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ABSTRACT OF THE DISSERTATION

Decision Diagram Algorithms for Logic and Timed Verification

by

Min Wan

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2008

Professor Gianfranco Ciardo, Chairperson

Symbolic verification has received much attention from both academia and industry in

the past two decades. In particular, techniques based on decision diagrams have been

successfully applied to various asynchronous and synchronous models.

Decision diagrams can compactly encode sets and relations, or vectors and matri-

ces. For canonicity, variables associated to the nodes must be found in a predefined order

on any path from the root, and duplicate nodes cannot be present. In addition, a reduc-

tion rule is enforced, the simplest being the quasi-reduced rule, where no variable is ever

skipped. However, more efficient rules exist, where edges skip redundant nodes. With the

fully-reduced rule, a node is redundant if all its outgoing edges point to the same node.

With the zero-suppressed rule, a node is redundant if only its 0-edge is not pointing to a

pre-defined default terminal node. None of these rules, however, is particularly effective

when encoding transition relations of asynchronous systems or rate matrices of Markov

models. We then introduce an identity-reduced rule, which generalizes Kronecker encodings

to take advantage of state variables that remain unchanged after an event occurrence, and
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a c-reduced rule, which generalizes the zero-suppressed rule, and propose a new generally-

reduced form of decision diagrams where each variable uses a specific reduction rule. We

then illustrate the effectiveness of this new canonical form of decision diagrams with a wide

set of applications.

State-space generation is usually the first and fundamental step for symbolic ver-

ification. Generally-reduced decision diagrams allow a more efficient symbolic state-space

generation for general asynchronous systems by allowing on-the-fly extension of the state

variable domains. After implementing both breadth-first and saturation-based state-space

generation with this new data structure, we are able to exhibit substantial efficiency im-

provements with respect to traditional decision diagrams. Since previous works demon-

strated that saturation outperforms breadth-first approaches, saturation with this new

structure is now arguably the state-of-the-art algorithm for symbolic state-space genera-

tion of asynchronous systems. When state-space generation completes, we also obtain the

complete transition relation which can be used for further analysis.

For synchronous systems, we study a type of timed Petri nets, which extends

the traditional Petri nets to explicitly include real time in the model. We consider two

fundamental reachability problems for timed Petri nets with positive integer firing times:

timed reachability (find all markings where the model can be at a given finite time) and

earliest reachability (find the minimum time when each reachable marking is entered). For

these two problems, we define efficient symbolic algorithms that make use of both generally-

reduced decision diagrams without edge value and edge-valued decision diagrams, which

associate integer value to the edges of decision diagrams. Runtime results on an extensive
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suite of models are provided to show the effectiveness and capability of our algorithm to

cope with large state spaces.

Then, we study the use of decision diagrams in stochastic models. We present

a new type of edge-valued decision diagrams which can be used to encode non-negative

real-valued functions. We then utilize it in a new approximate numerical solution algo-

rithm for general structured ergodic models. The approximation uses a state-space encoding

provided by decision diagrams and a transition rate matrix encoding provided by these

new edge-valued decision diagrams. The new method retains the favorable properties of

a previously proposed Kronecker-based approximation, while eliminating the need for a

Kronecker-consistent model decomposition. Removing this restriction allows for a greater

utilization of event locality, which facilitates both state-space generation and transition

rate matrix generation, thus extends the applicability of this algorithm to larger and more

complex models.

All these algorithms are implemented based on our newly-designed Decision Di-

agram Library (DDL), which provides a user-friendly interface to create and manipulate

generally-reduced decision diagrams with or without edge value It is the first library writ-

ten for this purpose. This library is written in C++ and we adopt smart pointers for

decision diagram node interface, similar to those in the Boost libraries [1], which automat-

ically handle reference counts and garbage collection; this technique prevents memory leak

and simplifies the interface, which greatly facilitate library users.

All above algorithms are integrated into our verification tool Symbolic Model-

checking Analyzer for Reliability and Timing (SmArT) version 2.
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Chapter 1

Introduction

In this chapter, we explain the motivation of our work and describe the scope of

this thesis.

1.1 Why verification

Our daily life dependency on computer-based applications (both hardware and

software) has motivated Computer Science researchers to develop new techniques that in-

crease our confidence on their correctness. Such applications range from simple coffee

machines to nuclear plants and flight control towers. Many of those applications are un-

doubtedly critical and a failure may cause high damages, both economically and physically.

How can one be sure of the correctness of critical systems, with the increasing

design complexities? Testing, often performed on an actual product, which “feeds” the

system with sensitive data to check that it really behaves as it is supposed to, is a widely

used and extremely useful approach in practice. However, it is clearly not possible to use it

1



in highly critical systems were the testing data could cause damages in case of errors before

real deployment.

Another solution is to simulate the behavior of the system via a model on a com-

puter. A model is an abstract representation of the real system. One advantage of simulation

is that one does not need to build the real system in order to be applied, and it is thus

usually much cheaper than testing.

Both testing and simulation are widespread in industrial applications and become

an essential part in product life cycle. One drawback, however, is that it is not possible, in

general, to simulate or test all the possible scenarios or behaviors of a given system. That

is, those techniques are in general not exhaustive due to the high number of possible cases

to be taken into account, and the fact that the failure cases may not be among those tested

or simulated.

Formal verification, in particular, model checking [30, 41] is the technique to

enhance and complement existing validation techniques as testing and simulation.

Model checking consists of a systematically exhaustive exploration of the mathe-

matical model (this is possible for finite models, but also for some infinite models where

infinite sets of states can be effectively represented), to verify a certain property, often an

invariant property, will always held. Usually this consists of exploring all states and events

in the model, by using smart and domain-specific abstraction techniques to consider entire

groups of states in a single operation and reduce computing time. Here, a state corresponds

to one possible status of the system, while an event describes a atomic status change of the

system.
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Probability is an important component in the design and analysis of software and

hardware systems. Traditionally, probability has been used as a tool to analyze system

performance, e.g., steady-state probabilities for computing estimates of measures such as

throughput and mean waiting time for queuing networks. Stochastic model checking verifies

properties related to a probability or likelihood during the execution of a system. There are a

number of probabilistic models. In this thesis, we consider continuous-time Markov chains

(CTMC) [61] in detail, where each event is associated with an exponentially distributed

delay.

1.2 Why decision diagrams

Given an arbitrary model and some property, however, the problem of asking

whether the model satisfies the property is undecidable. To restrict the problem to a decid-

able one, model checking is (initially) designed for a system with a finite state space.

A state space is the collection of all states reachable from an initial configuration

of the system. For exhaustive approaches such as model checking, state-space generation

or reachability analysis is usually the first and fundamental step.

In practice, most models are compactly described using some high-level formalism,

e.g., Petri nets (Sec. 2.2), but their underlying state space may be so large that computing

and storing the state space may overwhelm even the largest computers.

To deal with this state-space explosion problem, implicit data structure such as

decision diagrams (Sec. 2.3) emerged and widely applied in the past two decades, for

both asynchronous models and synchronous models, including asynchronous circuits, dis-
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tributed software systems, globally-asynchronous-locally-synchronous systems (GALS), and

real-timed systems.

Decision diagrams are trie-like directed acyclic edge-labeled multi-graphs. The

first decision diagrams are used to encode binary functions [11], while, later on, variations

have been applied to encode arbitrary functions, e.g., sets, relations and matrices. For

example, decision diagrams are able to encode billions of states just in a few nodes and

the manipulation of those states can be done through operations upon those nodes. The

compactness and efficiency of decision diagrams lie in the node sharing and intensive usage

of operation caches.

1.3 Our contribution

This thesis focuses on decision diagrams and their usage for verification.

First, we studied variations of decision diagrams and defined a generally-reduced

canonical form of decision diagrams, which generalize and also extend all previous decision

diagrams without edge value (Ch. 3).

We also extend our previous edge-valued decision diagram to allow it to efficiently

encode any non-negative real-valued functions (Ch. 6).

We illustrate the usefulness of the new generally-reduced decision diagrams on two

applications, one for the on-the-fly state-space generation of asynchronous models (Ch. 4),

the other for a timed extension of tradition Petri nets (Ch. 5).

We also show the effectiveness of the new edge-valued decision diagram on an

approximate solution for large CTMCs (Ch. 7).
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In order to efficiently implement those algorithms, we designed and coded Decision

Diagram Library (DDL), which provides a user-friendly interface to create and manipulate

generally-reduced decision diagrams without edge value and edge-valued decision diagrams.

It is the first library for this purpose (Ch. 8).

This thesis includes work from the following publications.

• M. Wan and G. Ciardo. Extensible decision diagrams for symbolic state-space genera-

tion of asynchronous systems. In Proc. 35th Int. Conf. Current Trends in Theory and

Practice of Computer Science (SOFSEM), Špindler̊uv Mlýn, Czech Republic, Jan.

2009. Springer-Verlag. To appear.

• M. Wan and G. Ciardo. Symbolic reachability analysis of integer timed Petri nets.

In Proc. 35th Int. Conf. Current Trends in Theory and Practice of Computer Sci-

ence (SOFSEM), Špindler̊uv Mlýn, Czech Republic, Jan. 2009. Springer-Verlag. To

appear.

• G. Ciardo, A. S. Miner, M. Wan, and A. J. Yu. Approximating stationary measures of

structured continuous-time Markov models using matrix diagrams. ACM SIGMET-

RICS Perf. Eval. Rev., 35(3):16–18, Dec. 2007.

• G. Ciardo and M. Wan. Generally-reduced decision diagrams: definition and appli-

cations. In preparation.

• M. Wan, G. Ciardo and A. S. Miner Decision-diagram-based approximate steady-state

analysis of large structured Markov models. In preparation.
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1.4 Organization of the thesis

The remainder of the thesis is organized as follows. Ch. 2 reviews required back-

ground information. Ch. 3 present the new generally-reduced canonical form of decision

diagrams. Ch. 4 applies the new decision diagram to state-space generation. Ch. 5 extends

method in Ch. 4 to a new synchronous system. Ch. 6 introduces the new canonical type

of decision diagrams to encode arbitrary real-valued functions. Ch. 7 utilizes these new

decision diagrams on an approximate solution of CTMCs. Ch. 8 describes the new Decision

Diagram Library, an elegant library that allows us to implement all algorithms in this thesis,

and a complete platform for decision diagram users and developers. Ch. 9 summarizes this

thesis.
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Chapter 2

Background

In this chapter, we present notation and necessary background for the rest of

the thesis. This chapter is organized as follows. In Sec. 2.1, we define the discrete-state

model where our algorithms are deployed. Sec. 2.2 introduce a high-level formalism to

describe a discrete-state model and also a running example. Sec. 2.3 reviews background on

decision diagrams. Finally, Sec. 2.4 summarizes well-known symbolic state space generation

techniques.

For reference, Fig. 2.1 and Fig. 2.2 summarizes the symbols we consistently use

throughout the thesis.

2.1 Discrete-state systems

Logical specification We consider a structured discrete-state model given by (S0, E , {Te|e ∈

E}), whose state is a tuple x = (xL, · · · , x1) of L variables with a predefined order xL ≻

· · · ≻ x1 imposed on them, with each xk taking value in a finite set Xk = {0, 1, ..., nk} ⊂ N,
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Symbol Definition or Meaning

L number of submodels/variables

x,x′ a tuple of state variables with a predefined order according to ≻

xk, x
′
k kth state variable

i, i′, j, j′ a state or a tuple of non-negative integers

ik, jk, i
′
k, j

′
k kth state component

Xk domain of xk/x′
k

X XL × · · · × X1, potential state space

Y set of states/tuples

S reachable state space

S0/M0 set of initial states/markings

T ,Z a binary relation/transition relation

E set of events/Petri net transitions

P/A/I set of Petri net places/arcs/inhibitor arcs

R transition rate matrix

spt(f) a set of variables in function f ’s support, f can be a set or relation

top(f) the maximum variable in spt(f) according to ≻

Figure 2.1: Symbols.
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Symbol Definition or Meaning

0,1/Ω MDD/EVMDD terminal node

p.var the variable to which p is associated

p[i] ith edge of node p

〈ω,r〉 edge with value ω and destination r

p[α] when α is a tuple, extends edge notation to paths

p[α].v/.d edge or path’s value/destination

fp/f〈ω,r〉 the function node encoded by node p/edge 〈ω,r〉

B(p) the set of tuples node encoded by p

enc(f) the node/edge encoding f , f can be a set or relation

Figure 2.2: Symbols (continued).
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X = XL × · · · × X1 is the potential state space. S0 ⊂ X is a finite set of initial states,

E is a set of asynchronous events, and, for each event e ∈ E , Te is a transition relation,

i.e., a binary relation defined on (x,x′), where unprimed x corresponds to the “from” state

and primed x′ = (x′
L, · · · , x′

1) ∈ N
L corresponds to the “to” state, such that (i, i′) ∈ Te if

the model can move from i to i′ in one step when e occurs. The overall transition relation

is defined as T =
⋃

e∈E Te. We refer to the choice of these variables and their order as a

decomposition of the model.

When Z is a transition relation for an event, we assume it is given as a conjunction

of C + 1 sub-relations:

Z ≡
(

⊲⊳C
c=1 Zc

)

⊲⊳ Zeq, (2.1)

where ⊲⊳ is the natural join operator. Each Zc depends on or updates a set of state variables,

namely variables in its support, denoted as spt(Zc), defined so that, if x′
k ∈ spt(Zc), then

xk ∈ spt(Zc) as well. Let spt(Z) =
⋃C

c=1 spt(Zc) and top(Z) be the maximum variable in

spt(Z). The unchanged variables are instead captured by the sub-relation Zeq ≡ ⊲⊳x′

k
/∈spt(Z)

[x′
k = xk]. Thus, we can have x′

k /∈ spt(Z) and xk ∈ spt(Z), but not x′
k ∈ spt(Z) and

xk 6∈ spt(Z). Then, top(Z) is always an unprimed variable.

For example, if x = (x3, x2, x1) and Z is defined by the boolean expression Z ≡

[x′
3 = x3 + 1 ∧ x′

2 = x1 − 2], this transition relation can be written as the natural join of

the three sub-relations Z1 ≡ [x′
3 = x3 + 1], Z2 ≡ [x′

2 = x1 − 2], and Zeq ≡ [x′
1 = x1].

Then, spt(Z1) = {x3, x
′
3}, spt(Z2) = {x2, x

′
2, x1}, and spt(Z) = {x3, x

′
3, x2, x

′
2, x1}, thus

top(Z) = x3.

Stochastic specification We also study the case where the discrete-state system is a
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CTMC where each event can fire after a exponentially distributed delay with a constant or

deterministic state-dependent rate, i.e., the rate function fe of event e only depends on the

current state, and is further broken into a product of C sub-functions:

fe ≡
C

∏

c=1

f c
e , (2.2)

where each f c
e depends on a set of state variables, namely variables in its support, denoted

as spt(f c
e ), and spt(fe) =

⋃C
c=1 spt(f c

e ). Event e may bring the model to a new state chosen

from a set of states according to a probability function ϕe, which also depends on a set

of state variables and can be broken in a similar style. The difference between f and ϕ is

that f only depends on the current state (or “from” state, denoted with unprimed symbols)

while ϕ also depends on the next state (or “to” state, denoted with primed symbols).

Then, the transition rate due to event e is, for any two states i, i′,

Re[i, i
′] ≡















fe(i) · ϕe(i, i
′) if (i, i′) ∈ Te,

0 otherwise,

(2.3)

where, although we wrote fe(i), only the values of variables in spt(fe) for state i are needed,

similarly for ϕe. We stress that, for the encoding we consider, it might be inefficient to

require fe(i) = 0 if e is disabled in i, but this is not a problem since we can use Te to “filter”

the value of fe. Finally, the overall transition rate R =
∑

e∈E Re.

2.2 Petri nets

Petri nets [53] are a popular formalism for specifying concurrent and distributed

systems. In this section, we cover the class of Petri nets used in this thesis.
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2.2.1 Generalized stochastic Petri nets

We use generalized stochastic Petri nets (GSPNs) [4], extended to allow variable-

arc cardinality arcs, inhibitor arcs, and transition guards, as the high-level formalism to

illustrate our work.

Definition 2.2.1. GSPN [4] is a finite directed, bipartite graphs described by a tuple of

the form (P, E ,A, I,M0, w, g, λ), where

• P and E are sets of places and transitions satisfying P ∩ E = ∅ and P ∪ E 6= ∅. A

marking µ ∈ N
P assigns a number of tokens µp to each place p ∈ P.

• A ⊆ P ×E ∪ E ×P is a set of directed arcs which connect places to transitions (input

arcs) and transitions to places (output arcs).

• I ⊆ P × E is a set of inhibitor arcs.

• M0 ⊂ N
P specifies a finite set of initial markings.

• w : A× N
P → N

+ ∪ {0} marking-dependent cardinality [14] for each arc.

• g : E × N
P → B to describe the transition guards.

• λ : E × N
P → R

≥0 or λ ≡ ∞ to describe the transition rates. λ ≡ ∞ corresponds to

an immediate transition. λ : E ×N
P → R

≥0 corresponds to a timed transition with a

marking-dependent rate; λ = 0 disables the transition.

Note that, transitions can be immediate, but events must not, in order to make

those computations depending on R valid, which means somehow we need to “merge” those
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immediate transitions to timed transitions. When we only deal with logic aspects of the

net, we usually neglect λ.

2.2.2 Evolution of a GSPN

Given a marking µ ∈ N
P , it is convenient to define the input flow matrix of the

net as D− : N
P×E , where, for p ∈ P and t ∈ E , D−[p, t] = w(p, t), if (p, t) ∈ A, and 0

otherwise. The inhibitor matrix as DI : N
P×E , where for DI [p, t] = w(p, t), if (p, t) ∈ I,

and ∞ otherwise. If we treat the marking µ of the net as a (column) vector, we can then

say that a transition t ∈ E is enabled in µ if µ ≥ D−[·, t], µ < DI [·, t], g(t) = 1 and λ(t) 6= 0.

Let E(µ) ⊆ E be the set of marking-enabled transitions in µ.

Analogously, we can define the output flow matrix as D+ : N
P×E , where, for p ∈ P

and t ∈ E , D+[p, t] = w(t, p), if (t, p) ∈ A, and 0 otherwise. Then, the incidence matrix of

the net is given by D = D+ − D−, and the vector D[·, t] represents the net effect on the

marking when transition t fires. More precisely, the firing of transition t ∈ E(µ) in marking

µ changes the marking to µ′ = µ + D[·, t], we write this as µ [t]⇒ µ′. Keep in mind that the

cardinality of any arc, as well as D−, DI , D+, g and λ is evaluated in the current marking,

i.e., prior to the firing of any transition.

2.2.3 Running example

The GSPN of Fig. 2.3 models a simple fork-and-join queuing network with two

customers (the two tokens initially in place a), and will be our running example. The

black transition is immediate, and fires as soon as it is enabled. The white transitions have
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an exponentially distributed firing time, with the rates listed in the figure, where “#(z)”

means the number of tokens in place z. We can see that t1 is enabled, and after it fires, the

GSPN moves from marking a2b0c0d0e0 to marking a1b1c1d0e0, where a2 means place a has

2 tokens.

We consider the following decompositions for this model, L = 4, {x4 ≡ [#(d), #(e)], x3 ≡

[#(c)], x2 ≡ [#(b)], x1 ≡ [#(a)]}. Fig. 2.4 shows, on the left, the underlying CTMC state

graph for our running model. The order of the values for each xk is as given on the right

side. For example, d0e0, meaning both place e and place f are empty, has index 0 in X4,

thus state 0111 then corresponds to marking a1b1c1d0e0.

This running example will be used for this chapter and some later chapters.

2.3 Decision diagrams

Since the introduction of reduced ordered binary decision diagrams (BDDs) [11],

further variations of decision diagrams have been proposed in the literature to compactly

encode and efficiently compute functions on structured sets. We now outline the two types

of decision diagrams used in our work.

2.3.1 Multiway decision diagrams

Given L variables x = (xL, ...,x1) with an order xL ≻ · · · ≻ x1, each xk taking

value in a finite set Xk = {0, 1, ..., nk} ⊂ N, a (quasi-reduced) multi-way decision diagram

(MDD) [42] defined on x is a directed acyclic edge-labeled multi-graph where:

• Each nonterminal node s is associated to a variable s.var = xk ∈ {xL, ..., x1}.
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a b d

ec

1t

2t

3t

4t

trans. rate

t1 2.0 ·#(a)

t2 1.0 ·#(b)

t3 4.0 ·#(c)

t4 immediate

Figure 2.3: Running example: the GSPN model of our fork-and-join system.

0000

0111

4.0

0222

2.0

1011

4.0

2101

1.0 1122

8.0

2212

2.0 1.0

4.0

2.0

3022

4.0

4.0

2.0

8.0

4202

1.0

2.08.0

X4 = {d0e0,d0e1,d1e0,d0e2,d2e0} = {0, ..., 4}

X3 = {c0, c1, c2} = {0, 1, 2}

X2 = {b0, b1, b2} = {0, 1, 2}

X1 = {a2, a1, a0} = {0, 1, 2}

Figure 2.4: Running example: CTMC state graph.
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• 0 and 1 are the terminal nodes. Let 0.var = 1.var = x0 and xk≻x0, for L≥k≥1.

• Each nonterminal node p associated with xk has |Xk| edges, labeled with a different

index i ∈ Xk and pointing to a node q with q.var = vk−1 or q = 0, we write p[i] = q.

At least one edge does not point to 0.

• Duplicate nodes are not allowed, i.e., given two distinct nonterminal nodes p and q

with p.var = q.var = xk, there must be an index i ∈ Xk such that p[i] 6= q[i].

• There is a single root node associated to xL, with no incoming edges, so that we can

identify the MDD with its unique root.

Each node p, with p.var = xk, encodes a set of tuples: B(0)=∅, B(1)={()}, the

set containing only the empty tuple, and, for L≥ k ≥ 1, B(s) =
⋃nk

i=0 {i} × B(p[i]). B is

mnemonic for “below”. These MDDs are canonical [22, 42]: given a set Y ⊆XL×· · ·×X1,

there is a unique MDD p = enc(Y) satisfying Y = B(p) and p.var = xL (except for Y = ∅,

where p=0, thus p.var=x0).

We can extend the edge notation to paths, so that the node reached from node p

associated to xk through a tuple α = (ik, ik−1, ..., ih) ∈ Xk × ...× Xh, for L ≥ k ≥ h ≥ 1, is

defined recursively as

p[α] =















p[ik][ik−1, ..., ih] if p[ik] 6= 0,

0 otherwise.

Each node p associated to xk encodes a set of tuples B(p) = {α ∈ Xk × ... × X1 :

p[α] = 1},
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Fig. 2.5 shows the 4-variable MDDs encoding the state space for our fork-and-join

model. Only paths leading to node 1 are shown. The order of the values for each xk is as

given on the right side.

2.3.2 Edge-valued decision diagrams

A (quasi-reduced) additive edge-valued multi-way decision diagram (EV+MDD)

[25] defined on x is a directed acyclic edge-labeled multi-graph where:

• Each nonterminal node p is associated to a variable p.var = xk ∈ {xL, ..., x1}.

• Ω is the only terminal node. Let Ω.var = x0 and xk≻x0, for L≥k≥1.

• Each nonterminal node s associated with xk has |Xk| edges, labeled with a different

index i ∈ Xk and associated to a value N∪{∞}. We write p[i] = 〈ω,q〉 = 〈p[i].v,p[i].d〉

if the edge labeled by i points to node q and is associated to ω, and require that q = Ω

if ω =∞, and q.var = xk−1 otherwise. Also, at least one edge leaving each node must

have an associated value equal to 0.

0 1 2 3 4

0 1 2 0 1 0 1 2 2

0 1 2 0 1 0

0 1 2

1

X4 = {d0e0,d0e1,d1e0,d0e2,d2e0} = {0, ..., 4}

X3 = {c0, c1, c2} = {0, 1, 2}

X2 = {b0, b1, b2} = {0, 1, 2}

X1 = {a2, a1, a0} = {0, 1, 2}

Figure 2.5: Running example: the MDD encoding S.
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• There is a single root node associated to xL with an incoming dangling edge. If the

root node is r and the dangling edge associates with value ω, then the EV+MDD can

be denoted by 〈ω,r〉.

• Duplicate nodes are not allowed: given two distinct nonterminal nodes p and q with

p.var = q.var = xk, there must be an index i ∈ Xk such that p[i] 6= q[i].

The function encoded by edge 〈ω,p〉, with p.var = xk, is recursively defined by

∀(ik, ..., i1)∈Xk×· · ·×X1, f〈ω,p〉(ik, ..., i1)=















ω+fp[ik](ik−1, ..., i1) if ω∈N

∞ if ω=∞.

EV+MDDs are canonical [25]. Given a function g : XL × · · · × X1 → N ∪ {∞},

there is a unique value ρ∈N and a unique node r with r.var = xL such that f〈ω,r〉 = g, or

〈ω,r〉 = enc(g), with the exception of the constant function g ≡ ∞, for which we have the

special case ω =∞ and r = Ω. Fig. 2.6 show the EV+MDD encoding the function f on the

right side, omitting edges value with ∞.

0 1

0 1 0 1

2 1 0

Ω
0 0 0

0

0 0 01

1

0 x3 0 0 1 1

x2 0 1 0 1

x1 2 1 1 0

f 0 1 1 0

Figure 2.6: The EV∗MDD (left) encoding f (right).
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mdd Or(mdd s,mdd u) • assume s.var = xk

1 if s = 0 or s = u then return u;

2 if u = 0 then return s; • trivial cases

3 if CacheHit(OR, s, u, r) then return r; • check cache

4 r ← NewNode(xk); • create a new node associated to xk

5 foreach i ∈ Xk do r[i]← Or(p[i], u[i]); • recursively invoke on children

6 CacheAdd(OR, s, u,UTInsert(r)); • add to cache

7 return r;

mdd And(mdd s,mdd u) • assume s.var = xk

1 if s = u or u = 0 then return u;

2 if s = 0 then return s;

3 if CacheHit(AND , s, u, r) then return r;

4 r ← NewNode(xk);

5 foreach i ∈ Xk do r[i]← And(s[i], u[i]);

6 CacheAdd(AND , s, u,UTInsert(r));

7 return r;

mdd Difference(mdd s,mdd u) • assume s.var = xk

1 if s = 0 or s = u then return 0;

2 if u = 0 then return s;

3 if CacheHit(DIF , s, u, r) then return r;

4 r ← NewNode(xk);

5 foreach i ∈ Xk do r[i]← Difference(s[i], u[i]);

6 CacheAdd(DIF , s, u,UTInsert(r));

7 return r;

Figure 2.7: Standard MDD operations.
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idd Minimum(idd 〈α,s〉, 〈β,u〉) • assume s.var = xk

1 if α =∞ then return 〈β,u〉;

2 if β =∞ then return 〈α,s〉;

3 γ ← min{α, β}; • since α = min f〈α,s〉, β = min f〈β,u〉

4 if s = u then return 〈γ,s〉; • min(f〈α,s〉, f〈β,s〉) = f〈min(α,β),s〉

5 if α < β then Swap(〈α,s〉, 〈β,u〉) • commutativity

6 if CacheHit(MIN , α− β, s, u, r) then return 〈γ,r〉;

7 r ← NewNode(xk);

8 foreach i ∈ Xk do

9 α′ ← α− γ + s[i].val;

10 β′ ← u[i].val;

11 r[i]← Minimum(〈α′,s[i]〉, 〈β′,u[i]〉);

12 CacheAdd(MIN , α− β, s, u,UTInsert(r));

13 return 〈γ,r〉;

Figure 2.8: EV+MDD Minimal operation.

2.3.3 Standard operations for decision diagrams

We now list standard operations including Union/Or , Intersection/And and Difference

for MDDs in Fig. 2.7 and Minimum for EV+MDDs in Fig. 2.8 In the pseudocode, we use

type mdd for MDD node and type idd for integer-valued EV+MDD edge. We omit dis-

cussing implementation details here; they can be found in next chapter, where we discuss

generally-reduce decision diagrams and Ch. 8 where we discuss the Decision Diagram Li-

brary.
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2.4 Symbolic reachability analysis

We now briefly review state-of-the-art symbolic state-space generation techniques

to produce the MDD encoding the state space S. We assume the model is described using

a high-level formalism such as Petri nets.

Let Img(Y,Z) = {i′ : ∃i ∈ Y, (i, i′) ∈ Z} denote the image of the set of states

Y under the transition relation Z. Then, S is the minimal set satisfying S ⊇ S0 and

S ⊇ Img(S, T ). If T can be computed a priori, we can simply start from S0 and repeatedly

perform image computations under T until reaching a fixpoint; otherwise, we need to gener-

ate T on-the-fly alongside S [21,28,62]. As T =
⋃

e∈E Te, we can use the transition relations

Te instead of T for state-space generation, as long as each Te is applied often enough to

avoid “missing” any possible transition.

