UC San Diego
UC San Diego Previously Published Works

Title
Understanding memristors and memcapacitors in engineering mechanics applications

Permalink
https://escholarship.org/uc/item/6ps3n5an

Journal
Nonlinear Dynamics, 80(1-2)

ISSN
0924-090X

Authors

Pei, Jin-Song
Wright, Joseph P
Todd, Michael D

Publication Date
2015-04-01

DOI
10.1007/s11071-014-1882-3

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/6ps3n5qp
https://escholarship.org/uc/item/6ps3n5qp#author
https://escholarship.org
http://www.cdlib.org/

Noname manuscript No.
(will be inserted by the editor)

Understanding memristors and memcapacitors in engineerig
mechanics applications

Jin-Song Pei - Joseph P. Wright - Michael D. Todd - Sami F. Masri - Francois
Gay-Balmaz

Received: date / Accepted: date

Abstract A significant event happened for electrical engi-ical counterparts of memristors, memcapacitors, etc. How-
neering in 2008, when researchers at HP Labs announceder this transfer is nontrivial; for example, a new concept
they had found “the missing memristor”, a fourth basic cir-and state variable called “absement”, the time integrakef d
cuit element that was postulated nearly four decades eafermation, emerges. We study these mem-models, which are
lier by Dr. Leon Chua, who was also instrumental in de-characterized by a “zero-crossing” property that has @sier
veloping the mathematical theories of memristive, memcaing implications for nonlinear constitutive modeling, pier
pacitive and meminductive systems, resulting in an entirellarly hysteresis, and we identify some examples of “mem-
class of “mem-models” that are the foundation of the preserdashpots” and “mem-springs”, which include displacement-
work. By applying well-known mechanical-electrical analo dependent and variable dampers, the superelasticity found
gies, the mathematics of mem-models may be transferred io shape memory alloys, and the pinched hysteresis loops
the setting of engineering mechanics, creating the mechaassociated with self-centering structures. This work adds
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the fast-growing body of literature on elements and systems
labeled with “mem”, which is a basic branch of study in
nonlinear dynamics.
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itor - memristive system memcapacitive systemstate
equation input-output equationdisplacement-dependent
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1 INTRODUCTION
1.1 Motivations of This Study

Modeling hysteresis (e.gSo0zen(1974; Visintin (1999);
Nayfeh and MooK1995; Sivaselvan and Reinho(2000);
Farrar et al(2007); Bernstein(2009) is inherently chal-
lenging; however, it is necessary in that it has broad util-
ity in many engineering disciplines, including smart struc
tures, robotics, mechatronics, structural control, $tmad
health monitoring, damage detection, and earthquake engi-
neering. Rapid advances in sensor technology are provid-
ing researchers in different fields of science and engingeri
with valuable data collected from real-world measurements
Facing formidably large streams of such data, researchers
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are expected to extract the most useful and accurate infora)
mation to enable rapid assessment for decision-making, an&o
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modeling plays a central role. This study explores one possi = ' f
bility for very generally modeling hysteresis, adoptediiro ¢

another discipline. velo./disp. velo./disp. velo./disp. velo./disp.

. Fig. 1 (a) to (d) are from simulations using memristors/memcdpeci
DeveIOpment of a fundamental circuit element, thesubject to cyclic or sinusoidal loading; see Fig&(a), 11(b), 27(b),

memristor, was announced recentBtrukov et al(2009),  and9, respectively.

nearly four decades after its predictio@hua (1977).

Equally important, there is a mathematical theory in- , . )

volving memristor devices and memrisitive systems As a preview, consider a single-degree-of-freedom
(Chua and Kang(1976) and, more recently, this theory (SDOF) model:

was e>_<tended to include memcapagitorg and memindu%j(t) — u(t) — r(t) )
tors (Oi Ventra et al (2009), thereby significantly enlarg-

ing this family of “mem-models”. These developments havewherez(t) is the displacement of mass, (t) is its driving
inspired us to explore whether these nonlinear constéutivforce, () is its restoring force, and

models, all of which are characterized by a “zero-crossing”

property, have a role to play in engineering mechanics.  r(t) = ci(t) + kxz(t), for alinear dashpot and spring  (2)

Two obvious but related conceptual gaps need to bé(t) = M(x), for a memristor 3)
bridged first in this study: from electronics to mechanics;(t) = M (a)z, for a memcapacitor (4)
and from nano- to macro-scale modeling. Bridging these ] ) o )
gaps is made possible, in part, by applying mechanicaIThe restoring force in Eq.2§ is widely stgdled gnd under-
electrical system analogies. Bond graph thedpgynter St00d, whereas the nonlinear damper in E).i¢ not so
(1967); Rosenberg and Karnogp983) also helps to bridge well known, .and gertamly not by the name “memnstor”. In
the gaps. Starting from these well-established techniqueEd- @) a(t) is the integral ofi(¢) with respect to time; we
we identify the mechanical counterparts of the memristordf€ Uhaware ofany such “memcapacitor”in engineering me-

memcapacitor, memrisitive systems, etc., and identifye;omChan'CS' Egs.3) and @) are the simplest examples of mem-

examples of these mem-models found in recent engineerirf§@dels to be studied herein. Fig.presents four pinched
mechanics literature. Hysteresis loops, taken from computational results thkt wi

. be discussed later. It is worth noting that the abscissaatf ea
~ The transfer from one knowledge domain to anothepanel in Fig.1 has two labels, velocity or displacement, due
is not straightforward. The mem-models defineddhua  to the fact that Equations) and @) have identical math-

(1971); Chua and Kand1976; Di Ventra et al(2009 are  ematical form, although the physical units of the function
mathematically abstract, demanding significant effort top/(.) differ.

translate the terminology and mathematical notation from

electrical systems theory to other physical domains. Also,

many functional forms need to be examined in order tal.2 Contributions and Structure of This Paper

develop mem-models usable in practical data analysis and

modeling. Georgiou et al(2012 is one of the few recent This paper demonstrates the usefulness of memristive and
studies with specificity in functional form; however, it cov memcapacitive theories for modeling some important non-
ers a relatively simple situation, and is not from the field oflinear hysteretic systems in engineering mechanics. peci
engineering mechanicseltsema and Doria-Cere@01(Q ically, displacement-dependent and variable dampers are
discuss difficulties that may arise when introducing mem-memristive systems. Also, the superelasticity of shape-
models in classical Lagrangian or Hamiltonian mechanicsnemory alloys(SMA) and the pinched hystersis of self-
and propose a “port-Hamiltonian” approach as a way taentering structures may be modeled as memcapactive sys-
overcome these difficulties. Other references are cited items a premise justified (in part) by devising and presenting
the literature review (Sectia?) and in subsequent sections, quantitative mem-models using simulations and experimen-
but generally speaking, there are very few published studal data in Sectio. This paper also connects mem-models
ies relevant to the engineering mechanics community. This/ith broader classes of constitutive models in engineering
is mainly because these mem-models are so “new”, evemechanics in Sectios.4 and Sectior6, thereby highlight-
though the physical and mathematical basis of memristorisig future research directions.

was first presented many years ago. We are thus motivated The Literature Review in Sectio2 summarizes basic

to investigate these models and to examine their potentialoncepts and translates mem-model theories from elelctrica
for dealing with engineering mechanics problems. engineering to engineering mechanics. Mem-dampers and

t

restor. force
restor. force
restor. force
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mem-springs are formally introduced in Sect®nDue to  Vaz and Maini(2009). Another analogy — involving springs
their newness, mem-springs subjected to two typical kind¢capacitors), dashpots (resistors) and masses (indyets
of periodic inputs are the main focus when deriving vari-the Force-Voltage AnalogyJdgata(2004), which is appli-
ous properties. These properties not only illuminate undercable to translational mechanical systems and was used dur-
standing but are also instrumental in modeling. Significaning this study (in addition to the Force-Current Analogy) to
portions of this paper focus on detailed case studies, prétranslate” memristor theory and its extensions into meeha
sented in Sectiond and5. Because mem-models are non-ical notation and terminology; e.g., see Talble'he Force-
linear (and thus lack many linear system properties and sinCurrent Analogy Qgata(2004)) was also used.
plicity), such case studies are both necessary and enlight-
ening. Moreover, we must pay attention to time and stateRemark 1 (Onp = Momentumor Impulse)
events which arise in the case studies, where time events are It is challenging to name in Table 1 without a bit of
the discontinuities inherent in nearly all excitation sigsy ~ thought. In classical mechanics, a particle’s momentum is
and state events are the discontinuities inherent in a risodeldefined as the product of its mass and velocity, so in ana-
state variablesRegarding modeling technique, Sectiaie  lytical mechanicgp andgq are called generalized momenta
outlines an approach, involving time-varying secantscivhi @nd generalized coordinates, respectively. This supfiuets
was first tested on mem-dashpot models, and later utilize@@ming ofp andz as momentum and displacement, respec-
to devise the quantitative mem-spring models discussed fively, in engineering mechanics. It also supports the nam-
Sections. ing of p as momentum irOster and Auslandef1973 or

In this paper, a Remargives a brief review of exist- Jeltsema and Scherp€2009 but there are reasons to sup-
ing knowledge. A Propertgresents useful results, put forth Port the naming op as impulse (also mentioned in those
in detail for the first time in this study, and derived mainly two references). In classical mechanics, an impulse is de-
for mem-models subjected to two classes of periodic excitafined as the time integral of force, resulting in a change of
tion. Finally, an Examplaugments the case studies, provid-momentum, and thus impulse and momentum have the same
ing specific mathematical expressions or numerical resultghysical units. No matter how we namethe mathematical
of mem-model simulations. relationship betweep andr is the same as betweenand

z, in the sense that the first quantity is the time integral of

the second. Paynter’s tetrahedron of state includes both of
2 LITERATURE REVIEW these relationships.

2.1 Memristors, Bond Graphs and Physical Analogies Remark 2 (On r=restoring force)

The forcer in Table 1 is not an applied (i.e., exter-
Chua’s seminal memristor paper@hua(197]). Two years  nal) force. Rather, it is an internal force that character-
later, Oster and Auslande1973 proposed the memristor jzes a particular element (or system) in a constitutive equa
as a new bond graph element by interpreting Chua’s idefion. For example, for a spring or damperis a restoring
in the context of Paynter's tetrahedron of staRaynter force (Masri and Caughe§1979); for a massr is its iner-

(1961) and using the Force-Current Analogy to explaintia force. An applied force is denoted in this paperigy),
a mechanical device called a “tapered dashpés.told asin Eq. 0.

by Paynter Paytner(2000), bond graphs were born in

1959 as a result of his training and experience in hydro-

electric power, which greatly reinforced his awareness op.2 Flow- and Effort-Controlled Systems

physical analogies. Physically different systems thatehav

the same mathematical model are called analogous systerdsnd graph practitioners distinguish a flow-controlled-ele
(Ogata(2004). In other words, analogous systems are exinent (or system) from an effort-controlled elemedPayn-
pressed by the same set of algebraic, differential (or mteg ter’s tetrahedron of state depicts relations among foue sta
differential) equations, but the specific physical meaningrariables which, for electric circuit elements, ate =

of each parameter or state variable is different. Analogiesffort = v = voltage,f = flow = ¢ = current,q = charge,

are available for many kinds of mechatronic (i.e., electrop = momentum= ¢ = ¢ = flux. These various symbols
mechanical) systems, including translational and rotatio and terms are briefly mentioned here because they (and oth-
mechanical systems, fluid power systems, electrical powesrs) appear ilChua(1971), Oster and Ausland€il973 or
systems, and heat transfer systerAd®dan and Breedveld Jeltsema and Scherpé2009; see Table8 in AppendixA.
(2002). Today, bond graph models are routinely used whetrror electrical systems, charge- or current-controlled are
analyzing mechatronic systems with many degrees of freealiases for flow-controlled, while flux-, voltage-, or impat
dom and, when appropriate, they incorporate finite elemerdontrolled are aliases for effort-controllethus when ex-
models Talasila et al(2002; Damic and Cohoda200§; ercising the Force-Voltage Analogy, we see that Paynter’s
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Table 1 Force-Voltage Analogy used to translate from electricahtechanical terminology.

