
UC San Diego
Technical Reports

Title
Dahu: Improved Data Center Multipath Forwarding

Permalink
https://escholarship.org/uc/item/6ps421k5

Authors
Radhakrishnan, Sivasankar
Kapoor, Rishi
Tewari, Malveeka
et al.

Publication Date
2013-02-11
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6ps421k5
https://escholarship.org/uc/item/6ps421k5#author
https://escholarship.org
http://www.cdlib.org/


Dahu: Improved Data Center Multipath Forwarding

Sivasankar Radhakrishnan∗, Rishi Kapoor∗, Malveeka Tewari∗,

George Porter∗, Amin Vahdat†∗

∗ University of California, San Diego † Google Inc.

{sivasankar, rkapoor, malveeka, gmporter, vahdat}@cs.ucsd.edu

ABSTRACT

Solving “Big Data” problems requires bridging massive quan-

tities of compute, memory, and storage, which requires sig-

nificant amounts of bisection bandwidth. Topologies like Fat-

tree [4], VL2 [18], and HyperX [3] achieve a scale-out de-

sign by leveraging multiple paths from source to destination.

However, traditional routing protocols are not able to effec-

tively utilize these links while also harnessing spare network

capacity to better statistically multiplex network resources.

In this work we present Dahu1, a switch mechanism for ef-

ficiently load balancing traffic in multipath networks. Dahu

avoids congestion hot-spots by dynamically spreading traf-

fic uniformly across links, and forwarding traffic over non-

minimal paths where possible. By performing load balanc-

ing primarily using local information, Dahu can act more

quickly than centralized approaches, and responds to failure

gracefully. Our evaluation shows that Dahu delivers up to

50% higher throughput relative to ECMP in an 8,192 server

Fat-tree network and up to 500% improvement in throughput

in large scale HyperX networks with over 130,000 servers.

1. INTRODUCTION

The scale and complexity of data center networks has grown

with the size, scope, and ubiquity of data center hosted ap-

plications. The network fabric plays a critical role in bridg-

ing compute, storage, and memory, and is subject to sev-

eral strict requirements: delivering high bisection bandwidth

with low latency, ensuring predictable performance, and grace-

fully handling the failure of individual switches and links.

Of particular relevance is effectively utilizing the aggre-

gate capacity of multiple network links. An ideal network

topology would perhaps consist of a core with a small num-

ber of switches for fault tolerance, each switch with per-

haps hundreds of links whose aggregate capacity is propor-

tional to the product of the number of hosts in the data center

and their individual NIC speed. Unfortunately, for data cen-

ters with tens of thousands of servers with 10Gbps NICs,

this would require individual Tbps scale links in the core.

Since such scale up bandwidth is not possible for individ-

ual links, new network topologies leverage multiple, paral-

1Dahu is a legendary creature well known in France with legs of
differing lengths.

lel paths between sources and destinations [3, 4, 18, 19, 32]

spread across thousands of switches with link speeds that

roughly match the speed of the host NICs. However, current

switch forwarding protocols are not able to effectively uti-

lize massive multipath networks, resulting in an opportunity

to rethink the forwarding plane in modern networks.

Today, data center switches are built for Equal-Cost Multi-

Path Routing or ECMP, which performs static hashing of

flows across a fixed set of equal-cost links to a destination.

As a result, they restrict the network topology. Simple hi-

erarchical topologies like Fat-trees [4] can leverage shortest

path forwarding; however recently proposed direct network

topologies like HyperX, BCube, and Flattened Butterfly [3,

19, 22] employ paths of different lengths to deliver large ag-

gregate bandwidth among servers, leaving these non-shortest

paths out of consideration for ECMP forwarding. Thus, dur-

ing periods of localized congestion and hot-spots, traffic to

a destination could potentially achieve higher throughput, if

these alternate longer paths are also used for forwarding.

Further, even in hierarchical networks, ECMP makes it

hard to route efficiently under failures. In the presence of

failures, the network is no longer completely symmetric, and

some non-shortest paths can be utilized to improve network

utilization.

Commodity switches are designed this way because data

center topologies were typically hierarchical and the net-

works were of sufficiently small scale that failures were not a

big issue. These restrictions on the topology and routing also

mean that higher level adaptive protocols like MPTCP [29]

are unable to take advantage of the full capacity of the under-

lying network because all the paths are not exposed to them

through routing/forwarding tables.

Two primary challenges must be addressed to enable non-

shortest-path routing. First, care must be taken to avoid per-

sistent forwarding loops. Second, longer paths result in higher

network latency and consume more bandwidth hops, so they

should only be leveraged when there is not sufficient band-

width along shortest paths. Thus, we require a loop-free mech-

anism for utilizing non-shortest-paths that balances the need

for higher throughput with the need to control end-to-end

network latency.

1





the network, probing for congestion along the paths. MPTCP

improves the achieved network bandwidth by transferring

more data over less congested subflows thereby avoiding ad-

ditional data transfer over already congested paths. However,

MPTCP only decides how much data to send on each sub-

flow, the paths for the subflows are chosen by the network.

In topologies like HyperX with many non-shortest paths be-

tween hosts, there is still a need for better path selection in

the switches to help MPTCP effectively leverage the path

diversity. Without this support, MPTCP will require a large

number of subflows to probe all the different paths, mak-

ing it impractical for short flows. We illustrate this through

simulations in Section 6.5. Exposing non-shortest paths to

MPTCP would further require additional network support

and changes to routing schemes for ensuring that packets

do not loop forever in the network and eventually reach their

destinations without significantly increasing path lengths. This

suggests that a complementary in-network technique which

can reduce congestion for short lived flows and select a set

of good paths over which MPTCP transmits data for longer

flows would be beneficial.

Centralized or host based traffic engineering solutions are

effective in improving bandwidth utilization of large long

lived flows. Decentralized approaches, on the other hand,

can react faster for better managing short flows as they rely

on just local information or minimal knowledge from peers.