We know that any set of states Y can be encoded into an MDD p = enc(Y)

defined on (xL, ..., x1) with the order xL ≻ · · · ≻ x1. Similarly, any transition relation

Z can be encoded into an MDD r = enc(Z) defined on (xL, x′
L, ..., x1, x

′
1) with the or-

der xL ≻ x′
L ≻ · · · ≻ x1 ≻ x′

1, where the unprimed variables refer to the “from” states

and the primed variables refer to the “to” states, such that, if we let i = (iL, ..., i1) and

i′ = (i′L, ..., i′1), then (i, i′) ∈ Z ⇔ (iL, i′L, ..., i1, i
′
1) ∈ B(r). We choose an interleaved or-

der for the variables in the MDD for Z because it usually results in a compact encoding

and allows an efficient computation [28], but we nevertheless let (i, i′) denote the path

tuple (iL, i′L, ..., i1, i
′
1) and any (unprimed,primed) tuple-variable pair, e.g., (α, α′), with

α = (il, ..., ih) and α′ = (i′l, ..., i
′
h), denote the interleaving (il, i

′
l, ..., ih, i′h) of these two

tuples.
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The image computation Img(Y,Z) corresponds to a RelationalProduct operation

or one of its variants [28] on MDD p and MDD r. The simplest symbolic state-space genera-

tion uses a breadth-first strategy [54] and performs an image computation at each iteration,

until reaching a global fixpoint. This method can be improved through chaining [58], to

compound the effect of asynchronous events within a given breadth-first iteration. The

saturation algorithm [19] uses instead a completely different iteration strategy to compute

a fixpoint for each node in ascending order with respect to its associated variable, and has

been shown to excel when applied to asynchronous systems.

The saturation algorithm was first defined for transition relations that admit a

Kronecker encoding. While this encoding always exists, it might be unwieldy, thus the ap-

proach was not fully general in practice. [51] avoids the Kronecker encoding by partitioning

the transition relation of each event into groups, encoded by matrix diagrams [49], while [28]

allows an even finer partition for the transition relations, where conjuncts can share state

variables, which results in a more efficient computation.

Among the variants of saturation mentioned above, [19] has restrictions on the

decomposition of the model and is adopted by the approximate numerical solution in [52],

while [28,51] allow an arbitrary decomposition of the model. Empirically, a finer decompo-

sition using more state variables can be much more efficient both time- and memory-wise

than [19], which may be forced to use a coarser Kronecker decomposition.

Detailed algorithms for breadth-first and saturation-based state-space generation

are listed in Sec. 4.1.3.
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Chapter 3

Generally-reduced Decision

Diagrams

Implicit encodings have also been used in real-valued contexts. For example, the

tool PRISM [44] uses multi-terminal BDDs (MTBDDs) [37], also known as algebraic decision

diagrams [6], to store the transition rate matrix R of a CTMC. However, most stochastic

modeling tools [16,31] for CTMC analysis employ techniques based on the Kronecker product

operator [32], or, more recently, on matrix diagrams [23, 49], which combine the idea of

decision diagrams with that of Kronecker encoding. One property essential to the efficiency

of Kronecker encodings but lacking in BDDs and MTBDDs is the ability to exploit identity

transformations for a subset of the L state variables when a transition occurs, i.e., the fact

that an event may affect only a small fraction of the state variables and leave the other

variables unchanged. This phenomenon is extremely common in asynchronous models,

such as those arising from modeling distributed software systems or from formalisms such
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as Petri nets [53]. To our knowledge, this issue has been addressed only recently outside the

Kronecker or matrix-diagram framework, by considering a disjunctive partition of T [8], or

R [45], and encoding an event e with a BDD, or MTBDD, that ignores both variables xk

and xk′ , if state variable xk neither is modified by event e, nor it affects its occurrence or

effect.

[19,21] exploited identity transformations in the Saturation algorithm, which can

be used for state-space generation and CTL model checking [26] and improves both peak

memory and time requirements by several orders of magnitude with respect to traditional

symbolic breadth-first iterations. The tool SmArT [17] implements this algorithm, and also

offers symbolic encodings for the analysis of Markov models (although, in this case, the

enormous reductions in memory are not accompanied by reductions in execution time,

unless the user is willing to accept an approximate numerical solution [24,52]).

This chapter presents a new canonical form of multi-terminal decision diagrams

where each variable of the decision diagram can be reduced, independently of the others,

according to a variable-specific reduction rule. In addition to the traditional fully-reduced

rule [11], which skips a node if all its children are identical, and to the less-well-known quasi-

reduced rule [43], which never skips a node, possible reduction rules include the new c-reduced

rule, which skips a node if only its c-child is nonzero, for some fixed but variable-specific

c ∈ N (this generalizes the zero-suppressed rule [48], which assumes c = 0) and the new

identity-reduced rule, which skips a node along an i-edge if only its i-child is nonzero (this

generalizes the reduction employed in matrix diagrams [23,49]). An obvious and important

application of this last reduction rule is the storage of (Boolean or real) transition matrices,
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where, for the kth state component, the new state i′k coincides with the old state ik, even

just some of the times, and these two variables correspond to contiguous variables in the

decision diagram.

For our presentation, we use multi-way decision diagrams, as these are more natu-

ral when modeling non-Boolean systems. Furthermore, decision diagrams are normally used

to encode functions of the form f : X → X0, where the domain X has an L-dimensional

structure X = XL × · · · × X1 and, for L ≥ k ≥ 1, the local domain Xk is a set of size

nk ≥ 1 of the form {0, 1, . . . , nk−1}. For example, in BDDs, Xk = X0 = B, the Boolean

set {0, 1}. However, in applications such as state-space generation, some local domains Xk

might not be known a priori, rather, they might be discovered during the fixpoint compu-

tations that manipulate the decision diagrams [21, 28, 62]. Here, then, we allow variables

to take values over the natural numbers N, and put constraints on the decision diagrams

that, while ensuring that the decision diagram is finite, allow us to encode some (obviously

not all) functions over structured countably infinite domains. In our approach, the range

X0 is an arbitrary set simply required to contain a distinguished, or default, element δ; this

is needed to define the c-reduced and identity-reduced cases, where δ plays the role of the

value 0 for traditional sparse arrays or identity matrices, respectively. δ usually also acts

as an “absorbing” element in TDD operations which is very important for efficiency; more

details can be found in Sec. 3.2.3.

This chapter is organized as follows. Sec. 3.1 introduces our new class of deci-

sion diagrams and discusses their canonicity. Sec. 3.2 presents algorithms to canonize and

manipulate them. Sec. 3.3 discusses their application to the storage of sets and relations,
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or, in greater generality, vectors and matrices, when X0 is not Boolean. Finally, Sec. 3.4

concludes the chapter outlining some directions for further research.

3.1 Terminal-valued decision diagrams

3.1.1 Definition of TDDs

Definition 3.1.1. Given L domain variables xL, ..., x1, where each xk takes values over

Xk = {0, ..., nk − 1}, nk ≥ 1, or Xk = N, given a range variable x0 taking values over

an arbitrary range set X0 with a default element δ ∈ X0, and given the variable order

xL ≻ · · · ≻ x1 ≻ x0, a finite ordered multi-way terminal-valued decision diagram, TDD for

short, is a finite acyclic edge-labeled directed multi-graph where:

• Each node p is associated to a variable xk, L≥k≥0, we write p.var = xk.

• If p.var = x0, the node is terminal, i.e., has no outgoing edges, otherwise it is nonter-

minal, i.e., it has outgoing edges.

• The terminal nodes are identified with elements of X0, i.e., if p is a terminal node,

then p ∈ X0.

• A nonterminal node p associated with variable xk has an outgoing edge labeled with

each different index ik ∈ Xk, pointing to node q with p.var ≻ q.var, we write p[ik] = q.

• If nonterminal node p is associated with variable xk and Xk = N, there must be a

node q such that {ik ∈ N : p[ik] 6= q} is finite.
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Symbol Definition or Meaning

Xk domain of xk, either {0, ..., nk − 1} or N

X0 an arbitrary range set that x0 can take

δ the default value of X0, or the terminal node labeled δ

p[∗] the common destination for infinite number of edges of p, when Xk = N

ρ reduction rule vector, ρ : {L, ..., 1} → {Q, F, I} ∪ N

ρ(xk) or ρk reduction rule associated to variable xk

ρ
Q the reduction rule vector where all entries are Q

p[Xk] = q redundant node p, p.var = xk and all edges pointing to q

singular-c a singular node where only the edge labeled c does not point to δ

Ar,p the set of tuples leading from node r to node p

Figure 3.1: New symbols and notations in this chapter.

We call a (terminal or nonterminal) node with no incoming edges a root. Since

we assume that the number of roots is finite, the finiteness of the overall TDD is then

guaranteed by the last item above. This is because, whenever nonterminal node p is as-

sociated with variable xk and Xk = N, we can represent its infinite set of outgoing edges

with a nonempty finite set of edges: one edge labeled by “∗”, so that p[∗] = q describes the

common destination node q for an infinite number of edges, and zero or more additional

edges of the form p[ik] = r, with ik ∈ N and r 6= q; if jk ∈ N is not explicitly listed in these

additional edges, it means that p[jk] = p[∗] = q.

Given node p associated with variable xk and an ik ∈ Xk, we say that an edge
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p[ik] = q skips variable xh if xk ≻ xh ≻ q.var. In a TDD where no edge skips variables, a

node p associated to xk encodes a function fp recursively defined as, ∀ik, ..., i1 ∈ Xk×· · ·×X1,

fp(ik, ..., i1) =















p if k = 0,

fp[ik](ik−1, ..., i1) otherwise.

However, if some edges skip variables, the function encoded by a node p associated

to xk can be defined only after we decide an interpretation for these edges. We consider the

following three possibilities.

Fully-reduced: An edge p[ik] = q with xk ≻ xh ≻ q.var is equivalent to an edge p[ik] = r,

where r is a node with r.var = xh and r[ih] = q for each ih ∈ Xh.

Identity-reduced: An edge p[ik] = q with xk ≻ xh ≻ q.var is equivalent to an edge

p[ik] = r, where r is a node with r[ik] = q and r[ih] = δ for each ih ∈ Xh \ {ik} (of

course, we must have ik ∈ Xh).

c-reduced: An edge p[ik] = q with xk ≻ xh ≻ q.var is equivalent to an edge p[ik] = r,

where r is a node with r[c] = q and r[ih] = δ for each ih ∈ Xh \ {c} (of course, we

must have c ∈ Xh).

Then, unlike previous definitions of canonical decision diagrams where the same

reduction rule is applied to all nodes, we define a reduction rule vector ρ : {L, ..., 1} →

{Q, F, I} ∪N, so that, if ρk = Q, no edge is allowed to skip variable xk unless it is pointing

to δ, if ρk = F , an edge skipping variable xk follows the fully-reduced interpretation, if

ρk = I, an edge skipping variable xk follows the identity-reduced interpretation, and if

ρk = c ∈ Xk, an edge skipping variable xk follows the c-reduced interpretation. We use
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ρ0 ≡ Q to denote the reduction rule associated to x0, since x0 can never be skipped. Given

such a reduction rule vector ρ, the function encoded by a node p associated with variable xl

with respect to a variable xn � xl is then recursively defined as, ∀in, ..., i1 ∈ Xn × · · · × X1,

fp(in, ..., i1) =











































































p if p = δ or n = l = 0 (cases below assume p 6= δ),

undefined if n > l, and ρn = I or ∃m, n ≥ m > l s.t. ρm = Q,

fp,in(in−1, ..., i1) if n > l, and ρn = F or ρn = in ,

fq,in(in−1, ..., i1) if n = l > 0 and p[il] = q,

δ otherwise,

(3.1)

where

fp,j(in, ..., i1) =











































































δ if p = δ (cases below assume p 6= δ),

fp(in, ..., i1) if ρn 6= I, or n = l

undefined if ρn = I, n > l and j /∈ Xn,

fp,j(in−1, ..., i1) if ρn = I, n > l and in = j,

δ otherwise.

(3.2)

The undefined cases should never happen in the actual TDDs and needs to be

forbidden. This definition makes a node p associate to xl meaningful with respect to xn

when l < n, as long as ρn 6= I, by treating variables from xn to xl+1 as skipped, even if

there is no edge leading to p. Finally, we can define a canonical form of TDDs.

Definition 3.1.2. A TDD is generally-reduced according to the reduction rule vector ρ :

{L, ..., 1} → {Q, F, I} ∪ N, with ρL 6= I, if:

29



1. There are no duplicate nonterminal nodes: p.var = q.var = xk, with k > 0, and

∀ik ∈ Xk, p[ik] = q[ik] imply p = q.

2. There are no δ-valued nonterminal nodes: p.var = xk, with k > 0, implies ∃ik ∈

Xk, p[ik] 6= δ.

3. If ρk = F , there is no node p associated with xk such that ∀ik ∈ Xk, p[ik] = q, for

some node q; such node p is called a redundant node and also denoted as p[Xk] = q.

4. If ρk = Q, only edges to node δ can skip variable xk.

5. If ρk = I, we define node q to be a singular node, or, more specifically, a singular-iq

node if it has exactly one edge q[iq] 6= δ; no edge p[i] can point to q if i = iq or if the

edge skips a variable xl with ρ(xl) = F and iq ∈ Xl.

6. If ρk = c ∈ Xk, there is no singular-c node p with p.var = xk.

Without causing confusion, we sometimes use reduced for short, instead of generally-reduced

in this thesis.

Fig. 3.2 shows different TDD with different ρ, listed on the left side, all encode

the function f(000) = f(110) = f(220) = 1 and f = δ for other inputs, assuming X3 =

X2 = X1 = {0, 1, 2}. Edges pointing to δ and δ itself are omitted.

3.1.2 Canonicity of reduced TDDs

Theorem 3.1.1. Given a function g : XL×· · ·×X1 → X0, a default element δ ∈ X0, and a

reduction vector ρ : {L, ..., 1} → {Q, F, I} ∪ N with ρL 6= I, there is a unique reduced TDD

node p satisfying fp = g.
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ρ3 = Q

ρ1 = F

ρ2 = 0

ρ3 = F

ρ1 = Q

ρ2 = I
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1

0
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ρ3 = Q
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ρ2 = Q 0 2

10 2

1

0
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10 2

1

ρ3 = Q

ρ1 = I

ρ2 = 02 1 2

0 0

Figure 3.2: TDDs with different ρ, encode the same function.

Proof. The proof for the existence of a TDD p such that fp = g will be given in Sec. 3.2.

Now we prove the uniqueness of the encoding, i.e., fp = fq ⇒ p = q.

The proof is based on Eq. 3.1, Eq. 3.2 and Def. 3.1.2. Let p.var = xlp and

q.var = xlq , L ≥ lp, lq ≥ 0 and without loss of generality, assume lp ≥ lq.

For the basis of the induction, when L = 1, if lp > lq,

• If ρ1 = F , then g = fq ≡ q, and ∀i ∈ X1, g(i) = fp(i) = p[i] = q, so p contradicts

Def. 3.1.2 : item3.

• If ρ1 = c ∈ X1, then fp(c) = fq(c) = q, and ∀i ∈ X1 \ {c}, fp(i) = fq(i) = δ, so p

contradicts Def. 3.1.2 : item6.

So lp = lq, and there are two cases:

• If lp = lq = 0 then:

– If ρ1 = F , then p ≡ g ≡ q;

– If ρ1 = c ∈ X1, then g(c) = fp(c) = p = fq(c) = q.

• If lp = lq = 1, then ∀i ∈ X1, fp(i) = p[i] = fq(i) = q[i], which implies p = q according

to Def. 3.1.2 : item1.
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For the inductive step, assume the theorem holds when L ≤ n for some n ≥ 1 and,

then show it holds when L = n + 1. Consider two cases:

Case 1. If lp < n+1, according to Eq. 3.1, ∀in+1, in, ..., i1 ∈ Xn+1×· · ·×X1, fp(in+1, in, ..., i1) =

fp,in+1
(in, ..., i1) and fq(in+1, in, ..., i1) = fq,in+1

(in, ..., i1) when ρn+1 = F or ρn+1 = in+1,

or δ otherwise.

• If ρn 6= I, then fp = fq ⇒ fp(in, ..., i1) = fq(in, ..., i1); since the theorem holds when

L = n, the above statement implies p = q.

• If ρn = I, consider two cases:

– If ρn+1 = c ∈ Xn+1, we introduce a new reduction rule vector ρ
′ of size n, where

ρ′n = Q and ∀l, n > l ≥ 1, ρ′l = ρl.

∗ If lp = lq = n, let f ′
r be the function node r encodes with ρ

′, then ∀in, ..., i1 ∈

Xn × · · · × X1, f
′
p(in, ..., i1) = fp(in, ..., i1) = g(c, in, ..., i1) = fq(in, ..., i1) =

f ′
q(in, ..., i1). Thus p = q since theorem holds when L = n.

∗ If n > lp, then we construct new singular-c nodes p′ and q′, with p′.var =

q′.var = xn, and p′[c] = p, q′[c] = q then when in 6= c, f ′
p′(in, ..., i1) = δ =

f ′
q′(in, ..., i1); when in = c, f ′

p′(in, ..., i1) = f ′
p,c(in−1, ..., i1) = fp,c(in−1, ..., i1) =

fq,c(in−1, ..., i − 1) = f ′
q,c(in−1, ..., i1) = f ′

q′(in, ..., i1). So p′ = q′, which im-

plies p = q.

∗ if n = lp and lp > lq, then we construct q′ as above, and similarly f ′
p = f ′

q′ ,

so p = q′, which contradicts Def. 3.1.2 : item5 with ρ.

So p = q in this case.
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– If ρn+1 = F , let h = max{l : l ≤ n, ρl 6= I or l = lp}, then fp,in+1
(in, ..., i1) =

fp(ih, ..., i1), when ∀k, n ≥ k ≥ h, ik = in+1, or δ otherwise.

∗ If h > lp, or h = lp and ρh 6= I, then fq,in+1
(in, ..., i1) = fq(ih, ..., i1),

when ∀k, n ≥ k ≥ h, ik = in+1, so fp = fq ⇒ ∀ih, ..., i1 ∈ Xh × · · · ×

X1, fp(ih, ..., i1) = fq(ih, ..., i1). Thus p = q since the theorem holds when

L = h.

∗ If h = lp = lq and ρh = I, consider a new reduction rule vector ρ
′ of size

h, where ρ′h = Q and ∀l, h > l ≥ 1, ρ′l = ρl. Let f ′
r be the function node r

encodes with ρ
′, then ∀ih, ..., i1 ∈ Xh×· · ·×X1, f

′
p(ih, ..., i1) = fp(ih, ..., i1) =

fq(ih, ..., i1) = f ′
q(ih, ..., i1), so p = q.

∗ If h = lp > lq and ρh = I, then p must not be a singular node according to

Def. 3.1.2 : item5, so p has at least two outgoing edges not pointing to δ. Then

let in+1 = in = ... = ih+1 6= ih and p[ih] 6= δ, ∃ih−1, ..., i1 ∈ Xh−1 × · · · × X1,

s.t. fp(in+1, ..., i1) = fp(ih, ..., i1) 6= δ, but fq(in+1, ..., i1) ≡ δ since ih 6= ih+1,

we get a contradiction. So lp = lq, and we return to the above bullet item.

Case 2. If lp = n + 1, first we prove p = q when lp = lq.

For any c ∈ Xn+1, consider a reduction rule vector ρ
′ of size n + 1, where ρ′n+1 =

c and ∀l, n + 1 ≥ l ≥ 1, ρ′l = ρl, and let f ′
r be the function node r encodes with ρ

′.

Let p′ = p[c], q′ = q[c], then ∀in, ..., i1 ∈ Xn × · · · × X1, fp(c, in, ..., i1) = fp′,c(in, ..., i1)

and fq(c, ..., i1) = fq′,c(in, ..., i1). Then ∀in+1 ∈ Xn+1, f ′
p′(in+1, ..., i1) = f ′

p′,c(in, ..., i1) =

fp(c, in, ..., i1) when in+1 = c or δ otherwise; similarly f ′
q′(in+1, ..., i1) = fq(c, in, ..., i1) when

in+1 = c or δ otherwise; so f ′
p′ = f ′

q′ which implies p′ = q′. Since c is arbitrarily chosen, we
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have ∀c ∈ Xn+1, p[c] = q[c], which implies p = q.

Now prove lp = lq is always held, otherwise, ρn+1 = F or ρn+1 = c ∈ Xn+1.

Consider a new reduction rule vector ρ
′ of size n + 1 where ρ′n+1 = Q and ρ′l = ρl for

n ≥ l ≥ 1, and let f ′
r be the function node r encodes with ρ

′; obvious f ′
p = fp,

• If ρn+1 = F , we construct a new redundant node q′ with q′.var = xn+1 and q′[Xn+1] =

q, then f ′
q′ = fq = fp = f ′

p. Since p.var = q′.var, we have p = q′, then node p

contradicts Def. 3.1.2 : item3 subject to ρ.

• If ρn+1 = c ∈ Xn+1, we construct a new singular-c node q′ with q′.var = xn+1 and

q′[c] = q, then similarly f ′
q′ = f ′

p ⇒ p = q′. So node p contradicts Def. 3.1.2 : item6

with ρ.

So we can conclude when L = n + 1, fp = fq ⇒ p = q still holds and thus the

theorem is proved.

3.2 Operations with TDDs

TDDs offer a very compact encoding for many functions, but, to be of practical

use, they must also possess efficient manipulation algorithms. We now discuss the most

important such algorithms.

One type of TDD manipulations relates to canonization: given a function f , how

to create the canonical TDD encoding it with a single root node. Sec. 3.2.1 discusses how

to canonize a TDD according to a given reduction rule vector, while Sec. 3.2.2 discusses

how to change the reduction rule of a given canonical TDD.
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Other TDD operations take instead one or more TDD nodes in input and return a

TDD node in output. Given the canonization routines just mentioned, these operations can

safely assume that the TDD is correctly reduced according to a given reduction rule vector

ρ, and must simply guarantee that it remains so. Rather than consider specific operations,

Sec. 3.2.3 presents a generic TDD operator, Apply , which can be used as the base of most

TDD operations.

Our pseudocode uses the type tdd for a TDD node. All algorithms in this chap-

ter are implemented and tested in the Decision Diagram Library (DDL), introduced in

Ch. 8. We omitted some implementation details for succinctness, see Ch. 8 for additional

information.

3.2.1 The CheckIn operation

Usually, given a reduction rule vector ρ, after a TDD node is created, it might

not be reduced according to ρ, e.g., it could be a duplicate node, or a redundant node and

the reduction rule associate to its variable is F . So a unique table and a check-in step is

necessary here to ensure canonicity. Before check-in, a node is called a temporal node, and

does not reside in the unique table; the check-in procedure reads in a temporal node and

outputs a canonical node which resides in the unique table.

The pseudocode is shown in Fig. 3.3. The unique table insertion is done by

UTInsert which is part of CheckIn. CheckIn is also responsible for discovering redundant

nodes or singular nodes that should be eliminated according to Def. 3.1.2. The elimination

of a node is handled through a reference counting scheme in DDL, which is automatically
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taken care of and not shown in the pseudocode. A subtle issue is how to eliminate the

singular nodes, which contradict Def. 3.1.2, or, in short, identity singular nodes. since for

this case we require the information of its incoming edge.

All nodes except for the terminal nodes need go through the CheckIn step to

become canonical nodes (we assume terminal nodes are canonical); a canonical node should

never have an edge pointing to a temporal node; before checking in a temporal node, all its

children must be canonical nodes; and only a temporal node can modify its edges. These

are important requirement for all decision-diagram-based algorithms to ensure correctness.

3.2.2 The Translate operation

Given a TDD node p reduced with a reduction rule vector ρ, we might want to

change the reduction rule vector to be ρ
′ with the same size, and output a TDD node p′

such that fp = f ′
p′ , where f ′

p′ is the function p′ encodes with ρ
′.

This “translation” operation is important in the sense that it allows a possible

choice of a better reduction rule vector for a TDD, which requires fewer nodes to encode

the same function; it also contributes to the constructive proof for the existence part of

Thm. 3.1.1 given in Sec. 3.2.3.

The idea of this operation is first to transfer p into a temporal node q under ρ
Q,

the size-L vector that all entries are Q, so that fp = fQ
q . Then CheckIn all derivative nodes

of q in a bottom-up fashion. Look at a simple example, let p.var = k +1, r.var = k− 1 and

p[i] = r skips xk for some k, L ≥ k ≥,i ∈ Xk+1, there are three possible cases:

• If ρk = F , we can create a redundant temporal node r′, such that, q[i] = r′ and
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tdd CheckIn(tdd p) • assume p.var = xk

1 if ρk−1 = I then

2 foreach i ∈ Xk s.t. p[i] 6= δ do • check identity singular nodes

3 ch← p[i]

4 if ch[i] 6= δ and ∀j ∈ Xk \ {i}, ch[j] = δ then

5 p[i]← ch[i];

6 else if ρk = F and p[0] = p[1] = · · · = p[nk − 1] then

7 return p[0]; • redundant node

8 else if ρk = c ∈ Xk, p[c] 6= δ and ∀i ∈ Xk \ {c}, p[i] = δ then

9 return p[c]; • singular-c node

10 else return UTInsert(p);

Figure 3.3: The CheckIn algorithm.

r′[Xk] = r.

• if ρk = c ∈ Xk, we create a singular-c temporal node r′, such that q[i] = r′ and

r′[c] = r.

• if ρk = I, we create a singular-i temporal node r′, such that q[i] = r′ and r′[i] = r

(i ∈ Xk is required).

For more complicated TDD structures, basically we do the above recursively from

top down, shown in Fig. 3.4.

Procedure Translate(p) takes node p reduced with ρ and produce p′ reduced with

ρ
′, such that fp = f ′

p′ . It calls the recursive procedure RecTranslate to finish the task.

RestoreIdentity handles the case an variable associated to I is skipped. NewNode(xk ) create

a new temporal node associate to xk, with all edges initialized pointing to δ. Copy(p) makes

a temporal copy of a canonical node p.
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tdd Translate(tdd p) • assume original reduction rule vector ρ, new vector ρ
′

1 if ρ = ρ
′ then return p; • do nothing

2 else return RecTranslate(L, p);

tdd RecTranslate(integer n, tdd p) • p.var = xk

1 if n = 0 return p; • terminal case

2 if CacheHit(TRANSLATE , n, p, q) return q;

3 if n = k then q ← Copy(p); • no skipping edge

4 else if ρn = c ∈ Xk then

5 q ← NewNode(xk);

6 q[c]← p; • restore singular-c node

7 else • ρn = F

8 q ← NewNode(xk);

9 foreach i ∈ Xk

10 do q[i]← p; • restore redundant node

11 foreach i ∈ Xn s.t. q[i] 6= δ do

12 RestoreIdentity(q, i, q[i]); • restore identity singular nodes

13 q ← CheckIn(q); •CheckIn depends on the reduction rule vector ρ
′

14 CacheAdd(TRANSLATE , n, p, q);

15 return q;

RestoreIdentity(tdd p, integer i, tdd ch) • p.var = xk, ch.var = xl

1 if ρk−1 = I and k − 1 > l then • ik−1 is skipped with I interpretation

2 q ← NewNode(xk−1);

3 q[i]← ch; • restore singular-i node

4 RestoreIdentity(q , i , ch);

5 p[i]← q;

6 else

7 p[i]← RecTranslate(k − 1, ch); • no skipping or ρk−1 = F or ρk−1 = c

Figure 3.4: Algorithm for changing from ρ to ρ
′.
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An operation cache is adopted here and used throughout the thesis, which is

essential for efficiency of most decision-diagram based algorithms. CacheHit search the

tuple of the operator and the operand(s) as the search key in the cache to see if there is a

hit and if so, return the result that was computed before. CacheAdd adds the tuple of the

operator, the operand(s) and corresponding result to the cache. To ensure the validity of

cache entries, we require that nodes as operands cannot be modified, i.e. canonical nodes,

and given the operands, the result is unique. More details can be found in Ch. 8.

3.2.3 The Apply operation

Given a binary operation ⊙ : X0×X0 → X0, we can define the result of this binary

operation on the functions encoded by two reduced TDD nodes p and q, and generate a

reduced TDD node r encoding the result, or fr = fp ⊙ fq.

r can be computed recursively, e.g., assume p.var = q.var = xn, and ρ = ρQ, then,

for in, ..., i1 ∈ Xn × · · · × X1,

fr[in](in−1, ..., i1) = fr(in, ..., i1) = fp(xn, ..., x1)⊙ fq(xn, ..., x1)

= fp[in](in−1, ..., i1)⊙ fq[in](in−1, ..., i1)

When there are skipping edges, we might need to restore nodes depending on the

reduction rules.