Electrical System Translational Mechanical System
1. Current; Velocity =
2. \oltagev Restoring force
3. Chargey, dqg = idt Displacement:, dx = zdt
4. Fluxp,de = vdt = ¢ = fioo o(T)dr Momentump, dp = rdt = p = fioo r(r)dr
5. Resistodv = Rdi Dashpotdr = cdz
6.  Capacitodq = Cdv Springde = | dr
7. Inductordy = Ldi => v = L% Massdp = mdi = r = m%®
8. Memristordp(q) = M(q)dg = M(q) = % (Chua(1971) Memristordp(z) = M (z)de = M (z) = =
9. Memristordq(¢) = W (p)de = W(p) =  (Chua(1971)) Memristordz(p) = W (p)dp = W (p) = yi
10. i — v for hysteresisChua(1971)) z — r for hysteresis
11. g — o for additional insightsChua(1972)) x — p for additional insights

tetrahedron depicts relations among four state variablegarying systems definitions are included but hereafter we
which govern translational mechanical elements: effort  will restrict this study to time-invariant mem-models.

= r = restoring force,f = flow = & = veIocny, x = dis- R k3 (Ona = Absement and p)
placement, angd = momentum. So for mechanical elements

. . _ The quantitya in Table 2 is the time integral of dis-
(or systems) under this analogy, displacement- or velocity : . . .
. . placementr, while p is the time integral of momentum
controlled are aliases for flow-controlled, while force- or

: ~Although the name “absement” far appears inJeltsema
momentum-controlled (or impulse-controlled) are allase?2013 it is not widely known or accepted. An online
for effort-controlled. ' y pted.

. . search uncovered “absition” as an alternative to absement.
As discussed |fRosenberg and Karnog(1983, pages Another search uncovered “time integral of momentum”
20'_21' flow (velocity) gnd effort (force) are called. POWEr;, Bellenger and Duve{2009, but this article isn’'t about
\{arlableg bgcause their product equals power, WhIC.h is _thﬁ]emcapacitors, and wasn't given a name. Ratherwas
time derivative of energy. Conversely, energy is the time in

| of M d displ lled used to estimate an “average value” of the Diurnal Water
tegral of power. Momentum and displacement are calle er]:ayer over the course of many days. This article is cited as

ergy variables because instantaneous energy quantities (lén example of a study of time series data that might (even-

netic or'potenual) cqn be gxprgssed naturally in t'erms 0fcually) lead to an engineering model of nonlinear behavior
them. Displacement is the time integral of flow, while MO- 4 ~tis of interest in the field of meteorology,

mentum is the time integral of effort. These four state vari-
ables (flow, effort, displacement, momentum), which areRemark 4 (Passivity)
fundamental in power flow and energy conservation consid- Chua(1971) provides necessary and sufficient condi-
erations for dynamical systems, are the vertices of Pagntertions for a memristor (in isolation) to be passive such
tetrahedron of state, regardless of the type of physical sy@s M (z) > 0 for “any admissible input’i and output
tem of interest. r for all time ¢t > tq. Similarly, Chua and Kang1976§
Loosely speaking, a flow-controlled system involvesdives M (y,2) > 0 for time-invariant memristive sys-
connecting two or more basic elements in parallel where thiems, the generalization of memristors. However, this pas-
total kinetic quantities are summations of individual onessivity condition is only sufficient if a memristor (element
while all elements share the same kinematic quantities. 1" System) is part of a more complicated system contain-
this case, the kinematic quantities need to be solved (er cal"d other elements that dissipate energy. (For example in
culated) first. The contrary can be said about the kineti¢he case of Fig252a), the weaker conditiod/(z) >
guantities in an effort-controlled system where two or more—c¢ is sufficient for passivity of the combined system; see
basic elements are connected in seresexample is given Appendix A.) Nonetheless, the passivity condition will

in AppendixA; see Fig25and corresponding equations in be adopted in this paper, despite contrary considerations
Table9. in Di Ventra and Pershii2013. Together with Remar,

the passivity condition restricts all memristor or menivist
system paths to the first or third quadrants of(the-) plane.

2.3 Mem-Elements and Mem-Systems Remark 5 (Mathematical Parallelism)

As was mentioned in the Introduction after E4),(and
The constitutive equations for all mem-models (i.e., memas Table2 shows, mem-models possess mathematical (i.e.,
ristor, memcapacitor, meminductor, as well as memristivefunctional) parallelisms that are noteworthy. Howeveygh
memcapacitive and meminductive systems) are summarizecial units and energetics must also be considered; see Sec-
in Table2. Both the time-invariant elements and their time-tion 3.1 Also, see Tabld0in AppendixA for an example.



Understanding memristors and memcapacitors in engirgearachanics applications 5

Table 2 Two forms of mem-models (element or system). All expressiorere translated fronChua (1971); Oster and Auslande(1973);
Chua and Kang1976); Di Ventra et al(2009 by using mechanical-electrical system analogigsdenotes a state variables veciandf denote
vector functions, and/ andW are scalar functions.

Element or System Flow-Controlled Effort-Controlled
1. Memristor (element) p=G(z)orr=M(z)zx x = F(p)orz = W/(p)r
2. Memcapacitor (element) p = G(a) orr = M(a)x a=F(p)orz=W(p)r
3. Memrinductor (element) p = G(z) orp = M(x)z x = F(p)orz =W (p)p
4. Memristive System vy=g(y,& t)andr = M (y,z,t)z y="f(y,r,t)ands =W (y,r,t)r
5. Memcapacitive Systetn  y =g (y,z,t) andr = M (y,z,t)z y="f(y,r,t)andz =W (y,r,t)r
6. Meminductive Systemh  y =g (y,%,t)andp = M (y,z,t)z  y =f(y,p,t)andd =W (y,p,t)p
Remark 6 (On Invertibility) wherey is the state vectog is a vector function and/ is a

The mathematical relationship betweEBrandG in Ta-  scalar function. In this case, the displacemeis the input,
ble 2 and TableB is the same as for any basic element (elecwhile the restoring force is the output. Trivial sufficient
trical or mechanical) in the sense that one is the inverse afonditions for a time-invariant memcapacitive system to re
the other’F~! = G andG~! = F. Also, W is the recipro- duce to a simple memcapacitor age'= «a, g(a,z) = z,

cal of M (and vice versa) at any given point in time M (a,z) = M(a). These conditions are assumed in Eq$. (
_ o . and @). The final result in Eq.8) is Eq. @), which is a
Remark 7 (Reduction of Menristive System to Menristor) memcapacitor, a subclass of memcapacitive systems (again

Chua and Kang(1979 define memristive systems in as expected). Another example is Eq. (15pinventra et al
terms of two equations, called the state equation and th@009.

input-output equation, from which the time-invariant ver- _
sion can be obtained. As a conceptual example of a flowRemark 9 (Zero-Crossing Property)

controlled memristive system, we have the following: For a memristory = 0 wheni = 0 and vice versa.
This means that thei( ) intersection always goes through
State Equationy = g (y, %, t) the origin, which is called the “zero-crossing” property in
time . v =gy, %) forelementy—z . _ (5) Chua and KaanQ?@. In fact all mem-mpdels in Tabl2
)" suff. conds. only have a zero-crossing property, determined by the corre-
Input-Output Equation: = M (y, &,t) & sponding pair of state variables in the input-output equati
MR = M (y, @) 8 e r =M (2)#  (6)  Remark10 (On Nonlinearity)

It is important to note that the memristor is intrinsically
wherey is the state vectog is a vector function, and/  nonlinear, not merely a classical resistor (constant)ctvhi
is a scalar function. In this case, the velocitys the input, s a linear time-invariant electrical engineering elemeat
while the restoring force is the output. Trivial sufficient page 511 ofchua(1971). By analogy, a classical viscous
conditions for a time-invariant memristive system to resluc damper (Constant) should not be considered a mechanical

to a simple memristor arg. = x, g(z, ) = @, M(2,2) =  memristor, nor should a classical spring (constant) bedall
M(Jf) These conditions are assumed in E@dnd @) a mechanical memcapacitor_

The final result in Eq.]) is Eq. @), which is a memristor, a
subclass of memristive systems (as expected).
3 PASSIVE MEM-SPRINGS AND MEM-DASHPOTS

Remark 8 (Reduction of Memcapacitive System to Memca-
pacitor) 3.1 Terminology and Scope of This Study

Di Ventra et al (2009 introduce another basic mem-
model, a memcapacitive system in whietis the integral The point of departure for the rest of this paper is Table
of displacement: with respect to time. As a conceptual ex- which summarizes three classes of nonlinear constitutive
ample of a flow-controlled memcapacitive system, we havequations where the elements in Lines 1-3 are subclasses

the following: of the corresponding systems in Lines 4-6. In the context
of engineering mechanics, a classical dashpot modelsesist
State Equationy = g (y, z,t) motion by means of a force that is directly proportional to
time ipv. v =g(y.2) fZLfflec%tyo:nZ/x Y @) }[/elocity. By analogy and'fo.r brevity in thig paper, memris-
: : ors (elements) or memristive systems will often be called
Input-Output Equation: = M (y, z,t) x “mem-dashpots” because the ratio of resisting force to ve-

| y=a
rzM(y,x)xforeengny r=M(a)x (8)

suff. conds. only

locity is non-constant and explicitly depends on “memory”

time inv.
via the state vectgy. Similarly, the class of mem-models in
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Lines 2 and 5 will often be called “mem-springs” because3.2 Examples of Mem-Dashpots

the ratio of restoring force to displacement is non-cortstan

and explicitly depends on “memory” via the state vegtpr An example of a mem-dashpot is the “tapered dash-
not simply on the current value of displacement. Hence apot” (Oster and Auslande(1973; Jeltsema and Scherpen
an example, the cubic term in the Duffing equatiom@  (2009). Table11 in AppendixB summarizes other exam-
considered a mem-spring. The mem-models in Lines 3 angles from the literature.