Such decentralized approaches can complement the other

approaches which benefit long lived flows and help achieve

global optimality over longer time scales. Dimensionally Adap-

tive Load balanced (DAL) routing [3] is a technique special-

ized for HyperX networks which performs per-packet adap-

tive routing based on local information. However, DAL re-

quires HyperX specific modifications to switches and packet

headers. It might also necessitate modifications to the end

host transport protocol to deal with extensive packet reorder-

ing that could occur due to per-packet adaptive routing. We

seek to design a more generic solution where the switch

hardware is not tied to topology and one which wouldn’t

cause as much in-network reordering as a per-packet load

balancing approach.

Dahu requirements and design decisions: Dahu is driven

by several design goals. First, any proposed changes to switch

hardware should be simple enough to be realizable with cur-

rent technology. The switch state required to implement the

new features should be small. Switches should still make

flow level forwarding decisions–i.e. packets of a particular

flow should follow the same path through the network to

the extent possible. This avoids excessive packet reordering,

which can have undesirable consequences for TCP. Mov-

ing flows to alternate paths periodically at coarse time scales

(e.g., of several RTTs) is acceptable.

Although Dahu supports non-minimal routing, it must pre-

fer shorter paths when possible. Using shorter paths results

in fewer switch hops and likely lower end-to-end latency.

We only start using non-minimal paths when shortest paths

do not have sufficient capacity. We choose to load balance

traffic primarily using local decisions in each switch which

helps react quickly to changing traffic demands and tem-

porary hot spots. In addition, our mechanisms must inter-

operate with other routing and traffic engineering schemes.

We allow that some traffic in the network may not be re-

routable using our local load balancing heuristics, e.g., if

there are some bandwidth reservations along certain paths,

or if a centralized controller like Hedera is placing elephant

flows along globally optimal paths [5].

Failures need to be handled gracefully, and re-routing of

flows upon failure should only affect a small subset of flows

(so that the effect of failures is proportional to the region of

the network that has failed). Load balancing should be sup-

ported at small time granularity of a few milliseconds. To

prevent traffic herds, we should not move many flows in the

network around when a single path is congested. Rather, it

should be possible to make finer-grained decisions and mi-

grate a smaller subset of flows to alternate paths. While we

evaluate against two major multipath network topologies,

Dahu is not dependent on network topology and the same

switches should be usable in different networks.

Dahu tries to achieve these targets through a combina-

tion of switch hardware and software enhancements. In Sec-

tion 3, we first illustrate what goes into the switch by de-

scribing the novel Dahu hardware primitives. Then, we de-

scribe enhancements to the switch software and control logic

to take advantage of these hardware primitives to better uti-

lize the network in Section 4.

3. SWITCH HARDWARE PRIMITIVES

Dahu proposes new hardware primitives which enable bet-

ter ways of utilizing the path diversity in data centers and

addresses some of the limitations of ECMP.

3.1 Port Groups With Virtual Ports

The goal of ECMP is to spread traffic over multiple equal-

cost paths to a particular destination. Internally, the switch

must store enough state to track which ports can be used to

reach a particular destination prefix. A common mechanism

is storing a list of egress ports in the routing table, repre-

sented as a bitmap. Dahu augments this approach by adding

a layer of indirection: each router prefix points to a set of vir-

tual ports, and each virtual port is mapped to a physical port.

In fact, the number of virtual ports can be much larger than

number of physical ports. We define a port group as a col-

lection of virtual ports mapped to their corresponding phys-

ical ports (a many-to-one mapping). The forwarding table is

modified to allow a pointer to a port group for a particular

destination prefix instead of a physical egress port. When

multiple egress choices are available for a particular desti-

nation prefix, the forwarding table just points to a particular

port group.

When a packet is received by the switch, it looks up the

port group for the destination prefix from the forwarding ta-

3





For each destination prefix in the routing table, we store

an allowed port bitmap, which indicates the set of egress

ports which are allowed to be used to reach the prefix. The

allowed port bitmap is as wide as the number of egress ports

in the switch, and only the bits corresponding to the allowed

egress ports for the destination prefix are set. A potential so-

lution to restrict forwarding to the allowed egress ports is to

compute a hash for the packet and check if the correspond-

ing port group virtual port maps to a allowed egress port. If

the egress port is not allowed, then we compute another hash

function for the packet and repeat this process until we find

an allowed egress port.

To pick an allowed port more efficiently, we propose a par-

allel version of this scheme where the switch computes 16

different hash functions for the packet in parallel. The egress

ports corresponding to these virtual ports are looked up from

the port group and those egress port numbers in bitmap form

are bitwise AND’d with the allowed port bitmap for the des-

tination prefix from the routing table. The result is fed into

a priority encoder to pick the first valid allowed egress port

among the hashed choices. In case none of the 16 hash func-

tions picked an allowed egress port, we generate another set

of 16 hash values for the packet and retry. This may be re-

peated some fixed number of times (say 2) to bound the la-

tency for output port lookup. If an allowed egress port is still

not found, we just fall back to randomly picking one of the

allowed egress ports, i.e. we ignore the port group mecha-

nism for this packet and just hash it on to one of the allowed

egress ports directly. We explore other uses of the allowed

port bitmap in Section 4.1.2.

Figure 2 illustrates the switch egress port lookup pipeline

incorporating both port groups and allowed egress port mech-

anisms. We propose that the switch routing table have sup-

port for some fixed number of such allowed port bitmaps

for each prefix and have a selector field (say a 2 bit field)

to indicate which bitmap should be used. The selector 00

refers to an allow all bitmap and indicates a hardwired de-

fault bitmap Ball where all bits are set, i.e. all member ports

of the port group are allowed. Selector 01 refers to a shortest

path bitmap Bshort which is an always available bitmap that

corresponds to the set of shortest path egress ports to reach

the particular destination prefix. Unlike the Ball bitmap, Bshort

is not in-built and has to be updated by the switch control

logic if port group forwarding is used for the prefix. Its use

is described in Sections 3.3 and 4.1.2. Any available higher

numbered bitmap selectors may be used for restricting the

set of egress ports based on other considerations for the des-

tination prefix.