Algorithm Apply in Fig. 3.5 and Fig. 3.6 shows how to compute node r. It assumes

that the TDD is already in reduced form, and it leaves it in reduced form. The main

difference from the traditional Apply of fully-reduced decision diagram is in the management

of the c-reduced and identity-reduced variables. RecApply(p, q) assumes that either node
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tdd Apply(tdd p, tdd q)

1 return Restore(0, p, q, L);

tdd RecApply(tdd p, tdd q) • p.var = xk, q.var = xl

1 if k = 0 and l = 0 then return p⊙ q; • terminal case

2 if CacheHit(APPLY , p, q, r) then return r;

3 r ← NewNode(xmax(k,l));

4 if k = l then foreach i ∈ Xk do

5 r[i]← Restore(i, p[i], q[i], k);

6 else if k > l then

7 if ρk = F then foreach i ∈ Xk do

8 r[i]← Restore(i, p[i], q, k);

9 else if ρk = c ∈ Xk then

10 r[c]← Restore(c, p[c], q, k);

11 foreach i ∈ Xk \ {c} do

12 r[i]← Restore(c, p[c], δ, k);

13 else • k < l

14 if ρl = F then foreach i ∈ Xl do

15 r[i]← Restore(i, p, q[i], k);

16 else if ρl = c ∈ Xk then

17 r[c]← Restore(c, p, q[c], k);

18 foreach i ∈ Xk \ {c} do

19 r[i]← Restore(c, δ, q[c], k);

20 r ← CheckIn(r);

21 CacheAdd(APPLY , p, q, r);

22 return r;

Figure 3.5: The Apply procedure for a generic operator ⊙.
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tdd Restore(integer i, tdd p, tdd q, integer n) • p.var = xk, q.var = xl

1 if k = l or ρmax(k,l) 6= I then return RecApply(p, q); • no need to restore

2 if k > l then

3 m← min{m : k < m < n, ρm 6= I or m = n}

4 if m = n then • add a singular-i node

5 r ← NewNode(xk);

6 r[i]← q;

7 else if ρm = c ∈ Xm then • add a singular-c node

8 r ← NewNode(xk);

9 r[c]← q;

10 else if ρm = F then • add a redundant node associated to xm

11 r ← NewNode(xm);

12 foreach j ∈ Xm do

13 r[j]← q;

14 r ← UTInsert(r); • so r can be used for cache

15 return RecApply(p, r)

16 else • k < l

17 m← min{m : l < m < n, ρm 6= I or m = n}

18 if m = n then

19 r ← NewNode(xl);

20 r[i]← p;

21 else if ρm = c ∈ Xm then

22 r ← NewNode(xl);

23 r[c]← p;

24 else if ρm = F then

25 r ← NewNode(xm);

26 foreach j ∈ Xm do

27 r[j]← p;

28 r ← UTInsert(r);

29 return RecApply(r, q)

Figure 3.6: The Apply procedure for a generic operator ⊙ (continued).
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p and q are associated to the same variable or that the higher one is not identity-reduced;

this ensures p⊙ q will produce a unique result, not depending on its incoming edge, which

is desired for the cache. When p and q do not satisfy this assumption, either during the

recursion or at the beginning, it is then handled by procedure Restore.

Note that, to be fully general, Algorithm Apply does not assume anything about

the operator ⊙. Its efficiency can be improved, for example, if we know that ⊙ is commuta-

tive, since the entry (APPLY , q, p, r) in the cache is also a hit, or that δ ⊙ x = δ (as is the

case for multiplication, when δ = 0), since the recursion can be stopped as soon as one of

the operators is δ, or that p⊙ p = p (as is the case, X0 = B and ⊙ is Or or And), etc. We

will see some specific Apply operations in the following chapters for different applications.

We now have a brief discussion of Apply ’s complexity. Compared to the traditional

algorithm for fully-reduced decision diagrams, Apply has the possible additional cost of

inserting redundant or singular nodes when some variables are identity-reduced, but these

insertions are not truly overhead with respect to fully-reduced decision diagrams, since those

nodes would be present in the fully-reduced case anyway. On the other hand, when two edges

p[i] and q[i] both skipped a series of variables in a reduced TDD, the Apply operation could

be much more efficient than the fully-reduced version since these variables are probably

present in the fully-reduced version; We will see several examples in the following chapters.

Now we can give the proof for the first part of Thm. 3.1.1 by construction.

Given function g : XL × · · · × X1 ⇒ X0, a default element δ, and a reduction

rule vector ρ, in order to prove there is a unique TDD node encoding g with ρ, we only

need to build a TDD node p such that fp = g with ρ
Q, since we can always change the
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reduction rule vector to be ρ using Translate. For each in, ..., i1 ∈ XL × · · · × X1 s.t.

g(in, ..., i1) 6= δ, build a TDD node q, such that there is only one path from q to a non-δ

terminal : q[in][in−1]...[i1] = g(in, ..., i1). We define the operator ⊙ such that

a⊙ b =















a if a 6= δ,

b otherwise ,

which is like a generalized logical or (∨) operation. Then let p = δ initially and apply

p = p⊙ q for each of those nodes q, we get the desired p finally.

3.3 Applications

We present two sets of experimental results to illustrate the usefulness of our

identity-reduced rule. The first set considers the encoding of binary relations and matrices,

which naturally possess a concept of identity. The second set considers a perhaps more

surprising application, the encoding of sets and vectors.

3.3.1 Encoding relations and matrices

We study the number of nodes needed to encode the transition relation T or rate

matrix R for several largely asynchronous models, using TDDs on the domain X 2
L×· · ·×X

2
1 .

For T , the range X0 contains only 0 and 1 while, for R, it contains the unique non-negative

values in the matrix R. In both cases, δ = 0. We present results for both a disjunctive

encoding, where T (resp. R) is encoded as a Boolean (resp. real) sum over a set of events E ,

each encoded as a TDD, and a monolithic encoding, where T is encoded using a single root

TDD. All models have an integer parameter N ; we obtained consistent results across a wide
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range but, for lack of space, we show results for just two values of N . A brief description

of each model follows.

Philosophers is the classic dining philosopher problem. A deadlock occurs if all N philoso-

phers pick their right, or their left, fork.

Leader is the randomized leader election protocol of [33].

Mutex is a mutual exclusion protocol for a set of N processes arranged in a circular

fashion, where access is granted in a round-robin fashion [38].

FMS models a flexible-manufacturing system where parts move around in a factory, to be

processed by various machines, assembled, and shipped [27].

Queuing models a bounded queuing network [35].

Tab. 3.1 reports the size of the state space S, whether T or R has a Kronecker

representation for the given partition of each model, and the number of nodes needed to

encode T or R with a disjunctive or monolithic representation. The label X-Y in the eight

rightmost columns describes the reduction rules used for each pair of variables xl and xl′ .

Several observations can be made. First of all, a comparison of the Q-Q and F -

F columns reveals that, in all cases, there are no redundant nodes. Comparing the Q-I

and F -I columns, instead, shows that, with the exception of the FMS model, applying

the identity-reduced rule to primed variables makes some, possibly many, unprimed nodes

redundant. Most importantly, though, we can see by comparing the Q-Q and Q-I, or F -F

and F -I, columns that the identity-reduced rule results in substantial savings by eliminating
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a large number of singular nodes. In particular, the combination F -I is quite efficient and

consistently the best choice, as it takes advantage of the numerous “identity patterns” (a

redundant node p associated to variable xk with |Xk| children associated to variable x′
k,

where p[ik] = qik and qik [ik] is the only edge not pointing to 0, as shown in Fig. 3.2 on the

right), which are skipped altogether, thus do not increase the memory requirements. This

is most visible in the Philosophers and Mutex models, where each event affects at most two

submodels (each variable corresponds to a submodel) out of L, and L is large.

3.3.2 Encoding sets and vectors

Effectively employing the identity-reduced rule when encoding a set or vector, as

opposed to a relation or matrix, requires intuition about how many singular nodes we can

save by adopting the identity-reduced for a variable xl, i.e., which il is likely to be equal to

il+1 in most, or all, cases.

An interesting possibility requiring further investigation is the use of the identity-

reduced rule as a way to discover such dependencies. We motivate this idea with an artificial

experiment where we randomly generate five sets of 1,000 16-bit vectors with uniform prob-

ability for all bits, except Pr{x7 = x8} = Pr{x6 = x7} = Pr{x5 = x6} = 0.9, and encode

them in a 16-variable TDD. The results reported in Tab. 3.2 show the number of nodes

required to encode these random sets; for column X ·Y , the reduction rule X is used for all

variables except (x7, x6, x5) where we use rule Y . While decision diagrams are most effective

with highly structured sets, this experiment shows that the appropriate reduction rule saves

a substantial fraction of nodes even in relatively unstructured data. The challenge is then

45



N |S| Kr Disjunctive encoding Monolithic encoding

Q-Q F -F Q-I F -I Q-Q F -F Q-I F -I

Number of TDD nodes required to encode T

Philosophers L=⌈N/2⌉ |Sl|=34 for all l |E|=3L

200 2.5 · 10125 yes 527,948 527,948 22,134 7,187 14,008 14,008 5,578 5,283

300 1.2 · 10188 yes 1,185,723 1,185,723 44,459 10,787 21,108 21,108 8,378 7,933

Leader L=2N + 1 |Sl|≤16 for all l |E|=5N + 2

30 1.6·1018 no 34,074 34,074 3,979 938 4,846 4,846 1,290 929

50 1.9·1031 no 89,914 89,914 9,639 1,558 8,086 8,086 2,150 1,549

Mutex L=N + 1 |Sl|=7 for all l except |SL|=N+1 |E|=5N

50 1.3 · 1017 yes 57,447 57,447 7,224 950 20,974 20,974 3,198 651

150 4.8 · 1047 yes 517,347 517,347 59,174 2,850 182,974 182,974 24,598 1,951

Number of TDD nodes required to encode R

FMS L = 16 |Xl| = N + 1 |E| = 17 |X0| = 15

2 1.8 · 103 no 2,189 2,189 1,006 1,006 1,547 1,547 860 860

3 2.1 · 105 no 4,639 4,639 1,980 1,980 3,612 3,612 1,959 1,959

Queuing L=8 |Xl|=N+1 for all l≥1 |E| = 8 |X0|=2N

30 2.4 · 108 yes 2,920 2,920 693 627 2,256 2,256 552 499

50 4.6 · 109 yes 5,798 5,798 1,113 1,027 4,714 4,714 892 819

Table 3.1: TDD nodes to encode a transition relation or a rate matrix.
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set 1

set 2

set 3

set 4

set 5

ρ7 = ρ6 = ρ5

Q·Q F ·F Q·I F ·I

1636 1617 1003 988

1639 1622 1011 996

1622 1608 995 980

1634 1618 995 980

1634 1618 1010 997

Table 3.2: Encoding five random sets of 1,000 tuples in {0, 1}16.

to recognize partial dependencies of the type present in our artificial data set.

3.3.3 Discussion

It is easy to compare the advantages and disadvantages of the quasi- and fully-

reduced rules. Changing from ρk = F to ρk = Q can only increase the number of nodes

associated to variable xk, while leaving the other nodes unchanged. However, the quasi-

reduced rule might still be a good choice. First of all, there are cases where one might

want to access all nodes associated to a given variable xk, even redundant ones [18]. With

a fully-reduced decision diagram, this requires finding all edges that skip variable xk, thus

accessing all nodes associated to higher variables, not just those associated to xk as in

the quasi-reduced case. Second, the recursive manipulation algorithms for quasi-reduced

decision diagrams are much easier, since they always operate on nodes associated to the same

variable; this also allows us to structure the operation cache by and avoid storing variable
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information in them. Third, node storage requires less memory because the variable that

the node stores does not have to be explicitly stored in the node itself, since any recursive

algorithm is aware of the variable at which it is operating, and because, given that an edge

from a node p with p.var = xl can only point to a node q with q.var = xl−1, we need

in principle fewer bits to store the address of q (and in practice, if we use integer indices

instead of actual pointers). Finally, perhaps the main reason is that, often, few redundant

nodes are present in the TDDs needed to study a model, as our experimental results show.

More interesting is the comparison of the identity- and fully-reduced rules. Con-

sider a node r with r.var = xL reaching a redundant node p with p.var = xl, with ρl = Q

(p would then be eliminated if ρl were changed to F ). Let the set of tuples leading from r

to p be Ar,p ⊆ XL×· · ·×Xl+1. Then, we can see that a redundant node is the manifestation

of a form of independence:

∀α∈Ar,p,∀il, jl∈Xl,∀β∈Xl−1×· · ·×X1, fr(α, il, β)=fr(α, jl, β).

In other words, given any tuple α leading to p, the value of the function is independent of

the value of the lth argument.

In the scenario where p is a singular-c node and every tuple in Ar,p has the last

component equal to c (p would then be eliminated if ρl were changed to I), p is instead the

manifestation of a form of dependence:

∀α∈Ar,p,∀il∈Xl \ {c},∃β∈Xl−1×· · ·×X1, fr(α, c, β) 6=fr(α, il, β)=δ.

Both independence and dependence can be present to some extent in a system, even within

a single variable xl. In this case, the choice between using the fully- or the identity-reduced
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rule could be based on which one saves the most nodes. In the extreme case, all the

nodes associated to xl are redundant (any function encoded by the TDD is then completely

independent of the lth argument, which can be eliminated from the TDD altogether), or

all the nodes can be identity-reduced (any function g encoded by the TDD evaluates to δ

whenever il 6= il+1, thus, again, variable xl can be eliminated from the TDD).

Independence is a simpler concept, since it is a property that a TDD node, or even

an entire variable, can possess in an absolute sense, while dependence is always relative to

the higher variable, thus even testing for it is harder. This is probably the reason why the

fully-reduced rule was introduced early on, while the identity-reduced rule has not been

proposed before. Nevertheless, it is clear that this new rule can be extremely effective,

especially when describing transition matrices, as we have illustrated.

3.4 Conclusion

We presented a new canonical form of decision diagrams where different variables

can be reduced according to different reduction rules. Our novel identity-reduced rule is

particularly effective in the presence of identity transformations, when encoding relations or

matrices, and of dependencies, when encoding sets or vectors. We also presented algorithms

for the manipulation of this new data structure and provided several numerical examples

of its effectiveness.

Future directions of research along these lines include

• Explore more uses for the c-reduced rule. c-reduction is a generalized 0-reduction as

used in zero-suppressed decision diagrams [48]. In general, c-reduction would be a
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good candidate if system behavior is quite different when some certain variables take

one special value c, from when they take other values, which probably results in many

singular-c nodes.

• Explore other uses of the identity-reduced rule, especially when storing sets or vectors,

such as automatically identifying and quantifying dependencies.

• Explore the automatic discovery of good reduction rule vectors, periodically monitor

the TDD and update our choice of reduction vector automatically and efficiently.
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Chapter 4

Symbolic State-space Generation

of Asynchronous Systems

The simplest symbolic state-space generation uses a breadth-first strategy [54]

and performs an image computation at each iteration, until reaching a global fixpoint. This

method can be improved through chaining [58], to compound the effect of asynchronous

events within a given breadth-first iteration. The saturation algorithm [22] uses instead a

completely different iteration strategy to compute a fixpoint for each decision diagram node

in ascending order and has been shown to excel when applied to asynchronous systems. The

algorithm was first defined for transition relations that admit a Kronecker encoding. While

this encoding always exists, it might be unwieldy, thus the approach was not always practi-

cal. [51] avoids the Kronecker encoding by conjunctively partitioning the transition relation

of each event into groups, encoded by matrix diagrams with an identity reduction. [28] al-

lows an even finer partition, where conjuncts can share state variables, resulting in a more
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efficient computation for the symbolic encoding of the transition relation. Fully-reduced de-

cision diagrams encode each conjunct and fully-identity-reduced decision diagrams (similar

to identity-reduced matrix diagrams) encode the transition relation of each event.

When computing the fixpoint for a node associated to variable xk, saturation

applies the union of all events whose root nodes are associated to xk. If the state variables

have known bounds, the symbolic encoding for the transition relation of each event, as

well as arbitrary unions among them, can be computed a priori, and the decision diagram

structures chosen by [28, 51] work well. If the bounds on the state variables are unknown,

however, we need to update the transition relation of any event affected by or affecting xk

when the domain of xk is extended during state-space generation, resulting in an on-the-fly

discovery process. Then, the domain of skipped variables can affect the result of a union

operation, thus operation caches might be invalidated. This inefficiency comes from the

reduction rules chosen for the decision diagrams, which produce a compact encoding but

cause semantic errors when the variable domain is growing if the old cached values were

used.

To tackle this problem, we utilize the new generally-reduced decision diagrams

from Ch. 3, which allow an infinite variable domain. Using appropriate reduction rules and

symbolic operation algorithms, this new canonical representation never requires to invali-

date the operation cache, allows more node reuse, and still produces a compact symbolic

encoding. As it allows efficient bookkeeping of the transition relation for events and their

union, the data structure works well for both breadth-first and saturation.

We provide revised breadth-first and saturation algorithms, as well as a frame-
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work to update variable domains on-the-fly and symbolic operations for these new decision

diagrams. Experimental results support our contribution.

This chapter is organized as follows. In Sec. 4.1, we define the symbolic data

structure for encoding set of states and transition relations. Sec. 4.2 discusses the framework

for symbolic on-the-fly state-space generation. Sec. 4.3 introduces how we apply the new

generally-reduced decision diagram to on-the-fly state-space generation. Sec. 4.4 presents

experimental results and Sec. 4.5 concludes this chapter.

4.1 Symbolic encoding

In this chapter, we use generally-reduced multi-way decision diagrams (MDDs) to

encode set of states and transition relations. MDD here is defined as TDD with X0 = {0,1}

and δ = 0. It is an enhanced version of the previous MDD [42], but we use the same

abbreviation since they share a lot of properties and they can be used interchangeably when

the domain of variable is finite. When both types of MDDs are present in the context, we

call the latter traditional MDDs. We discuss three reduction rules in this chapter, F , Q

and I. For this chapter, when we talk about skipping variables, edges pointing to 0 do not

count, and without causing confusion, an MDD p is short for an MDD node p.

4.1.1 Symbolic encoding of sets of states

We use an MDD p for a given ρ with p.var = xk to encode a set of tuples B(p) ∈

Xk × · · · × X1, such that, let α = ik, ..., i1, then α ∈ Bp ⇔ fp(α) = 1, or B(p) = Ap,1.

More specifically, according to Eq. 3.1 and Eq. 3.2, let B(0) = ∅, B(1) = {()}, the
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Symbol Definition or Meaning

ρ
F the reduction rule vector that all entries are F

ρ
FI ρ(xk) = F and ρ(x′

k) = I, for L ≥ k ≥ 1

ρ
QF (w.r.t. Z, same below) ρ(x) = Q if x ∈ spt(Z), and ρ(x) = F otherwise

ρ
QFI ρ(x′

k) = I, ρ(xk) = Q if xk ∈ spt(Z), and ρ(xk) = F otherwise, for L ≥ k ≥ 1

pf max{i : p[i] 6= p[∗]}

Figure 4.1: New symbols and notations in this chapter.

set containing only the empty tuple, then B(p) is defined by

B(p) =
⋃nxk

i=0 {i} × B(xk−1, i, p[i]),

where, ∀xl,∀q, with q.var = xh and xl � xh,

B(xl, i, q) =































B(q) if xl = xh

⋃nxl

j=0{j} × B(xl−1, j, q) if xl ≻ xh ∧ ρl = F

{i} × B(xl−1, i, q) if xl ≻ xh ∧ ρl = I.

Fig. 4.2 shows three MDDs on (x3, x2, x1), with X3 = X2 = X1 = {0, 1, 2}, encoding the

same set {0, 1, 2}×{0}×{0} using different choices for ρ. For clarity, we omit edges pointing

to 0, as well as the terminal 0.

Our application needs to store sets of states, thus L-tuples. We do so using MDDs

over x = (xL, ..., x1) and ρ = ρ
Q.

54



0

0

1

10 2 10 2

0

0

1 1

0

ρ3 = F

ρ1 = F

ρ2 = F

ρ3 = Q

ρ1 = I

ρ2 = I

ρ3 = Q

ρ1 = Q

ρ2 = Q

q r

p

Figure 4.2: MDDs with different reductions encoding the same set

4.1.2 Symbolic encoding of transition relations

Given a transition relation Z, we can use a 2L-variable MDD on (xL, x′
L, ..., x1, x

′
1)

with the order xL ≻ x′
L ≻ · · · ≻ x1 ≻ x′

1, to store it, where the unprimed variables refer to

the “from” states and the primed variables refer to the “to” states.

If we use a reduction rule vector ρ
FI , where ρ(xk) = F and ρ(x′

k) = I, for L ≥

k ≥ 1, then Z is encoded into an MDD where every node is associated with a variable in

spt(Z). For sub-relations Zc, instead, we use a reduction rule vector ρ
F , where all entries

are F , then each Zc is encoded into an MDD where, again, its nodes can only be associated

with a variable in spt(Zc). Assuming all variables take values in {0, 1, 2}, Fig. 4.3 shows

p = enc(Z1) and q = enc(Z2) subject to ρF and r = enc(Z) subject to ρ
FI . The rightmost

MDD, also subject to ρ
FI , is incorrect, demonstrating why the identity-reduced rule does

not allow edges from nodes associated to x′
3 to skip over x2, which is fully-reduced. Without

this requirement, the two rightmost MDDs would both encode Z, thus canonicity would be

lost. Using MDD subject to ρ
FI affords an enormous advantage: neither storing Zeq nor

performing a natural join with it is needed. The MDD for ⊲⊳C
c=1 Zc, originally subject to

ρF , if we interpret it as subject to ρ
FI , encodes

(

⊲⊳C
c=1 Zc

)

⊲⊳ Zeq “for free”; minor changes
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Figure 4.3: MDDs encoding Z and its sub-relations.

may apply to nodes associated to the primed variables in spt(Z) when they are skipped.

In general discrete-state systems, both asynchronous and synchronous behavior

can be present. Then, {Te|e ∈ E} gives a disjunctive partition of T and describes the

asynchronous behavior of the system. Each Te, when expressed as a natural join of sub-

relations as in Eq. 2.1, corresponds to the synchronous behavior of the system. Each Te

and its sub-relations can be encoded into MDDs as discussed above, and a union operation

over each enc(Te) results in enc(T ).

4.1.3 Symbolic generation of the reachable states

Let Img(X ,Z) = {i′ : ∃i ∈ X , (i, i′) ∈ Z} denote the image of the set of states X

subject to the transition relation Z. The set of reachable states S ⊂ N
L is the minimal set

satisfying S ⊇ Sinit and S ⊇ Img(S, T ). If T can be computed a priori, i.e., the bounds

on the state variables are known, we can start from Sinit and repeatedly perform image

computations subject to T until reaching a fixpoint. As T =
⋃

e∈E Te, we can use the

transition relations Te instead of T for state-space generation, as long as each Te is applied
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often enough. Alternatively, we can define transition relations indexed by state variables,

Txk
=

⋃

top(Te)=xk
Te, for L ≥ k ≥ 1, which leave variable xl unchanged if xl ≻ xk. Since

X and Z are encoded as MDDs, the MDD encoding Img(X ,Z) is given by the relational

product of these MDDs.

In the pseudocode, we use the type mdd for an MDD node. Two classes of symbolic

state-space generation algorithms exist: breadth-first [54,58] and saturation [22,28]. Fig. 4.4

shows the breadth-first algorithm and two variations based on chaining [56]: breadth-first

with chaining by events or with chaining by variables. For simplicity, the pseudocode assume

ρ
Q, i.e., no edge skips variables. The advantage of chaining is that more states can be found

by each global iteration. When chaining by events, the number of iterations required to

reach the fixpoint is affected by the order in which events are applied; experimentally,

applying them in increasing order of top tends to work well [22].

Fig. 4.5 shows two saturation algorithms, by variables and by events. These differs

from breadth-first generation in that they recursively compute a fixpoint at each node, in

a low-to-high order of the associated variables. In the pseudocode, Breadth-first uses the

“8b” variant of RelProd , saturation the “8s” one. The two variants differ in that, with

“8b”, RelProd(s, r) computes only a one-step image of the set encoded by s and the relation

encoded by r, while, with “8s”, it returns the fixpoint of the computed image w.r.t. Txh
for

s.var � xh.

Experimentally, saturation performs far better than breadth-first methods and

saturation by variables is preferable to saturation by events. (i.e., in the best cases it is

much better and in the worst case it is only slightly worse).

57



mdd GenerateByBFS ()

1 s← enc(Sinit);

2 repeat s← AddStates(s);

3 until s does not change;

4 return s;

mdd AddStates(mdd s)

1 r ← enc(T ); • standard breadth-first

2 return Or(s,RelProd(s, r));

1’ for k = 1 to L do • chain by events

2’ foreach e ∈ E s.t. top(Te) = xk do

3’ r ← enc(Te);

4’ s← Or(s,RelProd(s, r));

5’ return s;

1” for k = 1 to L do • chain by variables

2” r ← enc(Txk
);

3” s← Or(s,RelProd(s, r));

4” return s;

mdd RelProd(mdd s,mdd r) • assume s.var = xk

1 if s = 1 and r = 1 then return 1;

2 if CacheHit(RPR, s, r, t) then return t;

3 t← NewNode(s.var);

4 foreach i ∈ Xk s.t. s[i], r[i] 6= 0 do • assume r[i].var = xl

5 foreach i′ ∈ Xl s.t. r[i][i′] 6= 0 do

6 u← RelProd(s[i], r[i][i′]);

7 t[i′]← Or(t[i′], u);

8b t← UTInsert(t);

8s t← Saturate(UTInsert(t));

9 CacheAdd(RPR, s, r, t);

10 return t;

Figure 4.4: State-space generation: breadth-first.
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mdd GenerateBySaturation()

1 mdd s← enc(Sinit);

2 return Saturate(s);

mdd Saturate(mdd s) • assume s.var = xk

1 if CacheHit(SAT , s, t) then return t;

2 t← NewNode(s.var);

3 foreach i ∈ Xk s.t. s[i] 6= 0 do

4 t[i]← Saturate(s[i]); • saturate below

5 t← UTInsert(DoFixPoint(t));

6 CacheAdd(SAT , s, t);

7 return t;

mdd DoFixPoint(mdd t) • assume t.var = xk

1 r ← enc(Tt.var); • by variables

2 repeat

3 foreach i ∈ Xk s.t. t[i] 6= 0 and r[i] 6= 0 do • assume r[i].var = xl

4 foreach i′ ∈ Xl s.t. r[i][i′] 6= 0 do

5 u← RelProd(t[i], r[i][i′])); • use 8s

6 t[i′]← Or(t[i′], u);

7 until t does not change;

1’ repeat • by events

2’ foreach e ∈ E s.t. top(Te) = t.var

3’ mdd r ← enc(Te);

4’ foreach i ∈ Xk do s.t. t[i] 6= 0 and r[i] 6= 0 • assume r[i].var = xl

5’ foreach i′ ∈ Xl s.t. r[i][i′] 6= 0

6’ u← RelProd(t[i], r[i][i′])); • use 8s

7’ t[i′]← Or(t[i′], u);

8’ until t does not change;

Figure 4.5: State-space generation: saturation.
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4.2 On-the-fly discovery of the MDD domain

We now review symbolic on-the-fly state-space generation (where the sets Xk are

not a priori known) and present an optimized way to update enc(Te).

4.2.1 Extensible state variable domains

When T or each Te is known a priori, we can compute S with a simple breadth-first

or saturation algorithm. However, the bounds on the state variables are often unknown.

Then, a state variable can be considered to have an extensible domain, which grows during

the generation of S. In other words, if we do not know the actual bounds on the state

variables, we can generate Te on-the-fly alongside S. When using decision diagrams, this

means adding boolean variables (for BDDs) or increasing the set Xk (for MDDs), as new

values for a state variable xk are discovered. The key difference from the algorithms of

Fig. 4.4 and Fig. 4.5 is that the transition relations must be updated before calling RelProd ,

(AddStates in Lines 2, 5’, 4” or DoFixPoint in Lines 6, 7’).

[28,51] proposed the first on-the-fly saturation algorithms with transition relations

encoded by decision diagrams. Fig. 4.6 summarizes their approach to update transition

relations: when a local state index is confirmed, i.e., a new value i for an unprimed state

variable xk is found, each sub-relation Te,c (group in [51], conjunct in [28]) with xk ∈ spt(Te,c)

is updated to include the required new state-to-state transitions. This is done by first

generating a sub-relation T xk=i
e,c encoding these new pairs, then integrating it into Te,c.

Finally, enc(Te) is obtained by intersection of the sub-relations enc(Te,c) of e, while each

enc(Txl
) and enc(T ) are obtained through unions. Each enc(Te,c) will be the least updating
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unit; it cannot be further broken. This approach is applicable to both breadth-first and

saturation symbolic on-the-fly state-space generation algorithms.

[51] encodes transition relations with identity-reduced matrix diagrams, similar

to MDDs subject to ρ
FI and requires the support sets of sub-relations from the same Te

to be disjoint. [28], on which our work is based, allows overlapping support sets for the

sub-relations from the same Te, thus a finer partitioning of the transition relation and a

more efficient state-space generation, using ρ
F when encoding sub-relations and ρ

FI when

encoding each Te.

4.2.2 An improved implementation

We have seen in Sec. 4.1.2 that ρ
F are well suited for sub-relations and ρ

FI for

each Te, as these rules produce compact MDDs, respectively [28]. However, two problems

arise with these choices. First, the semantic of a skipped variable in an MDD subject to

ρ
F changes when its domain grows, so we must be careful when updating the sub-relations

enc(Te,c). Second, the change from ρ
F to ρ

FI when building transition relations from

sub-relations requires extra handling, refer to the Translate operation in Sec. 3.2.2.

