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Abstract A significant event happened for electrical engi-
neering in 2008, when researchers at HP Labs announced
they had found “the missing memristor”, a fourth basic cir-
cuit element that was postulated nearly four decades ear-
lier by Dr. Leon Chua, who was also instrumental in de-
veloping the mathematical theories of memristive, memca-
pacitive and meminductive systems, resulting in an entire
class of “mem-models” that are the foundation of the present
work. By applying well-known mechanical-electrical analo-
gies, the mathematics of mem-models may be transferred to
the setting of engineering mechanics, creating the mechan-
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ical counterparts of memristors, memcapacitors, etc. How-
ever this transfer is nontrivial; for example, a new concept
and state variable called “absement”, the time integral of de-
formation, emerges. We study these mem-models, which are
characterized by a “zero-crossing” property that has interest-
ing implications for nonlinear constitutive modeling, partic-
ularly hysteresis, and we identify some examples of “mem-
dashpots” and “mem-springs”, which include displacement-
dependent and variable dampers, the superelasticity found
in shape memory alloys, and the pinched hysteresis loops
associated with self-centering structures. This work addsto
the fast-growing body of literature on elements and systems
labeled with “mem”, which is a basic branch of study in
nonlinear dynamics.

Keywords Nonlinear hysteresis· memristor· memcapac-
itor · memristive system· memcapacitive system· state
equation· input-output equation· displacement-dependent
damper· variable damper· flag-shaped hysteresis·
shape-memory alloy· self-centering structure

1 INTRODUCTION

1.1 Motivations of This Study

Modeling hysteresis (e.g.,Sozen(1974); Visintin (1994);
Nayfeh and Mook(1995); Sivaselvan and Reinhorn(2000);
Farrar et al(2007); Bernstein(2009)) is inherently chal-
lenging; however, it is necessary in that it has broad util-
ity in many engineering disciplines, including smart struc-
tures, robotics, mechatronics, structural control, structural
health monitoring, damage detection, and earthquake engi-
neering. Rapid advances in sensor technology are provid-
ing researchers in different fields of science and engineering
with valuable data collected from real-world measurements.
Facing formidably large streams of such data, researchers
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are expected to extract the most useful and accurate infor-
mation to enable rapid assessment for decision-making, and
modeling plays a central role. This study explores one possi-
bility for very generally modeling hysteresis, adopted from
another discipline.

Development of a fundamental circuit element, the
memristor, was announced recently (Strukov et al(2008)),
nearly four decades after its prediction (Chua (1971)).
Equally important, there is a mathematical theory in-
volving memristor devices and memrisitive systems
(Chua and Kang(1976)) and, more recently, this theory
was extended to include memcapacitors and meminduc-
tors (Di Ventra et al (2009)), thereby significantly enlarg-
ing this family of “mem-models”. These developments have
inspired us to explore whether these nonlinear constitutive
models, all of which are characterized by a “zero-crossing”
property, have a role to play in engineering mechanics.

Two obvious but related conceptual gaps need to be
bridged first in this study: from electronics to mechanics,
and from nano- to macro-scale modeling. Bridging these
gaps is made possible, in part, by applying mechanical-
electrical system analogies. Bond graph theory (Paynter
(1961); Rosenberg and Karnopp(1983)) also helps to bridge
the gaps. Starting from these well-established techniques,
we identify the mechanical counterparts of the memristor,
memcapacitor, memrisitive systems, etc., and identify some
examples of these mem-models found in recent engineering
mechanics literature.

The transfer from one knowledge domain to another
is not straightforward. The mem-models defined inChua
(1971); Chua and Kang(1976); Di Ventra et al(2009) are
mathematically abstract, demanding significant effort to
translate the terminology and mathematical notation from
electrical systems theory to other physical domains. Also,
many functional forms need to be examined in order to
develop mem-models usable in practical data analysis and
modeling.Georgiou et al(2012) is one of the few recent
studies with specificity in functional form; however, it cov-
ers a relatively simple situation, and is not from the field of
engineering mechanics.Jeltsema and Dòria-Cerezo(2010)
discuss difficulties that may arise when introducing mem-
models in classical Lagrangian or Hamiltonian mechanics
and propose a “port-Hamiltonian” approach as a way to
overcome these difficulties. Other references are cited in
the literature review (Section2) and in subsequent sections,
but generally speaking, there are very few published stud-
ies relevant to the engineering mechanics community. This
is mainly because these mem-models are so “new”, even
though the physical and mathematical basis of memristors
was first presented many years ago. We are thus motivated
to investigate these models and to examine their potential
for dealing with engineering mechanics problems.
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Fig. 1 (a) to (d) are from simulations using memristors/memcapacitors
subject to cyclic or sinusoidal loading; see Figs.10(a), 11(b), 27(b),
and9, respectively.

As a preview, consider a single-degree-of-freedom
(SDOF) model:

mẍ(t) = u(t)− r(t) (1)

wherex(t) is the displacement of massm, u(t) is its driving
force,r(t) is its restoring force, and

r(t) = cẋ(t) + kx(t), for a linear dashpot and spring (2)

r(t) = M(x)ẋ, for a memristor (3)

r(t) = M(a)x, for a memcapacitor (4)

The restoring force in Eq. (2) is widely studied and under-
stood, whereas the nonlinear damper in Eq. (3) is not so
well known, and certainly not by the name “memristor”. In
Eq. (4), a(t) is the integral ofx(t) with respect to time; we
are unaware of any such “memcapacitor” in engineering me-
chanics. Eqs. (3) and (4) are the simplest examples of mem-
models to be studied herein. Fig.1 presents four pinched
hysteresis loops, taken from computational results that will
be discussed later. It is worth noting that the abscissa of each
panel in Fig.1 has two labels, velocity or displacement, due
to the fact that Equations (3) and (4) have identical math-
ematical form, although the physical units of the function
M(·) differ.

1.2 Contributions and Structure of This Paper

This paper demonstrates the usefulness of memristive and
memcapacitive theories for modeling some important non-
linear hysteretic systems in engineering mechanics. Specif-
ically, displacement-dependent and variable dampers are
memristive systems. Also, the superelasticity of shape-
memory alloys(SMA) and the pinched hystersis of self-
centering structures may be modeled as memcapactive sys-
tems, a premise justified (in part) by devising and presenting
quantitative mem-models using simulations and experimen-
tal data in Section5. This paper also connects mem-models
with broader classes of constitutive models in engineering
mechanics in Section5.4 and Section6, thereby highlight-
ing future research directions.

The Literature Review in Section2 summarizes basic
concepts and translates mem-model theories from electrical
engineering to engineering mechanics. Mem-dampers and
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mem-springs are formally introduced in Section3. Due to
their newness, mem-springs subjected to two typical kinds
of periodic inputs are the main focus when deriving vari-
ous properties. These properties not only illuminate under-
standing but are also instrumental in modeling. Significant
portions of this paper focus on detailed case studies, pre-
sented in Sections4 and5. Because mem-models are non-
linear (and thus lack many linear system properties and sim-
plicity), such case studies are both necessary and enlight-
ening.Moreover, we must pay attention to time and state
events which arise in the case studies, where time events are
the discontinuities inherent in nearly all excitation signals,
and state events are the discontinuities inherent in a model’s
state variables.Regarding modeling technique, Section4.6
outlines an approach, involving time-varying secants, which
was first tested on mem-dashpot models, and later utilized
to devise the quantitative mem-spring models discussed in
Section5.

