −𝑀(0), −𝑄(𝐿)),𝑀(𝐿))} = 𝐗𝐂, 
(11) 

where  156 

 𝐇 =

⎣
⎢
⎢
⎡

1 1 1 1
i𝑘2 i𝑘# i𝑘3 i𝑘0
e+."4& e+.#4& e+.$4& e+.%4&

i𝑘2e+."4
& i𝑘#e+.#4

& i𝑘3e+.$4
& i𝑘0e+.%4

&⎦
⎥
⎥
⎤
, (12) 



𝐗 =

⎣
⎢
⎢
⎡

𝑔2 𝑔# 𝑔3 𝑔0
−ℎ2 −ℎ# −ℎ3 −ℎ0

−𝑔2e+."4
& −𝑔#e+.#4

& −𝑔3e+.$4
& −𝑔0e+.%4

&

ℎ2e+."4
& ℎ#e+.#4

& ℎ3e+.$4
& ℎ0e+.%4

& ⎦
⎥
⎥
⎤
,  

𝑔' = −i𝑘'3𝐸𝐼 − i𝑘'𝑇*, 

ℎ' = −𝑘'#𝐸𝐼. 

Eq. (11) can be rewritten through the constants vector 𝐂 as 157 

 𝐟 = 𝐗𝐂 = 𝐗(𝐇52𝐝) = 𝐒𝐝, (13) 

where 𝐒 = 𝐗𝐇52 is the spectral element matrix.   158 

The individual spectral element matrices are assembled into a global dynamic stiffness matrix (𝐒𝐠) in a 159 
manner analogous to the finite element method.  For a three-element model, as shown in Figure 3, the 160 
following assembly can be utilized 161 

 𝐒𝐠 = 𝐀𝟏𝐓𝐒𝟏𝐀𝟏 + 𝐀𝟐𝐓𝐒𝟐𝐀𝟐 + 𝐀𝟑𝐓𝐒𝟑𝐀𝟑, (14) 

where 162 

 

𝐀𝟏 = b

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

c, 

𝐀𝟐 = b

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

c, 

𝐀𝟑 = b

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

c, 

(15) 

and 𝐒𝟏, 𝐒𝟐, and 𝐒𝟑 are the spectral element matrices for elements one, two, and three, respectively.  This 163 
assembly leads to the global dynamic stiffness matrix 164 



 𝐒𝐠 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑆22
2 𝑆2#2 𝑆232 𝑆202 0 0 0 0
𝑆#22 𝑆##2 𝑆#32 𝑆#02 0 0 0 0
𝑆322 𝑆3#2 𝑆332 + 𝑆22# 𝑆302 + 𝑆2## 𝑆23# 𝑆20# 0 0
𝑆022 𝑆0#2 𝑆032 + 𝑆#2# 𝑆002 + 𝑆### 𝑆#3# 𝑆#0# 0 0
0 0 𝑆32# 𝑆3## 𝑆33# + 𝑆223 𝑆30# + 𝑆2#3 𝑆233 𝑆203

0 0 𝑆02# 𝑆0## 𝑆03# + 𝑆#23 𝑆00# + 𝑆##3 𝑆#33 𝑆#03

0 0 0 0 𝑆323 𝑆3#3 𝑆333 𝑆303

0 0 0 0 𝑆023 𝑆0#3 𝑆033 𝑆003 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (16) 

The relevant spectral equation is given as 165 

 𝐟𝐠 = 𝐒𝐠𝐝𝐠. (17) 

 166 

Figure 3. Three-Element Beam Model. 167 

2.1 Structural Boundary Conditions 168 
Structural boundary conditions can be incorporated directly into the global dynamic stiffness matrix.  169 
Consider the system shown in Figure 4 where nodal springs have been added to node one and node four. 170 
The springs, with stiffness 𝐾-2, 𝐾'2, 𝐾-#, and 𝐾'#, are attached at new nodal points with degrees of freedom 171 
𝑊;, Θ;, 𝑊<, and Θ<. 172 

 173 

Figure 4. Three-Element Beam Model with Nodal Springs. 174 

Analyzing the translational springs shown in Figure 5, the resulting spring equations are 175 

 

g𝑄2𝑄;
h = g 𝐾-2 −𝐾-2

−𝐾-2 𝐾-2
h g𝑊2
𝑊;
h, 

g𝑄0𝑄<
h = g 𝐾-# −𝐾-#

−𝐾-# 𝐾-#
h g𝑊0
𝑊<
h. 