6 will not be discussed further. Tal8ejives sample notation On the other hand, many commonly discussed types
and physical units (see caption) that will be used as neede@f damping are not mem-dashpots (memristors or mem-
ristive systems), such as linear viscous, air, Coulomb,

The scope of this study is limited to case studies of mem-

. L . : : displacement-squared, and solid or structural damping
springs and mem-dashpots in isolation, meaning notin com-

bination with other elements (or systems). Moreover, therge.g.,lnman(19949).
modynamically passive mem-dashpots and mem-springs are

of primary mFerest here. .The. focus is on dlscoverlpg Whats_3 Mem-Springs — 5(a)x Subject to Periodic Input
the engineering mechanics literature holds regardingethes

two special mem-models. Due to their mathematical parakryis sybsection discusses several properties of memgsprin
lelism (Remarks), insights gained about one should prove u¢ ihe forms — S(a)z subject to periodic input. The prop-
gseful for the other. Therefore plots of forc@ersus veloc-  grties are illustrated via examples in Figu®s. Table 4
ity & and forcer versus displacement can be presented g,mmarizes two different but related types of periodic in-
together (as in Figl), despite the fact that mem-springs andput, displacement(t) and absement(t), plotted in Fig.2.
mem-dashpots differ significantly in their physical int&d  T5p1e 12 in Appendix B gives the secant stiffnességa)
tations, particularly their energetics. and their differentiability classifications for all exarapl

Thus far, various passive mem-dashpot models have Due to mathematical parallellisms evident in TaBle
been found in the engineering mechanics literature but neome of these mem-spring properties can be re-interpreted
unified studies, which simultaneously study passive memas properties of mem-dashpots of the farm- D(x)z by
spring models have been found (although perhaps these aplacingz, a and.S with &, = and D respectively. Other
pear, and other researchers will find them). Since theirenenseful results and insights can be obtained from these exam-
getics are path-dependent, arrows that show increasireg tinples and properties by translating concepts, terminologly a
have been added to the plots. notation from flow-controlled elements to effort-conteall

elements.
2a0 A
the (&, r) plane to the first and third quadrants. Conse- /\ L g
quently, mem-dashpot power is never negative, and mem-
dashpot energy cannot be created as time goes forward. In  _, A

As noted in Remark4, the passivity condition
D(y,#) > 0 will be assumed for mem-dashpots, which
along with the zero-crossing property restricts all paths i ¢

&
>

disp., x
o
disp., x

abs., a

0
s . . . 0 T/4 T/2 31/4 T 0 T/4 T/2 43T/4 T 0 2
addition, the passivity conditio§(y,4) > 0 will be as- - Cimet * T2 4T ) R
sumed for mem-springs, which along with the zero-crossing Zﬁ 220
property restricts all paths in the:(r) plane to the first ; 0 3 ; o

and third quadrants. Assuming the mem-spring displace-
ment is zero at some point in time (sometimes called an A 2 72512 T % T4 1 w2 T M0 w om
initial or reference state), the amount of energy removed at time.t time:t ebs.

any time thereafter cannot exceed the amount already storé&ig- 2 lllustrations for (a) analytic, and (b) piecewise contingalis-
up to that time; see the discussion pertaining to Fig. 3 ifP!acementand absement defined in Table

Di Ventra et al(2009.

The conditionD > 0 alone suffices to prove that mem- One type of periodic input is defined by a pair of ana-
dashpot models are passive whereas the parallel conditidytic functions, Eqgs. ) and (L0) in Table4, whereA > 0
S > 0 is insufficient by itself to do the same for mem- is the amplitude of the sinusoidal displacement with period
springs. Clearly, itis more difficult to prove that mem-syyi 7' = %’r andag = é is the value about which the ana-
models (as a class) are passive, which presumably accourysic absement:(¢) oscillates. The related type of periodic
for the lack of unified studies. This observation has moti-inputis defined by a pair of piecewise continuous functions,
vated us to examine mem-spring models in more detail ifEgs. (L3) and (L4) in Table4. Eq. (L3) is the piecewise linear
subsection8.3and3.4, and to devise the quantitative mem- (C°) displacement whose extrema coincide with the max-

spring models presented in Sectf@an ima and minima of the sinusoidal displacement. The related
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Table 3 Two time-invariant flow-controlled mem-models; denotes a state variables vecgdenotes a vector function, arfeland S are scalar
functions bearing Sl units of Newtorsecond / meter, and Newton / meter, respectively.

Mem-Dashpots Mem-Springs
State Eqs. y = g(y, #) y =gy, )
1/0 Eq. r=D(y,2)& r=_S(y,z)z
Power P(t) = r(t)i(t) =D (2 (t))d2 (t) P(t) = r(t)i(t) ="M (a(t))a () (t)
Energy  U(t) = [\ P(r)dr ™ E™" [ D(a(r)i2(r)dr  U(®) = [! P(r)dr ™ E™" [* §(a(r))a(r)i(r)dr

Table 4 The two related periodic motions (displacements and absesnesed in SectioB.3.

Analytic Displacement and Absement Piecewise Continuous Displacement and Absement
. . 2m 4A T2t 1 21
)=A t) with T = == 9 el I Rl —_nlr+zl
(t) = Asin (w) - © | =22 (1-F |2+ 3]) 0 (13)
where|- | denotes the floor function.
. 2
a(t) = ao (1 — cos (wt)) with (10) | a(t) = ao {1 T (1 - %)] with (14)
A 1 22(t) A 2 2
-2 a= 1—— 11 L T

ao o a ao w2 ag ( ) apg = Z;, a = agQ (1 - 16w2 %) (15)

da _x _ Asin(wt) 1 da = T|2t 1

dz "3 Awcosl) w1 W) =i =t s {? " 5J (o)
piecewise parabolicC() absement is the time integral of @ - — 3
Eq. (13) with a(0) = 0 (consistent with the analytic abse- £ "/ N\ ¢ “ 4 /]
ment). Hence, for the related absement differs by a factor s ° 50 g Y,
of 7 from a, for the analytic absement. These quantities are(g)—z g -2 "’2 o
defined for notational convenience and insight in analysis,- , N ~ 3 / 7
and all examples are plotted with respect4pw, andag 5 Of \5 . = o 4
as a way of “normalizing” and comparing results. In many 5 |\ | 2 g 2
figures, dissipated energy is indicated by a plus sign inside = 22 2 0

|
N
o

ao 2ao0 -A 0 A 0 ao 2a0 0 ao 2a0
abs., a

clockwise hysteresis loop in the,(r) plane, whereas stored abs, a

(or created) energy is indicated by a minus sign inside gig. 3 Two element models (see Table) illustrate two situations

counter-clockwise loop. where there is no hysteresis loog(t) = Asin(wt) with A = 1 and
Note that in certain situations when= 0,2 Z 3L 7 w=1.

the corresponding values oft) (or other variables) are not

always unique, meaning one-sided limits must be considereghtation of the hysteresis loop in the first quadrant of the (
at those times. Thus for notational convenience, the fouf) plane is clockwise (sincé > 0) whereas the loop in the
quarter periods — called Phases 1,2,3 and 4 — are detailggiyd quadrant is counter-clockwise. If, on the other hand,
in Egs. (L7) to (20) along witha(¢) in Egs. (1) and (L5). the secant stiffness increases monotonically, the otienta
is counter-clockwise in the first quadrant but clockwise in
the third quadrant. See Fig.

disp., x abs., a

Property 1 (Asymmetry of Secant Stiffness S(a) about ag)
Under certain conditions, a mem-spring model can de

generate into a nonlinear (or even linear) spring Withoubroperty3 (Smoothnessof 7, S, = and a)

rr;emory, meaning thlerg 1S np hystereS|fs Ioop n thﬁ?‘l The smoothness (i.e., differentiability classificatiofi) o

plane. As an example, #(a) is an even function with re- r(t) depends on the smoothness of beth) andS(a(t)). If

spect ta (i.e., S(ap — &) = S(ap + &) forall ), such de- ¢y ang.(4) are analytic functions, then:
generacy happens, as Fijllustrates. Hence the remaining

examples involve secant stiffness®&:) which, by design, dr d

dS(a)
are not even functions abouwg. i dt (S(a)z)

da
Property 2 (Orientation of Hysteresis Loops) wherea = z was used. However if(a) or z(t) are non-

If S(a) decreases in a strictly monotonic fashion aboudifferentiable at any point(s) in time, then care must betak
ag (i.e.,S(ag + &) < S(ap — &) for all ¢ > 0) then the ori-  when interpreting Eq21). For example, the sharp outer tips

= S(a)i + (1)
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Phase 1:r = S (ap —a) z Red Arrow in Plots, with0 < ¢ < %, 0<z(t) <A, 0<alt) < ao, ao >a(t) >0 (17)
Phase 2r = S (ap +a) = Orange Arrow in Plots, with% <t< g A>=z(t) >0, ag < at) < 2ao, 0<a(t)<ao (18)
Phase 3r = S (ap +a) = Green Arrow in Plots, withg <t< %7 0> z(t) > —A, 2a0 > a(t) > ao, ap >a(t) >0 (19)
Phase 4r = S (ap —a)x Blue Arrow in Plots, with % <t<T, —A<z(t) <0, ag > a(t) >0, 0<a(t)<ao (20)

i , - 3 4 (analytically and numerically) in the vicinity of times whe

g (/\ 5 |0 % = 0. This sensitivity is one of the reasons it is important to

3 0\_/“% 0 ?g 2 w2 examine botht and K when analyzing test data with mem-

(5)72 g i . models in mind (see Sectigh6). Moreover, if hysteresis is

N - 5 3 4 to be modeled well, it is important to studyand K sepa-

}g . \g . s 05 rately fromz and: in order to understand their effects on

3 5 g the restoring force.

£ e Zaog A e o _To clarify the relationship between secant and tangent
abs, a disp., x abs, a abs, a stiffness, Tables gives the values ofb and K for a few

Fig. 4 Two element models (see Table) illustrate the relation- €xamples at = 0, %7 %7 %771- These are the times when
ship between the increasing/decreasing natureSgi) and the the (x, r) path either crosses the origin (wheft) = 0),
clockwise/counter-clockwise direction of,(r); z(t) = Asin(wt) or the path reaches an extremumméf) (Wheng'c(t) -0
with A = 1 andw = 1. . N ) o T
a(t) = ag), sometimes called a “turning point” in hysteresis

. o modeling articles.
of the “petals” (hysteresis loops) in Fi§.are due solely

to the non-differentiability of the piecewise linear dispé- At the origin: For mem-springs of the form = S(a)z,

ment in Eq. (3) att = L, 2L, whereas the outer tips are  Egs. (L2) and (L6) are continuous and equal to zero when

smooth in Fig4. z(t) = 0 while 42 is finite at those times, so one-sided
limits exist and are continuous, leading to:

(@) 3 4
g 2 g 2 " p K(0) = S(a(0)) = S(0) (23)
2 0 20 £2 2 r T
g 3 7 K <5> =5 (a <5>) = 5(2a0) (24)
Q-2 Q-2
(b) 1 0
=2 =2 3 4 P K(T) = S(a(T)) = 5(0) (25)
5 0<\)§ 0 / 5 ©2 for all examples in Figure3-8.
=2 =2 1 0 At both turning points: Three situations are illustrated in
0 ao 2ao0 -A 0 A 0 ao 2a0 0 ao 2a0 . . . .
abs, a disp., x abs, a abs, a Figs.6t0 8, respectively. The situations are: ({)s con-
Fig. 5 The same element models as in Figsee Tablel2) but subject tinuously differentiable With;_i = 0; (2) Sis continuous
tox(t) = 44 (1 — L |2t 4 L) (—))LF T2 witha(0) =0, T = piecewise linear Witl’f(% # 0; (3) S has an integrable
27 A=1,andw = 1. discontinuity With% = 0. One-sided limiting values of
S and K are given in Tablé at each junction of Phases

1-4.
Property 4 (Tangent Stiffness K along (z, ) Curve)

The tangent stiffnes& (t) = 42(t) along the ¢, r) path Under Situation (1) with the sinusoidal excitation —
is symbolically obtained by dividing Eq2() by i:(t) with  Fig. 6(2) —the product of Factors 1 and 2 in Eg2(may be
the proviso that the velocity is not zero (although it is atdetermined by using L'Hospital’'s rule. Under Situation (1)
t — %’ % . with the piecewise excitation — Fi¢(b) — Factor 1 is con-

tinuously differentiable and equal to zero while Factor 2 is

2
K(t) = ar _ d (S(a)z) = S(a) + dS(a) r (22)  zero—so their product s zero. Thus, the tangent stiffress i
de  dr LN continuous and equal to the secant stiffness.
Factor 1 Factor 2 Under Situation (2) with the sinusoidal excitation —

Equation 22) shows that the tangent stiffne&Sand the se- Fig. 7(a) — the tangential stiffness line becomes vertical.
cant stiffnessS differ by a term that is critically sensitive If the hysteresis loop in the first quadrant is considered a
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Table 5 Values andS, K andU at the critical points within a cycle for selected modelsegiin SectiorB8.3.