In this paper, a Remarkgives a brief review of exist-
ing knowledge. A Propertypresents useful results, put forth
in detail for the first time in this study, and derived mainly
for mem-models subjected to two classes of periodic excita-
tion. Finally, an Exampleaugments the case studies, provid-
ing specific mathematical expressions or numerical results
of mem-model simulations.

2 LITERATURE REVIEW

2.1 Memristors, Bond Graphs and Physical Analogies

Chua’s seminal memristor paper isChua(1971). Two years
later, Oster and Auslander(1973) proposed the memristor
as a new bond graph element by interpreting Chua’s idea
in the context of Paynter’s tetrahedron of state (Paynter
(1961)) and using the Force-Current Analogy to explain
a mechanical device called a “tapered dashpot”.As told
by Paynter (Paytner(2000)), bond graphs were born in
1959 as a result of his training and experience in hydro-
electric power, which greatly reinforced his awareness of
physical analogies. Physically different systems that have
the same mathematical model are called analogous systems
(Ogata(2004)). In other words, analogous systems are ex-
pressed by the same set of algebraic, differential (or integro-
differential) equations, but the specific physical meaning
of each parameter or state variable is different. Analogies
are available for many kinds of mechatronic (i.e., electro-
mechanical) systems, including translational and rotational
mechanical systems, fluid power systems, electrical power
systems, and heat transfer systems (Hogan and Breedveld
(2002)). Today, bond graph models are routinely used when
analyzing mechatronic systems with many degrees of free-
dom and, when appropriate, they incorporate finite element
models (Talasila et al(2002); Damic and Cohodar(2006);

Vaz and Maini(2009)). Another analogy – involving springs
(capacitors), dashpots (resistors) and masses (inductors) – is
the Force-Voltage Analogy (Ogata(2004)), which is appli-
cable to translational mechanical systems and was used dur-
ing this study (in addition to the Force-Current Analogy) to
“translate” memristor theory and its extensions into mechan-
ical notation and terminology; e.g., see Table1. The Force-
Current Analogy (Ogata(2004)) was also used.

Remark 1 (On p = Momentum or Impulse)
It is challenging to namep in Table1 without a bit of

thought. In classical mechanics, a particle’s momentum is
defined as the product of its mass and velocity, so in ana-
lytical mechanicsp andq are called generalized momenta
and generalized coordinates, respectively. This supportsthe
naming ofp andx as momentum and displacement, respec-
tively, in engineering mechanics. It also supports the nam-
ing of p as momentum inOster and Auslander(1973) or
Jeltsema and Scherpen(2009) but there are reasons to sup-
port the naming ofp as impulse (also mentioned in those
two references). In classical mechanics, an impulse is de-
fined as the time integral of force, resulting in a change of
momentum, and thus impulse and momentum have the same
physical units. No matter how we namep, the mathematical
relationship betweenp andr is the same as betweenx and
ẋ, in the sense that the first quantity is the time integral of
the second. Paynter’s tetrahedron of state includes both of
these relationships.

Remark 2 (On r=restoring force)
The forcer in Table 1 is not an applied (i.e., exter-

nal) force. Rather, it is an internal force that character-
izes a particular element (or system) in a constitutive equa-
tion. For example, for a spring or damper,r is a restoring
force (Masri and Caughey(1979)); for a mass,r is its iner-
tia force. An applied force is denoted in this paper byu(t),
as in Eq. (1).

2.2 Flow- and Effort-Controlled Systems

Bond graph practitioners distinguish a flow-controlled ele-
ment (or system) from an effort-controlled element.Payn-
ter’s tetrahedron of state depicts relations among four state
variables which, for electric circuit elements, aree =

effort = v = voltage,f = flow = i = current,q = charge,
p = momentum= ϕ = φ = flux. These various symbols
and terms are briefly mentioned here because they (and oth-
ers) appear inChua(1971), Oster and Auslander(1973) or
Jeltsema and Scherpen(2009); see Table8 in AppendixA.
For electrical systems, charge- or current-controlled are
aliases for flow-controlled, while flux-, voltage-, or impulse-
controlled are aliases for effort-controlled.Thus when ex-
ercising the Force-Voltage Analogy, we see that Paynter’s
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Table 1 Force-Voltage Analogy used to translate from electrical tomechanical terminology.

Electrical System Translational Mechanical System
1. Currenti Velocity ẋ

2. Voltagev Restoring forcer
3. Chargeq, dq = idt Displacementx, dx = ẋdt

4. Fluxϕ, dϕ = vdt =⇒ ϕ =
∫ t

−∞
v(τ)dτ Momentump, dp = rdt =⇒ p =

∫ t

−∞
r(τ)dτ

5. Resistordv = Rdi Dashpotdr = cdẋ

6. Capacitordq = Cdv Springdx = 1
k
dr

7. Inductordϕ = Ldi =⇒ v = L di
dt

Massdp = mdẋ =⇒ r = m dẋ
dt

8. Memristordϕ(q) = M(q)dq =⇒ M(q) = v
i

(Chua(1971)) Memristordp(x) = M(x)dx =⇒ M(x) = r
ẋ

9. Memristordq(ϕ) = W (ϕ)dϕ =⇒ W (ϕ) = i
v

(Chua(1971)) Memristordx(p) = W (p)dp =⇒ W (p) = ẋ
r

10. i− v for hysteresis (Chua(1971)) ẋ− r for hysteresis
11. q − ϕ for additional insights (Chua(1971)) x− p for additional insights

tetrahedron depicts relations among four state variables
which govern translational mechanical elements:e = effort
= r = restoring force,f = flow = ẋ = velocity, x = dis-
placement, andp = momentum. So for mechanical elements
(or systems) under this analogy, displacement- or velocity-
controlled are aliases for flow-controlled, while force- or
momentum-controlled (or impulse-controlled) are aliases
for effort-controlled.

As discussed inRosenberg and Karnopp(1983), pages
20-21, flow (velocity) and effort (force) are called power
variables because their product equals power, which is the
time derivative of energy. Conversely, energy is the time in-
tegral of power. Momentum and displacement are called en-
ergy variables because instantaneous energy quantities (ki-
netic or potential) can be expressed naturally in terms of
them. Displacement is the time integral of flow, while mo-
mentum is the time integral of effort. These four state vari-
ables (flow, effort, displacement, momentum), which are
fundamental in power flow and energy conservation consid-
erations for dynamical systems, are the vertices of Paynter’s
tetrahedron of state, regardless of the type of physical sys-
tem of interest.

Loosely speaking, a flow-controlled system involves
connecting two or more basic elements in parallel where the
total kinetic quantities are summations of individual ones
while all elements share the same kinematic quantities. In
this case, the kinematic quantities need to be solved (or cal-
culated) first. The contrary can be said about the kinetic
quantities in an effort-controlled system where two or more
basic elements are connected in series.An example is given
in AppendixA; see Fig.25 and corresponding equations in
Table9.

2.3 Mem-Elements and Mem-Systems

The constitutive equations for all mem-models (i.e., mem-
ristor, memcapacitor, meminductor, as well as memristive,
memcapacitive and meminductive systems) are summarized
in Table2. Both the time-invariant elements and their time-

varying systems definitions are included but hereafter we
will restrict this study to time-invariant mem-models.

Remark 3 (On a = Absement and ρ)
The quantitya in Table 2 is the time integral of dis-

placementx, while ρ is the time integral of momentump.
Although the name “absement” fora appears inJeltsema
(2012), it is not widely known or accepted. An online
search uncovered “absition” as an alternative to absement.
Another search uncovered “time integral of momentum”
in Bellenger and Duvel(2009), but this article isn’t about
memcapacitors, andρ wasn’t given a name. Ratherρ was
used to estimate an “average value” of the Diurnal Water
Layer over the course of many days. This article is cited as
an example of a study of time series data that might (even-
tually) lead to an engineering model of nonlinear behavior
that is of interest in the field of meteorology.