(18) 



Similarly, the rotational spring equations can be found as 176 

 

g𝑀2
𝑀;
h = g 𝐾'2 −𝐾'2

−𝐾'2 𝐾'2
h gΘ2Θ;

h, 

g𝑀0
𝑀<
h = g 𝐾'# −𝐾'#

−𝐾'# 𝐾'#
h gΘ0Θ<

h. 
(19) 

 177 

Figure 5. Free Body of Boundary Springs. 178 

Expanding the general spectral equation (Eq. (17)) for the new configuration leads to  179 

 

𝐟𝐠 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑄"
𝑀"
𝑄#
𝑀#
𝑄$
𝑀$
𝑄%
𝑀%
𝑄&
𝑀&
𝑄'
𝑀'⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,     𝐝𝐠 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑊"
Θ"
𝑊#
Θ#
𝑊$
Θ$
𝑊%
Θ%
𝑊&
Θ&
𝑊'
Θ' ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,      

𝐒𝐠 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑆""
" + 𝐾#" 𝑆"$" 𝑆"%" 𝑆"&" 0 0 0 0 −𝐾#" 0 0 0
𝑆$"" 𝑆$$" + 𝐾'" 𝑆$%" 𝑆$&" 0 0 0 0 0 −𝐾'" 0 0
𝑆%"" 𝑆%$" 𝑆%%" + 𝑆""$ 𝑆%&" + 𝑆"$$ 𝑆"%$ 𝑆"&$ 0 0 0 0 0 0
𝑆&"" 𝑆&$" 𝑆&%" + 𝑆$"$ 𝑆&&" + 𝑆$$$ 𝑆$%$ 𝑆$&$ 0 0 0 0 0 0
0 0 𝑆%"$ 𝑆%$$ 𝑆%%$ + 𝑆""% 𝑆%&$ + 𝑆"$% 𝑆"%% 𝑆"&% 0 0 0 0
0 0 𝑆&"$ 𝑆&$$ 𝑆&%$ + 𝑆$"% 𝑆&&$ + 𝑆$$% 𝑆$%% 𝑆$&% 0 0 0 0
0 0 0 0 𝑆%"% 𝑆%$% 𝑆%%% + 𝐾#$ 𝑆%&% 0 0 −𝐾#$ 0
0 0 0 0 𝑆&"% 𝑆&$% 𝑆&%% 𝑆&&% + 𝐾'$ 0 0 0 −𝐾'$

−𝐾#" 0 0 0 0 0 0 0 𝐾#" 0 0 0
0 −𝐾'" 0 0 0 0 0 0 0 𝐾'" 0 0
0 0 0 0 0 0 −𝐾#$ 0 0 0 𝐾#$ 0
0 0 0 0 0 0 0 −𝐾'$ 0 0 0 𝐾'$ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

(20) 

If nodes five and six are fixed, matrix reduction can be used to reduce Eq. (20).  This leads to the final form 180 
of Eq. (17) 181 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑄"
𝑀"
𝑄#
𝑀#
𝑄$
𝑀$
𝑄%
𝑀%⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑆""
" + 𝐾(" 𝑆"#" 𝑆"$" 𝑆"%" 0 0 0 0
𝑆#"" 𝑆##" + 𝐾)" 𝑆#$" 𝑆#%" 0 0 0 0
𝑆$"" 𝑆$#" 𝑆$$" + 𝑆""# 𝑆$%" + 𝑆"## 𝑆"$# 𝑆"%# 0 0
𝑆%"" 𝑆%#" 𝑆%$" + 𝑆#"# 𝑆%%" + 𝑆### 𝑆#$# 𝑆#%# 0 0
0 0 𝑆$"# 𝑆$## 𝑆$$# + 𝑆""$ 𝑆$%# + 𝑆"#$ 𝑆"$$ 𝑆"%$