Fig. ID Phase 1: Phase 2: Phase 3: Phase 4:
S, K Loading in 1st Quad. Unloading in 1st Quad. Loading in 3rd Qual. Unloading in 3rd Quad.
orU t=0t ¢=T7 =Tt 4_T° 4Tt ;_3T" 3Tt _p-
4(a),5(a), & 6(a)(b) S 3 2 2 1 1 2 2 3
7(a) S 3 1 1 1 1 1 1 3
7(b) S 3 1.33 1.33 1 1 1.33 1.33 3
8(a) S 3 2 1 0 0 1 2 3
11(a) S 3 3 1 1 1 1 3 3
4a), & 7(@) K 3 —o0 400 1 1 400 —o0 3
5(a) K 3 -0.35 4.36 1 1 4.36 -0.35 3
6(a) K 3 -0.47 4.47 1 1 4.47 -0.47 3
6(b) K 3 2 2 1 1 2 2 3
7(b) K 3 -1.17 1.83 1 1 1.83 -1.17 3
8(a) K 3 -0.47 3.47 0 0 3.47 -0.47 3
11(a) K 3 3 1 1 1 1 3 3
4@ U U(0)=0 U(%) =1.40 U(L)=o0381 U(%) =1.40 U(T) =
5(a) U U@0)=0 U(L)=129 U(i) =0.58 U(2L) =129 U(T)=0
6(a) U U@0)=0 U(i) =127 U(i) =0.54 U(ﬁ) =127 U(T)=0
6(b) U U(0) = U(%) ~ 116 v (%) =031 U(%) 116 UT)=0
(@)U U@0)=0 U(L)=122 U(i) =0.67 U(2L) =122 U(T)=0
by U U(0) = U(%) — 104 v (%) =045 U(%) — 104 U(T) =0
8(a)U U(0) = U(f)=127 U (%} =104 U (377) =127 U(T)=0
11(a) U U@0)=0 U(L)=15 U(f)=1 U(RL) =15 U(T)=0

a a

€ 0 € 0 £2 02 € 0 €0 / £2 02

g g g g

g2 g2 g2 g2

b 0 b 0

(;) , - 2 (;) , - 2

€ 0 € 0 £2 02 < OO € 0 / £2 02

s s g s s g

g2 ) i o g2 ) i o
0 ao 2a0 -A 0 A 0 ao 2a0 0 ao 2a0 0 ao 2a0 -A 0 A 0 ao 2a0 0 ao 2a0

abs., a disp., x abs., a abs., a abs., a disp., x abs., a abs. a

Fig. 6 The same element model (see Tablel2) Fig. 7 The same element model (see Tablel2)

but subject to z(t) = Asin(wt), and z(t) = but subject to z(t) = Asin(wt), and z(t) =
2t 1 . t .

(¢ —_% L%—f— 1) (-7 +3], with a(0) = 0, T = 2z, (¢ —_% L%—}- 1) (-7 +3d, with a(0) = 0, T = 2,

respectively, withA = 1, andw = 1. This is to illustrate the impact of respectively, withA = 1, andw = 1. This is to illustrate the impact of

Situation (1) to the tangent stiffness af, ¢). Situation (2) to the tangent stiffness af, ¢).

flower petal, its outer tip is rounded. This may be a dis- . dic | h A
advantage of this kind of excitation as it could mask dis-"9%' |.nput., We haveip = = 0, sor(t) — S(0)z(t)
continuities in the model in this situation. In Situatior) (2 which is a linear spring.

with the the triangular excitation —7(b) — & (%7) # 0,

@ (%Jr) £ 0 and# (%7) £ i (%Jr). The last condition Property 5 (Energy Stored or Dissipated)

leads tog—; %* % %*) , under which we will always For all examples in Figure3to 8, Table5 gives the val-
have a flower petal with a sharp outer tip. ues of the energ¥ (¢) at the end of Phases 1-4. The results

Under Situation (3) — FigB —r has ac° discontinuity at gre in accord with passivity at_the end of a full period, mean-
ao, regardless of excitation. ingU(T') = U(0) as noted irDi Ventra et al(2009. In par-
ticular for r = S(a)x subject to periodic input, energy is
Remark 11 (Rate Dependence of Mem-Spring Models) stored (created) during the first half period and then dissi-
Generally speaking, mem-spring models are rate depefated by an equal amount during the second half period (or
dent, behaving as linear (constant) springs “in the limit ofvice versa). Moreover, because mem-springs degenerate to
infinite frequency” Di Ventra et al(2009). In particular, as  linear springs as the frequency goes to infinity (Reniajk
w — oo for models of the form = S(a)z subject to pe- U (t) goes to zero in the same limit.
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Fig. 8 The same element model (see Tablel2)

but subject to z(t) = Asin(wt), and z(t) =
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3.4 The Usefulness of System Models

tor. force, r T-restor. force, r

o
restor. force, r
o

According to Property5, the simplest mem-spring mod- 2
. . . . )

els show energy storage in either the first or the third ™~ ~~="—— =" 1L——~" o0

quadrant, whereas data from many structural (macro-scale) abs., a disp. x abs. a abs. a

tests show only energy dissipation (in both quadrants)rig. 10 Two system models (see Tahlé) that contrast the two ele-

e.g., seeDolce et al (2000; Santos and Cismasi(2007; ment models in Fig4 and illustrate the behavior of(r) in the third

Christopoulos et a{2008; Ricles et al(2009) and Fig.9  quadrantz(t) = Asin(wt) with A = 1 andw = 1.

for one such example. A different insight can be gained by

contrasting Egs.1(7) and (L9) while observing that an ele- @

w

ment model cannot produce the same behavior in the ﬁrst‘;;~ ’ % Lo

and third quadrants when subjected to the specified cyclicg ° Dg 0 / g ? o2

input. In other words, thex( r) path is “anti-symmetric with (E) - g-2 1 =1

respect to the origin”, as statedin Ventra et al(2009. 52 5 2 yom——-
One way to tackle this issue within the framework of OC S, |2, © 2

mem-models is to utilize system models, TaBJeLine 5. % . j % L g 1

The basic approach is to include in S and introduce 0 o am A o A 0 20 % a2

a switching mechanism wheneveft) = 0. Section5 abs. a disp., x abs, a abs, a
presents examples of such mem-spring system models. TIF&y. 11 One element contrasted with one system model (see Taple
rest of this subsection gives a few examples of mem-spring8 illustrate the behavior ofz{ r) in the third quadrantiz(t) =
of the formr = S(a, z)x subject to the same two types of “s(wt) With 4 =1 andw = 1.

periodic input as were used in the previous subsection (Ta-

ble 4). Table13in AppendixB contains the secant stiffness

S(a, x) r? r_;_d lek;lézllsts vaIyesI:qIS‘i(.)f{ ‘T’l?]dArU (f%r ?mﬁan_ system inStrukov et al(2009; Strukov(2011); Chang et al
son with Tables). Contrasting FiglOwith 4, and Fig 11(a) (201D) are also summarized and discussed. The three nano-

with (b), one can see the difference that the switching irHevice models, designated herein as Case Studies #1, 2

tFI:ese To;ittels4can rgaketln C:e;n;s of T‘Ode“{]a Cap"’tlb'“tyand 3 (see Appendig.1), can be viewed as mem-dashpots
roperties 1o = may be extended irom elements to Sys emsby means of the Force-Voltage Analogy. Instead of using

see Figs26and27in AppendixB for an example. the Simulation Program with Integrated Circuit Emphasis
(SPICE) as irChang et a(2011), MATLAB was used for all

nano-device models (two memristors and one memristive

4 CASE STUDIES OF MEM-DASHPOTS computations herein. Throughout this study, ode45 (a MAT-
LAB ODE solver based on RK45) was used with RelTol =
4.1 Overview ofVlem-DashpoCase Studies 10~°, AbsTol =10~* and MaxStep 40~°.

This section focuses on the governing state and input-
As a case study of a mem-dashpot in the engineering meutput equations. Naturally the input (i.e., excitatiotgys
chanics literature, details of a controllable hydraulimggr ~ an important role in understanding the nonlinear input-
in Scruggs and Gavi(2010 are presented and discussed inoutput equations. Although the response to many differ-
this section. For comparison purposes, results from threent kinds of excitation are of interest, only a few signal
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Table 6 Values andS, K andU at the critical points within a cycle for selected modelsegiin SectiorB8.4.

Fig. ID Phase 1: Phase 2: Phase 3: Phase 4:
S, K Loading in 1st Quad. Unloading in 1st Quad. Loading in 3rd Qual. Unloading in 3rd Quad.
oru t=0t =T 4=T" 4T t=TF =307 4 =3TF -
10(a) S 3 2 2 1 3 2 2 1
11(b) S 3 3 1 1 3 3 1 1
26(a) (b) & 27(a) (b) S 3 1 1 3 3 1 1 3
10(a) K 3 —o0 400 2 3 —o0 400 1
11b) K 3 3 1 2 3 3 1 1
26(a) K 3 —o0 1 3 3 —o0 1 3
26(b) K 3 -3 1 3 3 -3 1 3
27(a) K 3 -5.00 1 3 3 -5.00 1 3
27(b) K 3 1 1 3 3 1 1 3
10(a) U U0)=0 U(%)=140 U (g; =0.81 U (QT) =222 U(T) =1.62
11(b) U U)=0 U(7Z):15 U%E):l U(§—) =25 U(T) =2
26(a) U U)=0 U (z% =1.33 U (?) =0.58 U (%) =1.92 U(T) =1.17
26(b) U U@0) =0 UIQZ) =1 U (?) =0.25 U (%) =125 U(T) =05
27(@)U U@)=0 U (%) =1.12 U (?) =0.50 U (3?) =162 U(T) = 1.01
27(b)U U@0)=0 U(t)=079 U(t)=o017 U((2L) =096 U(T) =0.34
| X107 ,x10° . 4.3 Regarding Variable(s) in State Vecgor

-~ The selection of variable(s) in state vectois, in general, a

subjective matter that depends on the physical mechanism(s
perceived to underlie the observed nonlinear behavior. In
some cases encountered in the literature, a mem-model ex-
pressed in terms of a state vector does not necessarily mean

restor. force, r
restor. force, r
o

S R the model is a system as defined in TaBleinstead, the
- 5 o T : 3 model may actually be an element (as in Case Study #1).
disp., x velo, xdot Two interesting observations can be made regarding Case

Fig. 12 These two panels reproduc&cruggs and Gavif2010) but  Study #2. First, it is straightforward to show that:
acceleration turning points (and others) have been added he

Ron } D? Y
v(t) = |y + 1—y)| ——2—
©) {y ROFF( v y(l—y)
types have actually been used thus far, namely periodic, or- D2 1 Ropr 17 .
dered, or amplitude-modulated forms, which are often used = iy {ﬂ R—ON;] [ (28)

to probe both memristive devices and engineering mechan-
ics devices. b
wherey = %, which may have a physical meaning of being
a normalized width according t©hang et a(2011). It can

4.2 A Controllable Hydraulic Damper be seen thag, ¢ - joined withv - form a memristor (not a
memristive system). We have:

Equations (30.59) to (30.62) iBcruggs and Gavi2010

are simplified versions of a more general form of variableG(y) = /g(y)dy

damper, also reviewed in that same paper. Following the no-

2
tation for flow-controlled memristive systems in Tabls _ D {— In(l —y)+ Rorr In y}
and 3, Egs. (30.59) to (30.62) can be re-written as time- “‘2’ Ron
invariant state and input-output, Eq26) and @7), where il [ln(l ~ ) — OFF 1 yo] (29)
the state vector has two components) = [y (¢), y2(t)] = j2a% o)

[2(), w(®)] with w € [0,1]. T, Ky, cmin @Nd émax @€ \yherelny andin(1 — y) require0 < y < 1.
design parameters, whileit and# denote the saturation  ajternatively, it is again straightforward to show that the

and Heaviside functions, respectively. Thus this modelis i giate and input-output equations in Case Study #2 define an-
cluded as a key mem-dashpot case study. Some snapshot$,gfar memristor. We can also show that:

this non-trivial model fromScruggs and Gavi2010Q are
reproduced in Figl2, while more details and insights are | _
provided in Figs12and13.