To illustrate the first problem, consider the example of Fig. 4.3, modified so that

Z2 ≡ [x′
2 = x1 − 2] applies only if x2 ≤ 2. When X2 = {0, 1, 2}, q correctly encodes Z2

subject to ρ
F . However, if we later add 3 to X2, q now (incorrectly) also encodes transitions

of the form (i3, 3, 2)→ (i3, 0, i1), for i3 ∈ X3 and i1 ∈ X1. For the second problem, Fig. 4.7

assumes a transition relation Z with one sub-relation Z1, encoded by node p1 subject to

ρ
F , in addition to Zeq = [x′

1 = x1]. After intersecting all sub-relations (there is only
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one), we should obtain p2 = enc(Z) subject to ρ
FI . No intersection is performed, but a

transformation from p1 to p2 is needed since x′
2 changes reduction rule, from ρ(x′

2) = F to

ρ(x′
2) = I.

We solve these problem through two alternate reduction approaches. With ρ
QF ,

ρ(x) = Q if x ∈ spt(Zc), and ρ(x) = F otherwise. With ρ
QFI , for L ≥ k ≥ 1, ρ(x′

k) = I,

while ρ(xk) = Q if xk ∈ spt(Z), and ρ(xk) = F otherwise. We now give an optimized

implementation using an MDD subject to ρ
QF to encode each sub-relation Te,c. The in-

tersection algorithm of Fig. 4.8, applied to all sub-relations enc(Te,c), produces an MDD

r, which, subject to ρ
QFI is enc(Te). It is a specialized and optimized Apply algorithm

(see Sec. 3.2.3) for a certain ρ. Although MDDs subject to ρ
QF and ρ

QFI might not be as

compact as their equivalence subject to ρ
F and ρ

FI , respectively, we gain efficiency. With

the new reductions, in Fig. 4.7, p2 = enc(Z1) subject to ρ
QF , while p2 = enc(Z) subject to

ρ
QFI , no transformation is needed. Also, node q in Fig. 4.3, when changed to ρ

QF , is q2 in

Fig. 4.7, still encoding the correct set after X2 is enlarged.

4.3 MDDs with infinite domain to encode transition rela-

tions

Consider a call UpdateVariableTR(xl) (Fig. 4.6) after a variable domain Xk has

grown, with xl � xk. It seems redundant to perform the union of all enc(Te) with top(Te) =

xl to recompute enc(Txl
), when only those enc(Te) containing xk in their domain might

change. Ideally, we could simply add the new enc(Te), which have changed due growing Xk,
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to the original enc(Txl
). However, the otherwise very effective ρ

FI(ρQFI) reduction used

for Te and Txl
makes this problematic, as Fig. 4.9 illustrates. Assume that X2 = {0, 1, 2},

X1 = {0, 1}, and that r1 = enc(Tx2
) is obtained as the union of p and q. If a new value

2 is added to X1 but p and q do not change due to this, one would imagine that r1 still

correctly encodes Tx2
, thus nothing needs to be done. In fact, r2, not r1, now correctly

encodes Tx2
, while r1 lacks some of the required state-to-state transitions. Using r1 instead

of r2 could then miss reachable states during image computation. Worse yet, the cache

for union operations needs to be cleared, further reducing efficiency, since the union of two

MDDs becomes incorrect when a domain Xk changes and xk is in the support of one but

not the other.

We both solve this correctness issue and improve efficiency by letting the domain

of variables to be N instead of a finite set, for MDDs encoding transition relations, which

is allowed in the new generally-reduced TDDs but not allowed in the traditional MDDs.

This will not affect the domain of MDDs encoding set of states, so we have an

MDD variable, for a different purpose, have different domains. We still use Xk to refer to

the domain of xk when the MDDs are used to encode set of states, so is still finite. For

MDDs encoding transition relations, all variable domain are then N by default.

Recalling Def. 3.1.1, although the domain is N, a nonterminal node p can only

have a finite number of edges not pointing to p[∗]. So, there is a value pf ∈ N such that, for

i > pf , all edges p[i] point to the same node p[∗], while p[pf ] 6= p[∗]. So we can still have a

finite encoding, since we only need to store the pf + 2 edges p[0], p[1], ..., p[pf ], p[∗].

This solves the problem of Fig. 4.9: the union of p and q is now r3 and correctly
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encodes Tx2
even when X1 changes. Fig. 4.10 shows the version of the union operation for

two MDDs subject to ρ
QFI . Again, it is a specified and optimized Apply operation for

a certain ρ, and details the handling of the [∗] part. This is the only operation that can

create a node r with r[∗] 6= 0 in our algorithm. In the pseudocode, the recursive union is

guaranteed to be invoked on nodes p and q only when p.var and q.var are quasi-reduced

unprimed variables:

if p.var ≻ q.var then r.var = p.var, rf = pf , r[∗] = Or(p[∗], q);

if p.var = q.var then r.var = p.var, rf = max{pf , qf}, r[∗] = Or(p[∗], q[∗]).

The intersection of Fig. 4.8, in other word, need not to deal with the [∗] part, since p[∗] = 0

in any node p subject to ρ
QF . Then, the update of enc(Txl

) and enc(T ) can be done more

efficiently, as shown in Fig. 4.11.

4.4 Experimental results

We implemented the proposed approach in SmArT [17] and report on experiments

run on an Intel Xeon 3.0Ghz workstation with 16GB RAM under SuSE Linux 9.1. Each

experiment set (run on a variety of models, referenced in Tab. 4.1) is denoted by a combi-

nation X-Y, corresponding to state-space generation algorithm X and reduction Y. For the

reduction choices, we use:

• FR: sub-relations and transition relations encoded by traditional fully-reduced MDDs

• QFI: sub-relations encoded by MDDs subject to ρ
QF , transition relations encoded

by MDDs subject to ρ
QFI , both with finite variable domains, (Sec. 4.2.2); on-the-fly

updates of Fig. 4.6.
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• EQFI: sub-relations encoded by MDDs subject to ρ
QF , transition relations encoded by

MDDs subject to ρ
QFI , both with variable domain N; on-the-fly updates of Fig. 4.11.

For the state-space algorithm choices, we use:

• B: Standard breadth-first. B-FR is close to NuSMV’s [29] approach, which uses

CUDD’s [59] fully-reduced BDDs.

• CV: breadth-first with chaining by variables.

• CE: breadth-first with chaining by events (no union of transition relations).

• V: saturation by variables. V-QFI is the improvement of [28] in Sec. 4.2.2.

• E: saturation by events (as for CE, no union of transition relations is needed).

Tab. 4.1 shows runtime, peak memory consumption and number of unions invoked

in procedure UpdateVariableTR and UpdateOverallTR for state-space generation, on a set

of models. From it, we can make the following observations:

• For the same algorithm, QFI and EQFI is much better than FR, in both time and

memory.

• For the same algorithm, EQFI is 20− 80% faster than QFI for most models, while is

it is at worst 2% slower in the remaining models. QFI and EQFI have similar memory

consumption.

• The improvement due to utilizing infinite domain ability of new generally-reduced

MDDs is more substantial for saturation than for breadth-first.
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BREADTH-FIRST GENERATION SATURATION

B-FR B-QFI B-EQFI CV-FR CV-QFI CV-EQFI CE-QFI V-FR V-QFI V-EQFI E-QFI

Model N |S| sec MB sec MB Or sec MB Or sec MB sec MB Or sec MB Or sec MB sec MB sec MB Or sec MB Or sec MB

bitshift 6 2.62 ·105 0.02 0.44 0.01 0.26 173 0.01 0.26 40 0.01 0.18 0.01 0.16 21 0.00 0.16 20 0.01 0.16 0.01 0.10 0.01 0.08 22 0.01 0.08 20 0.01 0.08

[28] 256 4.63 ·1077 4.95 140 3.23 94.6 2573 2.84 94.6 520 0.75 33.1 0.72 30.6 261 0.59 30.6 260 0.58 30.6 0.47 17.8 0.28 13.6 262 0.28 13.6 260 0.28 13.6

bittog– 100 1.26 ·1030 2.40 10.0 0.13 4.49 20199 0.09 4.50 400 2.23 67.9 1.44 67.8 299 1.40 67.8 200 2.51 117 0.05 0.15 0.02 0.10 299 0.02 0.10 200 0.03 0.09

gle [39] 200 1.60 ·1060 21.4 39.9 0.60 17.8 80399 0.43 17.8 800 30.0 508 22.5 508 599 22.4 508 400 41.5 717 0.15 0.30 0.06 0.19 599 0.04 0.19 400 0.04 0.18

bqueue 50 4.57 ·109 13.3 68.9 2.39 36.5 2167 2.38 36.5 813 10.0 46.9 1.41 35.1 602 1.42 35.1 551 16.7 316 - - 3.20 11.2 854 1.43 11.2 702 8.29 50.1

[55] 100 2.70 ·1011 118 178 20.3 91.5 4333 20.3 91.0 1620 95.9 187 15.1 145 1202 15.1 145 1101 - - - - 40.1 65.9 1704 18.2 66.0 1402 171 160

bubsort 11 3.99 ·107 16.5 38.2 15.1 35.9 650 15.1 35.9 180 1.48 33.1 1.08 25.6 65 1.08 25.6 65 1.09 25.6 - - 1.27 7.21 210 0.62 7.21 210 0.63 7.21

[28] 15 1.30 ·1012 - - - - - - - - 108 188 113 259 119 113 259 119 113 259 - - 61.4 201 210 35.0 201 210 35.1 201

dme 50 6.30 ·1048 - - - - - - - - - - - - - - - - - - 362 49.4 1.36 24.5 3314 0.94 25.2 3103 1.46 40.6

[29] 80 8.59 ·1076 - - - - - - - - - - - - - - - - - - - - 2.38 41.2 5294 1.70 42.3 4963 2.60 67.2

fms 10 2.50 ·109 15.6 165 9.37 127 2087 9.33 127 797 4.24 129 3.44 115 343 3.42 115 292 3.17 112 47.8 12.6 0.36 6.29 442 0.26 6.30 374 0.26 5.63

[50] 20 6.02 ·1012 - - - - - - - - 121 395 94.6 359 678 94.7 359 582 - - - - 5.31 62.1 872 4.19 62.1 744 4.05 55.1

ftoler– 10 2.95 ·1026 3.35 63.9 1.25 46.2 6680 1.24 46.5 3780 0.65 28.6 0.58 27.6 950 0.56 27.6 920 3.75 140 3.22 6.22 0.18 3.44 2370 0.14 3.63 2270 0.25 5.50

ant [28] 30 6.47 ·1078 - - - - - - - - 20.5 726 19.8 727 2850 19.8 726 2760 - - 246 83.1 3.89 65.8 17540 2.84 67.4 17220 6.65 113

kanban 10 1.00 ·109 1.61 31.3 0.49 16.5 1242 0.50 16.5 404 0.48 9.41 0.15 6.12 296 0.15 6.12 291 0.23 10.1 1.77 3.36 0.07 1.82 370 0.06 1.83 332 0.08 2.65

[50] 50 1.04 ·1016 - - - - - - - - 89.3 1087 33.9 704 1496 33.8 704 1471 48.6 1040 - - 13.8 252 1890 13.3 252 1692 32.5 266

knight 5 6.76 ·107 - - - - - - - - - - - - - - - - - - 12.8 28.3 1.14 25.9 450 0.72 25.8 192 0.62 20.3

[34] 6 1.63 ·1011 - - - - - - - - - - - - - - - - - - - - 313 64.5 727 259 64.6 320 2.72 75.8

intshift 32 9.35 ·1049 - - - - - - - - - - - - - - - - - - 14.2 22.0 1.20 19.0 100 1.19 18.9 66 1.26 20.3

[28] 45 2.23 ·1076 - - - - - - - - - - - - - - - - - - 76.9 40.3 4.76 25.7 139 4.76 25.7 92 4.98 28.3

leader 8 3.04 ·108 97.9 73.3 82.1 58.1 3360 81.9 58.1 1548 80.1 315 68.5 262 2939 68.4 262 1425 - - - - 3.02 38.7 3439 2.40 38.8 1354 13.1 50.6

[28] 10 5.02 ·1010 - - - - - - - - - - - - - - - - - - - - 45.2 58.8 5516 37.7 58.4 2173 461 86.5

phils 50 2.22 ·1031 3.79 16.8 0.19 5.40 5600 0.19 5.41 648 0.19 2.63 0.11 2.26 402 0.10 2.27 304 0.17 6.69 0.96 0.89 0.09 0.42 552 0.08 0.43 449 0.08 0.32

[50] 100 4.96 ·1062 29.6 65.9 0.78 20.9 21200 0.73 28.2 1298 0.66 9.09 0.28 8.34 802 0.27 8.36 604 0.68 26.7 3.80 1.80 0.17 0.83 1102 0.16 0.85 899 0.16 0.65

polling 15 3.35 ·1019 38.4 28.6 0.44 7.04 4244 0.45 7.05 975 1.48 7.17 0.26 4.28 525 0.26 4.29 509 0.27 3.80 5.74 1.25 0.21 0.86 384 0.19 0.86 341 0.24 0.83

[50] 30 3.25 ·1046 - - 4.99 71.3 30314 4.91 126 3750 38.6 65.1 1.66 42.9 1950 1.65 43.0 1919 1.83 37.9 196 6.26 0.89 4.65 1224 0.86 4.65 1136 0.88 4.62

queen 12 8.56 ·105 2.39 83.2 2.30 82.5 356 2.31 82.5 145 3.74 128 3.71 127 266 3.72 127 133 15.9 553 85.1 65.6 2.98 65.2 266 1.79 65.2 133 2.16 65.2

[34] 13 4.67 ·106 12.2 381 11.9 378 418 11.9 378 170 19.3 595 19.1 595 314 19.0 595 157 - - 536 330 16.7 330 314 10.9 330 157 12.9 330

rips 5 2.97 ·1013 - - - - - - - - - - - - - - - - - - - - 296 810 2103 290 807 949 - -

[57] 10 8.87 ·1014 - - - - - - - - - - - - - - - - - - - - 414 904 2103 404 902 949 - -

robin 100 2.85 ·1032 233 517 55.7 333 97540 55.4 331 1699 78.0 439 15.2 520 21494 15.1 520 700 39.3 1004 581 217 3.50 51.3 22088 2.00 51.2 799 2.99 77.6

[28] 200 7.23 ·1062 - - - - - - - - - - - - - - - - - - - - 25.2 331 84188 13.5 331 1599 25.2 593

slot 50 1.72 ·1052 - - - - - - - - - - - - - - - - - - - - 1.09 6.00 1256 0.43 6.02 600 1.02 12.5

[28] 70 3.12 ·1073 - - - - - - - - - - - - - - - - - - - - 2.64 14.1 1756 1.00 14.1 840 2.54 31.3

swap- 20 1.31 ·1011 1.89 23.4 0.54 15.1 15716 0.50 15.1 232 0.26 14.4 0.21 13.7 96 0.21 13.7 96 0.21 13.7 0.21 0.22 0.02 0.17 96 0.01 0.17 96 0.01 0.17

per [28] 100 8.96 ·1058 - - - - - - - - 312 443 300 448 496 297 448 496 300 448 25.9 3.50 0.27 2.94 496 0.11 2.94 496 0.11 2.94

Table 4.1: Results (“sec”: time in sec; “MB”: memory in MB; “Or”: number of unions; “–”: runtime > 600sec).
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• CV is preferable to CE, and V is preferable to E. Clearly, it is best to merge events

according to their top state variable, even at the cost of additional unions. This

further stresses the benefits of the new generally-reduced MDDs with infinite domain.

• Saturation (V, E) with QFI or EQFI performs much better than breadth-first (B, CV,

CE) with any reduction.

We compare the number of unions for transition relations with or without adoption

of infinite domain, specifically, for algorithms B–QFI vs. B–EQFI, CV-QFI vs. CV–EQFI

and V–QFI vs. V–EQFI, which accounts for part of the improvements we achieve. For all

experiments, thanks to the updating approach of Fig. 4.11, the number of unions decreases

when using infinite domains for transition relations, and this decrease is positively correlated

to the time improvement, especially for saturation-based algorithms. When this decrease

is large (≥ 50%), e.g., B with bitshift and bittoggle or V with knight, leader, queen, robin,

or slot, we achieve substantial time improvement (20 − 80%) from fewer unions; when the

decrease is relatively small, we achieve a minor or no improvement (V with bitshift, kanban,

phils, polling). Sometimes, even if the decrease is small or there is no decrease in the

number of unions, we still achieve a sharp improvement (e.g., V with bubsort, bqueue, dme,

fms, ftolerant, swapper), because new generally-reduced MDDs with infinite domain do

not require to invalidate the caches, making unions more efficient. intshift and rips show a

sharp decrease in the number of unions under V, but do not improve runtime much, because

unions are a small part of state-space generation for these models.

We can then experimentally surmise that EQFI usually improves the runtime, for

some benchmarks greatly so, while never degrades it in appreciable ways, and does not
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consume more memory, so it is preferable to QFI.

4.5 Conclusion

We presented how we utilize the new class of generally-reduced decision diagrams,

especially its ability to allow variable domain to be N, which is a perfect match for symbolic

state-space generation on-the-fly, i.e., when the bounds of the state variables are not known

a priori. Through a set of experiments, we showed how its use benefits both breadth-first

and saturation-based algorithms. In the future, we intend to explore the application of this

infinite domain to other classes of symbolic algorithms, beyond state-space generation.
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AddValue(variable xk, index i)

1 Xk ← Xk ∪ {i};

2 foreach Te,c s.t. xk ∈ spt(Te,c) do

3 build T xk=i
e,c by querying the model;

4 p← enc(T xk=i
e,c );

5 enc(Te,c)← Or(enc(Te,c), p);

UpdateEventTR(event e)

1 if ∃xk ∈ spt(Te),Xk changed then

2 mdd r ← 1;

3 foreach Te,c do

4 r ← And(r, enc(Te,c));

5 enc(Te)← r;

UpdateVariableTR(variable xl)

1 if ∃xk ∈ spt(Txl
),Xk changed then

2 mdd r ← 0;

3 foreach e ∈ E s.t. top(Te) = xl do

4 r ← Or(r, enc(Te)).

5 enc(Txl
)← r;

UpdateOverallTR()

1 mdd r ← 0;

2 for k = 1 to L do

3 r ← Or(r, enc(Txk
));

4 enc(T )← r;

Figure 4.6: Updating the transition relations.
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Figure 4.7: MDDs subject to ρ
QF and ρ

QFI .

mdd And(mdd p,mdd q) • assume p.var = xk

1 if p = 0 or q = 0 then return 0; • trivial cases

2 if p = 1 or p = q then return q

3 if q = 1 then return p;

4 if q.var ≻ p.var then Swap(p, q); • commutativity

5 if CacheHit(AND , p, q, r) then return r; • check cache

6 r ← NewNode(p.var);

7 if p.var ≻ q.var then

8 foreach i ∈ Xk do r[i]← And(p[i], q);

9 else • p.var = q.var

10 foreach i ∈ Xk do r[i]← And(p[i], q[i]);

11 r ← UTInsert(r); • insert into unique-table

12 CacheAdd(AND , p, q, r); • add to cache

13 return r;

Figure 4.8: Intersection of two MDDs subject to ρ
QF .
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mdd Or(mdd p,mdd q)

1 if p = 0 or p = q then return q;

2 if q = 0 then return p; • trivial cases

3 if q.var ≻ p.var then Swap(p, q); • commutativity

4 if CacheHit(OR, p, q, r) then return r;

5 r ← NewNode(p.var);

6 if p.var ≻ q.var then

7 r[∗]← Or(r[∗], q);

8 foreach i ∈ {0, 1, ..., pf}

9 if ρ(p[i].var) = I then

10 r[i]← Copy(p[i]); r[i][i]← Or(p[i][i], q); r[i]← UTInsert(r[i]);

11 else r[i]← Or(p[i], q[i]);

12 else • p.var = q.var

13 rf ← max{pf , qf};

14 foreach i ∈ {0, 1, · · · , rf} do

15 if ρ(p[i].var) = ρ(q[i].var) = I then

16 r[i]← NewNode(p[i].var)

17 foreach j ∈ {0, 1, ...,max(p[i]f , q[i]f )} do

18 r[i][j]← Or(p[i][j], q[i][j]);

19 r[i]← UTInsert(r[i]);

20 else if ρ(p[i].var) = I and ρ(q[i].var) = Q then

21 r[i]← Copy(p[i]) r[i][i]← Or(r[i][i], q); r[i]← UTInsert(r[i]);

22 else if ρ(p[i].var) = Q and ρ(q[i].var) = I then

23 r[i]← Copy(q[i]); r[i][i]← Or(r[i][i], p); r[i]← UTInsert(r[i]);

24 else • ρ(p[i].var) = ρ(q[i].var) = Q

25 r[i]← Or(p[i], q[i]);

26 r[∗]← Or(p[∗], q[∗]);

27 rf ← max{i : r[i] 6= r[∗]}; • reset rf according to definition

28 r ← UTInsert(r);

29 CacheAdd(OR, p, q, r);

30 return r;

Figure 4.10: Union of two MDDs subject to ρ
QFI .
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UpdateVariableTR(variable xl)

1 if ∃xk ∈ spt(Txl
),Xk changed then

2 foreach e ∈ E s.t. top(Te) = xl do

3 if enc(Te) changed then

4 enc(Txl
)← Or(enc(Txl

), enc(Te));

UpdateOverallTR()

1 for k = 1 to L do

2 if enc(Txk
) changed then

3 enc(T )← Or(enc(T ), enc(Txk
));

Figure 4.11: Updating the transition relations using infinite variable domain
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Chapter 5

Symbolic Reachability Analysis of

Timed Petri Nets

Petri nets are very effective at modeling distributed systems, and have been exten-

sively researched [53]. For systems where timing is an integral part of the dynamics and can

affect the logical evolution, various time-related extension of Petri nets have been proposed.

Of particular relevance to our present work are the so-called time Petri nets [47] and timed

Petri nets [64], where the durations of events are either known to lie in a given interval, or

to be constants.

We consider a class of timed Petri nets where the durations of the transition firing

times are integer-valued, but can be chosen from an arbitrary finite set of not necessarily

contiguous values. For this class, we explore two fundamental reachability problems: timed

reachability (find the set of markings where the Petri net can be at a given finite point in

time) and earliest reachability (find the first instant of time when the Petri net can enter
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each reachable marking).

These problems can be tackled in principle with explicit methods that explore

states one by one, where a “state” describes both the marking of the Petri net and the re-

maining firing time of each enabled transition. However, even more than for untimed nets,

the size of the state space is a formidable obstacle in practice. Following the trend in logi-

cal reachability and model checking, where efficient symbolic algorithms based on decision

diagrams have been widely adopted [22,54], we develop novel symbolic algorithms based on

both ordinary and edge-valued decision diagrams, and demonstrate their effectiveness on a

suite of models.

This chapter is organized as follows. In Sec. 5.1, we define the class of timed

Petri net we adopt in our work. Sec. 5.2 analyzes the timed reachability problem and

propose a solution based on generally-reduced decision diagrams. Sec. 5.3 solves the earliest

reachability problem. Sec. 5.4 discusses the decidability, complexity and related research.

Sec. 5.5 presents experimental results and Sec. 5.6 concludes this chapter.

5.1 Integer Timed Petri Nets

Several extensions of standard Petri nets [53] have been proposed to explicitly

represent a notion of time. Usually, a firing time is associated with each transition of

the net. In time Petri nets [47], the firing times lie in a given interval [tmin, tmax], where

0 ≤ tmin <∞ and tmin ≤ tmax ≤ ∞. If tmin = tmax for all transitions, i.e., all firing times

are constants, as in timed Petri nets [64], nondeterminism can only arise from the resolution

of conflicts among transitions.
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Symbol Definition or Meaning

F firing times for each transition

τ remaining firing time

θ elapsed time

〈µ,τ@θ〉 the ITPN is in tangible state 〈µ,τ〉 at time θ

〈µ,τ@րθ〉 the ITPN is in vanishing state 〈µ,τ〉 at time θ

E(µ) the set of marking-enabled transitions in µ

E(〈µ,τ〉) the set of state-enabled transitions in µ

Ef maximally serializable subset of state-enabled transitions for a state

τb mint∈T ,〈µ,τ〉∈Sθ
{τ(t)}, the breakpoint at time θ

Figure 5.1: New symbols and notations in this chapter.

The class of nets we consider is a restriction of time and timed Petri nets, on the

one hand, since we require that all firings occur only at integer times, and an extension, on

the other, as we allow the firing time to be nondeterministically chosen among a finite set of

non-necessarily contiguous values. Such nets have been shown to give rise to discrete-time

Markov chains if choices are resolved probabilistically [15]. Formally, integer timed Petri

nets (ITPNs) are specified by a tuple (P, E ,A,S0,F , w) where:

• P is a finite, nonempty set of places.

• E is a finite, nonempty set of transitions, with P ∪ E 6= ∅ and P ∩ E = ∅.

• A ⊆ P ×E ∪ E ×P is a set of directed arcs which connect places to transitions (input
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arcs) and transitions to places (output arcs).

• w : A → N
+ specifies a constant positive integer cardinality for each arc.

• F : E → 2N
+

specifies a finite set of integer firing times for each transition.

• M0 ⊂ N
P specifies a finite set of initial markings.

As an extension of untimed net (Sec. 2.2), we can define input flow matrix, D−, the output

flow matrix D+ and the incidence matrix D in the same way. If we treat the marking

µ ∈ N
P of the net as a (column) vector, we can then say that a transition t ∈ E is marking-

enabled in µ if µ ≥ D−[·, t]. Let E(µ) ⊆ E be the set of marking-enabled transitions in µ.

The firing of transition t ∈ E(µ) in marking µ changes the marking to µ′ = µ + D[·, t], we

write this as µ [t]⇒ µ′.

The state of an ITPN is a pair 〈µ,τ〉 ∈ N
P×(N∪{∞})E , where µ is the marking and

τ is the remaining firing times, which, for each transition t ∈ E , must satisfy τ [t] ≤ maxF(t)

if t ∈ E(µ), and τ [t] =∞ otherwise. We say that a transition t ∈ E is state-enabled in 〈µ,τ〉

if it is marking-enabled in µ and its firing time has elapsed, τ [t] = 0. Let E(〈µ,τ〉) ⊆ E(µ)

be the set of state-enabled transitions in 〈µ,τ〉. If the ITPN is in 〈µ,τ〉 at time θ, it evolves

as follows:

• If E(µ) = ∅, thus τ = {∞}E , the marking µ, as well as the state 〈µ,τ〉, is dead. The

net will remain forever in that state.

• If E(µ) 6= ∅ but E(〈µ,τ〉) = ∅, there are marking-enabled transitions but none of

their firing times has elapsed, the state is tangible. The net remains in marking µ
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{1, 2}

{1, 2}

{1, 2}

Figure 5.2: Running example: the integer timed Petri net.

for τ∗ = mint∈E{τ [t]} > 0 time units, while the remaining firing times elapse at unit

rate. At time θ + τ∗, the state is 〈µ,τ − τ∗〉, where the subtraction of scalar τ∗ from

vector τ is interpreted elementwise, i.e., (τ −τ∗)[t] = τ [t]−τ∗ for t ∈ E . We write

〈µ,τ〉 [τ1]⇒ 〈µ,τ − τ1〉, for 0≤τ1≤τ∗.

• If E(〈µ,τ〉) 6= ∅, there are marking-enabled transitions with elapsed firing times, the

state is vanishing. The state then immediately changes by firing a nondeterministi-

cally chosen maximally serializable set Ef ⊆ E(〈µ,τ〉) as a single operation, we write

〈µ,τ〉 [Ef ]⇒ 〈µ′,τ ′〉, where the new marking is µ′ = µ+
∑

t∈Ef
D[·, t], while the remain-

ing firing times τ ′ are chosen so that

– τ ′[t] =∞ if t 6∈ E(µ′), i.e., if t is disabled in the new marking,

– τ ′[t]∈F(t) if t∈ (Ef ∩ E(µ
′)) ∪ (E(µ′)\E(µ)), i.e., if t is newly (re)enabled in the

new marking, a firing time is nondeterministically chosen for it.

– τ ′[t] = τ [t] otherwise, i.e., if the firing time of t continues to elapse undisturbed

in the new marking, it remains unchanged.

A set of n transitions Ef ⊆E(〈µ,τ〉) is maximally serializable if it is fireable, i.e., its
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elements can be ordered as (t1, ..., tn) s.t. µ [t1]⇒ µ1 [t2]⇒ · · · [tn]⇒ µn, and maximal,

i.e., any other transition that was state-enabled in 〈µ,τ〉 becomes marking disabled in

µn, i.e, (E(〈µ,τ〉)\Ef ) ∩ E(µn) = ∅.