0 0 𝑆%"# 𝑆%## 𝑆%$# + 𝑆#"$ 𝑆%%# + 𝑆##$ 𝑆#$$ 𝑆#%$

0 0 0 0 𝑆$"$ 𝑆$#$ 𝑆$$$ + 𝐾(# 𝑆$%$

0 0 0 0 𝑆%"$ 𝑆%#$ 𝑆%$$ 𝑆%%$ + 𝐾)#⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑊"
Θ"
𝑊#
Θ#
𝑊$
Θ$
𝑊%
Θ% ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (21) 



where the contribution from nodal springs at nodes one and four are apparent. 182 

2.2 Fluid Boundary Conditions 183 
The importance of the fluid boundary conditions have been illustrated by Kuiper et al. [46] and Païdoussis 184 
et al. [47], where it was shown that fluid boundary conditions may have a significant impact on the systems 185 
behavior.  For the current study, the conveyed fluid at the inlet and outlet is assumed to be in a flow direction 186 
tangential to the deformed pipe, which is restrained from transverse displacements at the boundaries (i.e., 187 
the momentum of the fluid is assumed not to change at the boundaries – the fluid is imagined to be flowing 188 
into adjacent lengths of equally-pressurized pipe with slope continuity at the boundaries).  While a larger 189 
multi-span model may provide a more realistic representation of the in-situ system (see Figure 1), the added 190 
complexity distracts from the emphasis of the current findings, which are sufficiently conveyed with the 191 
simple model shown in Figure 2. 192 

2.3 Calculating the Damping Ratio 193 
By setting the determinant of the global dynamic stiffness matrix to zero 194 

 𝑑𝑒𝑡𝐒𝐠(𝜔) = 0, (22) 

the natural frequencies of the system can be determined for each mode of interest; the frequencies are real 195 
for undamped systems and contain both real and imaginary parts for systems with damping. For undamped 196 
systems, the Mathematica root solver “FindRoot” can be employed. For damped systems, the argument is 197 
taken to be complex (i.e. 𝜔& + i𝜔") and a brute force method is used where 𝜔&  (the damped frequency) and 198 
𝜔" 	 (corresponding to the rate of decay in the amplitude of vibration) are iterated until Eq. (22) is 199 
approximately satisfied.  For the current study, Mathematica (version 9.0) is used to perform the iterative 200 
calculation.   201 

For underdamped systems, the relationship between 𝜔&, 𝜔", 𝜔O, and 𝜁 is generally known to be 202 

 
𝜔& = l1 − 𝜁#𝜔O, 

𝜔" = 𝜁𝜔O. 
(23) 

Squaring and then adding both equations in Eq. (23) leads to 203 

 𝜔O = m𝜔&# +𝜔"#, (24) 

which allows the damping ratio to be written as 204 

 𝜁 = m1 − n,'
,(
o
#
= ,)

,(
. (25) 

Alternatively, when the damping ratio is small (i.e. 𝜔" ≪ 𝜔&~𝜔O), the Coriolis force does no work 205 
[48, 49], and a viscous damping term (𝑐) is not included in the system, satisfactory results can be found 206 
using the hydrodynamic function directly [32]. 207 



3.0 Results & Discussion 208 
In total, four different annulus fluid viscosities are investigated over a range of boundary conditions and 209 
conveyed fluid velocities.  Only the first mode is investigated in each case as research indicates that three-210 
dimensional effects become non-trivial for higher order modes when employing a hydrodynamic function 211 
[38, 41].  The inputs for the various models can be found in Appendix B.  212 

3.1 The Damping Ratio: Zero Fluid Flow 213 
Three different annulus fluid viscosities are investigated for the case of zero conveyed fluid velocity: high, 214 
moderate, and low viscosity fluids (HVF, MVF, LVF respectively).  For each system, the two rotational 215 
boundary springs are incrementally increased and both the natural frequency and damping ratio calculated 216 
as previously described.  The resulting three-dimensional surfaces relate the rotational boundary stiffness 217 
to the systems natural frequency and damping ratio; the three-dimensional surfaces for the moderate 218 
viscosity fluid are shown in Figure 6 and Figure 7.  Note that the four limiting boundary conditions (Pinned-219 
Pinned, Fixed-Pinned, Pinned-Fixed, and Fixed-Fixed) are identified. 220 