3.3 Eliminating Forwarding Loops

Dahu uses non-shortest path forwarding to avoid conges-

tion hot-spots when possible. The number of times a par-

ticular packet has been derouted is referred to as the der-

outing count. An immediate concern with derouting is that

it can result in forwarding loops. Dahu prevents persistent

forwarding loops in the following manner. Network packets

are augmented with an additional 4-bit field in the IP header

which stores the derouting count. Switches increment this

field only if they choose a non-minimal route for the packet.

Servers set this field to zero when they transmit traffic. In

practice, the derouting count need not be a new header field,

e.g., part of the TTL field or an IP option may be used in-

stead.

When a switch receives a packet, it checks the header and

if the derouting count has reached a maximum derouting

count threshold for the network, then it only uses shortest

path forwarding for the packet. This is enforced using the al-

lowed port bitmap mechanism described earlier. The Bshort

allowed port bitmap for the destination prefix is used when-

ever the derouting count has reached the maximum thresh-

old. This ensures that the packet will eventually be forced

along the shortest paths if the maximum derouting count is

reached. The derouting count is also used while comput-

ing the packet hash. If a packet loops through the network

and revisits a switch, its derouting count will have changed.

The resulting change to the hash value will likely forward

the packet along a different path to the destination. Each

switch also ensures that a packet is not forwarded back on

the ingress port that the packet arrived on. Further, in prac-

tice, only a few deroutings are required to achieve benefits

from non-minimal routing and the derouting count threshold

for the network can be configured by the administrator as

appropriate. These factors ensure that any loops that occur

due to non-minimal routing are infrequent and don’t hinder

performance.

As with current distributed routing protocols, transient loops

may occur during routing convergence in certain fault sce-

narios. Dahu uses standard IP TTL defense mechanisms to

ensure that packets eventually get dropped if there are loops

during routing convergence.

4. SWITCH SOFTWARE

In this section, we look at how Dahu’s hardware primi-

tives can more efficiently utilize the network’s available ca-

pacity. We first describe how to leverage non-minimal paths,

and then look at dynamic traffic engineering to address lo-

cal hash imbalances in switches. These techniques rely on

Dahu’s hardware primitives, but are independent of each other

and may be deployed separately.

4.1 Non-Minimal Routing

As described earlier, ECMP constrains traffic routes to the

set of shortest paths between any pair of switches. While

this keeps path lengths low, it can also impose artificial con-

straints on available bandwidth. For example, in direct con-

nect networks like HyperX [3], there are many paths from a

source to a destination providing large aggregate bandwidth,

but not all paths are of the same length. The non-shortest

paths may not have any other traffic on them and will unfor-

tunately remain unused if the forwarding scheme only uses

5





can forward a packet only to neighbors along offset dimen-

sions. If a packet is allowed to use a non-minimal route at a

switch, it can only be derouted along already offset dimen-

sions. Once a particular dimension is aligned, we do not fur-

ther deroute the packet along that dimension. We call this

scheme Dahu constrained routing. For this technique, we

create one port group for each possible set of dimensions in

which the switch is offset from the destination switch. This

uses 2L port groups where L, the number of dimensions in

a HyperX is usually small, e.g., 3–5. This allows migrating

groups of flows between physical ports at an even smaller

granularity than with a single port group.

This technique is largely inspired by Dimensionally Adap-

tive, Load balanced (DAL) routing [3]. However, there are

some key differences. DAL uses per-packet load balancing,

whereas we use flow level hashing to reduce TCP reordering

effects. DAL allows at most one derouting in each offset di-

mension, but we allow any number of deroutings along off-

set dimensions as long as the derouting count threshold is not

reached. This means that a switch S1 can deroute traffic to a

neighbor S2 along an offset dimension when it does not have

sufficient capacity to reach the destination along the shortest

paths. In case of DAL, S2 cannot further deroute along this

dimension even if it does not have sufficient capacity along

shortest paths.

4.2 Traffic Load Balancing

Per-packet uniform distribution of traffic across available

paths from a source to destination can theoretically lead to

very good network utilization in some symmetric topologies

such as fat trees. But this is not used in practice due to the

effects of packet reordering and faults on the transport pro-

tocol. ECMP tries to spread traffic uniformly across shortest

length paths at the flow level instead. But due to its static

nature, there can be local hash imbalances. Dahu presents

a simple load balancing scheme using local information at

each switch to spread traffic more uniformly.

Each Dahu switch performs load balancing with the ob-

jective of balancing or equalizing the aggregate load on each

physical egress port. This also balances the bandwidth head-

room on each switch port, so TCP flows can increase their

rates. This simplifies our design, and enables us to avoid

more complex approaches for demand estimation. When mul-

tiple egress ports are available for forwarding, we can remap

virtual ports between physical ports, thus getting fine grained

control over traffic across ports. Intuitively, in any port group,

the number of virtual ports that map to any member port is

a measure of the fraction of traffic from the port group that

gets forwarded through that member port. We now describe

the constraints and assumptions under which we load bal-

ance traffic at each switch in the network.

4.2.1 Design Considerations

Periodically, each switch uses local information to rebal-

ance traffic. This allows the switch to react quickly to changes

in traffic demand and rebalance port groups more frequently

than a centralized approach or one that requires information

from peers. Note that this design decision is not fundamental–

certainly virtual port mappings can be updated through other

approaches. For different topologies, more advanced schemes

may be required to achieve global optimality such as through

centralized schemes.

We assume that each physical port might also have some

traffic that is not re-routable. So Dahu’s local load balancing

scheme is limited to moving the remainder of traffic within

port groups. Dahu’s techniques can inter-operate with other

traffic engineering approaches. For example, a centralized

controller can make globally optimal decisions for placing

elephant flows on globally efficient paths in the network [5],

or higher layer adaptive schemes like MPTCP can direct

more traffic onto uncongested paths. Dahu’s heuristic cor-

rects local hashing inefficiencies and can make quick local

decisions within a few milliseconds to avoid temporary con-

gestion. This can be complemented by a centralized or al-

ternate approach that achieves global optimality over longer

time scales of few hundreds of milliseconds.