To make explicit the time evolution of the state, we write 〈µ,τ@րθ〉 to signify

that the ITPN is in vanishing state 〈µ,τ〉 at time θ, just before the firing of a maximally

serializable set Ef of transitions, and 〈µ,τ@θ〉 to signify that the ITPN is in tangible state

〈µ,τ〉 at time θ. Thus, a possible sequence of “snapshots” for the evolution of the ITPN

from tangible (non-dead) state 〈µ,τ〉 at time θ is

〈µ,τ@θ〉 [τ1]⇒ 〈µ,τ − τ1@θ + τ1〉 [τ2]⇒ 〈µ,τ − τ∗@րθ + τ∗〉 [Ef ]⇒ 〈µ′,τ ′@θ + τ∗〉,

where 〈µ′,τ ′〉 is tangible and τ1 + τ2 = τ∗ = mint∈E{τ [t]}. Then, we write 〈µ0,τ0@θ〉

[∗]⇒ 〈µn,τn@θ′〉 iff, from tangible state 〈µ0,τ0〉 at time θ, the ITPN can reach tangible

state 〈µn,τn〉 at time θ′ = θ+
∑n

i=1 τi∗ visiting vanishing states 〈µi,τi − τi∗〉 and tangible

states 〈µi,τi〉, where τi∗ = mint∈E{τi[t]}, and Ei is a maximally serializable set of transitions

in 〈µi,τi − τi∗〉 whose firing causes the state change 〈µi,τi − τi∗〉 [Ei]⇒ 〈µi+1,τi+1〉, for i =

0, ..., n− 1.

We stress that the maximal serializability semantics we have adopted is simi-

lar to but differs from the maximal step semantics of [13], which further requires µ ≥

∑

t∈Ef
D−[·, t], so that any permutation of all transitions in Ef is fireable. It is also similar

to, but different from, the maximal non-blocking semantics of [63], which simply requires

that µ+
∑

t∈Ef
D[·, t] ≥ 0, i.e., that the cumulative effect on µ of all firings in Ef be such that

the result is a legal marking. Our semantic is suitable to model concurrent systems which

require serializability, e.g., transaction processing systems [9]. Maximal and interleaving
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semantic differ in a fundamental way: in the former, the firing time of a transition that is

disabled for a zero amount of time (if we sequentialize the transitions in Ef ) is not reset.

For simplicity, we defined ITPNs with an initial set of markings M0 but their

analysis requires an initial set of states S0, which we can then define as S0 = {〈µ,τ〉 :

µ ∈ M0 and τ [t] = ∞ if t 6∈ E(µ′) , τ [t] ∈ F(t) otherwise}. Indeed, we could even allow

an arbitrary initial setting for the remaining firing times associated to any initial marking.

The techniques we present would still be applicable, as long as the set of initial states S0 is

finite.

The upper left part of Figure 5.2 shows our ITPN running example, with places

a, b, and c and transitions α, β, and γ. The set of initial markings M0 contains a single

marking, a2 (a2 = a2b0c0, empty places are omitted). The firing time of all transitions can

be either 1 or 2. So S0 = {〈a2,α1β1〉, 〈a2,α1β2〉, 〈a2,α2β1〉, 〈a2,α2β2〉}, where the notation

for the remaining firing times is analogous to the one for markings, except that we omit

disabled transitions instead of empty places.

5.2 Timed reachability

The timed reachability problem aims at finding all markings where the model can

be at a finite time θf ∈ N. Formally, we seek the set of markings

{µ′ : ∃〈µ,τ〉 ∈ S0, 〈µ,τ@0〉 [∗]⇒ 〈µ′,τ ′@θ〉, θ ≤ θf < θ + mint∈E{τ
′[t]}} .

For ITPN models, this section presents an efficient solution that uses symbolic

manipulations. We stress that, while the problem statement focuses on markings, the
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reachability algorithms must process states, since the remaining firing time information is

essential in determining the future evolution of the ITPN.

5.2.1 Untimed Petri nets

First, we recall symbolic state-space generation approaches for untimed Petri nets

under interleaving semantics. These nets correspond to ignoring the F component in the

ITPN, thus identifying the state with the marking. We can think that each transition is an

event, then apply state-space generation in Ch. 4.

The transition relation due to transition t ∈ E is Tt = {(µ, µ′) : µ [t]⇒ µ′} and

the overall transition relation is T =
⋃

t∈E Tt. The set of reachable markings M ⊆ N
P is

the minimal set satisfying M⊇M0 and M⊇ Img(M, T ), where Img(Y,Z) = {µ′ : ∃µ ∈

Y, (µ, µ′) ∈ Z} denotes the image of the set of markings Y under the binary relation Z. We

can start fromM0 and repeatedly perform image computations, breadth-first or saturation,

under T , or Tt as long as each of them is applied often enough, until reaching a fixpoint.

We use an MDD on x = (xL, ..., x1), with L = |P| to encode Y, where each

variable encodes number of tokens in a different place. In practice, it turns out that it is

more effective to reduce the number of variables by grouping multiple places together using

a heuristic guaranteed not to increase the size of the MDD [20], but we do not consider

this optimization for ease of exposition. In the approach we follow, we assume that a set of

markings Y is encoded by an MDD defined on x, with L = |P|. The transition relation Tt

is instead encoded by a 2L-variable MDD defined on (x,x′) = (xL, x′
L, ..., x1, x

′
1). As firing

transition t only affects or is affected by its input and output places, we denote with top(t)
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the maximum variable according to “≻” on which Tt depends. Once Y and Z are encoded

as MDDs, the MDD encoding Img(Y,Z) is obtained as the relational product of these two

MDDs. As in Ch. 4, we use reduction rule vector ρ
Q for Yt and ρ

QFI for T , to maintain a

compact encoding and maximize the utilization of the cache.

5.2.2 Preliminaries

We now analyze timed reachability for ITPNs. We use a global variable θ to keep

track of time. If the ITPN is in tangible state 〈µ,τ〉 at time θ = 0 and τ∗ = mint∈E{τ(t)},

the set Sθf
of tangible states in which the ITPN can be at time θf is determined as follows:

• If θf < τ∗, the ITPN will still be in the same marking at time θf .

• If θf = τ∗, the ITPN reaches vanishing state 〈µ,τ − τ∗@րτ∗〉 at time θf , then im-

mediately moves to a tangible state by firing a nondeterministically chosen Ef , i.e.,

Sθf
= {〈µ′,τ ′〉 : 〈µ,τ@0〉 [τ∗]⇒ 〈µ,τ − τ∗@րτ∗〉 [Ef ]⇒ 〈µ′,τ ′〉.

• If θf > τ∗, repeat these steps starting from each state in Sτ∗ at time θ=τ∗.

The first case is trivial, as it generates no new markings. For the second case,

we need to generate the set of tangible states 〈µ′,τ ′〉 reachable from the vanishing state

〈µ,τ − τ∗〉 by firing all possible Ef . This is a fixpoint iteration analogous to the one for state-

space generation of untimed nets, but restricted to applying each transition in E(〈µ,τ − τ∗〉)

at most once. Furthermore, unlike ordinary state-space generation, we are only interested

in collecting the tangible frontier, i.e., the states where any transition in E(〈µ,τ − τ∗〉) that

has not yet been fired is now marking-disabled. The key ideas to apply the symbolic state-
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space generation algorithms of Sec. 4.1.3, in particular saturation, are to treat a remaining

firing time of 0 as part of the enabling condition, so that only transitions in E(〈µ,τ − τ∗〉)

can be enabled, and to temporarily set the remaining firing time of any fired transitions to

∞, thus ensuring they cannot fire twice.

5.2.3 Algorithm

From the above analysis, when θ = 0, the model cannot change to a new marking

before θ = τb, where we call τb = mint∈E,〈µ,τ〉∈S0
{τ(t)} a breakpoint. At θ = τb, the model

moves to a vanishing state, and we collect the set of possible states at θ = τb immediately

before the firing, which includes those vanishing states S−τb
= {〈µ−,τ−〉 : ∃〈µ,τ〉 ∈ S0, µ

− =

µ, τ− = τ − τb}. Then, we apply a fixpoint image computation FixImg on S−τb
using a

modified version of the transition relations Tt, so that (〈µ,τ〉, 〈µ′,τ ′〉) ∈ Tt iff:

• t ∈ E(〈µ,τ〉), i.e., t is marking-enabled in µ and τ(t) = 0.

• µ [t]⇒ µ′, i.e, the firing of t in µ leads to µ′.

• τ ′(t) =∞ and τ ′(t′) = τ(t′) for t′ 6= t, which ensures that t can only fire once and its

firing does affect the remaining time of other transitions.

Consider a state 〈µ−,τ−〉 ∈ S−τb
; if it is tangible, it is unaffected by the above fix-

point image computation, since no transition is state-enabled in it, i.e., FixImg(〈µ−,τ−〉) =

{〈µ−,τ−〉}; if it is vanishing, FixImg(〈µ−,τ−〉) instead contains all states 〈µ′,τ ′〉 satisfying:

(1) there is a subset Ef ⊆ E(〈µ
−,τ−〉) such that µ− [Ef ]⇒ µ′, (2) τ ′[t] = τ−[t] if t 6∈ Ef , (3)

τ ′[t] =∞ if t ∈ Ef . Thus, FixImg(〈µ−,τ−〉) “almost” contains our desired tangible frontier,
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except for two problems. First, it also contains all intermediate vanishing states, recognized

by having at least one zero component in the remaining firing time for a marking-enabled

transition. Second, the remaining firing times of a tangible frontier state 〈µ′,τ ′〉 might be

incorrect, as some transition marking-enabled in µ− might be disabled in µ′, or vice versa;

these must be updated in a separate step.

5.2.4 Symbolic implementation

Following Sec. 5.2.1, we encode a set of states using an MDD over the L variables

(y|E|, ..., y1, x|P|, ..., x1), where yt is used to encode the remaining firing time of transition t

and xp is used to encode the number of tokens in place p. The special value ∞ is stored

in practice as the value maxF + 1, although in the pseudocode we still write ∞ for clarity.

The transition relation Tt is then encoded by a 2L-variable MDD.

Fig. 5.3 and Fig. 5.4 shows the pseudocode to solve the timed reachability problem.

Procedure TimedReach computes enc(Sθf
) from S0 by iteratively advancing to the next

breakpoint, given the MDD encoding the current set of states encoded by MDD s at time

θ. It first computes the minimal remaining time τb using procedure MinNonzeroIndex , then

subtracts it from all remaining firing times τ of the states in B(s) to obtain enc(S−τb
) using

procedure Elapse, and increases θ by the same amount. If τb is ∞, this means that the

model can only be in dead states by time θ. Next, it builds enc(S+
τb

) through a fixpoint

image computation, using procedure Saturate discussed in Ch. 4. Then, it calls procedure

Reset to reset the remaining firing times for all states in S+
τb

and, finally, it calls procedure

ElimVan to eliminate all vanishing states. The global computation ends when the (next)
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value of θ exceeds θf . At that point, B(s) encodes all the states in which the ITPN can

be at time θf ; the call GetMarkings(s) strips the remaining firing time information from s,

and returns the MDD encoding the markings in which the ITPN can be at time θf .

The pseudocode assumes that the following MDDs have been generated prior to

calling TimedReach, for t ∈ E : the L-variable MDDs senabled(t), encoding the set of states

where t is marking-enabled, the 2L-level MDD rresample(t), which changes yt = ∞ into

y′t ∈ Ft, and the 2L-level MDD rreset(t), which sets y′t =∞ regardless of the value of yt.

5.3 Earliest Reachability

The earliest reachability problem aims at finding the minimum time at which each

reachable marking of the ITPN is entered. Formally, we seek the function

ǫ : N
P → N ∪ {∞} satisfying ǫ(µ′)=min {θ : ∃〈µ,τ〉∈S0, 〈µ,τ@0〉 [∗]⇒ 〈µ′,τ ′@θ〉} ,

where the entries of τ ′ are strictly positive (possibly infinite), and ǫ(µ′) =∞ if the marking

is unreachable (thus, this also gives us the reachable markings).

This is similar to finding the shortest path in reachability graphs and can be solved

by exploring all markings and keeping track of the minimum time at which we first saw

each reachable state, by comparing the original minimum time and the new time when it

is reached. Following Sec. 5.2, we know the model can only reach a new marking at some

breakpoint θ = τb. Thus we let the model evolve as for timed reachability and update the

minimum time for each marking reached at every breakpoint. Unlike timed reachability,

however, we need to generate all reachable markings, and stop only when no new marking
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mdd TimedReach(integer θf )

1 θ ← 0; s← enc(S0);

2 repeat forever

3 τb ← MinNonzeroIndex (s); • compute the next breakpoint

4 if τb =∞ then return 0; • no transition is marking-enabled

5 θ ← θ + τb; s← Elapse(s, τb); • advance to the next breakpoint

6 if θ > θf then return GetMarkings(s);

7 s← Saturate(s);

8 s← Reset(s); • reset remaining firing times

9 s← ElimVan(s);

Figure 5.3: Timed reachability algorithm.

is found. To do so, we accumulate the states S−τb
at every breakpoint, including vanishing

states, until we reach a fixpoint, ensuring that no new marking can be reached in the future

evolution of the ITPN.

EV+MDDs are very efficient for the joint computation of reachable states and their

distance, using the Minimum operation of Sec. 2.3. We adopt them to encode the function ǫ

we seek, so that ǫ(µ) records the first time marking µ was encountered; by default, ǫ(µ) =∞

for any µ not yet found in the exploration.

Fig. 5.5 shows the procedure to compute the EV+MDD 〈ρ,u〉 encoding the desired

earliest reachability function ǫ. It proceeds as for timed reachability, except that we extract

the set M of markings that are part of tangible states after advancing to each breakpoint,

with a call to GetMarkings. Then,M, encoded in an MDD that only refers to the variables

x|P|, ..., x1, is used to build the EV+MDD encoding the function defined by f〈ρc,uc〉(µ) = θ,

the current time, if µ ∈ M, and f〈ρc,uc〉(µ) =∞ otherwise. After that, a call to Minimum
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integer MinNonzeroIndex (mdd s) • assume s.var = xk

1 m← min{i ∈ Xk : s[i] 6= 0} ;

2 if s.var = y1 then return m; • no need to visit nodes associated to places

3 ifCacheHit(MNI ,s,m) then returnm;

4 foreach i ∈ Xk s.t. s[i] 6= 0 do

5 u← MinNonzeroIndex (s[i]); m← min{m,u};

6 CacheAdd(MNI , s,m);

7 return m;

mdd Elapse(mdd s, integer b) • assume s.var = xk

1 if s.var = x|P| then return s; • no need to visit nodes associated to places

2 if CacheHit(ELS , s, b, u) then return u;

3 u← NewNode(xk);

4 foreach i ∈ Xk s.t. s[i] 6= 0 do u[i− b]← Elapse(s[i], b);

5 CacheAdd(ELS , s, b,UTInsert(u));

6 return q;

mdd Reset(mdd s)

1 foreach t ∈ E do

2 senb ← Intersect(s, senabled(t)); • states in B(s) where t is marking-enabled

3 sdis ← Difference(s, senb); • states in B(s) where t is marking-disabled

4 u1 ← RelProd(senb, rresample(t)); u2 ← RelProd(sdis, rreset(t));

5 return Union(u1, u2);

mdd ElimVan(mdd s) • assume s.var = xk

1 if s.var = x|P| then return s; • no need to visit nodes associated to places

2 if CacheHit(ELV , s, u) then return u;

3 u← NewNode(xk);

4 foreach i ∈ Xk\{0} do u[i]← ElimVan(s[i]);

5 CacheAdd(ELV , s,UTInsert(u));

6 return u;

Figure 5.4: Timed reachability algorithm (continued).
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ensures that, if some new marking µ was found, its earliest reachability time is recorded

in the EV+MDD 〈ρ,u〉, overwriting the old value f〈ρ,u〉(µ) = ∞. The MDD g is used to

accumulate all states before fixpoint image computation at every breakpoint. The global

computation halts when g reaches a fixpoint or if the model has reached only dead states.

5.4 Decidability, Complexity, Related Research

Decidability. It is well known that the marking reachability problem: “given marking

µ,∃〈µ,τ〉 ∈ S?” is undecidable for arbitrary time Petri nets [40] but decidable for token-

bounded TPNs [10], although boundedness is itself undecidable for TPNs. For ITPNs,

the problem is different, given their essentially discrete nature. Nevertheless, we can show

that their integer firing times can be used to enforce priorities between transitions, hence

achieve the “test-for-zero” of counter machines, and Turing-equivalence. Thus, (earliest)

reachability is undecidable for ITPNs (it is of course decidable for bounded ITPNs but,

again, boundedness itself is not). Of course, timed reachability is instead decidable, since

only a finite number of markings can be reached in a finite time horizon, given that all firing

times are positive integers.

Complexity. The time complexity is Nτb
· Ts, where Nτb

counts the breakpoints and Ts

is the average complexity for the work performed at each breakpoint. When F contains

more firing times, the number of markings |M| tends to grow and approach the number of

reachable markings in the underlying untimed PN.

Related work. [46] proposes a symbolic state-space generation for FIHTPNs, a type of

TPNs with different semantics from our ITPNs. They translate the TPN into an untimed
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idd EarliestReach()

1 〈ρ,u〉 ← MakeEvmdd(0, enc(M0)) • initialize the EV+MDD encoding ǫ

2 s← enc(S0); τb ← MinNonzeroIndex (s); s← Elapse(s, τb);

3 g ← s; • used to recognize the fixpoint

4 repeat

5 s← Saturate(s); s← Reset(s); s← ElimVan(s);

6 m← GetMarkings(s); • an MDD on x|P|, ..., x1

7 〈ρc,uc〉 ← MakeEvmdd(θ,m); 〈ρ,u〉 ← Minimum(〈ρ,u〉, 〈ρc,uc〉);

8 τb ← MinNonzeroIndex (s); s← Elapse(s, τb); g ← Union(g, s));

9 until g does not change;

10 return 〈ρ,u〉;

Figure 5.5: Earliest reachability algorithm.

PN by defining a subnet for each timed transition, combine these subnets, and perform

breadth-first symbolic state-space generation on the resulting PN. Our approach does not

require this translation step and, more importantly, does not increment a counter (a PN

place) one unit at a time; instead, we advance the global clock by the minimal remaining

firing time τb.

5.5 Experimental Results

Running model. Fig. 5.6 shows the MDDs and EV+MDDs built during timed and earliest

reachability computation of our running model. Each row corresponds to a different time

point θ and each column corresponds to a different stage of the iteration. Sets of states

are encoded by a 6-variable MDD and the earliest reachability function is encoded by a

3-variable EV+MDD. We start reachability computation from enc(S0), at time θ = 0, then
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enc(S−θ ) is obtained after Elapse is called to move to the breakpoint τd = 1, then Saturation

is called on it to obtain enc(S+
θ ), then Reset and ElimVan are called on the MDD encoding

Sθ, the set of tangible states at time θ. Then GetMarkings,MakeEvmdd , and Minimum

enc(Sθ) generate the EV+MDD encoding the earliest reachability time of each reachable

marking found up to time θ. For S−θ , we use a white box in the node to emphasize when a

transition has remaining firing time 0, i.e., when it is state-enabled. Our ITPN model can

evolve up to θ = 6, at which time it can only be in a dead state. The fixpoint for earliest

reachability is obtained at time θ = 4, not shown in the figure. Thus, at time θ = 3, i.e.,

the last EV+MDD gives the encoding of the earliest reachability times for all markings.

We implemented our algorithms in our model checker [17] and ran them on an

Intel Xeon 3.0Ghz workstation with 16GB RAM under SuSE Linux 9.1.

Tab. 5.1 shows the running time and peak memory consumption to compute timed

reachability (TR) at θf = 5 or 100 and earliest reachability (ER), on a variety of models

(referenced in the table). The possible firing times of each transition in each model are

{1, 2, 3, 4, 5}. Parameter N denotes the initial number of tokens in certain places or the

number of repeated subnets, and affects the size of state space. We record the number

of reachable states at time θf (for TR) and of overall reachable markings (for ER). From

the table, we can see that our algorithms can generate large set of states (up to 1038) for

TR and markings (up to 1055) for ER with a small time and memory requirements, which

demonstrates the applicability and efficiency of symbolic methods on state-space generation

of synchronous timed systems, not just to untimed asynchronous systems, where they have

already been extensively applied.
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Figure 5.6: MDDs and EV+MDDs for timed and earliest reachability of our running model.
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5.6 Conclusion

We considered two fundamental problems for a class of timed Petri net models

where events have integer but not necessarily constant durations: timed reachability and

earliest reachability. For these, we provided detailed symbolic algorithms that, through

the use of both ordinary and edge-valued decision diagrams, can quickly explore very large

state spaces. These algorithms are non-trivial extensions of known symbolic reachability

algorithms for untimed nets, showing that the potential of these approaches goes well beyond

strict logical analysis.

As a first extension of the present work, we envision exploring decision diagrams

variants that can better tackle models with large ranges of durations.
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TR θfin = 5 TR θfin = 100 ER

Model N |S| time mem |S| time mem |M| time mem

bittoggle 10 4.14 ·107 0.13 4.36 1.00 ·108 1.42 34.28 1.02 ·103 1.46 35.46

[39] 15 2.27 ·1011 0.91 21.90 7.83 ·1011 91.57 1415.63 - - -

bqueue 5 2.37 ·107 1.08 24.53 1.82 ·108 22.02 408.38 1.58 ·104 22.47 414.68

[55] 10 2.99 ·107 1.13 24.31 - - - - - -

bubsort 5 7.50 ·104 0.01 0.37 7.50 ·104 0.01 0.37 1.20 ·102 0.01 0.37

[28] 8 3.15 ·109 5.72 51.29 3.15 ·109 5.70 51.29 4.03 ·104 6.06 29.89

fms 2 3.42 ·107 2.78 58.41 3.97 ·107 10.20 193.06 3.44 ·103 10.29 195.95

[50] 4 1.12 ·1011 103.04 919.49 - - - - - -

kanban 2 1.86 ·107 0.33 8.44 3.87 ·109 33.50 555.02 4.60 ·103 62.19 353.39

[50] 4 1.50 ·109 2.56 49.98 - - - - - -

intshift 20 5.30 ·102 0.01 0.23 3.83 ·1017 0.33 6.12 4.02 ·1016 0.37 6.51

[28] 70 5.30 ·102 0.02 0.54 2.84 ·1026 0.72 17.43 3.25 ·1055 10.09 82.57

phils 5 3.75 ·107 4.76 95.54 3.77 ·107 7.33 146.35 1.36 ·103 7.47 149.22

[50] 6 1.22 ·109 28.89 503.04 1.23 ·109 52.16 873.54 - - -

queen 10 2.61 ·106 13.89 248.98 1.27 ·104 30.71 519.94 3.55 ·104 27.63 460.29

[34] 11 1.41 ·107 35.08 594.04 - - - 1.66 ·105 81.74 1300.12

robin 20 8.07 ·102 0.08 2.84 1.59 ·104 14.40 263.12 4.00 ·102 13.95 259.11

[28] 30 8.07 ·102 0.15 5.01 2.38 ·104 57.22 894.75 6.00 ·102 56.54 883.04

slot 4 2.20 ·107 5.18 112.20 2.55 ·107 13.71 282.11 5.13 ·103 13.95 288.50

[28] 5 1.51 ·109 80.21 1316.79 - - - - - -

swapper 10 2.20 ·1018 1.25 26.25 3.20 ·1018 1.96 39.79 1.67 ·105 2.04 28.01

[28] 20 4.75 ·1035 49.82 250.60 2.38 ·1038 126.43 250.60 1.31 ·1011 123.62 127.51

Table 5.1: Experimental results (time in sec, mem in MB); “–” means time > 600sec.
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Chapter 6

Multiplicative Edge-valued

Decision Diagrams

Kronecker-based encodings of transition rate matrices have been proposed to com-

pute the exact or approximate stationary solution of ergodic CTMCs. These encodings

are compact and effective but only applicable to models with a Kronecker decomposition,

i.e., when we can express the transition rate matrix as the sum (over all events) of the

Kronecker product (over all state variables) of local matrices [5, 12, 36]. While in princi-

ple this Kronecker form always exists, in practice it might be achieved only by splitting

model events, resulting in an excessive number of events, or by merging state variables,

resulting in excessively large local state spaces. To overcome this restriction and make our

approach completely general, we propose a new class of edge-valued decision diagrams as

an alternative to Kronecker matrices, namely multiplicative edge-valued multi-way decision

diagrams (EV∗MDDs) to retain their memory efficiency while working with arbitrary model
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decompositions.

This chapter is organized as follows. Sec. 6.1 introduces our new class of edge-

valued decision diagrams and discusses their canonicity. Sec. 6.2 presents algorithms to

canonize and manipulate them. Sec. 6.3 compares this new data structure with Kronecker

matrices. Sec. 6.4 concludes the chapter.

6.1 A new class of edge-valued decision diagrams

6.1.1 Definition of EV∗MDD

We now introduce the multiplicative edge-valued multi-way decision diagrams

(EV∗MDDs). Given L variables x = (xL,...,x1) with an order xL ≻ ... ≻ x1, each xk tak-

ing value in a finite set Xk = {0, 1, ..., nk} ⊂ N, an EV∗MDD defined on x encodes a

function of the form f : XL× ...×X1 → [0, +∞) by associating values to the edges of the di-

agram. Formally, a (quasi-reduced) EV∗MDD defined on x is a directed acyclic edge-labeled

multi-graph where:

• Each nonterminal node p is associated to a variable p.var = xk ∈ {xL, ..., x1}.

• Ω is the only terminal node. Let Ω.var = x0 and xk≻x0, for L≥k≥1.

• Each nonterminal node p associated with xk has |Xk| edges, labeled with a different

index i ∈ Xk and associated with a value in [0, 1]. We write p[i] = 〈ω,q〉 = 〈p[i].v,p[i].d〉

if the edge labeled by i points to node q and is associated with value ω, and require

that q = Ω if ω = 0 and q.var = xk−1 otherwise. Also, at least one edge leaving the

node must have an associated value equal to 1.
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• There is a single root node associated to xL, with an incoming dangling edge. If the

root node is r and the dangling edge having associated value ω ∈ (0, +∞), then the

EV∗MDD can be identified by 〈ω,r〉.

• Duplicate nodes are not allowed: given two distinct nonterminal nodes p and q with

p.var = q.var = xk, there must be an index i ∈ Xk such that p[i] 6= q[i].

Again, we can extend the edge notation to paths so that the node reached from p

through a tuple α = (ik, ik−1, ..., ih) ∈ Xk× ...×Xh, for L ≥ k ≥ h ≥ 1, is defined recursively

as

p[α].d =















(p[ik].d)[ik−1, ..., ih].d if p[ik].d 6= Ω,

Ω otherwise,

and the value associated to this path is

p[α].v =















p[ik].v · p[ik−1, ..., ih].v if p[ik].v 6= 0,

0 otherwise.

Each edge 〈ω,r〉 with r.var = xk ≻ x0 encodes a function f(α) = ω · r[α].v for any

α ∈ Xk × ... × X1; The function encoded by edge 〈ω,p〉 , with p.var = xk, is recursively

defined by

f〈ω,p〉(ik, ..., i1) =















ω if r = Ω

ω × fp[ik](ik−1, ..., i1) otherwise

for any (ik, ..., i1) ∈ Xk × ...×X1.

EV∗MDDs can be considered the multiplicative counterpart of EV+MDDs [25] and

they provide a canonical encoding for functions of the form f : XL × ...×X1 → R≥ 0. The

proof of canonicity is in the Sec. 6.1.3 and we write the EV∗MDD encoding f as enc(f).
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The root node is always associated with xL, except for the constant function identically

equal to 0, for which we can simply allow the special case 〈0,Ω〉.

6.1.2 Running example

We will use the running model in Ch. 2. Fig. 6.1 shows, on the left, the CTMC

for our running example and, on the right, its EV∗MDD encoding (only edges with nonzero

value are displayed, and we hide all edge values except for a path). The path, highlighted

in white, corresponds to R[0000, 0111] = 8 · 1 · 0.5 · 1 · · ·1 = 4.0. Note that, this EV∗MDD

contains some “fictitious” rates, as it in fact encodes a potential transition rate matrix, i.e.,

R[i, i′] > 0 does not necessarily imply i ∈ S.

6.1.3 Proof of canonicity

To prove that EV∗MDDs are canonical representations, we must show that any

non-negative function can be represented as an EV∗MDD and this EV∗MDD is unique.

The first part is proved by given a construction of the EV∗MDD encoding an

arbitrary non-negative function defined on a set of variables, we delay this part to Sec. 6.2.1

for EV∗MDD operations. We first prove that this encoding is unique.

Theorem 6.1.1. Given a tuple of variables x and functions f, g defined on x, let f〈ωf ,rf 〉 =

f, f〈ωg ,rg〉 = g then 〈ωf ,rf 〉 = 〈ωg,rg〉 ⇔ f ≡ g.

Proof. ⇒ is obvious. We only need to prove⇐. Since when f ≡ g ≡ 0, 〈ωf ,rf 〉 = 〈ωg,rg〉 =

〈0,Ω〉 and when x is an empty tuple (), 〈ωf ,rf 〉 = 〈ωg,rg〉 = 〈f,Ω〉, we only need to consider

the case f 6≡ 0 and x 6≡ ().
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Figure 6.1: Running example: exact CTMC and the EV∗MDD encoding it.

First, from the definition we have ωf = max(f) and ωg = max(g), so ωf = ωg.