 221 

Figure 6. Rotational Spring Stiffness (𝑲𝒓) vs. Natural Frequency (𝝎𝒏) for Zero Fluid Velocity - 222 
Moderate Viscosity Fluid. 223 



 224 

Figure 7. Rotational Spring Stiffness (𝑲𝒓) vs. Damping Ratio (𝜻) for Zero Fluid Velocity - Moderate 225 
Viscosity Fluid. 226 

To better illustrate the behavior of the three systems (HVF, MVF, and LVF), two-dimensional plots are 227 
generated by taking three sections through each three-dimensional surface. The results for all three annulus 228 
fluid viscosities are presented in Figure 8 and Figure 9 where for the same fluid viscosity Figure 9 indicates 229 
stiffer systems result in lower damping ratios: 𝜁RR < 𝜁RS = 𝜁SR < 𝜁SS.   230 

The damping ratios dependence on frequency is shown in Figure 10, where Eq. (25) and the relevant inputs 231 
from Appendix B have been used.  It is apparent that the damping ratio is frequency-dependent through the 232 
hydrodynamic function with systems operating at a higher frequency (e.g. those with stiff rotational 233 
boundary springs) experiencing less damping.  Noting the relatively constant nature of 𝛤' over the range of 234 
interest shown (see Figure 11), the change in damping is primarily attributed to the change in 𝛤" where, as 235 
previously mentioned, 𝛤" is known to contribute viscous drag to the system. 236 



 237 

Figure 8. Rotational Spring Stiffness (𝑲𝒓) vs. Natural Frequency (𝝎𝒏) for Zero Fluid Velocity.   238 
                   , 𝑲𝒓𝟏 = 𝑲𝒓𝟐 = 𝑲𝒓;                   , 𝑲𝒓𝟏 = 𝟎 (Pinned) & 𝑲𝒓𝟐 = 𝑲𝒓;                   , 𝑲𝒓𝟏 = 𝟏𝟎𝟎𝟎𝟎 239 

(Fixed) & 𝑲𝒓𝟐 = 𝑲𝒓. 240 

 241 

Figure 9. Rotational Spring Stiffness (𝑲𝒓) vs. Damping Ratio (𝜻) for Zero Fluid Velocity.   242 
                   , 𝑲𝒓𝟏 = 𝑲𝒓𝟐 = 𝑲𝒓;                   , 𝑲𝒓𝟏 = 𝟎 (Pinned) & 𝑲𝒓𝟐 = 𝑲𝒓;                   , 𝑲𝒓𝟏 = 𝟏𝟎𝟎𝟎𝟎 243 

(Fixed) & 𝑲𝒓𝟐 = 𝑲𝒓. 244 



 245 

Figure 10. Damping Ratio for Arbitrary Frequencies. 246 

 247 

Figure 11. The Hydrodynamic Function for Arbitrary Frequencies. (a) Real Part. (b) Imaginary 248 
Part. 249 



3.2 Damping for Non-Zero Fluid Flow 250 
For non-zero fluid flow, the two-dimensional plots of Figure 8 and Figure 9 are expanded to include the 251 
conveyed fluid velocity as an additional variable.  This results in new three-dimensional surfaces where the 252 
natural frequency and damping ratio are functions of both the stiffness of the rotational boundary springs 253 
and the conveyed fluid velocity.  Figure 12 and Figure 13 plot two manifestations of these new surfaces for 254 
the HVF system.  In Figure 12, the natural frequency is seen to decrease as the conveyed fluid velocity is 255 
increased. This behavior is explained by an induced compression stemming from the centrifugal force.  256 
Specifically noting the second and third terms in Eq. (1), the conveyed fluid velocity squared is seen to be 257 
proportional to the applied axial force (𝑇*~𝑀"𝑈#): as the fluid velocity increases, the induced compression 258 
increases resulting in a decreasing natural frequency.  This decreasing natural frequency results in an 259 
increasing damping ratio due to the frequency-dependent nature of the hydrodynamic function (see Figure 260 
10).  This relationship is apparent in Figure 13 which shows the damping ratio increasing with increasing 261 
fluid velocity. The damping ratio in Figure 13 is shown up to the systems bifurcation velocity after which 262 
the system no longer behaves in an underdamped manner (i.e. 𝜁 > 1 past the bifurcation velocity).   263 