Remark 4 (Passivity)
Chua (1971) provides necessary and sufficient condi-

tions for a memristor (in isolation) to be passive such
as M(x) ≥ 0 for “any admissible input”ẋ and output
r for all time t ≥ t0. Similarly, Chua and Kang(1976)
gives M(y, ẋ) ≥ 0 for time-invariant memristive sys-
tems, the generalization of memristors. However, this pas-
sivity condition is only sufficient if a memristor (element
or system) is part of a more complicated system contain-
ing other elements that dissipate energy. (For example in
the case of Fig.25(2a), the weaker conditionM(x) ≥
−c is sufficient for passivity of the combined system; see
Appendix A.) Nonetheless, the passivity condition will
be adopted in this paper, despite contrary considerations
in Di Ventra and Pershin(2013). Together with Remark9,
the passivity condition restricts all memristor or memristive
system paths to the first or third quadrants of the(ẋ, r) plane.

Remark 5 (Mathematical Parallelism)
As was mentioned in the Introduction after Eq. (4), and

as Table2 shows, mem-models possess mathematical (i.e.,
functional) parallelisms that are noteworthy. However, phys-
ical units and energetics must also be considered; see Sec-
tion 3.1. Also, see Table10 in AppendixA for an example.
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Table 2 Two forms of mem-models (element or system). All expressions were translated fromChua (1971); Oster and Auslander(1973);
Chua and Kang(1976); Di Ventra et al(2009) by using mechanical-electrical system analogies.†y denotes a state variables vector,g andf denote
vector functions, andM andW are scalar functions.

Element or System Flow-Controlled Effort-Controlled
1. Memristor (element) p = G(x) or r = M(x)ẋ x = F (p) or ẋ = W (p)r
2. Memcapacitor (element) p = G(a) or r = M(a)x a = F (p) or x = W (p)r
3. Memrinductor (element) ρ = G(x) or p = M(x)ẋ x = F (ρ) or ẋ = W (ρ)p
4. Memristive System† ẏ = g (y, ẋ, t) andr = M (y, ẋ, t) ẋ ẏ = f (y, r, t) andẋ = W (y, r, t) r
5. Memcapacitive System† ẏ = g (y, x, t) andr = M (y, x, t)x ẏ = f (y, r, t) andx = W (y, r, t) r
6. Meminductive System† ẏ = g (y, ẋ, t) andp = M (y, ẋ, t) ẋ ẏ = f (y, p, t) andẋ = W (y, p, t) p

Remark 6 (On Invertibility)
The mathematical relationship betweenF andG in Ta-

ble2 and Table8 is the same as for any basic element (elec-
trical or mechanical) in the sense that one is the inverse of
the other:F−1 = G andG−1 = F . Also,W is the recipro-
cal ofM (and vice versa) at any given point in timet.

Remark 7 (Reduction of Memristive System to Memristor)
Chua and Kang(1976) define memristive systems in

terms of two equations, called the state equation and the
input-output equation, from which the time-invariant ver-
sion can be obtained. As a conceptual example of a flow-
controlled memristive system, we have the following:

State Equation:̇y = g (y, ẋ, t)

time inv.
=⇒ ẏ = g (y, ẋ)

for element:y=x
=⇒

suff. conds. only
ẋ = ẋ (5)

Input-Output Equation:r = M (y, ẋ, t) ẋ

time inv.
=⇒ r = M (y, ẋ) ẋ

for element:y=x
=⇒

suff. conds. only
r = M (x) ẋ (6)

wherey is the state vector,g is a vector function, andM
is a scalar function. In this case, the velocityẋ is the input,
while the restoring forcer is the output. Trivial sufficient
conditions for a time-invariant memristive system to reduce
to a simple memristor are:y = x, g(x, ẋ) = ẋ, M(x, ẋ) =
M(x). These conditions are assumed in Eqs. (5) and (6).
The final result in Eq. (6) is Eq. (3), which is a memristor, a
subclass of memristive systems (as expected).

Remark 8 (Reduction of Memcapacitive System to Memca-
pacitor)

Di Ventra et al (2009) introduce another basic mem-
model, a memcapacitive system in whicha is the integral
of displacementx with respect to time. As a conceptual ex-
ample of a flow-controlled memcapacitive system, we have
the following:

State Equation:̇y = g (y, x, t)

time inv.
=⇒ ẏ = g (y, x)

for element:y=a
=⇒

suff. conds. only
x = x (7)

Input-Output Equation:r = M (y, x, t) x

time inv.
=⇒ r = M (y, x) x

for element:y=a
=⇒

suff. conds. only
r = M (a)x (8)

wherey is the state vector,g is a vector function andM is a
scalar function. In this case, the displacementx is the input,
while the restoring forcer is the output. Trivial sufficient
conditions for a time-invariant memcapacitive system to re-
duce to a simple memcapacitor are:y = a, g(a, x) = x,
M(a, x) = M(a). These conditions are assumed in Eqs. (7)
and (8). The final result in Eq. (8) is Eq. (4), which is a
memcapacitor, a subclass of memcapacitive systems (again
as expected). Another example is Eq. (15) inDi Ventra et al
(2009).

Remark 9 (Zero-Crossing Property)
For a memristor,r = 0 when ẋ = 0 and vice versa.

This means that the (ẋ, r) intersection always goes through
the origin, which is called the “zero-crossing” property in
Chua and Kang(1976). In fact all mem-models in Table2
have a zero-crossing property, determined by the corre-
sponding pair of state variables in the input-output equation.

Remark 10 (On Nonlinearity)
It is important to note that the memristor is intrinsically

nonlinear, not merely a classical resistor (constant), which
is a linear time-invariant electrical engineering element; see
page 511 ofChua(1971). By analogy, a classical viscous
damper (constant) should not be considered a mechanical
memristor, nor should a classical spring (constant) be called
a mechanical memcapacitor.

3 PASSIVE MEM-SPRINGS AND MEM-DASHPOTS

3.1 Terminology and Scope of This Study

The point of departure for the rest of this paper is Table2,
which summarizes three classes of nonlinear constitutive
equations where the elements in Lines 1-3 are subclasses
of the corresponding systems in Lines 4-6. In the context
of engineering mechanics, a classical dashpot model resists
motion by means of a force that is directly proportional to
velocity. By analogy and for brevity in this paper, memris-
tors (elements) or memristive systems will often be called
“mem-dashpots” because the ratio of resisting force to ve-
locity is non-constant and explicitly depends on “memory”
via the state vectory. Similarly, the class of mem-models in
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Lines 2 and 5 will often be called “mem-springs” because
the ratio of restoring force to displacement is non-constant
and explicitly depends on “memory” via the state vectory,
not simply on the current value of displacement. Hence as
an example, the cubic term in the Duffing equation isnot
considered a mem-spring. The mem-models in Lines 3 and
6 will not be discussed further. Table3 gives sample notation
and physical units (see caption) that will be used as needed.