4.2.2 Control Loop Overview

Every Dahu switch periodically rebalances the aggregate

traffic on its port groups once each epoch (e.g., every 10ms).

At the end of each rebalancing epoch, the switch performs

the following 3 step process:

Step 1: Measure current load: The switch collects the

following local information from hardware counters: (1a) for

each port group, the amount of traffic that the port group

sends to each of the member ports, and (1b) for each egress

port, the aggregate bandwidth used on the port.

Step 2: Compute balanced allocation: The switch com-

putes a balanced traffic allocation for port groups, i.e. the

amount of traffic each port group should send in a balanced

setup to each of its member ports. We describe two ways of

computing this in Sections 4.3 and 4.4.

Step 3: Remap port groups: The switch then determines

which virtual ports in each port group must be remapped to

other member ports in order to achieve a balanced traffic al-

location, and changes the mapping accordingly. We have the

current port group traffic matrix (measured) and the com-

puted balanced traffic allocation matrix for each port group

to it member egress ports.

As described in Section 3.1, a switch only maintains coun-

ters for the total amount of traffic from a port group to each

of its member ports. We assume that all virtual ports that

map to a particular member port are responsible for an equal

share of traffic to the member port through that port group.

We use the port group counters to compute the average traffic

that each virtual port is responsible for. Then, we remap an

appropriate number of virtual ports to other member ports

depending on the intended traffic allocation matrix using a

first-fit heuristic. In general, this remapping problem is sim-

ilar to bin packing.

7





to the failed egress port Pf . When a physical port comes up,

some virtual ports automatically get mapped to it the next

time port groups are balanced.

5. DEPLOYABILITY

Deployability has been an important goal during the de-

sign of Dahu. In this section, we look at two primary re-

quirements for adding Dahu support to switches: the logic to

implement the functionality, and the memory requirements

of the data structures.

To our knowledge, existing switch chips do not provide

Dahu-like explicit hardware support for non-minimal rout-

ing in conjunction with dynamic traffic engineering. How-

ever, there are some similar efforts including Broadcom’s

resilient hashing feature [11] in their modern switch chips

which is targeted at handling link failure and live topology

updates, and the Group Table feature in the recent Open-

Flow 1.1 Specification [28] which uses a layer of indirec-

tion in the switch datapath for multipath support. The in-

creasing popularity of OpenFlow [27], software defined net-

works [24], and custom computing in the control plane (via

embedded ARM style processors in modern switch silicon)

indicates a new trend that we can leverage where large data

centers operators are adopting the idea of a programmable

control plane for the switches. The need for switch hard-

ware modification to support customizable control plane for

switches is no longer a barrier to innovation, as indicated by

the deployment of switches with custom hardware by com-

panies like Google [20].

To implement the hardware logic, we also need sufficient

memory in the chip to support the state requirements for

Dahu functionality. We now briefly estimate this overhead.

Consider a large Dahu switch with 128 physical ports, 64

port groups with 1,024 virtual ports each, 16,384 prefixes

in the routing table, and support for up to two different al-

lowed port bitmaps for each prefix. The extra state required

for all of Dahu’s features is a modest 640KB. Of this, 64KB

each are required for storing the virtual to physical port map-

pings for all the port groups, and the port group counters per

egress port. 512KB is required for storing two bitmaps for

each destination prefix. A smaller 64 port switch would only

need a total of 352KB for a similar number of port groups

and virtual ports. This memory may come at the expense

of additional packet buffers (typically around 10MB); how-

ever, recent trends in data center congestion management [7,

6] indicate that trading a small amount of buffer memory for

more adaptive routing may be worthwhile.

6. EVALUATION

We evaluated Dahu through flow-level simulations on both

HyperX and Fat-tree topologies. Overall, our results show:

1. 10-50% throughput improvement in Fat-tree networks,

and 250-500% improvement in HyperX networks com-

pared to ECMP.

2. With an increase of only a single network hop, Dahu

achieves significant improvements in throughput.

3. Dahu scales to large networks of over 130,000 nodes.

4. Dahu can complement MPTCP by achieving higher

throughput with fewer subflows.

The evaluation seeks to provide an understanding of Dahu’s

effect on throughput and hop count on different network

topologies under different traffic patterns. We start by look-

ing at HyperX networks, large and small, and measure through-

put as well as expected hop count for different workloads.

We them move on to evaluate Dahu on an 8,192 host Fat-

tree network using two communication patterns. We con-

clude the evaluation section by presenting the methodology

we use to validate the accuracy of our simulator.

6.1 Simulator

We evaluated Dahu using a flow level network simula-

tor that models the performance of TCP flows. We used the

flow level simulator from Hedera [5], and added support for

decentralized routing in each switch, port groups, allowed

port bitmaps, and the load balancing heuristic. The Dahu-

augmented Hedera simulator evaluates the AIMD behavior

of TCP flow bandwidths to calculate the total throughput

achieved by flows in the network.

In addition, we also built a workload generator, that gener-

ates open-loop input traffic profiles for the simulator. It cre-

ates traffic profiles with different distributions of flow inter-

arrival times and flow sizes. This allows us to evaluate Dahu’s

performance over a wide range of traffic patterns, includ-

ing those based on existing literature [8, 18]. Modeling the

AIMD behavior of TCP flow bandwidth instead of per-packet

behavior means that the simulator does not model TCP time-

outs, retransmits, switch buffer occupancies and queuing de-

lay in the network. We chose to make these trade-offs in

the simulator to evaluate at a large scale–over 130K servers,

which would not have been possible otherwise. We simu-

lated five seconds of traffic in each experiment, and each

switch rebalanced port groups (16 highest loaded ports) and

recomputed prefix bitmaps every 10ms.