 264 

Figure 12. Fluid Velocity (𝑼) vs. Rotational Spring Stiffness (𝑲𝒓) vs. Natural Frequency (𝝎𝒏) – 265 
High Viscosity Fluid. (a) 𝑲𝒓𝟏 = 𝑲𝒓𝟐 = 𝑲𝒓;  (b) 𝑲𝒓𝟏 = 𝑲𝒓 & 𝑲𝒓𝟐 = 𝟎 (Pinned). 266 



 267 

Figure 13. Fluid Velocity (𝑼) vs. Rotational Spring Stiffness (𝑲𝒓) vs. Damping Ratio (𝜻) – High 268 
Viscosity Fluid. (a) 𝑲𝒓𝟏 = 𝑲𝒓𝟐 = 𝑲𝒓;  (b) 𝑲𝒓𝟏 = 𝑲𝒓 & 𝑲𝒓𝟐 = 𝟎 (Pinned). 269 

Since both the natural frequency and damping ratio are a function of the rotational stiffness of the boundary 270 
springs, Figure 12 and Figure 13 can be combined to directly relate the natural frequency, damping ratio, 271 
and conveyed fluid velocity.  The resulting three-dimensional surfaces are shown in Figure 14 (note that 272 
some of the contours are nearly indistinguishable from each other).  If the Figure 14 surfaces are collapsed 273 
onto the plane containing the natural frequency and damping ratio, the resulting two-dimensional projection 274 
is the same as that found in Figure 10.   275 



 276 

Figure 14. Fluid Velocity (𝑼) vs. Natural Frequency (𝝎𝒏) vs. Damping Ratio (𝜻) – High Viscosity 277 
Fluid. (a) 𝑲𝒓𝟏 = 𝑲𝒓𝟐 = 𝑲𝒓;  (b) 𝑲𝒓𝟏 = 𝑲𝒓 & 𝑲𝒓𝟐 = 𝟎 (Pinned). 278 

Figure 15 shows the limiting cases of Figure 14 projected onto the plane containing the fluid velocity and 279 
damping ratio (the MVF and LVF results are also displayed).  Several trends are noted: 280 

• For the same boundary conditions and conveyed fluid velocity, higher viscosity systems have 281 
higher damping ratios. 282 

• For the same annulus fluid viscosity and conveyed fluid velocity, systems with stiffer rotational 283 
boundary springs have lower damping ratios. 284 



• For the same annulus fluid viscosity, the bifurcation velocity increases as the rotational boundary 285 
springs are stiffened. 286 

• For the same boundary conditions, the bifurcation velocity decreases with increasing annulus fluid 287 
viscosity. 288 

• As the fluid velocity increases, the rate at which the damping ratio changes increases. 289 

 290 

Figure 15. The Effect of Fluid Velocity on Damping for Three Limiting Cases. 291 

This last trend is further illustrated in Figure 16 where the percentage change in the damping ratios for the 292 
limiting cases are plotted; the damping ratios at 𝑈 = 0 are taken as baseline values.  Two additional trends 293 
are noted: 294 

• For the same boundary conditions and conveyed fluid velocity, high-viscosity systems see a greater 295 
percentage change in damping ratio compared to their low viscosity counterparts. 296 

• For the same annulus fluid viscosity and conveyed fluid velocity, systems with stiffer rotational 297 
boundary springs see a lower percentage change in damping ratio compared to systems with softer 298 
rotational springs. 299 