Ron — Rorr
67<MV o q+C)

+ Rorr |t (30)

+1
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T
State Eq..y = 3 . 26
ate By L%usat[_l,l] { K [500y115 M ( [(1 = 92) cmin + y2cmax] A2 - y1) —yz}}} (26)

g(y,%)
IO Eq.: r = [(1 — ¥2)Cmin + Y2Cmax] Ag z 27)

D(y,z)

input, xdot
o
o

-0.2

! \ ‘ el !

0 1 2 3 4 5 6 7 8 9 10
time, t

0 | |

Fig. 13 Time histories of the input, output, internal variable, gowand energy in Fig. 30.62 cruggs and Gavi(2010.

where C is an integral constant to be determined (i.e., asome nonlinearity observability criteria). See Figjgto 19
memristor, not a memristive system). (later) for simulated results of Case Studies #1 to 3 as well
Considering what variable(s) a state vector might in-as the hydraulic damper frorcruggs and Gavii2010.
clude, the internal state variable in Scruggs and Gavin To symbolically illustrate excitation-dependency, let=
(2010 has a physical interpretation, being the normalizedD (z, ©) &, which is a simple example of a flow-controlled
viscosity coefficient withw € [0, 1], which is quite note- time-invariant system model for a mem-dashpot, we have:
worthy because in Case Study #3 fra¢hang et a(2011J),
a similar choice occurs for the internal state variabl@he N
. o . . = [ rdt= [ D(z,&)zdt
normalizedw has a clear physical interpretation, being an’ / /
area index varying between 0 and.can be solved as a i
nonlinear function involving an integral of Using the no- ~ — /D (w, &) dw = /D(Cc’h(x))dz (31)
tation in Table2, w is a nonlinear function of while W
is an affine combination oy and a nonlinear function of \wherei = & (x) has a piecewise-defined expression accord-
v. Ultimately, W can be expressed as a nonlinear bivariatgng to the phase ploti{ z) - as discussed in Secti@i3espe-
function ofv and¢; see AppendixC.2 cially Table4 and Egs. {7) to (20) - but for a mem-dashpot.
Thus, it can be seen thatis piecewise defined, depending
onz. Also, it can be seen that(p) (or, equivalentlyG in
4.4 Regarding Excitations Table?2) is phase-plot-dependent, i.e., excitation-dependent.
Together with Fig.2, Fig. 14 exemplifies typical time
The first (and maybe foremost) challenge in studying memhistories and phase plots in termszofndz used as input
models is the dependence of their responses on their eie a flow-controlled mem-dashpot. Similar phase plots, but
citations, which is due to their intrinsic nonlinearity (so in terms ofp andr, could be applied to an effort-controlled
long as the amplitude of excitation is high enough to meemem-dashpot. (For a mem-spring, we could use pairs of
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(@) O solved uncoupled (as they were in this work; see SeetiBn
g kel \ and AppendixC.1). On the other hand, the hydraulic damper
30 : 0 equations fronscruggs and Gavi(2010Q were solved cou-
E J E / pled.
il In particular, Eqg. §) is a nonlinear ODE to be solved.
0 fime t 0 disp. x The smoothness condition for numerically integrating this
' ! ODE can easily be violated by discontinuities in the nonlin-
(b) ear operatog and/or those in the input. The former leads
kel ks to state events while the latter to time events. See Hg.
:: 0 : 0 where a sawtooth wave is an example involving time events;
v K typically a displacement time history with sawtooth featur
is popular in earthquake engineering tests. Mathematjcall
0 . 0 ) this means thalj—f is discontinuous at certain times. On
time, t disp- x the other hand, non-smooth operatbiaclude, but are not
() N S limited to, piecewise-defined functions or generalizectfun
ks 5 tions. Time events, which are (by definition) known prior
S0 ; 0 to the start of computations, are associated with excitatio
v v \ (assuming they are deterministic, not random). Some loca-
Vi tions whenz = 0 (ori = 0, orv = 0) are highlighted
0 0 with red circles in most plots in Sectiah In contrast, state
time, t disp., x

events cannot be known in advance because they are caused
Fig. 14 Typical smooth and nonsmooth excitation time histories andpy nonlinearities in the constitutive relations. Both dihg

their corresponding phase plots. Here, a mem-dashpotdsassaen ex- ;
ample. (a) follows Fig2; (b) mimicsChang et a{2011); the analytic affect the smoothness of the state equation, an ODE.

signal in (c) followsScruggs and Gavig2010 while the piecewise sig- An interesting and a challenging point for the control-
nal in (c) mimicsRicles et al(2002). lable hydraulic damper is the subtlety of state events. & her
are no time events in this case because the prescribed ex-
. citation is analytic. However there are state events, chuse
andz andp andr, respgctwely, for a flow-controlled and an by four situations, detailed in Table Numerically solving
effort-controlled situation.) the case study of controllable hydraulic damper can be quite

it Each o;the thr:aettyplcal f5|gnals |IIl;|.stra.\tedh|n RAghas tr(1:hallenging. We need to pay attention to the time instances
its pros and cons. In terms of propagating in phase space, enz(t) — 0, () — 0, #(t) — 0 and those time instances

sinusoidal .signgl seems o be the_least efficient givgn th hensat applies. One of the challenges - for the specified
only one circle is explored.(assumlng constant amp.“tUd?)excitation time histories - is that(t) — 0 andi(t) — 0
An amphltude:—modulated signal would be more efficient N 4o not line up. Some locations whén= 0 (or & = 0) are
contrast m this regard. , , highlighted with blue squares in most plots in Section

The difference between a smooth signal and its saw-
tooth counterpart needs to be clarified: the former is differ
entiable, thus facilitating analytical manipulation, Vehihe ) ) . . .
latter does not possess this convenience but enjoys pepuld+6 Using Time-Varying Secants in Modeling
ity in practice, e.g., in pseudo-dynamic tests in earthguak
engineering (such as the excitation in Fig§{a) following
Applied Technology Counci(2001). Of course, these ex-
citation forms are not exhaustive. Ultimately, responses u
der random excitations need to be studied; studying period

o . 7 i _ @ _ @ i i i
and/or ordered excitations is a necessary preliminangstag i€ntsD = 35 ands = 5 are time-varying secants, il-
lustrated in Figl15, which are defined for all except when

the denominator is zero which should not hinder physical

4.5 Regarding Solving State and Input-Output Equations  interpretation.
Given a time-varying4, r) plot, the physical interpre-

State and input-output equations, such as Egsafid €) tation of secant stiffnesS clearly differs from the tangent
and others presented elsewhere as typical examples sfiffnessk’, as discussed in Propetyand shown in Tables
flow/effort-controlled mem-dashpot and mem-spring sys-and6. Secant modulus is also well-known in engineering
tems, can be sometimes be solved uncoupled. For examplagchanics as, for example, Young’s modulus for concrete
Case Studies #1 to 3 are simple enough that they can hehich is typically estimated for a stress-strain curve by-co

For modeling purposes, it is worth noticing that the qudtien
of r(t) and(t) has the physical meaning of a time-varying
viscous damping coefficient. Likewise the quotientr¢f)

iandx(t) is a time-varying stiffness. In other words, the quo-
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Table 7 State events in Case Study of controllable hydraulic damper

ID Description

[6) those caused by, i.e., bothz(t) = 0 andz(t) =0

(i) those caused byat, which are not known in advance. When the excitation is lawéver, we do not need to worry about this
type of state event

(ii) | those caused by the absolute value function, @), = 0

(iv) | those caused by the “hard bound™ofi.e.,w € [0,1] - It is found that, for the specified parameter values, thisioois easier
to reach than the bound fsyit.

(a)r = D(x) xdot (b)r=S@a)x B

voltage, v
S

secant, M

D =r/xdot S=r/x
1 1 17N
0 0 [
0 velo., xdot 0

restor. force, r
restor. force, r

35000

disp., x

voltage, v
S
oltage, v
S
secant, M

Fig. 15 Cartoons showing time-varying secants of @){) and (b) ¢,
r) for memristive and memcapacitive systems, respectively.

) 1 (4 0

4 4 4
charge,q  x10”° charge,q x107° charge,q x107°

. - . . . 0 Fig. 17 Fig. 2b and 2c in Case Study #1 frotrukov et al2008) are
necting the origin with the point corresponding to 45% 0feproduced by using the two different memristor modelsesttip two

its ultimate strength in accord with the recommendation ofiifferent excitations. See Tabléd and15in AppendixC.1for details.
ACI (ACI Committee 318(2011). However, time-varying
secants are not so widely used as time-varying tangentjIm

when modeling path-dependent engineering mechanics sys-
tems. Nevertheless, when applying mem-models to experi§°
mental data, we must pay attention to time-varying secants .
For the reader’s convenience, time-varying secant plaii of

four mem-dashpots are presented together in FoggNote )
that Cases #1 to 3 are effort-controlled wittt) specifiedas ~ ; s
the excitation;/ = % andWW = ;((‘?) in these case stud- * : .
ies are analogous tg% and fgg , respectively, for mem-  =s—— - M v i %
dashpots. » »
Examplel (Using M = % for Modeling Menristors: H
Case Studies#1 and 2) U
Figures17 and 18 show results from Case Studies #1 *« = S O T S TR

x107 x107 x107 x107

e,md & Evenvgl)OUQh dlﬁer,ent excitations are used, e,ach qu%ig. 18 A parametric study based on the model givenSmukov
tient M = Zp Stays on its own secant curve, wh.|ch IS @(2011), Page 17, subject to = +vo sin? (12.5x¢) with v = 1, 2,
constitutive curve. Moreover, since these are memriseds ( 2.2, respectively. These exercises reveal the one-to-caygpimg M

ements), each flux-charge relationship is one-to-one for th(or, equivalently,G) as the excitation gets stronger. They also show

i st P at a memristor may not display its nonlinearity when theitexion
specified excitation, which in general does not happen fo?gvew weak. This is our Case Study #2: see Tabkand15in Ap-

systems (either memristive or memcapacitive). pendixC.1 for details.