The scope of this study is limited to case studies of mem-
springs and mem-dashpots in isolation, meaning not in com-
bination with other elements (or systems). Moreover, ther-
modynamically passive mem-dashpots and mem-springs are
of primary interest here. The focus is on discovering what
the engineering mechanics literature holds regarding these
two special mem-models. Due to their mathematical paral-
lelism (Remark5), insights gained about one should prove
useful for the other. Therefore plots of forcer versus veloc-
ity ẋ and forcer versus displacementx can be presented
together (as in Fig.1), despite the fact that mem-springs and
mem-dashpots differ significantly in their physical interpre-
tations, particularly their energetics.

Thus far, various passive mem-dashpot models have
been found in the engineering mechanics literature but no
unified studies, which simultaneously study passive mem-
spring models have been found (although perhaps these ap-
pear, and other researchers will find them). Since their ener-
getics are path-dependent, arrows that show increasing time
have been added to the plots.

As noted in Remark 4, the passivity condition
D(y, ẋ) ≥ 0 will be assumed for mem-dashpots, which
along with the zero-crossing property restricts all paths in
the (ẋ, r) plane to the first and third quadrants. Conse-
quently, mem-dashpot power is never negative, and mem-
dashpot energy cannot be created as time goes forward. In
addition, the passivity conditionS(y, ẋ) ≥ 0 will be as-
sumed for mem-springs, which along with the zero-crossing
property restricts all paths in the (x, r) plane to the first
and third quadrants. Assuming the mem-spring displace-
ment is zero at some point in time (sometimes called an
initial or reference state), the amount of energy removed at
any time thereafter cannot exceed the amount already stored
up to that time; see the discussion pertaining to Fig. 3 in
Di Ventra et al(2009).

The conditionD ≥ 0 alone suffices to prove that mem-
dashpot models are passive whereas the parallel condition
S ≥ 0 is insufficient by itself to do the same for mem-
springs. Clearly, it is more difficult to prove that mem-spring
models (as a class) are passive, which presumably accounts
for the lack of unified studies. This observation has moti-
vated us to examine mem-spring models in more detail in
subsections3.3and3.4, and to devise the quantitative mem-
spring models presented in Section5.

3.2 Examples of Mem-Dashpots

An example of a mem-dashpot is the “tapered dash-
pot” (Oster and Auslander(1973); Jeltsema and Scherpen
(2009)). Table11 in AppendixB summarizes other exam-
ples from the literature.

On the other hand, many commonly discussed types
of damping are not mem-dashpots (memristors or mem-
ristive systems), such as linear viscous, air, Coulomb,
displacement-squared, and solid or structural damping
(e.g.,Inman(1994)).

3.3 Mem-Springsr = S(a)x Subject to Periodic Input

This subsection discusses several properties of mem-springs
of the formr = S(a)x subject to periodic input. The prop-
erties are illustrated via examples in Figures3-8. Table4
summarizes two different but related types of periodic in-
put, displacementx(t) and absementa(t), plotted in Fig.2.
Table12 in AppendixB gives the secant stiffnessesS(a)
and their differentiability classifications for all examples.

Due to mathematical parallellisms evident in Table2,
some of these mem-spring properties can be re-interpreted
as properties of mem-dashpots of the formr = D(x)ẋ by
replacingx, a andS with ẋ, x andD respectively. Other
useful results and insights can be obtained from these exam-
ples and properties by translating concepts, terminology and
notation from flow-controlled elements to effort-controlled
elements.
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time, t
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0 T/4 T/2 3T/4 T
−A

0

A

time, t

d
is

p
., 

x
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p
., 

x
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Fig. 2 Illustrations for (a) analytic, and (b) piecewise continuous dis-
placement and absement defined in Table4.

One type of periodic input is defined by a pair of ana-
lytic functions, Eqs. (9) and (10) in Table4, whereA > 0
is the amplitude of the sinusoidal displacement with period
T = 2π

ω
, anda0 = A

ω
is the value about which the ana-

lytic absementa(t) oscillates. The related type of periodic
input is defined by a pair of piecewise continuous functions,
Eqs. (13) and (14) in Table4. Eq. (13) is the piecewise linear
(C0) displacement whose extrema coincide with the max-
ima and minima of the sinusoidal displacement. The related
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Table 3 Two time-invariant flow-controlled mem-models.†y denotes a state variables vector,g denotes a vector function, andD andS are scalar
functions bearing SI units of Newton· second / meter, and Newton / meter, respectively.

Mem-Dashpots Mem-Springs
State Eqs. ẏ = g(y, ẋ) ẏ = g(y, x)
I/O Eq. r = D(y, ẋ)ẋ r = S(y, x)x

Power P (t) = r(t)ẋ(t)
for element

= D(x(t))ẋ2(t) P (t) = r(t)ẋ(t)
for element

= S(a(t))x(t)ẋ(t)

Energy U(t) =
∫ t

0
P (τ)dτ

for element
=

∫ t

0
D(x(τ))ẋ2(τ)dτ U(t) =

∫ t

0
P (τ)dτ

for element
=

∫ t

0
S(a(τ))x(τ)ẋ(τ)dτ

Table 4 The two related periodic motions (displacements and absements) used in Section3.3.

Analytic Displacement and Absement

x(t) = A sin (ωt) with T =
2π

ω
(9)

a(t) = a0 (1 − cos (ωt)) with (10)

a0 =
A

ω
, ā = a0

√

1 −
1

ω2

x2(t)

a20
(11)

da

dx
=

x

ẋ
=

A sin(ωt)

Aω cos(ωt)
=

1

ω
tan(ωt) (12)

Piecewise Continuous Displacement and Absement

x(t) =
4A

T

(

t−
T

2

⌊
2t

T
+

1

2

⌋)

(−1)⌊
2t
T

+ 1
2
⌋ (13)

where⌊·⌋ denotes the floor function.

a(t) = a0

[

1 ∓

(

1−
x2

A2

)]

with (14)

a0 =
π

4

A

ω
, ā = a0

(

1−
π2

16ω2

x2

a20

)

(15)

da

dx
=

x

ẋ
= t−

T

2

⌊
2t

T
+

1

2

⌋

(16)

piecewise parabolic (C1) absement is the time integral of
Eq. (13) with a(0) = 0 (consistent with the analytic abse-
ment). Hencea0 for the related absement differs by a factor
of π

4 froma0 for the analytic absement. These quantities are
defined for notational convenience and insight in analysis,
and all examples are plotted with respect toA, ω, anda0
as a way of “normalizing” and comparing results. In many
figures, dissipated energy is indicated by a plus sign insidea
clockwise hysteresis loop in the (x, r) plane, whereas stored
(or created) energy is indicated by a minus sign inside a
counter-clockwise loop.

Note that in certain situations whent = 0, T4 ,
T
2 ,

3T
4 , T ,

the corresponding values ofr(t) (or other variables) are not
always unique, meaning one-sided limits must be considered
at those times. Thus for notational convenience, the four
quarter periods – called Phases 1,2,3 and 4 – are detailed
in Eqs. (17) to (20) along withā(t) in Eqs. (11) and (15).

Property 1 (Asymmetry of Secant Stiffness S(a) about a0)
Under certain conditions, a mem-spring model can de-

generate into a nonlinear (or even linear) spring without
memory, meaning there is no hysteresis loop in the (x, r)
plane. As an example, ifS(a) is an even function with re-
spect toa0 (i.e.,S(a0 − ξ) = S(a0 + ξ) for all ξ), such de-
generacy happens, as Fig.3 illustrates. Hence the remaining
examples involve secant stiffnessesS(a) which, by design,
are not even functions abouta0.