 300 

Figure 16. Change in Damping Ratio with Baseline at 𝑼 = 𝟎. 301 

3.3 An Illustrative Example for Designers 302 
These results are especially relevant when there is uncertainty in the characterization of a system.  Should 303 
the produced fluid velocity be greater than originally estimated or if the rotational stiffness of the boundary 304 
springs are initially over-predicted, Figure 15 has shown that the actual damping ratio will be higher than 305 
originally predicted.  Additionally, Figure 16 has shown that such an error in estimating the damping ratio 306 
is exacerbated as the error in either the viscosity or fluid velocity increases.   307 

As a numeric example assume a preliminary investigation of a system indicates a moderate viscosity 308 
annulus fluid (MVF), a normalized fluid velocity of one, rotational boundary springs with normalized 309 
stiffness of nine, and other inputs as listed in Appendix B.  The damping ratio for this system (case A) is 310 
calculated as 0.082 and is shown on the three-dimensional domain of Figure 17.   311 

If the system is actually operated at a normalized fluid velocity of two (case B; 𝜁 = 0.086) or has a 312 
normalized rotational stiffness of one (case C; 𝜁 = 0.108), the resulting error in estimating the damping 313 
ratio would be 4% and 31%, respectively.  If the initial estimate of both the fluid velocity and spring 314 
stiffness’s were in error (case D; 𝜁 = 0.119), the error jumps to 45%.  The three-dimensional surface of 315 
Figure 17 is compressed into a two-dimensional plot in Figure 18 to more clearly illustrate the difference 316 
in the resulting damping ratios. 317 



 318 

Figure 17. Damping Estimates: Potential Errors Stemming from Conveyed Fluid Velocity and/or 319 
Spring Stiffness’s (3D). 320 

 321 

Figure 18. Damping Estimates: Potential Errors Stemming from Conveyed Fluid Velocity and/or 322 
Spring Stiffness’s (2D). 323 



If the annulus fluid viscosity is initially underestimated (i.e. assumed = MVF, actual = MVF+), additional 324 
errors ensue.  Figure 19 and Figure 20 depict the damping ratios in the new system (A’-D’) for an error in 325 
the annulus fluid viscosity (case A’; 𝜁 = 0.099); annulus fluid viscosity and conveyed fluid velocity (case 326 
B’; 𝜁 = 0.104); annulus fluid viscosity and rotational spring stiffness’s (case C’; 𝜁 = 0.134); and annulus 327 
fluid viscosity, conveyed fluid velocity, and rotational spring stiffness’s (case D’; 𝜁 = 0.150).  The 328 
resulting errors (when compared to the baseline case A) are tabulated in Table 1 and in most cases are 329 
shown to be non-trivial. 330 

 331 

Figure 19. Potential Errors in Damping Estimates Stemming from Annulus Fluid Viscosity, 332 
Conveyed Fluid Velocity, and Spring Stiffness’s (3D). 333 



 334 

Figure 20. Potential Errors in Damping Estimates Stemming from Annulus Fluid Viscosity, 335 
Conveyed Fluid Velocity, and Spring Stiffness’s (2D). 336 

Table 1. Numeric Example: Damping Ratios and Corresponding Errors. 337 

Configuration Damping Ratio Error (%) 
A 0.082 - 
B 0.086 4% 
C 0.108 31% 
D 0.119 45% 
A' 0.099 21% 
B' 0.104 26% 
C' 0.134 63% 
D' 0.150 82% 

4.0 Conclusions 338 
To develop an optimal vibration based energy harvester for downhole deployment in a hydrocarbon well, 339 
it is important to accurately quantify the damping in the system since damping levels ultimately govern the 340 
magnitude of the resonant coupled structure-harvester response.  To this end a study was undertaken to 341 
investigate how fluid velocity affects damping in a fluid-conveying pipe surrounded by a viscous annulus 342 
fluid.  It was found that, due to the nature of the hydrodynamic function representing the annulus fluid, 343 
increasing the conveyed fluid velocity increases the systems damping ratio.  It was also noted that stiffer 344 
systems saw the damping ratio increase at a slower rate when compared to flexible systems as the conveyed 345 
fluid velocity was increased.  The results indicate that overestimating the stiffness of a system can lead to 346 
underestimated damping ratios and that this error is made worse if the produced fluid velocity or annulus 347 
fluid viscosity is underestimated.  A numeric example was provided to graphically illustrate these errors.   348 