Second, we now prove rf = rg. For the basis of the induction, when f is defined

on just one variable, i.e., L = 1 and x = (x1), for any i ∈ X1, f(i) = ωf · rf [i].v = g(i) =

ωg · rg[i].v ⇒ rf [i].v = rg[i].v, and rf [i].d = rg[i].d = Ω, so rf = rg. For the inductive

step, assume the theorem holds when L = l for some l ≥ 1 and, then show it holds when

L = l + 1. For any tuple α = (il+1, il, ..., i1) ≡ (il+1, α
′) ∈ Xl+1 ×Xl × ...×X1, let f ′ be the

function encoded by rf [il+1] and g′ be the function encoded by rg[il+1], we have

f(α) = ωf · rf [α].v ≡ ωf · rf [il+1, α
′].v = ωf · rf [il+1].v · (rf [il+1].d)[α′].v ≡ ωf · f

′(α′).

Similarly g(α) = ωg · g
′(α′). We already know ωf = ωg, so f ′ ≡ g′.

• if f ′ ≡ 0, we must have rf [il+1].v = 0. Otherwise (rf [il+1].d).var = xl ≻ x0. Since

each non-terminal node contains at least one edge valued 1, there exists at least one

path β ∈ Xl× ...×X1 such that (rf [il+1].d)[β].v = 1 6= 0, so f ′(β) = rf [il+1].v > 0; we
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get contradiction. So rf [il+1] = 〈0,Ω〉. Similarly rg[il+1] = 〈0,Ω〉, so rf [il+1] = rg[il+1].

• if f ′ 6≡ 0, since f ′ is an l-variable function, from the assumption of the induction,

f ′ ≡ g′ ⇒ rf [il+1] = rg[il+1].

Since il+1 is arbitrarily chosen from Xl+1, we can conclude that rf = rg and the

theorem is proved.

6.2 Operations with EV∗MDD

6.2.1 Building the EV∗MDD encoding a function

We now show how to build the EV∗MDD encoding a function defined on x in

Fig. 6.2. In the pseudocode, we use type rdd for real-valued EV∗MDD edges.

Procedure Build(f,x) reads a function f defined on x and outputs the canonical

EV∗MDD encoding it. It first constructs a non-canonical EV∗MDD that allows duplicate

nodes and does not require the maximum value of the edges leaving a node to be 1, by

enumerating nonzero values of f and inserting them in order using procedure AddEntry .

Then, it appropriately scales its edge values with procedure Normalize, to ensure that the

maximum value for each node is 1, using a bottom-up strategy. Finally, procedure Reduce

removes duplicate nodes. A special case is when x is an empty tuple, which indicates that

f is a constant function; in this case, the pseudocode just returns 〈f,Ω〉.
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rdd Build(expr f, tuple x)

1 if x = () return 〈f,Ω〉; • constant function

2 〈ω,r〉 ← 〈0,Ω〉;

3 foreach i ∈ Xl1 × ...×Xln do

4 if f(i) 6= 0 then 〈ω,r〉 ← AddEntry(r, i, f(i),x);

5 ω ← Normalize(〈ω,r〉);

6 return Reduce(〈ω,r〉);

rdd AddEntry(rdd 〈ω,r〉, tuple i, real val, tuple (xln , ..., xl1)

1 if 〈ω,r〉 = 〈0,Ω〉 then 〈ω,r〉 ← 〈1,NewNode(xln)〉;

2 if xln = xl1 then r[il]← 〈val,Ω〉; • last variable in support

3 else r[il]← AddEntry(r[il], i, val, (xln−1
, ..., xl1));

4 return 〈ω,r〉;

real Normalize(rdd 〈ω,r〉) • for nodes not yet checked into the unique table

1 if r = Ω return ω; • terminal case

2 scale← 0;

3 foreach i ∈ Xk s.t. r[i] 6= 〈0,Ω〉 do

4 val← Normalize(r[i]);

5 scale← max{scale, val · r[i].v}; • find the max value

6 foreach i ∈ Xk s.t. r[i] 6= 〈0,Ω〉 do • assume r.var = xk

7 r[i].v ← r[i].v/scale; • divide by the max value

8 return scale · ω;

rdd Reduce(rdd 〈ω,r〉) • assume r.var = xk

1 if r = Ω or r is already reduced then return 〈ω,r〉;

2 foreach i ∈ Xk do r[i]← Reduce(r[i]);

3 return 〈ω,UTInsert(r)〉;

Figure 6.2: Building the EV∗MDD encoding f .
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rdd Multiply(rdd 〈a,p〉, rdd 〈b,q〉) • assume p.var = xk

1 if a = 0 or b = 0 return 〈0,Ω〉;

2 if p = Ω then return 〈a · b,q〉;

3 if q = Ω then return 〈a · b,p〉; • trivial cases

4 if q.var ≻ p.var then Swap(〈a,p〉, 〈b,q〉); • commutativity

5 if CacheHit(MULTIPLY , p, q, 〈ω,r〉) then return 〈a · b · ω,r〉; • check cache

6 r ← NewNode(p.var); scale← 0;

7 foreach i ∈ Xk do

8 if p.var ≻ q.var then r[i]← Multiply(p[i], 〈b,q〉);

9 else r[i]← Multiply(p[i], q[i]); • p.var = q.var

10 scale← max{scale, r[i].v};

11 if scale 6= 1 then

12 foreach i ∈ Xk s.t. r[i] 6= 〈0,Ω〉 do r[i].v ← r[i].v/scale; • normalize

13 r ← UTInsert(r); • insert into unique table

14 CacheAdd(MULTIPLY , p, q, 〈scale,r〉); • add to cache

15 return 〈a · b · scale,r〉;

rdd Add(rdd 〈a,p〉, rdd 〈b,q〉) • assume p.var = xk

1 if a = 0 return 〈b,q〉;

2 if b = 0 return 〈a,p〉;

3 if p = q return 〈a + b,p〉; • trivial cases

4 if a > b then Swap(〈a,p〉, 〈b,q〉); • commutativity

5 a← a/b;

6 if CacheHit(ADD , a, p, q, 〈ω,r〉) then return 〈b · ω,r〉; • check cache

7 r ← NewNode(p.var); scale← 0;

8 foreach i ∈ Xk do

9 r[i]← Add(〈a · p[i].v,p[i].d〉, q[i]);

10 scale← max{scale, r[i].v};

11 if scale 6= 1 then

12 foreach i ∈ Xk s.t. r[i] 6= 〈0,Ω〉 do r[i].v ← r[i].v/scale; • normalize

13 r ← UTInsert(r); • insert into unique table

14 CacheAdd(ADD , a, p, q, 〈scale,r〉); • add to cache

15 return 〈b · scale,r〉;

Figure 6.3: Standard EV∗MDD operations.
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6.2.2 The Multiply and Add operations

Fig. 6.3 shows two representative operations for EV∗MDDs, Multiply and Add ,

which take as input two EV∗MDDs enc(f) and enc(g) and output enc(f · g) or enc(f + g),

respectively. Multiply can be applied to two EV∗MDDs defined on two different tuples of

variables, as long as these variables can be compared according to some predefined order; the

resulting EV∗MDD is defined on a tuple containing all these variables. Add instead assume

the two inputs defined on the same tuple of variables. Of course, real functions defined on

different tuple of variables can also be added, but we use this assumption to avoid details of

reduction rules and we will show in the following sections that this framework is adequate

for our needs. An operation cache is used to make both operations efficient, as always with

decision-diagram manipulations.

6.3 Comparison to Kronecker matrices

When the model is Kronecker-consistent, R can be encoded either with Kronecker

matrices or as an EV∗MDD. The Kronecker encoding is a disjunctive encoding where each

Re is encoded as the Kronecker product of local matrices. This encoding is compact because

we only need to store |spt(Re)| relatively small matrices for event e. EV∗MDDs also support

this disjunctive encoding, and we can encode each Re into a |spt(Re)|-variable EV∗MDD.

In the worst case, the disjunctive EV∗MDD encoding uses twice as many edges as

there are nonzeroes in the Kronecker matrices because each nonzero element in a Kronecker

matrix corresponds to two edges in an EV∗MDD. On the other hand, EV∗MDDs allow for
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node sharing, which can greatly reduce the number of edges, and is the main motivation to

use decision diagrams instead of decision trees.

Table 6.1 shows a comparison of the size of the Kronecker and the EV∗MDD

encodings mentioned above for our running example. We consider two decompositions, the

finest uses one place per variable, while the Kronecker decomposition requires to put places

a, d, e together. N is the initial number of tokens in place a. We can see that, when N

is large and the decomposition is Kronecker-consistent, a single-root encoding tends to use

fewer edges than a disjunctive encoding. With the finer decomposition, the disjunctive

encoding tends to be better memory-wise and either EV∗MDD encoding is better than the

Kronecker encoding when L is large enough.

We can see that, under Kronecker decomposition, disjunctive EV∗MDDs uses

slightly fewer than twice the nonzeroes of Kronecker matrices. The single-root EV∗MDD,

when N is small, use more than the disjunctive representation; when N grows, it outper-

forms disjunctive encoding due to more node and edge sharings. Finally, when we adapt to

the finest decomposition, Kronecker encoding does not apply any more, but EV∗MDDs still

work well and not surprisingly, use much fewer edges due to the smaller variable domains.

6.4 Conclusion

We presented a new canonical form of edge-valued decision diagrams, which can

be used to encode nonnegative real functions. It retains the compactness of a Kronecker

encoding, while being more general, no longer requiring a Kronecker-consistent decompo-

sition. We also presented algorithms for the manipulation of this new data structure and
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Kronecker EV∗MDD

Disjunctive Single root Actual R

N η(R) Decomp. matrs nz nodes edges nodes edges nodes edges

1 5 Kron 10 9 16 18 17 23 21 25

finest x x 23 26 31 42 28 32

2 16 Kron 10 24 30 47 26 49 52 67

finest x x 34 50 42 72 66 81

3 33 Kron 10 45 50 88 37 83 97 129

finest x x 45 74 53 102 116 148

4 56 Kron 10 72 76 141 50 125 156 211

finest x x 56 98 64 132 178 233

5 85 Kron 10 105 108 206 65 175 229 313

finest x x 67 122 75 162 252 336

6 120 Kron 10 144 146 283 82 233 316 435

finest x x 78 146 86 192 338 457

7 161 Kron 10 189 190 372 101 299 417 577

finest x x 89 170 97 222 436 596

8 208 Kron 10 240 240 473 122 373 532 739

finest x x 100 194 108 252 546 753

9 261 Kron 10 297 296 586 145 455 661 921

finest x x 111 218 119 282 668 928

10 320 Kron 10 360 358 711 170 545 804 1123

finest x x 122 242 130 312 802 1121

Table 6.1: Running Model: Matrices/nonzeros, or nodes/edges, for Kronecker and EV∗MDD
encodings of R. “x” indicates not applicable.
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provided numerical examples of its effectiveness. An immediate application of EV∗MDDs

will be seen in the next chapter.
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Chapter 7

Approximate Numerical Solution

For Large Ergodic Models

Markov models are extensively used in the modeling, performance and reliability

analysis of discrete-state systems. In this chapter, we consider the stationary solution of

ergodic continuous-time Markov chains (CTMCs) with a finite state space, i.e., the compu-

tation of the steady-state probability vector.

In practice, most models are compactly described using some high-level formalism,

but their underlying CTMC may be so large that storing the transition rate matrix and

the probability vector, as well as computing this vector, may overwhelm even the largest

computers. To deal with this state explosion problem, approximate techniques have been

proposed, where some smaller-scale CTMCs are solved, and the results somehow combined.

The approach of [52], which we extend, is particularly appealing since, once the overall

model is decomposed, it uses a multi-way decision diagram (MDD) [60] to encode the state-
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space. Then, by aggregating the states of the CTMC based on their MDD representation,

approximate stationary probabilities can be computed. As these aggregated states are

relatively few, the storage and computational cost are enormously reduced.

The method of [52] is empirically shown to be efficient and have fast convergence,

but it has a major limitation. To apply this approximation, the original model must be

Kronecker-consistent, i.e., the transition rate matrix must be expressed as the sum (over

all events) of the Kronecker product (over all state variables) of local matrices [5, 12, 36].

While in principle this Kronecker form always exists, in practice it might be achieved only

by splitting model events, resulting in an excessive number of events, or by merging state

variables, resulting in excessively large local state spaces. This restriction may render the

state-space generation inefficient or even unfeasible, while in the meantime, a finer non-

Kronecker decomposition would greatly improve the time and memory performance when

used in conjunction with state-of-the-art symbolic state-space generation algorithms [28,62].

To overcome this restriction, we propose to encode the transition rate matrix

with EV∗MDDs (Ch. 6), which can compactly encode the transition rate matrix under an

arbitrary decomposition of the model.

This chapter is organized as follows. Sec. 7.1 reviews the required background on

CTMC aggregation. Sec. 7.2 discusses how to obtain the symbolic data structure needed

for our approximation. Sec. 7.3 details our approximation algorithm. Sec. 7.4 reports

experimental results on a set of benchmarks. Finally, Sec. 7.5 concludes the chapter. For

reference, Figure 7.1 summarizes the symbols we consistently use throughout the chapter.
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Symbol Definition or Meaning

Q infinitesimal generator matrix

π probability vector

p[α, α′] a path from p, interleaving α and α′

A(p) {α : r∗[α].d = p}

[[p, ik]] A(p)× {ik} × B(p[ik])

Rk,Qk, πk aggregation of R,Q, π w.r.t. xk

π[Y]
∑

i∈Y π[i]

π[p] π[A(p)× B(p)]

π[p, γ] π[A(p)× {γ} × B(p[γ].d)]

π[γ|p] π[p, γ]/π[p]

Figure 7.1: New symbols and notations in this chapter.

7.1 Decision-diagram-based aggregation

7.1.1 Model description

Consider a “structured” CTMC with a finite state-space S ⊂ N
L and transition

rate matrix R ∈ R
|S|×|S|, whose state is a tuple x = (xL, ..., x1) ∈ N

L of L variables with a

predefined order xL ≻ ... ≻ x1 imposed on them.

We aim at the computation of π ∈ R
S solution of

π ·Q = 0 subject to
∑

i∈S π[i] = 1,

where Q ∈ R
S×S is the infinitesimal generator matrix of the CTMC and π[i] is the stationary
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probability of state i. Q coincides with R except in its diagonal elements, which are given

by Q[i, i] = −
∑

j∈S R[i, j ].

Running Example. We will use the fork-and-join model from Ch. 2 as our running exam-

ple. We consider the following decompositions for this model: L = 4, {x4 ≡ [#(d), #(e)], x3 ≡

[#(c)], x2 ≡ [#(b)], x1 ≡ [#(a)]}, which is not a Kronecker-consistent decomposition.

7.1.2 Basic aggregation

An obvious way to tackle the state explosion problem is to reduce the number of

states involved in the computation. An example of this idea is the basic aggregation we

describe next.

We can partition S into n disjoint sets of states {C1, ..., Cn}. If we consider each

set as a “macrostate”, we can define an aggregated CTMC with state space Sagg = {1, ..., n}

and transition rate matrix Ragg given by

Ragg [i, i
′] =

∑

i∈Ci

π[i|Ci] ·
∑

i′∈Ci′

R[i, i′], (7.1)

where π[i|Ci] is the stationary conditional probability of being in state i given the state

of CTMC is in set Ci. It is well known that this aggregated CTMC is also ergodic if the

original one is ergodic, and that πagg [i] = π[Ci], if we let π[X ] =
∑

i∈X i π[i] for X ⊆ S.

7.1.3 MDD-based aggregation

Let rS = enc(S), following the partitioning strategy from [52], we can define

L aggregated CTMCs, one for each variable in {xL, ..., x1}, based on the reachable state

paths from node rS to node 1 in the MDD rS . For each p where p.var = xk and ik ∈ Xk,
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a b d

ec

1t

2t

3t

4t

trans. rate

t1 2.0 ·#(a)

t2 1.0 ·#(b)

t3 4.0 ·#(c)

t4 immediate

Figure 7.2: Running example: the GSPN model of our fork-and-join system.

0 1 2 3 4

0 1 2 0 1 0 1 2 2

0 1 2 0 1 0

0 1 2

1

r

p1 p2 p3 p4 p5

X4 = {d0e0,d0e1,d1e0,d0e2,d2e0} = {0, ..., 4}

X3 = {c0, c1, c2} = {0, 1, 2}

X2 = {b0, b1, b2} = {0, 1, 2}

X1 = {a2, a1, a0} = {0, 1, 2}

Figure 7.3: Running example: the MDD encoding S.
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a macrostate of the aggregated CTMC for xk, written as [[p, ik]] corresponds to the set of

states

[[p, ik]] ≡ A(p)× {ik} × B(p[ik]),

where A(p) ≡ {α : rS [α] = p} denotes all tuples leading from rS to p, where A is mnemonic

for “above”. Note that [[p, ik]] = ∅ if p[ik] = 0. As such, the state-space of the aggregated

CTMC for xk is {[[p, ik]] : p.var = xk, p[ik] 6= 0}, and we use πk and Rk to denote the

steady-state probability vector and the transition rate matrix of this aggregated CTMC,

respectively.

Looking at the lower MDD in Fig. 7.3, we have A(p1) = {0} and B(p1[0]) = {00},

therefore [[p1, 0]] = {0} × {0} × {00} = {0000}. The aggregated CTMC for x3 has state

space {[[p1, 0]], [[p1, 1]], [[p1, 2]], [[p2, 0]], [[p2, 1]], [[p3, 0]], [[p4, 1]], [[p4, 2]], [[p5, 2]]}.

7.1.4 Node and path probability

We define the probability of an MDD node p as π[p] = π[A(p) × B(p)], which

can be viewed as the probability that a “random” path (chosen according to the stationary

distribution π) of the MDD passes through node p. Similarly, we define the probability of

reaching node p and then following edges according to the tuple γ as π[p, γ] = π[A(p)×{γ}×

B(p[γ])], where π[p, ik] = πk[[[p, ik]]] is a special case. We can then condition on tuples or

nodes using the classical definition of conditional probability, e.g., π[γ|p] = π[p, γ]/π[p]. In

particular, we have that, for a state i = (α, ik, β) ∈ [[p, ik]], where α ∈ A(p) and β ∈ B(p[ik]),

π[i|p, ik] = π[α, ik, β|p, ik] = π[α|p, ik] · π[β|α, p, ik] = π[α|p, ik] · π[β|α, ik]. (7.2)
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7.2 From transition relations to transition rate matrices

Similarly to using an interleaved-order 2L-variable MDD to encode a transition

relation, we can use a 2L-variable EV∗MDD 〈ωR,rR〉 to encode the transition rate matrix

R such that

∀i, i′ ∈ S,R[i, i′] = ωR · rR[i, i′]. (7.3)

We then give the algorithm to build this symbolic encoding efficiently.

We adopt the state-space generation method of Ch. 4 so that, for each event e, the

MDD enc(Te) is either given a priori, or it is built on-the-fly during the iterations. Then

we need translate the reduction rule vector of this MDD to ρQ.

We can treat Te as a Boolean matrix Rb
e, where (i, i′) ∈ Te ⇔ Rb

e(i, i
′) = 1. The

EV∗MDD enc(Rb
e) can be obtained from the MDD enc(Te) by letting (1) all edges pointing

to 1 point to Ω, (2) all edges pointing to 0 point to Ω and have an associated valued 0,

(3) all edges not pointing to 0 have an associated value 1, and (4) adding a dangling edge

pointing to the root node with an associated value 1.

Each enc(Re) is then computed as the product of enc(Rb
e), enc(fe) and enc(ϕe)

according to Eq. 2.3, where enc(fe) is computed as
∏C

c=1 enc(f c
e ) according to Eq. 2.2. Each

f c
e is encoded into an lc-variable EV∗MDD, where lc = |spt(f c

e )| ≤ L, by invoking procedure

Build(f c
e , (xlc , ..., x1)), where {xlc , ..., x1} = spt(f c

e ). Similarly we can build the encoding of

ϕe as an |spt(ϕe)|-variable EV∗MDD.

With the above strategy, we only need to enumerate the possible values of (xlc , ..., x1)

for each f c
e , and evaluate f c

e on them; this is usually computationally feasible, unlike the
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full enumeration of the possible values for the tuple (xL, ..., x1); a similar argument holds

for ϕe. A finer decomposition which results in smaller local state spaces is also favorable

for this phase.

The complete process is shown in Fig. 7.4. Procedure BuildFunction builds an

EV∗MDD encoding fe or ϕe by first decomposing this input function and then invoking

Multiply on the EV∗MDDs encoding the sub-functions. Procedure BuildTransitionRate

builds Re by applying Multiply on EV∗MDDs encoding Rb
e, fe and ϕe. Finally, procedure

BuildR uses Add to sum enc(Re) over all event e and obtains enc(R), which is the second

input of our approximation algorithm, discussed in Sec. 7.3.

We would like to mention that a disjunctive encoding (see Sec. 6.3) can also be

used in our approximation algorithm, and this can be important, since the disjunctive

encoding can in principle require many fewer nodes that the single-root MDD encoding,

as in the worst case, a single-root EV∗MDD generated after summing n EV∗MDDs can be

exponentially larger (in n) than the original EV∗MDDs being summed. The algorithm in the

next section then needs only minor adaption to use such a disjunctive encoding, traversing

down from the root of each EV∗MDD for each event, instead of from the only root.

In this chapter, we use a single-root EV∗MDD to encode R instead of a disjunctive

encoding for illustration purposes and also because by adopting it, we may avoid many

additions of rates during the computation.
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BuildR()

1 〈ωR,rR〉 ← 〈0,Ω〉;

2 foreach e ∈ E do

3 〈ρ,r〉 ← BuildTransitionRate(e);

4 〈ωR,rR〉 ← Add(〈ωR,rR〉, 〈ρ,r〉);

rdd BuildTransitionRate(event e)

1 〈ρ,r〉 ← MakeEvmdd(1, enc(Te));

2 〈a,p〉 ← BuildFunction(fe);

3 〈a,p〉 ← Multiply(〈a,p〉,BuildFunction(ϕe));

4 return Multiply(〈ρ,r〉, 〈a,p〉);

rdd BuildFunction(expr f) • expressed as products of expressions

1 〈ρ,r〉 ← 〈1,Ω〉;

2 exps← GetProducts(f); • break into products

3 foreach fc in exps do

4 〈a,p〉 ← Build(fc, (xlc , ..., x1));

5 〈ρ,r〉 ← Multiply(〈ρ,r〉, 〈a,p〉);

6 return 〈ρ,r〉;

Figure 7.4: Building EV∗MDD encoding R.
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7.3 Our approximation algorithm

Once we have built an EV∗MDD encoding of the transition rate matrix R and an

MDD encoding of the state space S for the CTMC under study, we have all we need to

carry out the proposed approximation algorithm. First let us examine the exact aggregation

using EV∗MDDs.

7.3.1 Exact aggregation

For clarity, we recall some equations obtained in the previous sections, which will

be used in this section, namely Eq. 7.1 (basic aggregation):

Ragg [i, i
′] =

∑

i∈Ci

π[i|Ci] ·
∑

i′∈Ci′

R[i, i′],

Eq. 7.2 (node and path conditional probability): letting i = (α, ik, β) and p = rS [α],

π[i|p, ik] = π[α|p, ik] · π[β|α, ik],

and Eq. 7.3 (EV∗MDD encoding R):

∀i, i′ ∈ S,R[i, i′] = ωR · rR[i, i′].
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We then compute the rate from macrostate [[p, ik]] to macrostate [[q, i′k]] in Rk as

Rk[[[p, ik]], [[q, i
′
k]]] =

∑

i∈[[p,ik]]

π[i|[[p, ik]]] ·
∑

i′∈[[q,i′
k
]]

ωR · rR[i, i′]

= ωR ·
∑

α ∈ A(p)

β ∈ B(p)

π[α, ik, β|p, ik] ·
∑

α′ ∈ A(q)

β′ ∈ B(q)

rR[(α,ik,β), (α′,i′k,β
′)].v

= ωR ·
∑

α∈A(p)

π[α|p, ik] ·
∑

α′∈A(q)

rR[α, α′].v · r[ik, i
′
k].v

·
∑

β∈B(p[ik])

π[β|α, ik] ·
∑

β′∈B(q[i′
k
])

r′[β, β′].v, (7.4)

where r = rR[α, α′].d and r′ = r[ik, i
′
k].d. This exact aggregation equation unfortunately

cannot be applied in practice to reduce the size of the CTMC under study unless the quan-

tities π[α|p, ik] and π[β|α, ik] can be computed exactly. In general, these quantities cannot

be determined without first determining π[i] for all states i in the original CTMC, which

is the computation we are hoping to avoid. As such, we will instead use an approximate

aggregation, in which we will use estimates for π[α|p, ik] and π[β|α, ik].

7.3.2 Approximate aggregation

We use π[α|p] as an estimate of π[α|p, ik] and π[β|p[ik]] as an estimate of π[β|α, ik]

to simplify Eq. 7.4. This idea is also adopted in [52] and has an important justification: if

the estimate probability is 0, then the actual probability must also be 0, and vice versa.

When the estimate and the actual value are equal, our algorithm produces an exact solution

since it is the only source of approximation.
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These estimates can be computed recursively as

π[α|p] = π[p′, ik+1|p] · π[γ|p′], (7.5)

π[β|p[ik]] = π[ik−1|p[ik]] · π[δ|p[ik, ik−1]], (7.6)

where α = (γ, ik+1), p
′ = rS [γ], and β = (ik−1, δ).

Then an estimate of Rk is

Rk[[[p, ik]], [[q, i
′
k]]] ≈ ωR ·

∑

α∈A(p)

π[α|p] ·
∑

α′∈A(q)

rR[α, α′].v · r[ik, i
′
k].v

·
∑

β∈B(p[ik])

π[β|p[ik]] ·
∑

β′∈B(q[i′
k
])

r′[β, β′].v. (7.7)

We can decompose the right-hand side of Eq. 7.7 into three parts by letting

A[r, p, q] ≡ ωR ·
∑

α ∈ A(p), α′ ∈ A(q)

rR[α, α′].d = r

π[α|p] · rR[α, α′].v,

and

B[r, p, q] ≡
∑

β ∈ B(p), β′ ∈ B(q),

r[β, β′].d = Ω, r[β, β′].v 6= 0

π[β|p] · r[β, β′].v,

then Eq. 7.7 becomes

Rk[[[p, ik]], [[q, i
′
k]]] ≈

∑

∀r:r.var=xk

A[r, p, q] · r[ik, i
′
k].v ·B[r[ik, i

′
k].d, p[ik], q[i

′
k]]. (7.8)

A stands for “above”, since A[r, p, q] does not depend on B(p) or B(q) and B

stands for “below” since B[r, p, q] does not depend on A(p) and A(q).
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Substituting Eq. 7.5, A[r, p, q] can be computed top-down using the recurrence

A[r, p, q] =
∑

∀r′, p′, q′, ik, i′
k

:

p = p′[ik], q = q′[i′
k
], r = r′[ik, i′

k
].d

A[r′, p′, q′] · π[p′, ik|p] · r′[ik, i
′
k].v, (7.9)

terminated with A[rR, rS , rS ] = ωR.

Similarly, substituting Eq. 7.6, B[r, p, q] can be computed bottom-up using the

recurrence

B[r, p, q] =
∑

∀ik,i′
k
∈Xk

B[r[ik, i
′
k].d, p[ik], q[i

′
k]] · π[ik | p] · r[ik, i

′
k].v, (7.10)

terminated with B[Ω,1,1] = 1.

7.3.3 The algorithm

The key step of the algorithm is to compute matrices A and B (we can think of

them as 3-dimensional matrices). A nonzero entry A[r, p, q] should fulfill r.var = p.var =

q.var and A[r, p, q] > 0 only if (1) [r, p, q] = [rR, rS , rS ] or (2) there exist nodes r′, p′, q′ with

.var = xk and integers i, j ∈ Xk such that A[r′, p′, q′] > 0 and r′[i, j].d = r, p′[i] = p, q′[j] =

q. Similarly, B[r, p, q] > 0 only if (1) [r, p, q] = [Ω,1,1] or (2) there exist node r′, p′, q′ with

.var = xk and integer i, j ∈ Xk such that B[r′, p′, q′] > 0 and r[i, j].d = r′, p[i] = p′, q[j] = q′.

So the positions of the nonzero elements of A and B can be found a priori by concurrently

traversing EV∗MDD rR and MDD rS top-down and bottom-up, respectively.

Another important observation is that for nodes r, p, q, where r.var = p.var =

q.var and xL ≻ r.var ≻ x0, if either A[r, p, q] or B[r, p, q] is zero according to the above

traversal, we do not need to store the other. Since A[r, p, q] is only used in a product
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with some B[r′, p′, q′], where there exist i, j such that r[i, j].d = r′, p[i] = p′, q[j] = q′, but

if B[r, p, q] is zero, any of these B[r′, p′, q′] must also be zero. This further reduces the

number of nonzero elements in A and B, which are stored as sparse matrices, so that the

elements for A and B have the same set of indices except for the terminal cases. More

precisely, only those entries [r, p, q] should be kept where there exist paths α, α′, such that

rR[α, α′].d = Ω, rR[α, α′].v > 0, rS [α] = rS [α′] = 1, and r lies on path (α, α′), p lies on α, q

lies on α′, which leads to the following algorithm.