6.2 HyperX Networks

We first evaluate Dahu with HyperX networks which typ-

ically have many paths of differing lengths between a source

and a destination. This exercises Dahu’s non-shortest path

selection algorithm as well as its load balancing capabil-

ity. We simulate a (L=3, S=14, T=48) HyperX network with

1Gbps links, taken from [3]; where L = number of dimen-

sions, S = number of switches in each dimension, T = num-

ber of servers connected to each switch. This models a large

data center with 131,712 servers, 2,744 switches and an over-

subscription of 1:8.

We seek to measure how the use of non-minimal paths

and dynamic load balancing affects performance as we vary

the allowed derouting threshold and non-minimal routing

9



scheme (constrained or not) and different traffic patterns. For

evaluation, we run simulations for Clique and Mixed traffic

patterns (described next), and compare the throughput, av-

erage hop count and edge utilizations for Dahu and ECMP.

In the graphs, Dahu-n refers to Dahu routing with at most n

deroutings. C-Dahu-n refers to the similar Constrained Dahu

variant.

6.2.1 Clique Traffic Pattern

A Clique is a subset of switches and associated hosts that

communicate among themselves, where each host commu-

nicates with every other host in its clique over time. This

represents distributed jobs in a data center which are usu-

ally run on a subset of the server pool. Often a job runs on

a few racks of servers. There could be multiple such cliques

(or jobs) running in different parts of the network. We pa-

rameterize this traffic pattern by i) clique size, the number

of switches in the clique and ii) the total number of cliques

in the network. In this experiment, we vary the total number

of cliques from 64 to 768, keeping the clique size fixed at 2

switches (96 servers). Each source switch in a clique gener-

ates 18Gbps of traffic with 1.5 MB average flow size.

64 128 256 512 768
Number of Cliques

0
100
200
300
400
500
600
700

%
 G

ai
n 

in
 b

/w
 o

ve
r E

CM
P

C-Dahu-4
Dahu-4

Dahu-1
C-Dahu-1

Figure 6: Throughput gain with Clique Traffic Pattern.

Figure 6 shows the bandwidth gains with Dahu relative

to ECMP as we vary the number of communicating cliques.

Dahu offers substantial gains of 400-500% over ECMP. The

performance gain is highest with a smaller number of cliques,

showing that indeed derouting and non-shortest path selec-

tion can effectively take advantage of excess bandwidth in

HyperX networks. This validates a major goal of this work,

which is improving the statistical multiplexing of bandwidth

in complex network topologies. As the number of cliques in-

creases, the bandwidth slack in the network decreases, and

the relative benefit of non-minimal routing comes down to

around 250%. Dahu and constrained Dahu have similar per-

formance for the same derouting threshold.

We further find that a large derouting threshold provides

larger benefit with less load, since there are many unused

links in the network. As load increases, links are more uti-

lized on average, bandwidth slack reduces, and a derouting

threshold of one starts performing better.

 0

2

4

6

8

10

Av
g 

Ho
p 

Co
un

t

ECMP
Dahu-1
C-Dahu-1

C-Dahu-4
Dahu-4

(a) Average hop count

0.0 0.2 0.4 0.6 0.8 1.0
CDF

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 E
dg

e 
ut

ili
za

tio
n

ECMP
Dahu-1
C-Dahu-1

Dahu-4
C-Dahu-4

(b) Edge Utilization (number of cliques = 512)

Figure 7: Edge utilization & Average hop count for Clique

traffic pattern

Beyond raw throughput, latency in an important perfor-

mance metric that is related to network hop count. Figure 7a

shows the average hop count observed for each routing scheme.

Dahu is able to deliver significantly higher bandwidth with

a small increase in average hop count. The relationship be-

tween increased throughput and increased hop count can be

tuned using the derouting threshold mechanism. For large

derouting thresholds, the average hop count likewise increases.

However, for smaller derouting threshold, the hop count is

similar to that of ECMP while still achieving most of the

bandwidth improvements of non-minimal routing. Note that

the small error bars indicate that the average hop count is

similar while varying the number of cliques.

Figure 7b shows the CDF of inter-switch edge utilizations

for ECMP and Dahu. With shortest path routing, 90% of

the edges have zero utilization whereas, Dahu achieves its

bandwidth gains by utilizing available capacity on additional

edges in the network. Also, we see that a single derouting

can achieve most of the overall bandwidth gains while con-

suming bandwidth on significantly fewer links in the net-

work thereby sparing network capacity for more traffic.

6.2.2 Mixed Traffic Pattern

The “mixed traffic pattern” represents an environment with

a few hot racks that send lot of traffic, representing jobs like

data backup. For this traffic pattern, we simulate 50 cliques

with 10 switches in each. Every switch acts as a network

hot-spot and has flows to other members of the clique with

10



0 1 2 3 4 5
Time (sec)

0

2

4

6

8

10

12

14
B/

W
 x

 1
00

0 
(G

bp
s)

ECMP
C-Dahu
Dahu

(a) Load = 4.5Gbps/switch

0 1 2 3 4 5
Time (sec)

0

2

4

6

8

10

12

14

B/
W

 x
 1

00
0 

(G
bp

s)

ECMP
C-Dahu
Dahu

(b) Load = 17.5Gbps/switch

0 1 2 3 4 5
Time (sec)

0

2

4

6

8

10

12

14

B/
W

 x
 1

00
0 

(G
bp

s)

ECMP
C-Dahu
Dahu

(c) Load = 33.5Gbps/switch

Figure 8: Dahu with Mixed Traffic Pattern

average size = 100MB. The load from each source switch

is varied from 3Gbps to 32Gbps. In addition to these hot-

spots, we also generate random all-to-all traffic between all

the hosts in the network. This background traffic creates an

additional load of 1.5Gbps per source switch with average

flow size of 200KB. Figure 8 shows that for low load lev-

els (4.5Gbps total load per switch) ECMP paths are suffi-

cient to fulfill demand. As expected, total bisection band-

width achieved is same for both ECMP and Dahu. However,

at high load (17.5Gbps and 33.5Gbps per switch) Dahu per-

forms significantly better than ECMP by utilizing available

slack bandwidth.