5.0 Acknowledgements 349 
Funding was provided by Los Alamos National Laboratory through the Engineering Institute under Task 5 350 
(Subcontract No. 77137-001-11).  The funding source was not involved with study design; collection, 351 
analysis or interpretation of data; in the writing of the report; or in the decision to submit the article for 352 
publication. 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 



Appendix A  376 
The hydrodynamic function can be written as [32] 377 

 𝛤 =
𝛤OTU
𝛤&)O

− 1 = 𝛤' − i𝛤" , (A.1) 

where 378 

 𝛤OTU = 2𝛼#[𝐼*(𝛼)𝐾*(𝛽) − 𝐼*(𝛽)𝐾*(𝛼)] − 4𝛼[𝐼2(𝛼)𝐾*(𝛽) + 𝐼*(𝛽)𝐾2(𝛼)]
+ 4𝛼𝛾[𝐼*(𝛼)𝐾2(𝛽) + 𝐼2(𝛽)𝐾*(𝛼)] − 8𝛾[𝐼2(𝛼)𝐾2(𝛽) − 𝐼2(𝛽)𝐾2(𝛼)], 

𝛤&)O = 𝛼#(1 − 𝛾#)[𝐼*(𝛼)𝐾*(𝛽) − 𝐼*(𝛽)𝐾*(𝛼)]
+ 2𝛼𝛾[𝐼*(𝛼)𝐾2(𝛽) − 𝐼2(𝛽)𝐾*(𝛽) + 𝐼2(𝛽)𝐾*(𝛼) − 𝐼*(𝛽)𝐾2(𝛽)]
+ 2𝛼𝛾#[𝐼*(𝛽)𝐾2(𝛼) − 𝐼*(𝛼)𝐾2(𝛼) + 𝐼2(𝛼)𝐾*(𝛽) − 𝐼2(𝛼)𝐾*(𝛼)]. 

(A.2) 

The relevant arguments are 379 

 
𝑘* = m+,

V&
;     𝛼 = 𝑘*𝑑; 					𝛽 = 𝑘*𝐷;     𝛾 = &

W
. (A.3) 

The assumptions used in the derivation of the hydrodynamic forcing include: 380 

• The vibrating pipe is enclosed by a rigid concentric cylindrical boundary.  The annulus between 381 
the pipe and boundary contains a viscous fluid. 382 

• The annulus fluid has zero velocity at the rigid concentric boundary.  At the pipes outer surface, 383 
the annulus fluid velocity matches the pipe velocity. 384 

• The annulus fluid is quiescent, homogeneous, Newtonian, and incompressible. 385 
• The pipe length is much greater than the pipe diameter. 386 
• The pipe is an isotropic linearly elastic solid and is of uniform cylindrical cross section. 387 
• The amplitude of vibration is much smaller than any length scale in the pipe geometry permitting 388 

the Navier-Stokes and fluid continuity equations to be linearized. 389 

 390 
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Appendix B 398 
The variables used in the four cases investigated are listed in Table B.1. 399 

Table B.1. Inputs. 400 

      Case   
 
  
 

Variable Units LVF MVF MVF+ HVF 
  

      0   
      0.05   
      9.81   
      15.95   
      0   
      5.81𝐸 − 03   
      0.06   
      2𝐸 + 11   
      2.22𝐸 − 06   
      Varies   
      1.00𝐸 + 9 (Rigid)   
      8   
      4.94   
      0   
      Varies   
      900   
      1𝐸 − 05 3𝐸 − 05 4𝐸 − 05 7𝐸 − 05   
  𝜈 - 0   
  LVF - Low Viscosity Fluid         
  MVF - Moderate Viscosity Fluid         
  MVF+ - Moderate Viscosity Fluid         
  HVF - High Viscosity Fluid         
                
                

 401 
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