In Fig 7.5, procedure BuildCorr finds all corresponding MDD node pairs for each

EV∗MDD node, such that (p, q) ∈ r.corr means [r, p, q] is an element we need to compute in

A and B, by traversing down from the root node. We also compute r.corr if r is associated

with a primed variable, which might at worst double the size of A and B but can greatly

simplify the computation and better utilize the cache. Storing those extra elements for A

and B is also efficient when computing A[r, p, q] or B[r, p, q] from another A[r′, p′, q′] or

B[r′, p′, q′] according to Eq. 7.9 and Eq. 7.10, which allows a recursive computation with

the least information, shown later.

Note that BuildCorr returns a Boolean value to indicate whether we should put

(p, q) into r.corr. It returns false when we get to r from (α, α′) in rR and the corresponding

α is not a valid path in rS . This can happen because each enc(Te) encodes the potential

transitions [22], i.e., (i, i′) ∈ Te does not necessarily indicate i ∈ S; this also happens in

a Kronecker representation and is a common strategy to encode transition relations as it

usually results in a much more compact encoding. Since rR is obtained from enc(Te), it,

too, might contain some “fictitious” rates. Of course, we could use S as a filter to eliminate
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these fictitious rates, and this preprocessing can be seamlessly integrated to BuildCorr as

shown in the pseudocode. Sec. 7.4 lists the number of nodes and edges of the EV∗MDD

encoding the actual R after filtering these fictitious rates; this is not used in our approach

and is presented for comparison only.

Fig. 7.6, Fig. 7.7 and Fig. 7.8 show the pseudocode of our approximation. Proce-

dure ComputeAbove(xk) computes A for all elements [r, p, q] with r.var = x′
k+1 and then

r.var = xk, by traversing all elements [r′, p′, q′] with r.var = xk+1 and then r.var = x′
k+1

and applying Eq. 7.9 appropriately. Procedure ComputeBelow(xk) computes all elements

[r, p, q] of B, with r.var = x′
k and then r.var = xk, by traversing all elements [r′, p′, q′] with

r.var = x′
k and then r.var = xk, based on Eq. 7.10. These two procedures benefit from a

sparse representation of matrices A and B, since they traverse only the nonzero elements.

During the computation, r[i, i′].v is broken into r[i].v · r[i][i′].v; π[p′, ik|p] is computed as

πk[[[p
′, ik]]]/π[p]; andπ[ik|p] is obtained from πk[[[p, ik]]]/π[p]. We can see that storing r.corr

for r associated with a primed variable simplifies the computation, since now we can com-

pute A[r, p, q] from another A[r′, p′, q′] by traversing only r’s outgoing edges and either p

or q’s outgoing edges (depending on r.var); the same holds for B. Thus, in the actual data

structures set up for A and B, only one EV∗MDD node pointer and one MDD node pointer

need to be stored for each nonzero element.

Procedure SolveVariable(xk) is used to build and solve the aggregated CTMC for

xk. The probability vector πk satisfying πk ·Qk = 0 can be determined using an iterative

method such as Jacobi or Gauss-Seidel [61]. As the probability vectors change, so do the

rates between these macrostates, and the vector πk must be recomputed. To accelerate this
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process, we use the previous solution to πk as the initial vector for the iterative method

when recomputing πk. Doing so causes the number of iterations required to solve πk to

decrease as the overall fixpoint computation converges. When πk is computed at each global

iteration, the probability of each node p, π[p], with p.var = xk, is updated by summing all

πk[[[p, i]]] and used for the next global iteration; in the meantime, π[p], with p.var = xk−1,

is also updated, as it is used for ComputeAbove(xk−1) in the current global iteration, also

improving convergence.

Procedure Solve performs the overall fixpoint computation, assuming that the

MDD encoding S and the EV∗MDD encoding R have been built, and that the vectors πk

for each xk are set to some initial distribution (we use the uniform distribution). A stopping

criterion must be used to determine when the overall computation has reached a fixpoint.

We stop the iterations for every aggregated CTMC when the probability vector does not

change anymore.

7.3.4 Computing measures

Once we have obtained an estimate for π, we typically wish to compute one or

more measures of interest defined via a reward function θ : S → R, for example m =

∑

∀i∈S θ(i) ·π[i]. Since computing π[i] requires a product according to the tuple of L nodes

visited along the path i, the time to compute m according to this sum is O(L · |S|), which

can be extremely large.

However, if the reward function can be expressed as the product of functions on

state variables, θ(x) = θL(xL) · · · θ2(x2) · θ1(x1), we can then compute m recursively, by
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boolean BuildCorr(rdd node r,mdd p,mdd q) • assume p.var = xk

1 if r = Ω then return true; • terminal case

2 if CacheHit(CORR, r, p, q, answer) then return answer; • check cache

3 answer ← false;

4 if r.var = p.var then • r associated to unprimed variable

5 foreach i ∈ Xk s.t. p[i] 6= 0 and r[i] 6= 〈0,Ω〉 do

6 if BuildCorr(r[i].d, p[i], q) = true then

7 answer ← true;

8 else • r associated to primed variable

9 foreach i ∈ Xk s.t. q[i] 6= 0 and r[i] 6= 〈0,Ω〉 do

10 if BuildCorr(r[i].d, p, q[i]) = true then

11 answer ← true;

12 if answer = true then • [r, p, q] can be an nonzero element for A and B

13 r.corr ← r.corr ∪ {(p, q)};

14 CacheAdd(CORR, r, p, q, answer);

15 return answer;

Figure 7.5: Setting up nonzeroes for A and B.

Solve()

1 BuildCorr(rR, rS , rS);

2 while not converged do

3 A← 0; B← 0; R← 0;

4 for k ← 0 to L do ComputeBelow(xk);

5 for k ← L to 1 do

6 ComputeAbove(xk);

7 SolveVariable(xk);

Figure 7.6: The global iteration.
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ComputeAbove(variable xk)

1 if k = L then A[rR, rS , rS ]← ωR; return; • terminal case

2 foreach rdd node r where r.var = xk+1 do

3 foreach (p, q) ∈ r.corr do

4 foreach i ∈ Xk+1 s.t. p[i] 6= 0 and r[i] 6= 〈0,Ω〉 do

5 r′ ← r[i].d; p′ ← p[i];

6 A[r′, p′, q]← A[r′, p′, q] + A[r, p, q] · πk+1[[[p, i]]] · r[i].v;

7 foreach rdd node r where r.var = x′
k+1 do

8 foreach (p, q) ∈ r.corr do

9 foreach i ∈ Xk+1 s.t. q[i] 6= 0 and r[i] 6= 〈0,Ω〉 do

10 r′ ← r[i].d; q′ ← q[i]; A[r′, p, q′]← A[r′, p, q′] + A[r, p, q] · r[i].v/πk[p];

ComputeBelow(variable xk)

1 if k = 0 then B[Ω,1,1]← 1; return; • terminal case

2 foreach rdd node r where r.var = x′
k do

3 foreach (p, q) ∈ r.corr do

4 foreach i ∈ Xk s.t. q[i] 6= 0 and r[i] 6= 〈0,Ω〉 do

5 r′ ← r[i].d; q′ ← q[i]; B[r, p, q]← B[r, p, q] + B[r′, p, q′] · r[i].v;

6 foreach rdd node r where r.var = xk do

7 foreach (p, q) ∈ r.corr do

8 foreach i ∈ Xk s.t. p[i] 6= 0 and r[i] 6= 〈0,Ω〉 do

9 r′ ← r[i].d; p′ ← p[i];

10 B[r, p, q]← B[r, p, q] + B[r′, p′, q] · r[i].v · πk[[[p, i]]]/πk[p];

Figure 7.7: Steps in the global iteration.
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SolveVariable(variable xk)

1 foreach rdd node r where r.var = xk do

2 foreach (p, q) ∈ r.corr do

3 foreach i ∈ Xk s.t. p[i] 6= 0 and r[i] 6= 〈0,Ω〉 do

4 foreach j ∈ Xk s.t. q[j] 6= 0 and r[i][j] 6= 〈0,Ω〉 do

5 r′ ← r[i][j].d; p′ ← p[i]; q′ ← q[i]; val← r[i].v · r[i][j].v;

6 Rk[[[p, i]], [[q, j]]]← Rk[[[p, i]], [[q, j]]] + A[r, p, q] ·B[r′, p′, q′] · val;

7 πk ← solution of πk ·Qk = 0; •Gauss-Seidel or Jacobi

8 foreach p where p.var = xk do

9 π[p]←
∑

i∈Xk
πk[[[p, i]]]; •Adjust node sum of πk

10 if k > 1 then

11 foreach p where p.var = xk−1 do πk−1[p]← 0;

12 foreach [[p, i]] where p.var = xk do

13 π[p[i]]← π[p[i]] + πk[[[p, i]]]; •Adjust node sum of πk−1

Figure 7.8: Steps in the global iteration (continued).

defining the value of the measure for a node p with p.var = xk as

m(p) =
∑

∀ik:p[ik]6=0

θk(ik) · π[ik|p] ·m(p[ik]),

so that m(rS) is equal to m. We can then compute m(rS) in a bottom-up fashion, by visiting

each MDD node p only once and scanning the nonzero edges of p, with a computational

cost proportional to the number of nonzero edges in the MDD, normally much smaller than

O(L · |S|). Related statistics are listed in Sec. 7.4.

7.3.5 Complexity, accuracy, and convergence

The overall time complexity of our approximate solution is O(iters · (η(A) + T )),

where iters is the number of global iterations, η(A) is the number of nonzero elements of

matrix A and T is the average complexity to compute each πk using the Gauss-Seidel or
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Jacobi method at each global iteration, which is of course related to each η(Rk).

The number of triples for xk at worst case is Nk · Nk · Mk, where Nk is the

#mddnodes for xk and Mk is #evmddnodes for xk; but in practice it is usually much

smaller, shown in Table. 7.5.

We recall that the approximation in our algorithm is due to using π[α|p] as an

estimate of π[α|p, ik] and π[β|p[ik]] as an estimate of π[β|α, ik]. Thus, the accuracy of our

algorithm depends on how well this assumption holds.

Using an under-relaxation parameter (e.g., 0.95) with the Gauss-Seidel or Jacobi

methods, the computation of each πk is guaranteed to converge. However, global con-

vergence is not guaranteed in general, thus we can only set a bound on the number of

global iterations, to guard against models and decompositions that do not converge (for

Gauss-Seidel method, we have not found such a case in our experiments so far)

7.3.6 Results for our running model

We conclude this section by applying our approximation to the running model.

Table 7.1 shows the results from the exact solution and from our approximation, specifically

the average number of tokens in each place for our running example. The approximation is

quite accurate for this model: the maximum observed relative error is within 0.1%.

7.4 Experimental results

In this section, we report experimental results and related statistics on a set of

benchmarks. We will mainly discuss results of a flexible manufacturing system (FMS)

124



Approx

Place Exact Decomp.1 Decomp.2

a 0.656393 0.656393 0.656393

b 1.31279 1.31278 1.31278

c 0.328196 0.328196 0.328196

d 0.0308214 0.308214 0.308214

e 1.01541 1.01541 1.01541

Table 7.1: Running example: E[number of tokens] in each place, when N = 2.

model from [27], but also list results for other models to show the wide applicability of our

methods. All algorithms are implemented in smart [17] and all experiments are run on an

Intel Xeon 3.0Ghz workstation with 4GB RAM under SuSE Linux 9.1. For all experiments,

we set up the time bound of 3600 seconds, a memory bound of 4GB and the maximum

number of global iterations of 10,000.

7.4.1 The Flexible Manufacturing System

Fig. 7.9 models a flexible manufacturing system (FMS) [27] with N pallets to move

different types of parts to various machines. Transitions tP1, tP2, tP3, and tP12 share these

pallets in a “processor sharing” fashion; for example, the rate of tP1 is #(P1) · µ, where

#(P1) is the number of tokens in the input place of tP1, and µ = min
{

1, N
#(P1)+#(P2)+#(P3)

}

is a slowdown factor evaluating to 1 if the total number of pallets in use is at most N , or to

less than 1 if the requests exceed the pallets. Due to this dependency, under the Kronecker
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Figure 7.9: Benchmark – the FMS model.

restriction, P1, P2 and P3 must be encoded by one variable and due to the presence of im-

mediate transitions, {P1wM1, M1, P1M1}, {P2wM2, M2, P2M2}, and {P12wM3, M3, P12M3}

must also be put into one variable each; each other place can be encoded by one distinct

variable, which consists the finest Kronecker decomposition. So, for this model, the finest

decomposition uses 21 variables while the finest Kronecker decomposition uses 13 state

variable. We measure the probability Pr #(P12s) = 0.

We compare four different solution approaches.

• The Explicit solution stores R explicitly and computes π using Gauss-Seidel for the

numerical solution, with a relative stopping criterion set to 10−4, i.e., the iterations

stop when maxi∈S |π[i] − π
old[i]|/π[i] ≤ 10−4. For this solution, we use the general

state-space generation technique from [62].

• Discrete-event Simulation computes the given measure to within an interval of relative
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width 2% with 99% confidence, i.e., the number of simulation runs is such that, with

probability 0.99, the exact value of the measure is the computed point estimate plus

or minus 1%. Of course, simulation does not require state-space generation.

• The Kronecker-based approximation uses the approximate technique in [52], where R

is stored as a Kronecker expression, and is applicable only when the decomposition

of the model is Kronecker-consistent. When solving each aggregate CTMC, we use

Gauss-Seidel or Jacobi with a relative precision of 10−4, and the global fixpoint iter-

ations stop when every aggregate CTMC solution converges within one Gauss-Seidel

or Jacobi iteration. To guarantee convergence in the aggregate CTMC solutions, we

use a relaxation parameter of 0.95 for both Gauss-Seidel and Jacobi. This solution

uses the state-space generated from [19].

• Our EV∗MDD-based approximation method, always applicable, uses the same stop-

ping criteria as the Kronecker-based solution. The state-space generation technique

from [62] is employed.

7.4.2 Result tables

We report the results, runtime and number of global iterations (when applicable)

of each approach in Table 7.2. The runtime of each approach is composed of two part, except

for simulation: Tinit is the initialization time, including state-space generation, generation

of the transition rate matrix or its symbolic encoding, and setting up related computational

data structures; Tsolve under Gauss-Seidel or Jacobi is the time elapsed until convergence

after initialization.
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Explicit Solution Simulation Kronecker-based ApproximationEV∗MDD-based Approximation

Gauss-Seidel Gauss-Seidel Jacobi Gauss-Seidel Jacobi

Model N Decomp. Tinit Tsolve iters meas. time meas. Tinit Tsolve iters Tsolve iters meas. Tinit Tsolve iters Tsolve iters meas.

fms 5 Kron 64.97 33.91 785 0.3621 18.64 0.3688 0.23 0.47 22 0.56 23 0.3630 0.34 0.24 20 0.31 23 0.3630

finest / / / / / / x x x x x x 0.08 0.18 21 0.04 58 0.3630

break 2.30 3.42 22 3.64 23 0.3630 1.03 0.25 20 0.33 23 0.3630

fms 6 Kron 334.03 200.25 946 0.2952 21.21 0.3040 0.39 0.90 20 1.05 22 0.2964 0.60 0.51 20 0.64 22 0.2964

finest / / / / / / x x x x x x 0.11 0.24 22 0.03 19 0.2964

break 5.69 8.31 20 9.20 22 0.2964 2.10 0.56 23 0.67 22 0.2964

fms 10 Kron - - - - 120 0.1431 2.57 6.38 22 8.15 23 0.1319 4.61 4.44 22 5.35 23 0.1319

finest / / / / / / x x x x x x 0.32 4.31 24 0.15 17 0.1319

break 123 182 22 191 23 0.1319 22.52 4.48 22 5.38 23 0.1319

fms 20 Kron - - - - 452 0.0191 124 558 144 591 106 0.0178 140 359.08 100 454 106 0.0178

finest / / / / / / x x x x x x 1.87 45.42 98 18.03 217 0.0178

break - - - - - - 1899 370 105 - - 0.0178

Table 7.2: Experimental results: Time in sec, limit 3600sec, “x”: not applicable; “–”: out of time/memory; “/”: no need.
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Explicit Solution Simulation Kronecker-based Approximation EV∗MDD-based Approximation

Gauss-Seidel Gauss-Seidel Jacobi Gauss-Seidel Jacobi

Model N Tinit Tsolve iters meas. time meas. Tinit Tsolve iters Tsolve iters meas. Tinit Tsolve iters Tsolve iters meas.

kanban-4 5 122.38 43.13 267 0.6344 0.27 0.6288 0.06 0.00 10 0.00 10 0.6346 0.09 0.00 10 0.00 10 0.6346

kanban-4 15 - - - - 0.65 0.5282 0.93 0.12 8 0.20 8 0.5319 22.08 0.09 8 0.14 8 0.5319

kanban-16 5 / / / / / / 0.03 0.01 11 0.01 12 0.6344 0.04 0.00 11 0.00 12 0.6344

kanban-16 15 / / / / / / 0.37 0.08 8 0.12 9 0.5318 0.26 0.06 8 0.07 9 0.5318

polling 5 2.43 0.15 58 0.8889 0.98 0.8890 0.03 0.00 6 0.00 16 0.8889 0.02 0.00 6 0.00 38 0.8889

polling 30 - - - - 1.23 0.9815 1.02 0.19 31 - - 0.9815 4.36 0.09 31 - - 0.9815

robin 5 0.06 0.00 15 0.2048 0.53 0.2046 0.03 0.01 16 - - 0.2046 0.02 0.00 16 - - 0.2046

robin 15 - - - - 2.29 0.0682 0.09 0.17 47 - - 0.0682 0.11 0.02 45 - - 0.0682

slot 5 1.86 0.10 49 0.9282 0.25 0.9284 0.02 0.01 25 0.01 25 0.9249 0.02 0.00 24 0.01 25 0.9249

slot 10 - - - - 0.50 0.9326 0.05 0.10 64 0.13 63 0.9281 0.06 0.03 61 0.06 60 0.9281

Table 7.3: Experimental results for other models (Time in seconds, limit is 1800 secs), “–” indicates out of memory/time or
exceed maximum number of global iteration (10,000).“/” indicates no need to carry on the experiment.
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Kronecker EV∗MDD

Disjunctive Single root Actual R

Model N η(R) Decomp. matrs nz nodes edges nodes edges nodes edges

fms 5 6.60× 106 Kron 51 1587 1392 2942 1046 3342 39939 63587

finest x x 924 1642 2374 4527 5481 8454

fms 6 3.23× 107 Kron 51 2528 2202 4693 1330 4767 70673 116604

finest x x 1087 2055 2904 5780 7637 12202

fms 10 4.25× 109 Kron 51 9972 8642 18577 3164 15205 393995 715570

finest x x 1969 4439 6071 13454 24615 43222

fms 20 7.33× 1012 Kron 51 71142 61842 132947 14259 92260 4992281 10073732

finest x x 5059 14224 18916 46649 144515 284812

Table 7.4: Matrices/nonzeros, or nodes/edges, for Kronecker and EV∗MDD encodings of
R. “x” indicates not applicable.

Model N |S| Decomp. nodes
∑L

1 |πk|maxk |πk| η(A)
∑L

1 η(Rk) maxk η(Rk)

fms 5 8.52× 105 Kron 1669 4779 756 5712 26335 4590

finest 236 431 52 6531 1007 133

fms 6 3.84× 106 Kron 2612 8414 1372 8979 48543 8673

finest 301 579 74 9629 1433 202

fms 10 4.14× 108 Kron 9824 45694 7986 33937 291245 55055

finest 631 1421 202 37424 4007 628

fms 20 5.91× 1011 Kron 66634 547974 101871 229962 3795790 754110

finest 1946 5626 1371 280144 17932 4848

Table 7.5: Memory statistics for for EV∗MDD-based approximation.
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We also report the results for some other models in Table 7.3: kanban and polling

from [50], while robin and slot from [28]. kanban-4 and kanban-16 are the same model with

different decompositions: the first one is decomposed into 4 partitions and the second one

16.

We report the number of nonzero elements of the overall transition rate matrix, the

number of matrices and nonzero elements of a Kronecker representation, and the number of

nodes and nonzero edges of an EV∗MDD encoding in Table 7.4 for the FMS model; these can

be seen as the memory requirements for explicit solution, Kronecker-based approximation

and EV∗MDD-based approximation, respectively. For the EV∗MDD encoding, we compare

the disjunctive and the single-root representations for a potential R as discussed in 6.3; we

also build the EV∗MDD encoding actual R and list its statistics in the last two columns as

discussed in Sec. 7.3.3 for comparison.

In Table 7.5, we report detailed statistics for data structures used in our EV∗MDD

approximation for the FMS model, including size of S, number of nodes in rS , total size

(
∑L

k=1 |πk|) and maximum size (maxk |πk|) for all aggregated CTMCs, number of nonzeroes

in matrix A, and total number and the maximum number of nonzeroes for the transition

rate matrices of the aggregated CTMCs.

7.4.3 Evaluation.

Columnwise comparison. From Tables 7.2 and 7.5, we see that the explicit solution is

feasible only when the number of states is in the millions, and that our EV∗MDD-based

technique requires much less time and its results are quite accurate, most of them well
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within 1%.

As N increases, we can only compare our approximation results with those from

simulation. We realize that comparing the runtime of simulation and of our approximation

is somewhat arbitrary, since either can be made very fast or very slow by appropriately

changing the stopping criteria, but the conclusion remains that our approximation is quite

accurate, within 10%, if we assume that the simulation results are reliable.

Finally, comparing with our previous Kronecker-based approximation when possi-

ble, we observe that the initialization time for the new method is usually a little worse but

the computation time is much better in our more general setting, because using a single-root

representation instead of a disjunctive encoding saves numerous additions of rates during

the computation and because the implementation has improved. When both methods can

be run, they produces essentially the same numerical results. We also observe that Tsolve

under Gauss-Seidel and Jacobi are different because they require different number of global

iterations to finish and because, in each global iteration, they required different numbers of

local iterations to converge. We run both of them since one is not always better than the

other; however, for the explicit solution of all models, Gauss-Seidel always uses less time

than Jacobi, thus we only listed the former.

From Table 7.4, we can see that both Kronecker and EV∗MDD encodings are quite

compact, improving by several magnitude on number of nonzeroes for explicit sparse storage.

The disjunctive EV∗MDD approach uses less than twice as many edges as the nonzeroes

for Kronecker matrices, as discussed in Sec. 6.3. The single-root EV∗MDD encoding we

adopt for this chapter can use more or fewer nonzero edges than the disjunctive encoding
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and the memory usage of the three (or the latter two when the Kronecker is not applicable)

encodings are in the same order of magnitude for a given decomposition. When the model

becomes larger, the single-root encoding tends to perform better and use fewer edges than

the disjunctive encoding, due to greater node sharing. The EV∗MDD encoding the actual

matrix R (i.e., removing fictitious entries) always use more edges, at times by several orders

of magnitude, than when encoding the potential R (e.g., for FMS with N = 20, 107 versus

105 edges), which makes us adopt the latter.

Comparison between different decompositions. First, we can see that different de-

compositions do not appear to affect the results from the approximation algorithms, which

attests to the stability of the approach.

For the finest decomposition, the Kronecker-based approximation is not applicable

but this finer decomposition improves our new EV∗MDD-based approximation by a large

factor. For the same benchmark with the same parameter N , using a finer decomposition

requires much less time in the initialization stage than the coarser decomposition, by up to

several orders of magnitude (e.g., FMS with N = 20). This is mainly because a finer de-

composition results in smaller local state spaces, which benefits both state-space generation

and transition-rate-matrix generation (see Ch. 4 and Sec. 7.2), which counts for the most

part of the initialization. Under a finer decomposition, Tsolve is also greatly reduced, for

both the Gauss-Seidel and Jacobi methods. The difference for Jacobi seems more apparent;

we believe this to be model-dependent and when the model become larger, the improvement

tends to be greater. This is mainly because each global iteration takes less time to finish,

e.g., FMS with N = 20, 217 iterations require 18.03 seconds compared to 106 iterations
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requiring 453.94 seconds with a coarser decomposition. Furthermore, according to the com-

plexity discussion in Sec. 7.3.5, the size of aggregated CTMCs and the number of nonzeroes

for each Rk are greatly reduced with a finer decomposition, while the number of nonzeroes

in A still has the same order of magnitude (see Table 7.5).

A finer decomposition also greatly reduces the memory required to store R for our

EV∗MDD encoding (see Table 7.4). When the model becomes larger, a disjunctive or single-

root EV∗MDD encoding is better than the Kronecker encoding with a coarser decomposition,

e.g., FMS with N = 20, 14,224 and 46,649 edges compared to 71,142 nonzeroes.

Besides the “Kron” and “finest” decompositions, we also study the possibility to

make the Kronecker decomposition finer by breaking transitions to see if this will help

the Kronecker-based approximation. For example, since the rate of tP1
depends on the

sum of tokens in P1, P2 and P3 and each of these places can have tokens from 0 to N ,

we need to break tP1
into (N + 1)3 transitions where each transition corresponds to a

possible value of the sum, similar for tP2
, tP3

and tP12
. After this transfer, P1, P2 and P3 no

long needs to be merged to achieve Kronecker consistency, so we get a “finer” Kronecker

decomposition by adding many new transitions, which actually changes the model but we

still list it under the same model, in the “break” section of Decomposition column for

convenience of comparison. We can see from the table that this change does not help the

Kronecker-based approximation; it makes both Tinit and Tsolve much worse compared to

the “Kron” decomposition due to excessive number of transitions. For the EV∗MDD-based

approximation, it is worth noticing that the computation time Tsolve is not affected much

because we use single-root EV∗MDDs.

134



In summary, from the above observations we can conclude that (1) our new method

provides quite accurate results, less than 10% relative error in our experiments; (2) when

Kronecker-based and EV∗MDD-based approximation are both applicable for the same de-

composition, the EV∗MDD-based method uses less time to produce the same results; (3) a

finer decomposition improves the time and memory requirements of our new method, which

can be much better than the Kronecker-based approximation with a coarser decomposi-

tion, while still producing results of similar accuracy; (4) since our method is applicable

to any decomposition, we can always choose the “finest” decomposition; (5) our EV∗MDD

encoding of the transition rate matrix allows a seamless and efficient construction from the

transition relation MDDs built during state-space generation, which makes our methods

eminently applicable when paired with a symbolic state-space generation such as that of

Ch. 4; furthermore, (6) symbolic generation of the state-space and transition rate matrix

also benefits from a finer decomposition.

7.5 Conclusion

We presented an approximate numerical solution for the computation of stationary

measures for a large structured Markov model described in a compositional way. Unlike

the previous method based on a Kronecker representation of the transition rate matrix, the

new approach is completely general and can be applied to any model, regardless of how it

is structured. At the same time, the new approach is at least as efficient as the old one,

when both can be applied.

Our approximation algorithm is accurate and can be used to study large models
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whose exact numerical solution is infeasible. Since it uses the exact state space encoded as

an MDD and computes L aggregated CTMCs defined upon macro-states corresponding to

the edges at each level of the MDD, the runtime and memory costs are ultimately limited by

the number of these macro-states. This limit is enormously less stringent than for an exact

solution in practical models, as we demonstrated on a benchmark suite. Future applications

of this work will target model checking of stochastic models with an underlying CTMC.
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Chapter 8

The Decision Diagram Library

We have seen a few applications which show the effectiveness of our newly-defined

and generalized decision diagrams. Decision diagrams (DDs) can be used to encode arbitrary

sets of structured data or functions defined on them and reduced the size of the problem

by a large factor. The operations between data sets, between sets and relations, between

matrices, or anything encoded by decision diagrams, then turn to be operations applied

on decision diagram nodes. With the use of operation caches, those symbolic operations

can become much more efficient than their explicit correspondences as shown in numerous

experimental results.

This chapter introduces the Decision Diagram Library. It consists of two parts,

user’s manual and developer’s reference. This library is still in the alpha phase and will be

publicly released soon. This chapter describe the current version of the library. Please refer

to the manual file in the release package for up-to-date information.

137



8.1 User’s Manual

A user of the library is defined as a person who needs to manipulate decision

diagrams only through the exported functions or the interfaces of the DDL. The rich

set of functions included in the DDL package allows many applications to be written in

this way. The following illustration assume you are familiar with C++ basics, templates,

and some STL [3]. We use some abbreviations for convenience, lhs denotes the left-hand

side of an assignment while rhs denotes the right-hand side and we use type and class

interchangeably.

8.1.1 C++ interface

To build an application that uses the DDL C++ interface, you should add

#include "ddl.h"

using namespace DDL;

to your source files and link libddl.a to your executable. So far the library is tested under

Linux, FreeBSD, and MacOS, and work with both 32 and 64 bit systems.