Property 2 (Orientation of Hysteresis Loops)
If S(a) decreases in a strictly monotonic fashion about

a0 (i.e.,S(a0 + ξ) < S(a0 − ξ) for all ξ > 0) then the ori-
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Fig. 3 Two element models (see Table12) illustrate two situations
where there is no hysteresis loop;x(t) = A sin(ωt) with A = 1 and
ω = 1.

entation of the hysteresis loop in the first quadrant of the (x,
r) plane is clockwise (sinceA > 0) whereas the loop in the
third quadrant is counter-clockwise. If, on the other hand,
the secant stiffness increases monotonically, the orientation
is counter-clockwise in the first quadrant but clockwise in
the third quadrant. See Fig.4.

Property 3 (Smoothness of r, S, x and a)
The smoothness (i.e., differentiability classification) of

r(t) depends on the smoothness of bothx(t) andS(a(t)). If
S(a) andx(t) are analytic functions, then:

dr

dt
=

d

dt
(S(a)x) = S(a)ẋ+

dS(a)

da
x2, (21)

whereȧ = x was used. However ifS(a) or x(t) are non-
differentiable at any point(s) in time, then care must be taken
when interpreting Eq. (21). For example, the sharp outer tips
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Phase 1:r = S (a0 − ā)x Red Arrow in Plots, with0 < t <
T

4
, 0 < x(t) < A, 0 < a(t) < a0, a0 > ā(t) > 0 (17)

Phase 2:r = S (a0 + ā)x Orange Arrow in Plots, with
T

4
< t <

T

2
, A > x(t) > 0, a0 < a(t) < 2a0, 0 < ā(t) < a0 (18)

Phase 3:r = S (a0 + ā)x Green Arrow in Plots, with
T

2
< t <

3T

4
, 0 > x(t) > −A, 2a0 > a(t) > a0, a0 > ā(t) > 0 (19)

Phase 4:r = S (a0 − ā)x Blue Arrow in Plots, with
3T

4
< t < T, −A < x(t) < 0, a0 > a(t) > 0, 0 < ā(t) < a0 (20)
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Fig. 4 Two element models (see Table12) illustrate the relation-
ship between the increasing/decreasing nature ofS(a) and the
clockwise/counter-clockwise direction of (x, r); x(t) = A sin(ωt)
with A = 1 andω = 1.

of the “petals” (hysteresis loops) in Fig.5 are due solely
to the non-differentiability of the piecewise linear displace-
ment in Eq. (13) at t = T

4 ,
3T
4 , whereas the outer tips are

smooth in Fig.4.
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Fig. 5 The same element models as in Fig.4 (see Table12) but subject
to x(t) = 4A

T

(
t− T

2

⌊
2t
T

+ 1
2

⌋)
(−1)⌊

2t
T

+ 1
2
⌋, with a(0) = 0, T =

2π
ω

, A = 1, andω = 1.

Property 4 (Tangent Stiffness K along (x, r) Curve)
The tangent stiffnessK(t) = dr

dx
(t) along the (x, r) path

is symbolically obtained by dividing Eq. (21) by ẋ(t) with
the proviso that the velocity is not zero (although it is at
t = T

4 ,
3T
4 ):

K(t) =
dr

dx
=

d

dx
(S(a)x) = S(a) +

dS(a)

da
︸ ︷︷ ︸

Factor 1

x2

ẋ
︸︷︷︸

Factor 2

(22)

Equation (22) shows that the tangent stiffnessK and the se-
cant stiffnessS differ by a term that is critically sensitive

(analytically and numerically) in the vicinity of times when
ẋ = 0. This sensitivity is one of the reasons it is important to
examine bothS andK when analyzing test data with mem-
models in mind (see Section4.6). Moreover, if hysteresis is
to be modeled well, it is important to studyS andK sepa-
rately fromx and ẋ in order to understand their effects on
the restoring forcer.

To clarify the relationship between secant and tangent
stiffness, Table5 gives the values ofS andK for a few
examples att = 0, T4 ,

T
2 ,

3T
4 , T . These are the times when

the (x, r) path either crosses the origin (whenx(t) = 0),
or the path reaches an extremum ofx(t) (when ẋ(t) = 0,
a(t) = a0), sometimes called a “turning point” in hysteresis
modeling articles.

At the origin: For mem-springs of the formr = S(a)x,
Eqs. (12) and (16) are continuous and equal to zero when
x(t) = 0 while dS

da
is finite at those times, so one-sided

limits exist and are continuous, leading to:

K(0) = S(a(0)) = S(0) (23)

K

(
T

2

)

= S

(

a

(
T

2

))

= S(2a0) (24)

K(T ) = S(a(T )) = S(0) (25)

for all examples in Figures3-8.
At both turning points: Three situations are illustrated in

Figs.6 to 8, respectively. The situations are: (1)S is con-
tinuously differentiable withdS

da
= 0; (2)S is continuous

piecewise linear withdS
da

6= 0; (3) S has an integrable
discontinuity withdS

da
= 0. One-sided limiting values of

S andK are given in Table5 at each junction of Phases
1-4.

Under Situation (1) with the sinusoidal excitation –
Fig.6(a) – the product of Factors 1 and 2 in Eq. (22) may be
determined by using L’Hospital’s rule. Under Situation (1)
with the piecewise excitation – Fig.6(b) – Factor 1 is con-
tinuously differentiable and equal to zero while Factor 2 is
zero – so their product is zero. Thus, the tangent stiffness is
continuous and equal to the secant stiffness.

Under Situation (2) with the sinusoidal excitation –
Fig. 7(a) – the tangential stiffness line becomes vertical.
If the hysteresis loop in the first quadrant is considered a
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Table 5 Values andS, K andU at the critical points within a cycle for selected models given in Section3.3.

Fig. ID Phase 1: Phase 2: Phase 3: Phase 4:
S, K Loading in 1st Quad. Unloading in 1st Quad. Loading in 3rd Quad. Unloading in 3rd Quad.
or U t = 0+ t = T

4

−
t = T

4

+
t = T

2

−
t = T

2

+
t = 3T

4

−
t = 3T

4

+
t = T−

4(a),5(a), & 6(a)(b)S 3 2 2 1 1 2 2 3
7(a)S 3 1 1 1 1 1 1 3
7(b) S 3 1.33 1.33 1 1 1.33 1.33 3
8(a)S 3 2 1 0 0 1 2 3
11(a)S 3 3 1 1 1 1 3 3
4(a), & 7(a)K 3 −∞ +∞ 1 1 +∞ −∞ 3
5(a)K 3 -0.35 4.36 1 1 4.36 -0.35 3
6(a)K 3 -0.47 4.47 1 1 4.47 -0.47 3
6(b) K 3 2 2 1 1 2 2 3
7(b) K 3 -1.17 1.83 1 1 1.83 -1.17 3
8(a)K 3 -0.47 3.47 0 0 3.47 -0.47 3
11(a)K 3 3 1 1 1 1 3 3
4(a)U U(0) = 0 U