6.3 Fat-Tree Networks

We next evaluate Dahu in the context of a Fat-tree topol-

ogy. In Fat-trees, unlike HyperX, there are a large number

of shortest paths between a source and destination, so the

following evaluation focuses on Dahu’s load balancing be-

havior, rather than its use of non-shortest paths. We com-

pare Dahu with ECMP, with hosts communicating over long

lived flows in a k = 32 Fat-tree (8,192 hosts). We consider

these traffic patterns: (1) Stride: With n total hosts and stride

length x, each host i sends traffic to host (i + x) mod n.

(2) Random: Each host communicates with another randomly

chosen destination host in the network. To study the effect

of varying overall network load, we pick a subset of edge

switches that send traffic to others and vary the number of

hosts on each of these edge switches that originate traffic.

Stride
16

Stride
256

Rnd
10%
load

Rnd
20%
load

Rnd
30%
load

Rnd
40%
load

Rnd
60%
load

Rnd
75%
load

0

10

20

30

40

50

%
G

a
in

 i
n
 b

/w
 o

v
e
r 

E
C

M
P

Dahu

Figure 9: Throughput gain for k = 32 Fat-tree with Stride

and Random (Rnd) traffic patterns.

Figure 9 shows that Dahu achieves close to 50% improve-

ment with stride traffic patterns. The load balancing heuristic

rebalances virtual port mappings at each switch minimiz-

ing local hash imbalances and improves total throughput.

For random traffic patterns, Dahu outperforms ECMP by 10-

20%. Overall, Dahu is better able to utilize network links in

Fat-tree networks than ECMP, even when only shortest-path

links are used.

0 20 40 60 80 100 120 140
Network Load(# Switches sending traffic)

0

200

400

600

800

1000

1200

1400

1600

1800

B/
W

 (G
bp

s)
Theoretical max
Dahu
C-Dahu
Theoretical ECMP
Simulated ECMP

Figure 10: Simulator throughput vs. theoretical maximum

6.4 Simulator Validation

To validate the throughput reported by the simulator, we

generated a traffic profile with a large number of long-lived

flows between random hosts for a (L=3, S=8, T=48) HyperX

network. We computed the theoretical maximum bandwidth

achievable for the traffic pattern by formulating a maximum

multi-commodity network flow problem and solving it with

the CPLEX [12] linear program solver. We also ran our sim-

ulator on the same traffic profile. As shown in Figure 10 the

aggregate throughput reported by the simulator was within

the theoretical maximum for all the traffic patterns that we

validated. In case of shortest path forwarding, the theoretical

and simulator numbers matched almost perfectly indicating

that the ECMP implementation was valid. With non-minimal

forwarding, the simulator’s performance is reasonably close

to the theoretical limit. Note that the multi-commodity flow

problem simply optimizes for the total network utilization

whereas the simulator and TCP in general, also take fairness

into account.

11



In addition, for these traffic profiles we also explicitly

computed the flow bandwidth distribution that ensures max-

min fairness using the water-filling algorithm [10]. We com-

pared the resulting aggregate throughput to those reported

by the simulator. For all evaluated traffic patterns, the sim-

ulator throughput was within 10% of those reported by the

max-min validator. This small difference is because TCP’s

AIMD congestion control mechanism only yields approxi-

mate max-min fairness in flow bandwidths whereas the val-

idator computes a perfectly max-min fair distribution.

6.5 MPTCP in HyperX Networks

We conclude our evaluation by studying how the host based

MPTCP approach would perform in HyperX networks if short-

est as well as non-shortest paths were exposed to MPTCP

for forwarding subflows. In particular, we wanted to evalu-

ate how well MPTCP could probe the network paths and uti-

lize the capacity with long lived flows. We used htsim [13], a

packet-level simulator that models TCP and MPTCP perfor-

mance and extended it to support HyperX networks. We sim-

ulated a (L=3, S=10, T=20) HyperX network with 100Mbps

links. This network has 1000 switches, 20,000 hosts and an

oversubscription of 1:4. We chose this smaller topology and

lower link speed due to the higher computational overhead

of packet level simulations. We enabled routing of subflows

over shortest paths and non-shortest paths with one allowed

deroute. We evaluated MPTCP’s performance by varying the

load and the number of MPTCP subflows per long lived flow

as shown in Figure 11. To generate traffic, we first created a

random permutation matrix (without replacement), and then

selected a subset of source-destination pairs from the matrix

that send data over long lived flows.

We also used the Dahu simulator on the same network

topology and traffic pattern to evaluate Dahu’s performance

by treating each subflow as an independent TCP flow. Since

we were using packet level simulations for MPTCP and flow

level simulations for Dahu, we wanted to validate that their

results would be comparable for identical scenarios. So in

order to calibrate the two simulators, we ran an experiment

with varying number of long lived flows between a pair of

hosts on two different switches in the topology with htsim

(with 1 subflow each), and also with the Dahu simulator.

We allowed only ECMP routing on the same set of paths

in both simulators. We obtained similar throughput results

from both, thus validating that the packet level htsim, and

flow level Dahu simulators generate comparable numbers for

the same scenarios.

From Figure 11a we make two observations. First, when

there are fewer hosts sending traffic, the network throughput

for both Dahu and MPTCP increases with more subflows.

This is because more flows can be routed over the large num-

ber of paths present in the HyperX topology. As such, in or-

der for MPTCP to effectively utilize the bandwidth on all the

paths, it needs to create a large number of subflows that can

probe these paths for capacity (e.g., in Figure 11a achieved

 0

 100

 200

 300

 400

 500

 600

 700

8 16 64 128

T
h
ro

u
g
h
p
u
t 
(i
n
 G

b
p
s
)

Number of subflows

MPTCP
Dahu

(a) 50% of total hosts sending traffic

 0

 100

 200

 300

 400

 500

 600

 700

8 16 64 128

T
h
ro

u
g
h
p
u
t 
(i
n
 G

b
p
s
)

Number of subflows

MPTCP
Dahu

(b) 90% of total hosts sending traffic

Figure 11: MPTCP and Dahu performance for L=3, S=10,

T=20 HyperX topology. Results obtained from packet level

simulations for MPTCP and flow level simulations for Dahu.

throughput is maximum with 64 subflows). Second, while

Dahu’s performance also improves with more flows, it is

able to achieve the same throughput with 16 subflows that

MPTCP achieves with 64 or 128 subflows.