8.1.2 Basic manipulation

The following fragment of code is an example to create an MDD node, modify its

arcs, and insert it into the unique table.

mdd p = g_mddf.new_node(2,2); //p.lvl = 2, p.size = 2

p.set_child(0,nodeONE); //p[0] = terminal ONE

p = g_mddf.insert_ut(p); //insert into unique table

bigint n = g_mddf.num_paths(p); //count number of paths

//leading to terminal ONE

cout << "num paths = " << n << endl;

p.print(cout); // print to screen
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The output is:

num paths = 1

Node(0x99f0270)<OCO> L2 I1 [(0:0x99f0218)]

/* the first 0x.. is p’s address, <0C0> meaning p is canonical node,

more details exposed later */

bigint is the type for arbitrary size integers in DDL, it can be just used the same way as

int.

Note that all functions are in lower case, which is the convention in DDL, as it

is in STL. We define an object instead of an pointer to an object. This is because we use

smart pointers with a reference count scheme, similar to that in the Boost [1] library. The

memory allocation and deallocation for nodes is done automatically. The assignment = will

not cause copying of the rhs but just increase the reference count of the real object under

smart pointer by 1, please refer to the developer’s manual for more details.

8.1.3 Nodes

Nodes are the least unit defined in DDL. The base class for DD nodes is nodeptr;

TDDs, EV+MDDs, and EV∗MDDs are handled by type mdd,idd, and rdd, respectively

which inherit nodeptr.

Here are predefined node constants:

• nodeONE terminal node 1 for MDDs.

• inodeONE terminal node Ω for EV+MDDs.

• rnodeONE terminal node Ω for EV∗MDDs.
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Three different terminal nodes are required to enforce type check. These three

node types cannot be explicit or implicit converted to one another.

We do not explicitly store edges pointing to δ and δ itself for TDDs, edges with

value ∞ for EV+MDDs or edges with value 0 for EV∗MDDs; those edges are NULL pointers

instead.

In the following description, “edge” i meaning the edge label with i, where i is the

index and “child” i means the destination node of edge i.

Common interface functions for type nodeptr

Here we list the common interface function for nodeptr, so they can be used by

all DD node types including mdd, idd and rdd.

• int level() const level (lvl) of node; p.lvl = 2 means p.var = x2, and negative

level is used to denote primed variables, e.g., p.lvl = −2 means p.var = x′
2.

• int size() const size of the node; setting outgoing edges with an index larger or

equal than the size is forbidden.

• int min() const return the minimal non-NULL child index.

• int max() const return the maximum non-NULL child index.

• bool is canonical() const return true iff the node is canonical (Sec. 3.2.1).

• nodeptr copy() const make a copy of the node.

• void print(ostream &os) const print the node to os in a predefined format.
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• nodeptr first(int &idx) return the first non-NULL child and assign its index to

idx, return NULL if all its children are NULL.

• nodeptr next(int &idx) return the next non-NULL child and assign its index to

idx, return NULL if it already reach the last child or all following children are NULL.

These two functions are not const because they change a built-in forward-iterator.

The following fragment shows the preferred way to iterate over all non-NULL children

int idx;

mdd ch = p.first(idx); //p:type mdd; idd, rdd are similar

while(ch){

//do something

ch = p.next(idx);

}

• nodeptr child(int idx) const return the child idx.

• void set child(int idx, nodeptr ch) set edge idx to node ch.

Function only for type mdd

• static mdd new terminal(int v) create a terminal with value v

• mdd ext() return the [∗] part of the node (Sec. 3.1.1).

• void set ext(mdd ch) set [∗] to be ch.

The following functions can be used to simulate BDDs

• mdd child0() const return child 0.

• mdd child1() const return child 1.
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• void set child0(mdd ch) set child 0 to ch.

• void set child1(mdd ch) set child 1 to ch.

Function only for types idd and rdd

evnodeptr is the template type for all EVDDs, which inherit nodeptr. idd is

actually evnodeptr<int>, while rdd is evnodeptr<double>.

T is either double or int in the following code.

• evnodeptr<T> first(int &idx, T &v) return the first non-NULL child, assign its

index to idx, assign edge idx’s value to v.

• evnodeptr<T> next(int &idx, T &v) return next non-NULL child, assign its index

to idx, assign edge idx’s value to v.

• T value(int idx) const return edge idx’s value.

• void set value(int idx, T v) set edge idx’s value to be v.

8.1.4 Forests

A forest is a group of DD nodes of the same type. A forest takes charge of node

creation/deletion, unique table check-in, node type-check and many other operations that

require input of DD nodes of the corresponding type. A forest has its own unique table and

operation cache, so nodes in different forest are not shared.

The base template class for forests is forestptr<T>, where T is the node type.

There are two forest types for mdd. mddf inherits forestptr<mdd>, which does not store the
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reduction rule vector, thus does not support CheckIn and Translate operations of Sec. 3.2.

grmddf inherits mddf to include the reduction rule vector and a vector to store |Xk|, in order

to apply the above two operations.

The forest type for handling idd and rdd is iddf and rddf, respectively, which

inherits forestptr<idd> and forestptr<rdd>, respectively.

We provide three predefined global forest objects (actually smart pointers, too)

, one for each node type, but also provide the flexibility to create a new forest. This is

especially useful when it is undesirable to share nodes of with those of another forest with

the same type. The global forest are g mddf, g iddf and g rddf.

Supported functions from common forestptr<T> interface

Here are the function supported by all forest types, some functions not covered

here are deferred to later subsections for cache and output.

• static forest<T> new forest() create a new forest.

• int height() return L.

• void set height() set L, not allowed in grmddf.

• T new node(int k [,int sz]) create a node with level k and size sz. If sz is not

set, the function will check if |Xk| is set (for grmddf) and then use |Xk| for the size.

• T insert ut(T p) insert temporal node p into the unique table and return the

canonical node. For grmddf, it is actually a CheckIn function, which takes care

checking whether the node is redundant or singular and breaks the reduction rules,
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as well as for duplicate nodes. For other forest types, it is just the UTInsert function

used to avoid duplicate nodes.

• T reduce(T p) the Reduce function.

• T transfer(nodeptr p) this function transfers node p to the same type as nodes

in the forest if it is not. We discuss the transfer from mdd to idd and rdd in Ch. 5 and

Ch. 7 respectively. The transfer from idd and rdd to mdd is the reverse operation,

and the transfer between idd and rdd is equivalent to transferring one to mdd then

transferring the resulting mdd to the other.

Functions only for type mddf

• mdd or qq(mdd p, mdd q) the union of MDDs p and q , assume ρ
Q (Fig. 2.7).

• mdd or ff(mdd p, mdd q) the union of MDDs p and q , assume skipped variables

are fully-reduced.

• mdd or fi(mdd p, mdd q) the union of MDDs p and q , assume ρ
FI or ρ

QFI

(Fig. 4.10).

• mdd or zs(mdd p, mdd q) the union of MDDs p and q , assume skipped variables

are 0-reduced (zero-suppressed).

• mdd minus qq(mdd p, mdd q) the Difference function, assume ρ
Q (Fig. 2.7).

• mdd and ff(mdd p, mdd q) the intersection of p and q, , assume skipped variables

are fully-reduced (Fig. 4.8).
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• mdd and zs(mdd p, mdd q) the intersection of p and q, , assume skipped variables

are 0-reduced (zero-suppressed).

• mdd relprod(mdd p, mdd q) the RelProd function (Fig. 4.4).

• mdd ewor zs(mdd p, mdd q) elementwise union for zero-suppressed BDDs

Fig. 8.1 shows the algorithm for elementwise union (EWOr). We use type bdd for

BDD nodes in the pseudocode. An elementwise operator · on two tuples i = (iL, ..., i1) ∈ N
L,

j = (jL, ..., j1) ∈ N
L is defined as i⊙ j = {iL ⊙ jL, ..., i1 ⊙ j1}. An elementwise operation on

two sets Y and W according a generic elementwise operator ⊙ is defined as Y ⊙U = {i⊙ j :

∀i ∈ Y, j ∈ U}. For EWOr , the operator is logical or or ∨. More details in Ch. 9.

Functions only for type grmddf

For grmddf, a reduction rule vector is explicit, and for fully-reduced variable xk,

Xk must be set explicitly. A grmddf is fixed to a certain ρ and a selection of Xk, so the

function encoded by a node is fixed. This is unlike the reduction-rule vector in mddf, which

is implicit, so that the function encoded by a node can be depending on ρ we use to interpret

it. The advantage of grmddf is that, it can support any ρ, and can support the generic

Apply function. Instead, mddf support only a limited combination of reduction rules, and

might need to define a particular set of operations to support to a specific ρ. grmddf use

strict CheckIn while mddf use UTInsert which might cost less. Between these two, the user

should choose one according to his needs If it is known that ρ is some predefined vector

such as ρ
QFI , then mddf is a good choice. If the main concern is to reduce memory usage,
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bdd EWOr(bdd p, bdd q)

1 if p = 0 or q = 0 then return 0;

2 if p = q then return p; • trivial cases

3 if CacheHit(EWOR, p, q, r) return r; • check cache

4 if q.var ≻ p.var then Swap(p, q); • commutativity

5 r ← NewNode(p.var);

6 if p.var ≻ q.var then • q.var is skipped at this level

7 r[0]← EWOr(p[0], q);

8 r[1]← EWOr(p[1], q);

9 else

10 r[0]← EWOr(p[0], q[0]);

11 r01 ← EWOr(p[0], q[1]);

12 r10 ← EWOr(p[1], q[0]);

13 r11 ← EWOr(p[1], q[1]);

14 r[1]← Or(r01, r10);

15 r[1]← Or(r[1], r11); • or(0, 1) = or(0, 1) = or(1, 1) = 1

16 r ← UTInsert(r);

17 CacheAdd(EWOR, p, q, r);

18 return r;

Figure 8.1: Elementwise union for zero-suppressed BDDs
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then probably one should adopt grmddf and switch to a ρ that result in less nodes (this is

an ongoing research).

When a grmddf forest is created, L needs to be set in order to initialize vector ρ:

grmddf f = grmddf::new_forest(l); // some l is required here

Type reduction rule is an enumeration type for reduction rules:

enum reduction_rule {Q,F,I};

After initialization of grmddf, ρ is initialized to ρ
Q and |Xk| is initialized to 0 for every k,

1 ≤ k ≤ L (this will not be a problem if there is no fully-reduced variable, and function

new node have size specified, otherwise, DDL will generate error message if you forget to

set it).

• set rr(int k, int c) set ρk = c ∈ N.

• set rr(int k, reduction rule r) set ρk = r.

• set sz(int k, int sz) set |Xk| = sz.

Note that, the above functions can only be called once per variable per forest ,

and must be invoked before any node creation. To change ρ or |Xk|, one must use

translate below.

• mdd translate(mdd p, grmddf &f) the Translate function in Sec. 3.2.2, it will

translate p into q in another grmddf f (so conforming to f’s ρ).

Functions only for type iddf

• idd min(int vp, idd p, int vq, idd q, int &v) the Minimum function (Fig. 2.8),
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〈vp,p〉 and 〈vq,q〉 are the two input edges, set v to the value of the result edge and

return the result node.

Functions only for type rddf

• rdd multiply(rdd p, rdd q, double &v) Multiply operation (Sec. 6.2.2).

• rdd add(double vp, rdd p, double vq, rdd q, double &v) Add operation

(Sec. 6.2.2).

• rdd transpose(rdd p) return the rdd node encoding the transpose of the original

matrix encoded by p. This function assume p encodes a matrix, so every path from

p should be interleaved with nodes associated to an unprimed variable and nodes

associated to a primed variable; otherwise, the function aborts and generates an error

message.

• double normalize(rdd p, rdd q, double &v) Normalize (Fig. 6.2).

• double filter(rdd p, mdd q, double &v) use a mdd q to filter out those tran-

sition rates that are not actually possible, but encoded by p in a potential encoding

(Ch. 6). Used to obtain the rdd encoding actual R.

8.1.5 Cache

Operations of decision diagrams are usually performed in a recursive manner,

which requires the use of an operation cache to store computed results. The cache check
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and add steps are almost in every forest functions in the library package, using a built-in

cache for each forest. Users can use this built-in cache as well as build their own caches.

Too small a cache will cause frequent overwriting of useful results. Too large a

cache will cause overhead, because the entire cache is scanned every time garbage collection

takes place. In DDL, we use a scheme where the cache can automatically grow or shrink.

Users can control the maximum grown size by setting parameters introduced in the next

subsection.

The type for cache is cacheptr. A cache entry is a tuple where the first component

is an OperatorCode, usually one for each operation. Any operator can be registered using

function

static cache::add operator(OperatorCode, int numOps, bool commu)

The latter two parameters for number of operands and whether it is commutative

(when numOps is 2, otherwise it is not used).

The following cache manipulating functions are member functions of forestptr

• cacheptr new cache(long n) build a cache with initial size n

• void delete cache(cacheptr t) delete cache t created by user. It is not a problem

if a user creates but forget to delete a cache, since those caches will be destroyed when

the forest is destroyed, both are done automatically for smart pointers.

• void clear cache(cacheptr t) clear all entries in the cache, e.g., when the entries

are no longer valid. This might be useful for certain functions. Built-in caches cannot

be cleared or deleted, so if there is such function to implement, use new cache.
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• cache add(...,[,cacheptr t]) add the cache entry into the built-in cache (de-

fault) or user’s cache t.

• cache hit(..., bool &hit [,cacheptr t]) search if there is a match in the

cache, and set hit to true and return the result, or assign hit to false and return

NULL.

8.1.6 Setting environment parameters

There are several DDL parameters can be set to control the execution of an appli-

cation. Below are the most important global functions for this purpose,

• set membound(size t m) set the memory bound in megabytes, this memory bound

is for the total memory usage, including nodes and caches.

• set clupthresh(long n) set clean up threshold. Details can be found in Sec. 8.2.7.

Usually, when n is larger, the application uses less time but consumes more memory

(so memory bound needs to be enlarged accordingly). The default threshold of 1000 is

adopted if it is not set. Users can experiment with them for applications with different

scale.

8.1.7 Output

This subsection introduces library functions for outputting data. It is possible

to generate a graph of the DD structure, report statistics such as node usage, number of

paths (states), and even see an “movie” showing how a DD forest grows and shrinks during

manipulations.
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Statistics

The following functions are member functions of forestptr<T>:

• int num nodes(T p) count the total number of nonterminal nodes reachable from

p.

• void num nodesnarcs(T p, long &nds, size t &arcs) count the total number

of nodes and arcs of the DD rooted at p.

• bigint num paths(T p) count the total number of different paths leading from p

to 1 for mddf, different non-∞ paths from p to Ω for iddf, or different non-0 paths

from p to Ω for rddf. Often used to compute number of states when p = enc(S).

• report(ostream &s) print statistics report, below is a sample report showing the

memory and node usage for both unique table and operation cache.

-----------------------------

Unique Table:

-----------------------------

Current memory: 4768 size: 863 #elements: 9

Maximum memory: 115044 size: 1733 #elements: 1724

Worst search length: 8

Average search length: 1.3864

-----------------------------

Operation Cache:

-----------------------------

Current memory: 4984 size: 1239 #elements: 7

Maximum memory: 13980 size: 2541 #elements: 954

Worst search length: 6

Average search length: 1.04681

Number of Cleanups 2
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Figure 8.2: A sample MDD graph generated by dot

Decision diagram graph

One can print out the DD nodes and DD structure using of following functions

(also member function of forestptr<T>):

• print nodes(ostream &os [,T p]) print p and all its derivative nodes in a top

down manner, in a predefined format; if p is omitted, will print out all nodes in the

unique table.

• print nodesdot(char *file [,T p]) print p and all its derivative nodes into a

dot file; if p is omitted, print all nodes in the unique table. One can further use tool

dot [2] to generate a .ps file. Fig. 8.2 is a sample output file with levels listed on the

left.
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The Movie module

We are building a movie module based on OpenGL, which can show the growing

and shrinking of DDs during execution of your application. More details will be presented

with the formal release of the software.
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8.2 Developer’s Reference

DDL is designed to be an open library. A Developer of the library is defined as a

person who has the source code of DDL and is willing to extend or complement the functions

of the library, or port the library to a new platform.

Sometimes, when writing a sophisticated application based on decision diagrams,

efficiency might dictate that some functions be implemented as direct recursive manipulation

of the diagrams, instead of being written in terms of existing primitive functions. This

section gives insights into the implementation of DDL for reference and to help adding your

new DD functions to the library.

8.2.1 Compile and linking

The library source is in a tar ball, ddl.tar.gz, extract all the files and run ./Make

in the src folder, it will generate the lib file libddl.a in lib folder. The doc folder contains

up-to-date documents for DDL.

Below are the other options for compiling.

Make gdb //debugging mode

Make pg //debugging model with profile

Make test //generate test executable

Make install // install the lib and header files,

// use ./configure --path= to change destination

8.2.2 Dependency tree

Fig. 8.3 shows the dependency tree for the classes in DDL. These classes defines

real objects while interface classes including nodeptr, forestptr, and cacheptr wrap a
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mddl_Node
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HashTableBase

StatsBase

DDHashTable
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MddNode

evMddNode

ForestBase

MddForest evMddForest

iMddForestrMddForest

Figure 8.3: The dependency tree for classes in DDL

real pointer to an actual object, to hide implementation details and greatly simplify use

of DDL. For example, nodeptr wraps a mddl Node pointer. For this section, when we say

node, we mean the actual node, and refer to smart pointer as pointer to the node, although

it looks like an object. You can refer to the Boost library for more details on smart pointers.

class StatsBase is the interface for statistics report. Classes inheriting it share

similar statistics computation and output format. class RefBase is the interface for a

basic reference count scheme. It enables its inherited class to be wrapped by a smart

pointer. class DDHashEntry is the interface for any type that needs be hashed in class

DDHashTable. It adds a next pointer and makes the type linkable. Besides that, it defines

functions required by DDHashTable, so they must be implemented in the derived type:

function Signature is used to compute the hash value and function Equals decide whether

two entries are equal.
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Now we introduce the four main components of DDL: node, forest, unique table,

and cache.

8.2.3 Node

The base class for DD nodes is mddl Node, which inherits DDHashEntry and RefBase

so that it is hash-able and can be wrapped by a smart pointer (nodeptr).

A mddl Node has following notable fields:

• inc the reference count.

• num marked a static data member to record the number of nodes marked for

deletion, required for garbage collection.

• Stat node status, a 4 bit struct, each bit corresponds to marked, canonical,

sparse, and dead respectively. marked and dead are used for garbage collection,

canonical is used for check-in. If canonical is not set, then this node is a temporal

node. All newly created nodes are temporal nodes.

A node is an array of pointers to its children. There are two storage methods for this

array: sparse just stores non-NULL children in a sparse array, while truncate-full

stores a full array. If the sparse bit is not set, then this node uses truncate-full

storage. All temporal node are truncate-full. Canonical nodes can use either of

these two storage methods; this is decided when a temporal node is checked into the

unique table.

Sparse storage is perfect for an forward-iterator scheme, but not good for random

156



access, and the opposite is true for truncate-full. So one should avoid using random ac-

cess function such as mdd::child(idx) for sparse nodes, and use first()-next() scheme

instead for efficiency.

8.2.4 Forest

The base class for forests is a template class Forest<T>, which inherits RefBase

and StatsBase, so that it can be wrapped into a smart pointer (forestptr) and have

standard statistics report (function report())

The most important functions of a forest are providing type check, providing node

manipulation functions and storing the unique table and cache.

A forest class which inherit from Forest<T> can only work on node type of T, thus

avoiding errors due to mixing different types of nodes. A forest has its own unique table to

allow node sharing only inside the forest.

A forest keeps a built-in cache and a link-list of user-defined caches; when a cleanup

(garbage collection) is invoked or the forest is destroyed, the forest is responsible to traverse

its caches and then the unique table, to delete all entries and nodes, or destroy them entirely.

8.2.5 Unique table

The unique table (UT) is a DDHashTable with real DD node as entries, not pointers

or smart pointers. It is implemented as an array of linked-lists. A unique table is affiliated

with a forest and it behaves as follows

• When there is UTInsert call (forestptr::insert ut), it computes the hash value of
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the temporal node, checks if there is a duplicate in the UT already; if yes, it returns

the one already in the UT; otherwise, it make a copy of the node and changes the

storage type to an optimal one, then puts the copy into UT and returns the pointer

to it.

• When there are too many nodes or too few nodes, UT will grow or shrink accordingly.

• It provides a RemoveSatisfying() function to remove obsolete nodes (with marked

bit set) during cleanup.

8.2.6 Cache

The base class for caches is a class Cache, which inherits RefBase and StatsBase,

so that it can be wrapped into a smart pointer (cacheptr) and has standard statistics report

(function report())

A cache is basically a set of hash tables, each to deal with a type of cache entries.

A cache entry consists of three parts, OperatorCode, a list of operands and a list of results.

The variance in the number and type of operands as well as of results makes for different

cache entry types.

One can define new cache entry types and for each new type, a overloaded

RemoveSatisfying() in the Forest is required class to ensure obsolete entries are deleted

correctly during cleanup.
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8.2.7 Garbage Collection

The garbage collection in DDL is performed through reference counting with a

“lazy” policy. With the adoption of smart pointers, increasing and decreasing reference

count as well as clean up is done automatically. Below are the details.

• When a node is referenced, either through assignment (=), or setting an edge

(nodeptr::set child), its reference count increases by 1. If its marked bit is set,

then this node is revived and the marked bit is unset, and mddl Node::num marked

decreases by 1.

• When a node is dereferenced, e.g., the nodeptr holding it now assigned to a new

node, or edges pointing to it pointing to other nodes, its reference count decrease by

1. If the reference count become 0, the marked bit is set and mddl Node::num marked

increases by 1.

• Before a forest creates a new node, it checks if mddl Node::num marked exceeds the

clean up threshold (set clupthresh). If so, the clean up is invoked in this forest.

• Then, the forest traverses UT, checks all nodes that are marked, and recursively

dereferences its children and sets the dead bit for any node that has 0 reference count.

• Then, the forest traverse all its caches and deletes entries that have one operand or

result with the dead bit set (obsolete entries).

• Finally, the forest deletes all nodes in the unique table with dead bit set ; since those

nodes are not reference by other node or external pointers, their deletion is safe.
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8.2.8 A sample function

Now we illustrate code of the or qq function in DDL, as a guide for writing a

library functions. All library functions share some common properties, note the comments.

// Union assuming no skipping variables

mdd

//=============================

mddf::or_qq(

//=============================

mdd p,

mdd q)

{

// terminal cases are always the first to check

if(!p) {

MDDL_ASSERT(!q || q.is_canonical());

return q;

} else if(!q){

MDDL_ASSERT(!p || p.is_canonical());

return p;

}

// canonical nodes are required for all operations that need cache

MDDL_ASSERT(p.is_canonical() && q.is_canonical());

// trivial cases

if (p == q) return p;

// use assertions to ensure correctness

int k = p.lvl();

int kq = q.lvl();

MDDL_ASSERT(k == kq);

// commutativity,

if (p > q) SWAP(p,q);

//check cache

bool hit;

mdd answer = cache_hit(MDD_UNION_QQ, p, q, hit);

if (hit) return answer;

// use the maximum size for union

int sz = MAX(p.size(),q.size());
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answer = new_node(k,sz);

// the standard forward access

int chdp_idx,chdq_idx;

mdd chdp = p.first(chdp_idx);

mdd chdq = q.first(chdq_idx);

while(chdp && chdq){

// consider all possible cases

if(chdp_idx < chdq_idx){

answer.set_child(chdp_idx,chdp);

chdp = p.next(chdp_idx);

} else if (chdp_idx > chdq_idx){

answer.set_child(chdq_idx,chdq);

chdq = q.next(chdq_idx);

} else {

// recursive invoke on children

mdd chd = or_qq(chdp,chdq);

answer.set_child(chdp_idx,chd);

chdp = p.next(chdp_idx);

chdq = q.next(chdq_idx);

}

}

// don’t forget the rest of node

while(chdp){

answer.set_child(chdp_idx,chdp);

chdp = p.next(chdp_idx);

}

while(chdq){

answer.set_child(answer,chdq_idx,chdq);

chdq = q.next(&chdq_iter, &chdq_idx);

}

//ut insertion, we should always return a canonical node

answer = insert_ut(answer);

// add to cache!

cache_add(MDD_UNION_QQ, p, q, answer);

// done

return answer;

}
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Chapter 9

Summary and Future Research

Decision diagrams are key data structures for symbolic verification. In this the-

sis, we proposed a new canonical form of decision diagrams, namely finite ordered multi-

way terminal-valued decision diagrams (TDDs), which generalize traditional multi-terminal

multi-way decision diagrams by associating each variable with a reduction rule and allow

an infinite variable domain. We have illustrate the suitability and effectiveness of TDDs

through a new state-space generation framework for asynchronous models and its seamless

adaption on a type of timed synchronous models.

To efficiently encode large transition rate matrices, we devised a new type of edge-

valued decision diagrams that retains the compactness of previous Kronecker encoding,

while being applicable to arbitrary CTMC decompositions. We integrated this new data

structure into an approximate steady-state solution for large ergodic models.

These decision diagram algorithms make logic and timed verification more effi-

cient and more tractable for large-scale systems. For users who would like to adopt these
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algorithms or developers who would like to explore more applications of this extrinsically

simple but intrinsically powerful data structure, we also provide the Decision Diagram Li-

brary, with a friendly interface to manipulate decision diagrams.

Although the applications in thesis are limited to verification, decision diagrams

are suitable to encode any structured data set or function and are potentially useful beyond

verification, as an alternative to ordinary explicit algorithms.

In the following, we suggest some promising future research directions or topics,

which would extend the work of thesis, and hopefully would provide some inspiration for

computer science researchers.

Automatically discovery of proper reduction rule vectors for TDDs, mentioned

in Ch. 3 and Ch. 8. We know a different ρ may result in a different TDD size (i.e., number of

nodes). When memory is the main concern, we might want to use as few nodes as possible.

This would require a monitor that keeps checking the TDD, discovers the good vector for

current time point, and updates it periodically.

Use infinite domain beyond transition relation encodings. Transition relation en-

coded by MDDs paired with the domain N is a perfect match for on-the-fly state-space

generation, as shown in Ch. 4. We limited our use of infinite domain to encoding a transi-

tion relation in this thesis and we assume the reachable state space S is finite. When S is

infinite, it is possible that we can adopt this infinite domain and use a finite MDD to encode

it. This suggests a new way to model checking a restrict class of infinite-state systems.
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Reachability analysis for a timed system with an infinite set of possible firing

times. This is an extension of work done in Ch. 5. If, for a transition t, F(t) has infinite

number of possible fire times, but there exists a integer nt such that {k ∈ N : k > nt} ⊆

F(n), then F(n) can be encoded in an MDD where the variable corresponding to t has

domain N.

A similar approach might work when F(t) is a regular infinite set, for example,

all even numbers greater than some nt. Another extension is to allow F to be a dense set,

this requires extending MDDs to encode dense sets and could be an interesting new class

of decision diagrams.

Approximation methods for CSL [7] model checking. Steady-state measures are

important performance properties that can be expressed by continuous stochastic logic

(CSL) [7]. However, the explicit computation of this measure might not be feasible when

the CTMC is large. Our EV∗MDD-based approximation technique may be applied in this

field when an approximate steady-state measure is adequate.

Applications of elementwise operations. We mentioned the elementwise union oper-

ation (EWOr) in Fig. 8.1. Distinguished from the Apply type of operations, this operation

applies to each component of the elements and on all pairs of elements (Cartesian product)

of two sets. If the size of the two sets are N and M , then complexity of the explicit compu-

tation is O(N ·M · L), but a symbolic operation based on BDDs/MDDs would reduce this

complexity to O(
∑L

k=1 Nk ·Mk), where Nk and Mk is the number of nonzero arcs at level

k. In practice, due to the node sharing and the operation cache, the symbolic operation
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bdd KeepMinimal(bdd p)

1 if p = 1 then return 1;

2 if p = 0 then return 1; • terminal cases

3 if CacheHit(MINIMAL, p, r) then return r;

4 r0 ← KeepMinimal(p[0]);

5 r1 ← KeepMinimal(p[1]);

6 if r0 = r1 then return r0; • early return

7 r ← NewNode(p.var);

8 r[0]← r0;

9 u← EWOr(r0, r1);

10 r[1]← Difference(r1, u); • delete non-minimal elements

11 r ← UTInsert(r);

12 CacheAdd(MINIMAL, p, r);

13 return r;

Figure 9.1: The KeepMinimal algorithm.

would be much more efficient than its explicit correspondent.

An immediate application for EWOr is to find the minimal elements/tuples in a

set. We define “≥” on two tuples i = (iL, ..., i1) ∈ N
L, j = (jL, ..., j1) ∈ N

L, such that

i ≥ j⇔ ∀k, 1 ≤ k ≤ L, ik ≥ jk. A tuple i ∈ Y is minimal if there does not exist j ∈ Y, j 6= i,

such that i ≥ j. Then, following Algorithm KeepMinimal in Fig. 9.1 keeps only the minimal

elements for a set of binary tuples encoded by BDD p. The algorithm uses a divide-and-

conquer paradigm, typical of decision diagram recursions, based on the observation that if

j 6= i, then i ≥ j⇔ or(i, j) = i.

EWOr can be extended to MDDs, by letting the elementwise operator to be max

instead of or. More symbolic elementwise operations and their applications are to be dis-

covered.
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