(
U
4

)
= 1.40 U

(
T
2

)
= 0.81 U

(
3T
4

)
= 1.40 U(T ) = 0

5(a)U U(0) = 0 U
(
T
4

)
= 1.29 U

(
T
2

)
= 0.58 U

(
3T
4

)
= 1.29 U(T ) = 0

6(a)U U(0) = 0 U
(
T
4

)
= 1.27 U

(
T
2

)
= 0.54 U

(
3T
4

)
= 1.27 U(T ) = 0

6(b) U U(0) = 0 U
(
T
4

)
= 1.16 U

(
T
2

)
= 0.31 U

(
3T
4

)
= 1.16 U(T ) = 0

7(a)U U(0) = 0 U
(
T
4

)
= 1.22 U

(
T
2

)
= 0.67 U

(
3T
4

)
= 1.22 U(T ) = 0

7(b) U U(0) = 0 U
(
T
4

)
= 1.04 U

(
T
2

)
= 0.45 U

(
3T
4

)
= 1.04 U(T ) = 0

8(a)U U(0) = 0 U
(
T
4

)
= 1.27 U

(
T
2

)
= 1.04 U

(
3T
4

)
= 1.27 U(T ) = 0

11(a)U U(0) = 0 U
(
T
4

)
= 1.5 U

(
T
2

)
= 1 U

(
3T
4

)
= 1.5 U(T ) = 0
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Fig. 6 The same element model (see Table12)
but subject to x(t) = A sin(ωt), and x(t) =
4A
T

(
t− T

2

⌊
2t
T

+ 1
2

⌋)
(−1)⌊

2t
T

+ 1
2
⌋, with a(0) = 0, T = 2π

ω
,

respectively, withA = 1, andω = 1. This is to illustrate the impact of
Situation (1) to the tangent stiffness of (x, r).

flower petal, its outer tip is rounded. This may be a dis-
advantage of this kind of excitation as it could mask dis-
continuities in the model in this situation. In Situation (2)

with the the triangular excitation –7(b) – ẋ
(

T
4

−
)

6= 0,

ẋ
(

T
4

+
)

6= 0 andẋ
(

T
4

−
)

6= ẋ
(

T
4

+
)

. The last condition

leads todr
dx

(
T
4

−
)

6= dr
dx

(
T
4

+
)

, under which we will always

have a flower petal with a sharp outer tip.
Under Situation (3) – Fig.8 – r has aC0 discontinuity at

a0, regardless of excitation.

Remark 11 (Rate Dependence of Mem-Spring Models)
Generally speaking, mem-spring models are rate depen-

dent, behaving as linear (constant) springs “in the limit of
infinite frequency” (Di Ventra et al(2009)). In particular, as
ω → ∞ for models of the formr = S(a)x subject to pe-
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Fig. 7 The same element model (see Table12)
but subject to x(t) = A sin(ωt), and x(t) =
4A
T

(
t− T

2

⌊
2t
T

+ 1
2

⌋)
(−1)⌊

2t
T

+ 1
2
⌋, with a(0) = 0, T = 2π

ω
,

respectively, withA = 1, andω = 1. This is to illustrate the impact of
Situation (2) to the tangent stiffness of (x, r).

riodic input, we havea0 = A
ω

→ 0, so r(t) → S(0)x(t)

which is a linear spring.

Property 5 (Energy Stored or Dissipated)

For all examples in Figures3 to 8, Table5 gives the val-
ues of the energyU(t) at the end of Phases 1-4. The results
are in accord with passivity at the end of a full period, mean-
ingU(T ) = U(0) as noted inDi Ventra et al(2009). In par-
ticular for r = S(a)x subject to periodic input, energy is
stored (created) during the first half period and then dissi-
pated by an equal amount during the second half period (or
vice versa). Moreover, because mem-springs degenerate to
linear springs as the frequency goes to infinity (Remark11),
U(t) goes to zero in the same limit.
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Fig. 8 The same element model (see Table12)
but subject to x(t) = A sin(ωt), and x(t) =
4A
T

(
t− T

2

⌊
2t
T

+ 1
2

⌋)
(−1)⌊

2t
T

+ 1
2
⌋, with a(0) = 0, T = 2π

ω
,

respectively, withA = 1, andω = 1. This is to illustrate the impact of
Situation (3) to the tangent stiffness of (x, r).

3.4 The Usefulness of System Models

According to Property5, the simplest mem-spring mod-
els show energy storage in either the first or the third
quadrant, whereas data from many structural (macro-scale)
tests show only energy dissipation (in both quadrants);
e.g., seeDolce et al (2000); Santos and Cismaşiu(2007);
Christopoulos et al(2008); Ricles et al(2002)) and Fig.9
for one such example. A different insight can be gained by
contrasting Eqs. (17) and (19) while observing that an ele-
ment model cannot produce the same behavior in the first
and third quadrants when subjected to the specified cyclic
input. In other words, the (x, r) path is “anti-symmetric with
respect to the origin”, as stated inDi Ventra et al(2009).

One way to tackle this issue within the framework of
mem-models is to utilize system models, Table2, Line 5.
The basic approach is to includex in S and introduce
a switching mechanism wheneverx(t) = 0. Section5
presents examples of such mem-spring system models. The
rest of this subsection gives a few examples of mem-springs
of the formr = S(a, x)x subject to the same two types of
periodic input as were used in the previous subsection (Ta-
ble 4). Table13 in AppendixB contains the secant stiffness
S(a, x) and Table6 lists values ofS,K andU (for compari-
son with Table5). Contrasting Fig.10with 4, and Fig.11(a)
with (b), one can see the difference that the switching in
these models can make in terms of modeling capability.
Properties1 to 4 may be extended from elements to systems;
see Figs.26and27 in AppendixB for an example.

4 CASE STUDIES OF MEM-DASHPOTS

4.1 Overview ofMem-DashpotCase Studies

As a case study of a mem-dashpot in the engineering me-
chanics literature, details of a controllable hydraulic damper
in Scruggs and Gavin(2010) are presented and discussed in
this section. For comparison purposes, results from three
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Fig. 9 (b) Following Fig. 1 in Santos and Cismaşiu(2007), a
schematic hysteretic loop is formed for SMA subject tox(t) =
4A
T
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+ 1
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+ 1
2
⌋, with a(0) = 0, T = 2π

ω
,

A = 1, andω = 1. (a), (c), and (d) Other insights developed in this
study. SeeAppendixD including Fig.30 for more explanations.
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Fig. 10 Two system models (see Table13) that contrast the two ele-
ment models in Fig.4 and illustrate the behavior of (x, r) in the third
quadrant;x(t) = A sin(ωt) with A = 1 andω = 1.
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Fig. 11 One element contrasted with one system model (see Table13)
to illustrate the behavior of (x, r) in the third quadrant;x(t) =
A sin(ωt) with A = 1 andω = 1.

nano-device models (two memristors and one memristive
system inStrukov et al(2008); Strukov(2011); Chang et al
(2011)) are also summarized and discussed. The three nano-
device models, designated herein as Case Studies #1, 2
and 3 (see AppendixC.1), can be viewed as mem-dashpots
by means of the Force-Voltage Analogy. Instead of using
the Simulation Program with Integrated Circuit Emphasis
(SPICE) as inChang et al(2011), MATLAB was used for all
computations herein. Throughout this study, ode45 (a MAT-
LAB ODE solver based on RK45) was used with RelTol =
10−6, AbsTol =10−3 and MaxStep =10−3.

This section focuses on the governing state and input-
output equations. Naturally the input (i.e., excitation) plays
an important role in understanding the nonlinear input-
output equations. Although the response to many differ-
ent kinds of excitation are of interest, only a few signal
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Table 6 Values andS, K andU at the critical points within a cycle for selected models given in Section3.4.