Example2 (Using W = f)((tt) for Modeling a Menristive
System: Case Sudy #3) of the model not being an element but a system, the former
Figurel9shows results from Case Study #3@ng et al  of which would guarantee(¢) and (V, ¢) to be one-to-one

(2011), which is a memristive system (not an element). Formappings according to Tab&

this model, the secant (i.e., quotient) is a bivariate fiomct

which depends on the voltageand its time integrap. Inad-  Example 3 (Using D = ;(2 for Modeling a Mem-Dashpot:
dition, both ¢, ¢) and (¥, ¢) are not one-to-one mappings Scruggsand Gavin (2010)3

- even though these facts are not obvious without careful It should not be a surprise to learn that, for memris-
study of the model and Fidl.9. While AppendixC.2 dis- tive systems, the secant dampihyis not a single-valued

cusses these claims, intuitively we explain them as a resultinction of 2. For example, under the excitation given
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35000

secant, M
secant, M
secant, W

IS

w

x10

secant, D

4 1
charge, q x10° charge, q x10~

o flux, ¢
flux, ¢

.5

0

0

0 0 2

-3

1
-5 charge, q x10

4
charge, q x10

0 04 08

flux, ¢

12 0.1

0
disp., x

Fig. 16 Top Row: The secants for all four case studies; the compléxdreases from elements (first two plots) to systems (lastglots). For
an element, the secant is a one-to-one mapping. For a syisismpt. For Case Study #3, the secant is a bivariate fundSee Figl19). For the

controllable hydraulic damper, it is a dynamic quantityttBm Row: The

* Fig.5ain Chang etal (2011)
O Fig. 5bin Chang etal (2011)

Fig. 19 Anillustration of the secariV’ being a bivariate function af
andv in Case Study #3 frorthang et a(2011). The three-dimensional
surfaceW = W (¢, v) contains two trajectories that resulted from two
distinct excitations. In addition, the first and third ques in ¢, 4)
correspond to two different curves iilf, ¢) and g, ¢), even though
these facts may not be easily seen here. See Appé&hdix

in Scruggs and Gavi(2010, the secant damping iti(r) is

not a simple function. In fact, the internal state variahle,

is actually a normalized time-varying damping coefficient
that follows its own dynamics; see Fity3.

5 CASE STUDIES OF MEM-SPRINGS

5.1 Overview ofVlem-SpringCase Studies

integrals of the secants.

contrast to memristors, memcapacitors are relatively new,
yet we believe there is no lack of examples. Two possibili-
ties are self-centering structures and flag-shaped hgsdere
which have captured attention in earthquake engineeridg an
shape memory alloy (SMA) communities (e.Bigcles et al
(2002; Christopoulos et a(2008). However they are nei-
ther memristors nor memristive systems. The zero-crossing
property of memristors is expressed in terms of f),
whereas the zero-crossing property of self-centeringstru
tures (or flag-shaped hysteresis) is expressed in terms of
(z, ) manifesting super-elasticity, i.e., having zero resid-
ual displacement upon unloading. Perhaps their behavior
could be modeled as memcapacitors or, more likely, mem-
capacitive systemsglVhile simulated data is used for SMA
as described Appendi®, experimental data is examined
for a self-centering test structure in this subsection.dthb
cases, the resulting mem-spring models utilized the switch
ing mechanism discussed in SectR#.

There are of course other mechanical capacitors (i.e.,
springs)hat include memory effegthowever many of them
are neither memcapacitors nor memcapacitive systems. For
example, the Ramberg-Osgood modéer(nings(1964)
is not a memcapacitor, nor is it a memcapacitive system.
The same can be said for the well-known bilinear model
(Caughey(1960ha); Kalmar-Nagy and Shekhawgz009).

5.2 Experimental PC4 Data Modelled as a Mem-Spring

PC4 inRicles et al(2002) is a specimen typifying the po-
tential of self-centering structure$. = 8 seconds is as-
sumed for every cycle of an amplitude modulated sawtooth
displacement excitation as shown in FigXa). Four colors

In this section, we present mem-spring models that repraare used to indicate loading and unloading in both the posi-
duce the features of some fascinating nonlinear hysteresiive and negative directions. Digitized data is only ob¢gin
which we believe have underlying memcapative nature. Ifior the positive direction while antisymmetry is used fog th
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in Figs.23 and24 by introducing an intermediate variable,
100 k which isnot a state variable:

w(t) = a(t) — a(t;) [H(t —t;) — H(t — tig1)]
t € [ti,tit1], wherez(t;) =0, i=1,2,3,... (34)

secant, S
wv

disp., x

‘ leading tow(t) = a(t) whenz(t) > 0, andw(t) = a(t)—
~150, a local maximum value fou(t) whenz(t) < 0. All local

abs.a maximum values can be considered values of a memory pa-
rameter (Wright and Pe(2012). The input-output equation
then becomes the following:

[ Seem,  w(t)] < ag
S = {soe—ww, fw(t)] > ao (39)

Fig. 22 The functionS = S(a, =) was fit piecewisely with nonsmooth
surfaces using the digitized data.

negative directiona(t) is obtained through calculating the

area undet(t). Fig.21(a) recovergicles et a(2002’s Fig.

8(a), while Fig.20(b) to (d) and Fig21(b) and (c) provide whereay > 0. Comparing Figs20 with 23, and21 with 24

other quantities that are not presentedinles et al(2009  indicate both the promise and limitation of this proposed

but useful in our modeling. mem-spring model in capturing the flag-shaped hysteresis
For the assumed excitation, the secant stiffifeseown ~ given in the PC4 data iRicles et a(2002.

in Fig. 22 was extracted by analyzing test data. To clarify

this, we selectu and i as state variables and assume the o .
following input-output equation: 5.4 Comment on Generalizing Mem-Springs

r==5(a&,r)r (32)  Many continuum mechanics texts introduce constitutive
y models by discussing linearly elastic materials that obay t
1 . sorial stress-strain equations
= |7(891(2) +1)(sgr(@) + 1)51(z)
1 oc=E:¢ (36)
+ 7 (sgn(z) +1)(1 — sgn(#)) Sz (a, z)
4 whereE denotes a constant tensor called the secant modulus
+ 1(1 — sgn(z))(1 — sgn(#))Ss(x) (Willam (2002). These are called Hookean models because
4 they generalize Hooke’s law, which is a scalar equation, jus
4&(1 — sgn(z))(sgn(#) + 1)S4(a, )| « (33) as each input-output equation in Tatllés scalar. By anal-

ogy, one way to generalize mem-springs is to embed them
For this example, having as a state variable is very help- in continuum mechanics by defining a secant modulus ten-
ful in defining the switching mechanism for a memcapactivesor which depends on strain as well as other state variables
system. For each of the four zones selected by the joint sigristhat enable history dependeri€e= E(y, ¢).
of x and i, the value ofS is either a function ofc alone For example, consider a long thin uniform cylindrical
(when it seems to be simply a nonlinear spring) or a funcwire, made of SMA, having lengtlh and cross-sectional
tion of botha andx (when it seems to be a memcapacitivearead. Assume infinitesimal strain theory, let the axial dis-
system). placement be denoted by

Our proposed model works with the specified amplitude

and rate of the input. It is a black-box model that is quited = 9(&;t) (37)
a simplification since it involves only a single-degree-of- . . .

freedom. Since each nonlinear model would be different, Ouwhereg € [0, L] is the axial coordinate, and let

model must be checked against additional test data. In addi- A8(&,t)

tion, we anticipate the need for a damage index bounded= (. t) = D€ (38)

within a range, to be introduced as an internal state vaziabl
be the axial strain. Assume the SMA material obeys a uni-

o ] axial stress-strain equation of the form
5.3 A Proposed Qualitative Mem-Spring Model for

Flag-Shaped Hysteresis o= E(a,¢e)e (39)

When an inputz(t) with a period ofT" = 4 seconds is wherea = «(¢,t) is the integral of the strain with re-
used, we have the following model and simulation showrspect to time, called the “strain absement”, thereby engbli
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disp., x
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%
kel
© 100

restor. force, r

time, t

Fig. 20 All time histories reconstructed to study Specimen “PC4Rinles et a(2002’s Fig. 8(a).

(a) 400 (b) 400 (c) 150
100
200
50

0

restor. force, r
restor. force, r
disp., x
(=)

secant, S

-200

-400
-150-100 =50 0 50 100 150 0 100 200 300 0 100 200 300
disp., x abs., a abs., a abs., a

Fig. 21 (z, ), (a, 7), (a, ) and @, S) are shown here, where (a) matcti&sles et a(2002’s Fig. 8(a), and (b) to (d) are derived from (a) and to
reveal the insights for modeling in this study.

history-dependent response under certain axial loading co  In addition to nonlinear material behavior, nonlinear ge-
ditions. Furthermore, since SMA is known to be rate de-ometric behavior (finite strain) must ultimately be consid-
pendentZhu and Zhang2007), the secant modulus should ered in three-dimensional configurations. As stated on page
also depend on strain ratge = %, so generalize further 609 of Willam (2002, “the three versions of nonlinear elas-
by letting ticity” (algebraic, integral, differential) “lead to cotitsitive
formulations which exhibit fundamental differences when
we consider triaxial conditions.” Constitutive models for

which highlights the distinction between history- and rate SMA (and other materials) must be generalized beyond non-

dependent response. The local axial stiffness of this moddnear elasticity, thereby enabling hysteretic dissiatie-
is sponse under diverse loading conditions. These are chal-

lenging topics which have been, and will continue to be, im-
M (41) Portant areas of engineering mechanics research for many
L decades.
which is analogous to the secant stiffness in B§).(Dy-
namically, this SMA wire model would satisfy the nonlinear

E = E(a,e4,¢) (40)

S(a,er,e) =

wave equation 6 SUMMARY AND CONCLUSIONS
5 _ 0 [pimey e (42) I brief, Ch d th istor @hua (197
Hoam = gg |Flensno)ge n brief, Chua proposed the memristor ©hua (197,

presented memristive systems theory with Kang five years
wherey is the mass density of the SMA material. later in Chua and Kand1976, and presented memcapac-
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Fig. 23 Behaviors and inner workings of the proposed qualitatigesy model under multiple cycles of amplitude modulatedsatl excitation
- in terms of time histories - in contrast to those in F26.