When more hosts send traffic (Figure 11b), throughput

does not improve much with more subflows because there is

less unused capacity in the network that could have been uti-

lized by additional subflows. Again, Dahu is able to achieve

the same throughput as MPTCP with fewer subflows.

These experiments indicate that MPTCP needs many sub-

flows to fully leverage the capacity of such a network with

high path diversity. This makes it mainly useful for long

lived flows. On the other hand Dahu can address short lived

flows by rebalancing aggregates of short flows through hash-

ing. As a transport layer protocol, MPTCP also has no way

of distinguishing shortest paths from non-shortest paths for

forwarding its subflows. Dahu can complement MPTCP by

choosing the right set of paths for routing, allowing it to

achieve higher throughput for long lived flows with fewer

subflows, while shorter flows are handled by Dahu.

7. DISCUSSION

As seen in Section 6, Dahu exploits non-minimal routing

to derive large benefits over ECMP for different topologies

and varying communication patterns. Yet, there is a scenario

12



where using non-minimal routing can be detrimental. This

occurs when the network as a whole is pretty highly satu-

rated; ECMP style shortest path forwarding itself does well

as most links have sufficient traffic and there is no “unused”

capacity or slack in the network. With Dahu, a derouted flow

consumes bandwidth on more links than if had used just

shortest paths thereby contributing to congestion on more

links. In large data centers, this network saturation scenario

is uncommon. Networks are usually run at much lower av-

erage utilizations although there may be hot-spots or small

cliques of racks with lot of communication between them.

Usually, there is network slack or capacity in the rest of the

network which Dahu can leverage. The network saturation

case can be dealt with in many ways. For example, a central-

ized monitoring infrastructure can check if a large fraction

of the network is in its saturation regime and notify switches

to stop using non-minimal paths.

For Dahu, we propose a simple refinement to the localized

load balancing scheme that uses congestion feedback from

neighboring switches to fall back to shortest path forwarding

in such high load scenarios especially for smaller networks.

We describe this for the HyperX topology but a similar feed-

back approach can be used for avoiding downstream hash

collisions in case of Fat-trees. We propose overriding the IP

TOS field of packets to denote a 1 bit route type. This is up-

dated by each switch along the path of the packet to indicate

whether it used a shortest path egress port or derouted the

packet. When a switch S1 receives a packet it checks if the

previous hop switch S0 derouted the packet. In that case, if

S1 also does not have enough capacity to the destination us-

ing shortest paths alone, then it creates a control packet to

notify S0 to stop sending derouted traffic for the particular

destination prefix to S1 for a certain duration of time (say

5ms). When S0 receives such a congestion feedback packet,

it modifies its allowed port bitmap for the prefix to disallow

the corresponding port for some time.

This mechanism is in many ways similar to Ethernet pause

frames [1], however it only disables paths for specific pre-

fixes. The technique can be easily extended to incorporate

more classes of traffic or routes by using different allowed

port bitmaps for different QoS classes. This kind of an exten-

sion would be comparable to priority flow control (PFC) [2].

8. RELATED WORK

There have been several recent proposals for scale-out mul-

tipath data center topologies such as Clos networks [4, 18,

25, 26], direct connect networks like HyperX [3], Flattened

Butterfly [22], DragonFly [23], and even randomly connected

network fabrics proposed in Jellyfish [30] in order to deliver

high bandwidth and fault tolerance. Such topologies have

motivated the need for generic mechanisms that can leverage

the high path diversity. Many current proposals use ECMP-

based techniques which are inadequate to utilize all paths

or to dynamically load balance the traffic. Moreover, the

routing proposals for these topologies are limited to short-

est path routing (or K-shortest path routing with Jellyfish)

and end up under-utilizing the network, more so in the pres-

ence of failures. While DAL routing allows derouting, it is

limited to HyperX topologies. In contrast, Dahu proposes a

topology-independent solution for non-minimal routing that

eliminates routing loops, routes around failures and achieves

high network utilization.

As discussed in Section 2, Hedera [5] and MicroTE [9]

propose a centralized controller to schedule long lived flows

on globally optimal paths. However they operate on longer

time scales and scaling them to large networks with lots of

flows is challenging. While DevoFlow [14] improves Hed-

era’s scalability by proposing switch hardware modifications,

forwarding rule cloning and triggered counters, it still does

not support dynamic hashing or non-shortest path routing.

Dahu can co-exist with such techniques to better handle con-

gestion at finer time scales and gracefully offload shorter

flows on to less loaded ports.

Recently, DeTail [33] proposed switch modifications to

reduce flow completion time tail. Unlike Dahu, DeTail only

leverages shortest paths and performs per-packet adaptive

load balancing which requires end-host modifications to han-

dle TCP reordering. There have been proposals that employ

variants of switch-local per-packet traffic splitting [15], but

again require end-host modifications for TCP. With Dahu,

instead of per-packet splitting, we locally rebalance flow ag-

gregates across different paths thereby largely reducing in-

network packet reordering.

MPTCP [29] proposes a host based approach for dividing

a single TCP flow into subflows. However, as a transport pro-

tocol, it does not have control over the network paths taken

by subflows and does not distinguish between shortest and

non-shortest paths. Dahu can complement MPTCP by se-

lecting a good subset of paths over which the subflows can

be routed.

Traffic engineering has been well studied in the context of

wide area networks. TeXCP [21] and MATE [16] repeatedly

probe the network and split flows on different paths based

on load. However, low latency and faster response time re-

quirements along with short flow sizes make these solutions

inapplicable in a data center context. FLARE [31] exploits

the inherent burstiness in TCP flows to schedule “flowlets”

(bursts of packets) on different paths to reduce extensive

packet reordering. REPLEX [17] relies on game-theoretic

analysis along with periodic exchanges between neighbour-

ing switches about path utilization to make switch-local de-

cisions for splitting traffic on different paths. However, the

convergence time for the game theoretic analysis is too long

for it to benefit the short flows in data centers.