Fig. ID Phase 1: Phase 2: Phase 3: Phase 4:
S, K Loading in 1st Quad. Unloading in 1st Quad. Loading in 3rd Quad. Unloading in 3rd Quad.
or U t = 0+ t = T

4

−
t = T

4

+
t = T

2

−
t = T

2

+
t = 3T

4

−
t = 3T

4

+
t = T−

10(a)S 3 2 2 1 3 2 2 1
11(b) S 3 3 1 1 3 3 1 1
26(a) (b) & 27(a) (b)S 3 1 1 3 3 1 1 3
10(a)K 3 −∞ +∞ 2 3 −∞ +∞ 1
11(b) K 3 3 1 2 3 3 1 1
26(a)K 3 −∞ 1 3 3 −∞ 1 3
26(b) K 3 -3 1 3 3 -3 1 3
27(a)K 3 -5.00 1 3 3 -5.00 1 3
27(b) K 3 1 1 3 3 1 1 3
10(a)U U(0) = 0 U

(
T
4

)
= 1.40 U

(
T
2

)
= 0.81 U

(
3T
4

)
= 2.22 U(T ) = 1.62
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Fig. 12 These two panels reproduceScruggs and Gavin(2010) but
acceleration turning points (and others) have been added here.

types have actually been used thus far, namely periodic, or-
dered, or amplitude-modulated forms, which are often used
to probe both memristive devices and engineering mechan-
ics devices.

4.2 A Controllable Hydraulic Damper

Equations (30.59) to (30.62) inScruggs and Gavin(2010)
are simplified versions of a more general form of variable
damper, also reviewed in that same paper. Following the no-
tation for flow-controlled memristive systems in Tables2
and 3, Eqs. (30.59) to (30.62) can be re-written as time-
invariant state and input-output, Eqs. (26) and (27), where
the state vector has two componentsy(t) = [y1(t), y2(t)] =
[x(t), w(t)] with w ∈ [0, 1]. Tw, Kw, cmin and cmax are
design parameters, whilesat andH denote the saturation
and Heaviside functions, respectively. Thus this model is in-
cluded as a key mem-dashpot case study. Some snapshots of
this non-trivial model fromScruggs and Gavin(2010) are
reproduced in Fig.12, while more details and insights are
provided in Figs.12and13.

4.3 Regarding Variable(s) in State Vectory

The selection of variable(s) in state vectory is, in general, a
subjective matter that depends on the physical mechanism(s)
perceived to underlie the observed nonlinear behavior. In
some cases encountered in the literature, a mem-model ex-
pressed in terms of a state vector does not necessarily mean
the model is a system as defined in Table2. Instead, the
model may actually be an element (as in Case Study #1).
Two interesting observations can be made regarding Case
Study #2. First, it is straightforward to show that:

v(t) =

[

y +
RON

ROFF

(1− y)

]
D2

µV

ẏ

y(1− y)

=
D2

µV

[
1

1− y
+

ROFF

RON

1

y

]

︸ ︷︷ ︸

D(y)

ẏ (28)

wherey = w
D

, which may have a physical meaning of being
a normalized width according toChang et al(2011). It can
be seen thaty, ẏ - joined with v - form a memristor (not a
memristive system). We have:

G(y) =

∫

g(y)dy

=
D2

µV

[

− ln(1 − y) +
ROFF

RON

ln y

]

+
D2

µV

[

ln(1− y0)−
ROFF

RON

ln y0

]

(29)

whereln y andln(1 − y) require0 < y < 1.
Alternatively, it is again straightforward to show that the

state and input-output equations in Case Study #2 define an-
other memristor. We can also show that:

v =

[

RON −ROFF

e
−
(

µV

RON

D
q+C

)

+ 1

+ROFF

]

i (30)
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State Eq.:ẏ =

[
ẋ

1
Tw

sat[−1,1]

{

Kw

[

50|y1|
3
2 H
(
− [(1− y2) cmin + y2cmax]A2

pẋ · y1
)
− y2

]}

]

︸ ︷︷ ︸

g(y,ẋ)

(26)

I/O Eq.: r = [(1− y2)cmin + y2cmax]A2
p

︸ ︷︷ ︸

D(y,ẋ)

ẋ (27)
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Fig. 13 Time histories of the input, output, internal variable, power and energy in Fig. 30.62 inScruggs and Gavin(2010).

whereC is an integral constant to be determined (i.e., a
memristor, not a memristive system).

Considering what variable(s) a state vector might in-
clude, the internal state variablew in Scruggs and Gavin
(2010) has a physical interpretation, being the normalized
viscosity coefficient withw ∈ [0, 1], which is quite note-
worthy because in Case Study #3 fromChang et al(2011),
a similar choice occurs for the internal state variablew. The
normalizedw has a clear physical interpretation, being an
area index varying between 0 and 1.w can be solved as a
nonlinear function involving an integral ofv. Using the no-
tation in Table2, w is a nonlinear function ofφ while W

is an affine combination ofw and a nonlinear function of
v. Ultimately,W can be expressed as a nonlinear bivariate
function ofv andφ; see AppendixC.2.

4.4 Regarding Excitations

The first (and maybe foremost) challenge in studying mem-
models is the dependence of their responses on their ex-
citations, which is due to their intrinsic nonlinearity (so
long as the amplitude of excitation is high enough to meet

some nonlinearity observability criteria). See Figs.17 to 19
(later) for simulated results of Case Studies #1 to 3 as well
as the hydraulic damper fromScruggs and Gavin(2010).
To symbolically illustrate excitation-dependency, letr =

D (x, ẋ) ẋ, which is a simple example of a flow-controlled
time-invariant system model for a mem-dashpot, we have:

p =

∫

rdt =

∫

D (x, ẋ) ẋdt

=

∫

D (x, ẋ) dx =

∫

D (x, h(x)) dx (31)

whereẋ = h(x) has a piecewise-defined expression accord-
ing to the phase plot (ẋ,x) - as discussed in Section3.3espe-
cially Table4 and Eqs. (17) to (20) - but for a mem-dashpot.
Thus, it can be seen thatp is piecewise defined, depending
onx. Also, it can be seen that (x, p) (or, equivalently,G in
Table2) is phase-plot-dependent, i.e., excitation-dependent.

Together with Fig.2, Fig. 14 exemplifies typical time
histories and phase plots in terms ofx andẋ used as input
to a flow-controlled mem-dashpot. Similar phase plots, but
in terms ofp andr, could be applied to an effort-controlled
mem-dashpot. (For a mem-spring, we could use pairs ofa
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Fig. 14 Typical smooth and nonsmooth excitation time histories and
their corresponding phase plots. Here, a mem-dashpot is used as an ex-
ample. (a) follows Fig.2; (b) mimicsChang et al(2011); the analytic
signal in (c) followsScruggs and Gavin(2010) while the piecewise sig-
nal in (c) mimicsRicles et al(2002).

andx andp andr, respectively, for a flow-controlled and an
effort-controlled situation.)

Each of the three typical signals illustrated in Fig.14has
its pros and cons. In terms of propagating in phase space, the
sinusoidal signal seems to be the least efficient given that
only one circle is explored (assuming constant amplitude).
An amplitude-modulated signal would be more efficient in
contrast in this regard.

The difference between a smooth signal and its saw-
tooth counterpart needs to be clarified: the former is differ-
entiable, thus facilitating analytical manipulation, while the
latter does not possess this convenience but enjoys popular-
ity in practice, e.g., in pseudo-dynamic tests in earthquake
engineering (such as the excitation in Fig.20(a) following
Applied Technology Council(2001)). Of course, these ex-
citation forms are not exhaustive. Ultimately, responses un-
der random excitations need to be studied; studying periodic
and/or ordered excitations is a necessary preliminary stage.