1 0.8

1 (o

=
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Fig. 24 Behaviors and inner workings of the proposed qualitatigtesy model under multiple cycles of amplitude modulatedsatli excitation
- in terms of hysteretic loops - in contrast to those in Rigand more.

itive and meminductive theories with Di Ventra and Per-tions for all mem-models in Tabare scalar, as is Hooke’s
shin in Di Ventra et al(2009. Table2 summarizes the re- law, which implies that embedding mem-models in contin-
sults of transplanting these theories to the field of enginee uum mechanics is a nontrivial task. The mathematical form
ing mechanics by following the lead @ster and Auslander of the stress-strain equations that arise from such consid-
(1973 andJeltsema and Scherp€R009. Many examples erations involve secant modulus rather than tangent mod-
of memristors and memcapacitive systems, called memuilus, so these inherently nonlinear models are partly alge-
dashpots, were found in the literature; however the sambraic (the input-output equation) and partly differengtale
could not be said of memcapacitors or memcapacitive sysstate equation). In other words, the stress-strain equatio
tems, called mem-springs. Mathematical parallelisms bethat emerge from generalizing a scalar mem-spring model
tween mem-dashpots and mem-springs were recognized amauld involve total stress and strain (not incremental re-
exploited, but physical differences and the newness of meniations as in plasticity). AdWillam (2002 notes, differ-
springs led to the realization that these newer models deent versions (algebraic, differential) of nonlinear dlast
serve deeper study, in part because of a little-studied-quaalone (to say nothing of inelasticity) lead to constitufive

tity called absement which allows mem-spring models tamulations that display fundamental differences undexiria
display hysteretic response in great abundance. Howeveridl conditions. Clearly these nonlinear constitutive mede
is nontrivial to devise mem-spring models that, when submerit more study.

jected to arbitrary excitations, are passive. Even for-peri

odic excitations, a switching mechanism was needed so that

simulations with prototype mem-spring models could main-

tain passivity, as in Figl. Moreover, the input-output equa-
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NOTATION

velocity

displacement

absement, first time integral of displacement,
stress

strain

strain rate

strain absement

the first time derivative of

resisting force or characteristic force of an element
general momentum, the first time integrakof
the first time integral op

state variables, see Tab2and3

state variables in Tabk

internal state or intermediate variable in Sectidns
and5

driving force, see Eqlj, Fig.25and Tabled
incremental memristance followirghua(1971)
incremental memdunctance followithua(1971)
See Table

See Table

See Table

See Table

effort

flow

secant damping, See Taldend Fig.15

secant stiffness, see Taldend Fig.15

tangent stiffness, see Prope#ty

power, See Tabld

energy, see Tablg

See Sectiord.3, especially Tabld

current

voltage

charge

flux
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(1a) k (1b)
k C u(t)
—
OO0
(2b)
k c u(t)
—{w
OO

Fig. 25 (1a) A Kelvin model connected in series with a mass; (1b) a

Maxwell model connected in series with a mass; (2a) a Kelvideh
connected with a memristor in parallel and then connecteskiies
with a mass, and (2b) a Maxwell model connected with a meanrist
in series and then connected in series with a mass. Eachjecstda
prescribed forceu(t).

A Appendix for Section 2

Table8 lists various definitions of the memristor and the publasi
from which they were taken. First, these seemingly differdefini-

tions are indeed all consistent once notational differseree taken
into account. Next, they are for either a general or a speeliéictrical

system. Last, they distinguish a flow- from an effort-coléa elec-
trical device. For electrical systems, charge- or curcamitrolled are
aliases for flow-controlled, while flux-, voltage-, or impatcontrolled
are aliases for effort-controlled.

Figure 25 depicts some simple situations where the necessity t

contrast flow- and effort-controlled mechanical systemsohees evi-
dent. After all, basic elements like springs, dampers, annistors are
made to be used repetitively and in a well-organized mamerder to
form a “system” that models a complex real-world device oncture.
For translational mechanics, the connectivity of thesécbagments
can be reduced to either parallel or serial connections;ais of the
concepts of flow- and effort-controlled systems.

Figures25 (1a) and (1b) show the Kelvin and Maxwell models,
each connected in series with a makdtsema and Scherp&009) re-
veal the duality between these flow- and effort-controllgsteams, ex-
pressed in terms of integro-differential equations. In eftwntrolled
device, the natural state variables are displacemearid velocityz.
These state variables should be solved (or calculatedpfjrsttegrat-
ing the differential equation based on force equilibriumcontrast, in
an effort-controlled device, the natural state variabtesnaomentunp

and restoring force, where momentum is the time integral of restoring

force. These state variables should be solved (or calal)létst from
the equation based on deformation compatibility.

These two linear time-invariant flow- and effort-contrallsys-

tems may be extended by introducing a new element — such as th

memristor (nonlinear time-invariant) — as shown in F§.(2a) and

(2b). Table9 presents the state variables and state equations for the

corresponding models in Fig5, whereu(t) is an applied force as in
Eq. (1). For systems in general, the constitutive relations of@thpo-
nents — either elements or systems — need to be “assembladtand
with the connectivity of the components. Absent other intguatr de-
tails, the need for two different mathematical expressfonshe same
memristor to fit into these two different systems may be sdéearly.

In other words, when doing computations, we may need to dihl w
either a flow-controlled memristor or an effort-controllegemristor,
depending on the element or system connectivity.

Table 10 lists expressions that are analogous to the set,af)(
plots inStrukov(2011) under the title of “Curious Lay Person’s View-
graph - II”, plus one more for the memcapacitor. Tabealso illus-
trates the underlying mathematical parallelism in the cés@usoidal
excitation.

(0]

Table 13 Secant stiffness/(a, ) used in simple mem-spring models
r = S(a, z)x in Section3.4.

Fig. ID S(a,x)

10(a) sgn(z) cos (%) 12

10(b) —sgn(z) cos gﬁ) +2

11(b) 1-sgn((a—ag)@) 3+ 1+Sgr((¢21—au)»"0) w1

26(a) & 27(a)  1-SUM(la=ao)r) 1+ 2(a—a0)?) +

1+Sgn((121*ao)r) 142 (a—ao)®

P
(o =020+

2 6
a—g(a—ao) )

26(b) & 27(b) M (3 _2

ag

14sgn((a—ao)z)
1tsoia—do)e) (1 4

The proof to Remarld is given below.The equation of motion
corresponding to Fig25(2a) is:

mZ + kx = u — [c+ M(z)] 2, with z(0) = zo,(0) = @o (43)

Assume free vibration; i.ey = 0. Multiply both sides of Eq.43) by
#(t). Note that

)

(mi& + kz) & e

(44)
whereE(t) = 2ma? + L k2. Multiply this equation byit and inte-
grate fromt = 0tot = T to obtainE(T) = E(0) — A(T), where

T
A(T) = /0 e+ M(z)] 42t (45)

is a dissipation function. I& + M (z) > 0, Vz(t), thenA(T) > 0.
Thus,M (z) > —cis sufficient for passivity (i.e., no produced energy).
B Appendix for Section 3

See Tabled 2 and 13 for some models used in Sectio88 and 3.4,
respectively:

(@)
=2 =2 3 4
g g “
€0 € 0 £2 02
] ] 9
o _ o _ e
(E) 2 L -2 1 0
3 4
=2 =2
g g v
€ 0 € 0 £2 02
& 3 g
v _ v _
L -2 g2 1 0
0 ao 2a0 -A 0 A 0 ao 2a0 0 ao 2a0
abs., a disp., x abs. a abs. a

Fig. 26 Two system models (see Tahl®) illustrate the behavior of
(z, r) atz = 0 and the impact of (a) Situation (1), and (b) Situation
(2) to the tangent stiffness af(r); z(t) = Asin(wt) with A = 1 and
w=1.

C Appendix for Section4

C.1 Case studies from nano-field

Tables14 and15 give an overview of all these case studies.
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Table 8 Many faces of mathematical expressions for the memristbndiations in this table follow those in the original putations. Notey is
the same ag.

In Device of Algebraic Form  Differential Form
“charge-controlled” Chua(1971)) v(t) = M(q(t))i(t), M(q) = 2212
“charge-controlled” Qster and Ausland€i973) p=G(q) p=G'(q)§=e=M(q)f
“charge-controlled” Jeltsema and Scherp2009) ¢ = ¢(q) V =M(q)!

“flux-controlled” (Chua(1971)) i(t) = W(p®)v(t), W(p) = d‘;ﬁf)
“impulse-controlled” Oster and Auslandgi973) q= F(p) ¢=F'(p)p = f=Wi(p)e
“flux-controlled” (Jeltsema and Scherpé009)) q=q(¢) I=W(p)V

Table 9 Summary of possible state variables and equations for séiscen Fig25.

Flow-Controlled Force-Controlled

Fig. 25(1a) Fig.25(1b)

z = I zZ = p
-x- -T-

. L 0 1 0 R 0 1 0

ot 1 i IS N e 4 O M B e | R P

Fig. 25(2a) Fig.25(2b)

“[i*[2] “[*[2]

z — . = VA =
_I_ z2 _7”_ z2

zZ= 1 . 1 z = 1 1 = k
- (kz1 + cza + M(21)22) + U —k (Ezl + 22+ W(zl)zz) + 2 fudt

Table 10 Periodic solution for spring and memcapacitor subjedtt@) = Asin (wt), and for mass, dashpot and memristor sube¢t:to) =
Asin (wt). § Other damper equations may be used.

Element r Expression forr Signature Plot

Springt r=kx kAsin (wt) an ellipse ﬁ + (;;Tz)z = linthe (@, ) plane
Memcapacitorf = M(a)z M (£ — 2 cos (wt)) - Asin (wt) “bow tie” in the (z, r) plane

Masst r = mi mAw cos (wt) an ellipse j—i + m = 1linthe (@, r) plane
Dashpott, # r=ct cAsin (wt) one-to-one mapping in the (r) plane
Memristor § r=M(@)i M(2—2cos(wt))  Asin(wt) “bow tie”in the (@, r) plane Williams (2008)

o
&

- - 3 4 Table 14 Three case studies on nano-devices selected as case studies
g g » herein with the equation or page numbers appeared in thesega
s s £
5 OCD 5 0 ,f S ? 02 Case Study Reference State Egqs.  I/O Eq.
) ) " : . #1 Strukov et al2009  Eq. (6) Eq. (5)
(b) , -, 3 4 #2 Strukov(2011) pp. 17 pp. 15
g g ” #3 Chang et a(2011) Eg. (5) Eq. (4)
: °® £ f . 7
S S g
g2 L) . o
0 a0 2a0  -A 0 A 0 a0 220 0 a0 2a0

abs., a disp., x abs., a abs., a hyperbolic sine in Eq.57) is analytic and thus satisfies the Lipschitz

Fig. 27 The same system models as in F&§ (see Tablel3) but condition). HenceW = f(w(¢),v) = g(¢,v).
subject toz(t) = % (t— % |2t +1]) (_1)L2—T‘+§J7 with a(0) = Hereafter consider only prescribed piecewise linegt) as in
0, T =27, A=1,andw = 1. This is to illustrate the behavior of( Chang et a(2011). Assumev(t) = bt + ¢ for a generic section of

r) atz = 0 and the impact of (a) Situation (1), and (b) Situation (2) to the excitation and proceed as follows:
the tangent stiffness of(r).

C.2 Understanding case study #3 dv o

d¢ _ ¢ _ v(t) (59)

To see thatV = ;((tt)) is a bivariate function of(t) andg¢(¢), note that
i(t), defined by Eq.%8), is a bivariate function ofv(¢) andv(t). Ap-

plying the fundamental existence-uniqueness theorem RE<(e.g.,
in Guckenheimer and Holmg4983) to Eq. 67), the solution exists v2(t)

and is unique on an open set fari.e., @, ¢) is one to one (since the ¢(t) = %

leading to the following piecewise relation for the phasat b, ¢):

+ ¢0 = v(t) = £v/26(6(t) — o) (60)
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Table 11 Examples of mem-dashpots.

ID | Application and Governing Eg.