Finally, a key distinction between Dahu and the related

traffic engineering and load balancing approaches is that Dahu

actively routes over non-shortest paths in order to satisfy

traffic demand. Dahu decouples non-minimal routing and

its mechanism for more balanced hashing and offers a more

flexible architecture for better network utilization.

13



9. CONCLUSION

We present a new switch mechanism, Dahu, that enables

dynamic hashing of traffic onto different network paths. Dahu

proposes switch hardware primitives and control software to

efficiently exploit non-shortest paths in the network and re-

duce congestion while preventing persistent forwarding loops.

We present a decentralized load balancing heuristic that makes

quick, local decisions to mitigate congestion, and show the

feasibility of proposed switch hardware modifications. We

evaluate Dahu using a simulator for different topologies and

different traffic patterns and show that it significantly out-

performs shortest path routing. Finally, we evaluate MPTCP

in HyperX networks and show that Dahu can complement

MPTCP by selecting good paths for subflows, in addition to

efficiently routing short lived flows.

10. REFERENCES
[1] Ethernet Flow Control, IEEE 802.3x.
[2] Priority-based Flow Control, IEEE 802.1Qbb.
[3] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S.

Schreiber. HyperX: Topology, Routing, and Packaging of
Efficient Large-Scale Networks. In Proc. of SC, 2009.

[4] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity Data Center Network Architecture. In Proc. of
ACM SIGCOMM, 2008.

[5] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic Flow Scheduling for Data
Center Networks. In Proc. of Usenix NSDI, 2010.

[6] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data center
TCP (DCTCP). In Proc. of ACM SIGCOMM, 2010.

[7] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat,
and M. Yasuda. Less Is More: Trading a Little Bandwidth for
Ultra-Low Latency in the Data Center. In Proc. of Usenix
NSDI, 2012.

[8] T. Benson, A. Akella, and D. A. Maltz. Network Traffic
Characteristics of Data Centers in the Wild. In Proc. of ACM
IMC, 2010.

[9] T. Benson, A. Anand, A. Akella, and M. Zhang. MicroTE:
Fine Grained Traffic Engineering for Data Centers. In Proc.
of ACM CoNEXT, 2011.

[10] D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall,
1987.

[11] Broadcom Smart-Hash Technology.
http://www.broadcom.com/collateral/wp/

StrataXGS_SmartSwitch-WP200-R.pdf.
[12] CPLEX Linear Program Solver. http:

//www-01.ibm.com/software/integration/

optimization/cplex-optimizer/.
[13] MPTCP htsim simulator. http://nrg.cs.ucl.ac.

uk/mptcp/implementation.html.
[14] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,

P. Sharma, and S. Banerjee. DevoFlow: Scaling Flow
Management for High-Performance Networks. In Proc. of
ACM SIGCOMM, 2011.

[15] A. A. Dixit, P. Prakash, R. R. Kompella, and C. Hu. On the
Efficacy of Fine-Grained Traffic Splitting Protocols in Data
Center Networks. Technical Report Purdue/CSD-TR 11-011,
2011.

[16] A. Elwalid, C. Jin, S. Low, and I. Widjaja. MATE: MPLS
Adaptive Traffic Engineering. In Proc. of IEEE INFOCOM,
2001.

[17] S. Fischer, N. Kammenhuber, and A. Feldmann. REPLEX:
Dynamic Traffic Engineering Based on Wardrop Routing
Policies. In Proc. of ACM CoNEXT, 2006.

[18] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: A
Scalable And Flexible Data Center Network. In Proc. of
ACM SIGCOMM, 2009.

[19] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. BCube: A High Performance,
Server-centric Network Architecture for Modular Data
Centers. In Proc. of ACM SIGCOMM, 2010.

[20] U. Hölzle. OpenFlow @ Google. Talk at Open Networking
Summit, 2012.

[21] S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the
Tightrope: Responsive Yet Stable Traffic Engineering. In
Proc. of ACM SIGCOMM, 2005.

[22] J. Kim, W. J. Dally, and D. Abts. Flattened butterfly: A
Cost-efficient Topology for High-radix networks. In Proc. of
ISCA, 2007.

[23] J. Kim, W. J. Dally, S. Scott, and D. Abts.
Technology-Driven, Highly-Scalable Dragonfly Topology. In
Proc. of ISCA, 2008.

[24] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker. Onix: A Distributed Control Platform For
Large-scale Production Networks. In Proc. of Usenix OSDI,
2010.

[25] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson.
F10: A Fault-Tolerant Engineered Network. In Proc. of
Usenix NSDI, 2013.

[26] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat.
PortLand: A Scalable Fault-Tolerant Layer 2 Data Center
Network Fabric. In Proc. of ACM SIGCOMM, 2009.

[27] OpenFlow Consortium. http:://www.openflow.org.
[28] OpenFlow Switch Specification - Version 1.1.

http://www.openflow.org/documents/

openflow-spec-v1.1.0.pdf.
[29] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik,

and M. Handley. Improving Datacenter Performance and
Robustness with Multipath TCP. In Proc. of ACM
SIGCOMM, 2011.

[30] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish:
Networking Data Centers Randomly. In NSDI, 2012.

[31] S. Sinha, S. Kandula, and D. Katabi. Harnessing TCPs
Burstiness using Flowlet Switching. In HotNets, 2004.

[32] A. Vahdat, M. Al-Fares, N. Farrington, R. N. Mysore,
G. Porter, and S. Radhakrishnan. Scale-Out Networking in
the Data Center. IEEE Micro, 2010.

[33] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz.
DeTail: Reducing the Flow Completion Time Tail in
Datacenter Networks. In Proc. of ACM SIGCOMM, 2012.

14