1. | The Van der Pol oscillator and Liénard equation contain riashpots. The Van der Pol oscillator can be viewed as a mem-
dashpot connected in parallel with a linear dashpot andeafiapring before connecting in series with a mass, asrifiest in
Fig. 25(2a):

F—e[l—2?]z+x=0, withe >0 = & —ei  + ex?i + x =0 (46)
~~ ~— ~—~ ~~
unit massclassical dashpot mem-dashpot classical spring
A more general expression for a mem-dashpot in a flow-cdattehechanical system is the tei{z ) in the Liénard equation:
i + D(@)i + fl@) =0 (47)
~ —— —~—
unitmass  mem-dashpot  nonlinear spring
The Liénard equation, which includes the Van der Pol catail] is one of the most theoretically studied nonlinearatiyics
equations (e.gGuckenheimer and Holmg§983); Strogatz(1994); Nayfeh and MooK1995)).

2. | Displacement-dependent dampers, which have been inagsdidor earthquake mitigatiofrérri (1995); Priestley and Grant

(2010), are mem-dashpots. A general form is:
D(z) =Y anla|", an >0 (48)
n=1
where the use of the absolute function and the requiremenbreegativity ofa,, are to ensure passivity of the memristor
(Remark4). llIbeigi et al(2012) studied nonlinear displacement-dependent dampers oyplee
2 2
D(a) = x| [ ———] -1 (49)
1— ﬁm(;)
whereX > 0 satisfies the passivity property, Remark(n, 3 ands are other design parameters). This formula is approximated
using Taylor series expansionlibeigi et al (2012, resulting in two other damper formulas as follows:
D(z) =1 —0—042\95\% +a3|:c|% +a4|:c|% +a5|:c|% (50)
D(z) = a1 + azz? + asz* + auz® + asz® (51)
Each of these can be considered a linear viscous damperatedngith memristors (mem-dashpots) in series. The pagsivi
conditionsa’s > 0 are satisfied ifibeigi et al (2012 but not mentioned.

3. | Variable dampers have been studied for earthquake miigas well. Unlike the displacement-dependent dampersisied
above, they are not memristors but they are memristive isygstBor example, setting = x, the two-step viscous damping in
Madhekar and Jangi@009 is of the form:

. 1 . .
r= 3 (1+ sgn(z)) cq, + 3 (1 —sgn(zz)) cq, | © (52)
D(y,z)
wherecy, andcgy, are two different viscosity values. This is an input-outpgtiation of a time-invariant flow-controlled mem-
dashpot as in Tablg; also see the twai( r) plots with prominent zero-crossing featureNitadhekar and Jangi@009).
The general solution of EG57) with v(t) = bt + c s: i e st o

w(t) = w(to) + 7272 fcosh(iu(t)) — cosh(nbto + ne)]

F960 ) (t0) + 727_2 {cosh (:l:m f26 ((t) — ¢0)) — cosh(nbto + nc)lv | | | |

(62) ” . sl ) ' /‘_/
where the sigat: remains the same within each piece as before. Clearly, - A . / . 4
(w, ¢) is a one-to-one mappingithin eachpiece of the solution curve ~ 5° o X \1 i . H /" ] /
separated by the time events. Given thath is an even function, the Ve Ve

first and third quadrants in( i) share the sameu ¢). These can be [~~~ "~ . ”/‘
verified in Fig.28.

Substituting Egs.§1) to (58), it can be seen that, for a paireand
—w, the absolute values of theidiffer, so do theiy andW values - as

61 ¢ )

2 g £ =

Fig. 28 More insights in terms off to understandChang et al
(2011)’s Fig. 5a and Fig. 5b.
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Table 12 Secant stiffness'(a) used in simple mem-spring modeis= S(a)x in Section3.3.

Fig. ID S(a) Differentiability Classification

3(a) (a—ap)? +2 C“ (analytic), quadratic function of

3(b) la —ao| +2= M <3 - a%) + M (2 + “;—f“) €O, continuous atig, piecewise linear
4(a) &5(a) cos <2’“—;ﬂ> +2 Cv, analytic for alla

4b) & 5(b) — cos (%) +2 =, analytic for alla

6(a) & (b) ~ 1-ee—co) [— sin (“T“O + 3} + Ltsgta=ao) [sin (2’%) + 1] ct, differentiable atg, piecewise analytic
7(@) & (b) ~ 1=Sgna—co) ( - 35—;“> + Ldsgne—ao) <% - “?;l‘zo) €9, continuous atio, piecewise linear
8(@) & (b) ~ 1=Sgna—co) [— sin <§Tau) + 3l + Lsonaao) iy <2”Tau> C~1, integrable atio, piecewise analytic
11(a) 1osonazao) o 3 4 1sglezao) o g C—1, integrable ato, piecewise constant

Table 15 Case studies: Both the state and input-output equatiorfsomnethe original papers where they are cited from.

ID | State and Input-Output Egs. and Inter. Var.
1 Equations (6) and (5) frorBtrukov et a2009 are the state and input-output equations to produce Fiytt2ai paper:

dw Ron .
State Eq..— = 53
ate Eq: 2% — i, HON; (59
w w .
1/10 Eq.:v = <RONB + Rorr <1— 5))2 (54)

wherew(t) = v sin(wot) andwv(t) = vo sin?(wot) for Fig. 2b and 2c, respectively, withy = 10, andwo = 107 - differing
from Strukov et a2008), wherewvo andw of being 1 and200x, respectively. In addition% =160 and’;(z%; = 380 for
Fig. 2b and 2c, respectivelgo v = 100, % =0.01, and % |t=0 = 0.1.

2 Strukov et a2009 points that Chua does not anticipatébeing bounded by 0 an@. A term called “window function” is used

to simulate nonlinear drift whew approaches 0 anB. The expression for the term, unfortunately, has a typo.cneect one
is given inStrukov(2011):

State Eq.:% =y Rlo)zvi% (1 - %) (55)
IO EQ.: v = (RON% + Ropr (1 . %))z (56)

where% = 50, Ron = 100, % = 0.01, and ¥ |;=0 = 0.001 assumed by the authors - not being zeravas (0, D)
on pp. 17 ofStrukov(2011). To reproduce the response given on pp. 1%timikov(2011), the authors were able to follow the
specified frequency but not amplitude.

3 FromChang et a(2011):

State Eq.: %} = 2\ sinh(n) (57)

IO Eq.: i = (1 - %) all—e P + %’ysinh(&)) (58)

wherex = 4.5,7=4,a=0.5x10"6,8 = 0.5,y =4 x 1076, ands = 2. D = 412.5 was obtained by trial-and-error in
this study with?y as given in Eq.§8) (instead of Eg. (4) itChang et a(2011) which gives a wrong range faj.

stated in the caption for Fid.9. Indeed, this system is not a memristor; points on {v, ¢) shown in Fig.28 can be understood as follows:
rather it is a memristive system.
dw _ E _2) sinh(nv) 63)
d¢ 1) v
In fact, the pair ofw andwv defined in Eq. §7) represents a rela- . . . .
tionship in a nonlinear resister with andw corresponding to current  For all v(¢), % > 0, which explains the monotoniay( ¢); i.e., @,
and charge, respectively. Having said this, ¢) must be a one-to-one ¢) is one-to-ondor all ¢. Furthermore, the continuity efinh can be
mapping as stated above and illustrated in Bigj.Alternatively (and  used to explain the continuity ofu( ¢) even whenv(t) is only C°
at the risk of unnecessary length), the one-to-one’nessrdledtion continuous.




Understanding memristors and memcapacitors in engirgearachanics applications

25

D Appendix for Section5 piecewise manner:

r1
Si(a) = —,
A prototype mem-spring model for SMA wire is given as her¥ithile (@) z1
the models in Fig26 and27 could be candidates for SMA wire inten- « € [0,a1], red lines in Fig30

sion (e,g., those iDolce et al(2000), there is a useful methodology

for establishing a memcapacitor model for any individualseSMA So(a) = (m __*n (R— 7”1)) [T +
wire data under a clearly defined excitation - if we adopt thigogo- A= 84a
phy of Sectiom.6 by paying attention to time-varying secants. For the a € [a1, ag], orange lines in Fig30
piecewise-defined displacement in Edis3)(to (16), this methodology

R—r1
A—z1’

(66)

(67)

is illustrated in Fig29 and explained in the next two paragraphs.

The mathematical expressions involved in modeling - foreke

ample illustrated in Fig29 - are given as follows:

_ A / T 1
Sale) = (R x1 Tl) 8A(2a0 — a) + zy’

a € [ao,a2], green linesin Fig30 (68)

T3 T re — 713
S = - — ,
a(a) (TS To — T3 (r2 TS)) \l 8A(2ap — a) + To — T3
r(z) = 51 (z) = “gEﬂ =51 (h1(a)) = S1(a) (64) a € [a2,az], bluelinesin Fig30 (69)
r1
Ss(a) = —
T X )
ro (z) = s2 (z) = r2(@) _, (h2(a)) = S2(a) (65) 1
a € [as,2a0], blacklinesin Fig30 (70)
After finishing modeling the first quadrant, the model in thied
guadrant must be made “anti-symmetric with respect to tiggndifol-
lowing Di Ventra et al(2009 (see Sectior3.4), which is conveniently
carried out, say, using vector concatenation under MATLABthe-
° N (@) matically, this could be done using either of two approaddiesn in
B x(t) B ! Sections.2 and5.3. Data sets from other analytic or piecewise con-
g1a 2 1/4 tinuous displacements can be treated in a similar manner.
- x(t) - x:h}(a,\
72 A T/20 ao 2a0
disp., x abs., a
k] s
g g
§ r(x) § |'(h/‘[m)
0 ao 2a0
abs., a
S(0)
S@=s (h (@)
s s
£ £ s
[ (7]
2 7 Sz((ﬂ 5;“‘2‘\“”
5(220) 0 A 5(220) 0 ao 2a0
disp., x abs., a

Fig. 29 lllustrations of the procedure of developing a memcapacito
model by using an arbitrary set of SMA wire under a piecewiisear
displacement as in EqslY) to (16).

To clearly demonstrate this modeling method, Fgpresented
previously is utilized again. The restoring force vs. diggiment plot
in the first quadrant is examined first. As shown in F, the model
parameters:y, r1, andx2 are to be given in advance. Others can be
conveniently obtained from geometnys = R — A;—fzrl where R

is the restoring force corresponding 1§ 23 = z2 — (A — z1);

rg = %‘rl. The corresponding absement values are:= %x%;
az = 2a0 — 2523, andas = 2ap — ;3. By varying the val-

ues ofz1, 71 andxo, a set of these sub-models are obtained. In all
these sub-models, applying Eq64) and €5) but considering a total
of five pieces that characterize an experimental restoonzefvs. dis-
placement plot, we have the following equations to defitfe) in a
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D
o)
e
=)

N = |x1r) = = N
[} [ [ [ [
: : bar) |8 : :
e e (x3,r3) e el el
& & & & &
o o o o o
2 2 2 2 2
7 7 7 7 7
g g g g <
0 A o0 A o0 A 00 A 00
disp., X disp., x disp., x disp., x disp., x
n . ‘\/ - n n
= = = = =
f= f= f= f= f=
© © © © ©
v v v v v
L L [ L d)
a 2 2 2 2
a1 a2 a3
0 0 0 0 0
0 ao 2a0 0 ao 2a0 0 ao 2a0 0 ao 2a0 0 ao 2a0
abs., a abs., a abs., a abs., a abs., a

Fig. 30 To expand on Fig9, different variations in the hysteric loop in the first qualr (subject to a piecewise linear displacement) and their

corresponding models. The piecewise linear displacensatgfined in Eqs.1Q3) to (16) with a(0) = 0, A = 1, andw = 1. Five sets of values are
used forzy, r1 andzs.
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