4.5 Regarding Solving State and Input-Output Equations

State and input-output equations, such as Eqs. (5) and (6)
and others presented elsewhere as typical examples of
flow/effort-controlled mem-dashpot and mem-spring sys-
tems, can be sometimes be solved uncoupled. For example,
Case Studies #1 to 3 are simple enough that they can be

solved uncoupled (as they were in this work; see Section4.3
and AppendixC.1). On the other hand, the hydraulic damper
equations fromScruggs and Gavin(2010) were solved cou-
pled.

In particular, Eq. (5) is a nonlinear ODE to be solved.
The smoothness condition for numerically integrating this
ODE can easily be violated by discontinuities in the nonlin-
ear operatorg and/or those in the inpuṫx. The former leads
to state events while the latter to time events. See Fig.14,
where a sawtooth wave is an example involving time events;
typically a displacement time history with sawtooth features
is popular in earthquake engineering tests. Mathematically,
this means thatdx

dt
is discontinuous at certain times. On

the other hand, non-smooth operatorsf include, but are not
limited to, piecewise-defined functions or generalized func-
tions. Time events, which are (by definition) known prior
to the start of computations, are associated with excitations
(assuming they are deterministic, not random). Some loca-
tions whenẋ = 0 (or i = 0, or v = 0) are highlighted
with red circles in most plots in Section4. In contrast, state
events cannot be known in advance because they are caused
by nonlinearities in the constitutive relations. Both directly
affect the smoothness of the state equation, an ODE.

An interesting and a challenging point for the control-
lable hydraulic damper is the subtlety of state events. There
are no time events in this case because the prescribed ex-
citation is analytic. However there are state events, caused
by four situations, detailed in Table7. Numerically solving
the case study of controllable hydraulic damper can be quite
challenging. We need to pay attention to the time instances
whenx(t) = 0, ẋ(t) = 0, ẍ(t) = 0 and those time instances
whensat applies. One of the challenges - for the specified
excitation time histories - is thatx(t) = 0 and ẍ(t) = 0

do not line up. Some locations when̈x = 0 (or v̇ = 0) are
highlighted with blue squares in most plots in Section4.

4.6 Using Time-Varying Secants in Modeling

For modeling purposes, it is worth noticing that the quotient
of r(t) andẋ(t) has the physical meaning of a time-varying
viscous damping coefficient. Likewise the quotient ofr(t)

andx(t) is a time-varying stiffness. In other words, the quo-
tientsD = r(t)

ẋ(t) andS = r(t)
x(t) are time-varying secants, il-

lustrated in Fig.15, which are defined for allt except when
the denominator is zero which should not hinder physical
interpretation.

Given a time-varying (x, r) plot, the physical interpre-
tation of secant stiffnessS clearly differs from the tangent
stiffnessK, as discussed in Property4 and shown in Tables5
and 6. Secant modulus is also well-known in engineering
mechanics as, for example, Young’s modulus for concrete
which is typically estimated for a stress-strain curve by con-
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Table 7 State events in Case Study of controllable hydraulic damper.

ID Description
(i) those caused byH, i.e., bothx(t) = 0 andẋ(t) = 0
(ii) those caused bysat, which are not known in advance. When the excitation is low, however, we do not need to worry about this

type of state event
(iii) those caused by the absolute value function, i.e.,x(t) = 0
(iv) those caused by the “hard bound” ofw, i.e.,w ∈ [0, 1] - It is found that, for the specified parameter values, this bound is easier

to reach than the bound bysat.
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Fig. 15 Cartoons showing time-varying secants of (a) (ẋ, r) and (b) (x,
r) for memristive and memcapacitive systems, respectively.

necting the origin with the point corresponding to 45% of
its ultimate strength in accord with the recommendation of
ACI (ACI Committee 318(2011)). However, time-varying
secants are not so widely used as time-varying tangents
when modeling path-dependent engineering mechanics sys-
tems. Nevertheless, when applying mem-models to experi-
mental data, we must pay attention to time-varying secants .
For the reader’s convenience, time-varying secant plots ofall
four mem-dashpots are presented together in Fig.16. Note
that Cases #1 to 3 are effort-controlled withv(t) specified as
the excitation;M = v(t)

i(t) andW = i(t)
v(t) in these case stud-

ies are analogous tor(t)
ẋ(t) and ẋ(t)

r(t) , respectively, for mem-
dashpots.

Example 1 (Using M = v(t)
i(t) for Modeling Memristors:

Case Studies #1 and 2)
Figures17 and 18 show results from Case Studies #1

and 2. Even though different excitations are used, each quo-
tient M = v(t)

i(t) stays on its own secant curve, which is a
constitutive curve. Moreover, since these are memristors (el-
ements), each flux-charge relationship is one-to-one for the
specified excitation, which in general does not happen for
systems (either memristive or memcapacitive).

Example 2 (Using W = i(t)
v(t) for Modeling a Memristive

System: Case Study #3)
Figure19shows results from Case Study #3 (Chang et al

(2011)), which is a memristive system (not an element). For
this model, the secant (i.e., quotient) is a bivariate function
which depends on the voltagev and its time integralφ. In ad-
dition, both (q, φ) and (W , φ) are not one-to-one mappings
- even though these facts are not obvious without careful
study of the model and Fig.19. While AppendixC.2 dis-
cusses these claims, intuitively we explain them as a result
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Fig. 17 Fig. 2b and 2c in Case Study #1 fromStrukov et al(2008) are
reproduced by using the two different memristor models subject to two
different excitations. See Tables14and15in AppendixC.1for details.
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Fig. 18 A parametric study based on the model given inStrukov
(2011), Page 17, subject tov = ±v0 sin2

(
1
2
2.5πt

)
with v0 = 1, 2,

2.2, respectively. These exercises reveal the one-to-one mappingM

(or, equivalently,G) as the excitation gets stronger. They also show
that a memristor may not display its nonlinearity when the excitation
is very weak. This is our Case Study #2; see Tables14 and15 in Ap-
pendixC.1for details.

of the model not being an element but a system, the former
of which would guarantee (q,φ) and (W ,φ) to be one-to-one
mappings according to Table8.

Example 3 (Using D = r(t)
ẋ(t) for Modeling a Mem-Dashpot:

Scruggs and Gavin (2010))
It should not be a surprise to learn that, for memris-

tive systems, the secant dampingD is not a single-valued
function of x. For example, under the excitation given
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Fig. 19 An illustration of the secantW being a bivariate function ofφ
andv in Case Study #3 fromChang et al(2011). The three-dimensional
surfaceW = W (φ, v) contains two trajectories that resulted from two
distinct excitations. In addition, the first and third quadrants in (v, i)
correspond to two different curves in (W , φ) and (q, φ), even though
these facts may not be easily seen here. See AppendixC.2.

in Scruggs and Gavin(2010), the secant damping in (ẋ, r) is
not a simple function. In fact, the internal state variable,w,
is actually a normalized time-varying damping coefficient
that follows its own dynamics; see Fig.13.

5 CASE STUDIES OF MEM-SPRINGS

5.1 Overview ofMem-SpringCase Studies

In this section, we present mem-spring models that repro-
duce the features of some fascinating nonlinear hysteresis
which we believe have underlying memcapative nature. In

contrast to memristors, memcapacitors are relatively new,
yet we believe there is no lack of examples. Two possibili-
ties are self-centering structures and flag-shaped hysteresis,
which have captured attention in earthquake engineering and
shape memory alloy (SMA) communities (e.g.,Ricles et al
(2002); Christopoulos et al(2008)). However they are nei-
ther memristors nor memristive systems. The zero-crossing
property of memristors is expressed in terms of (ẋ, r),
whereas the zero-crossing property of self-centering struc-
tures (or flag-shaped hysteresis) is expressed in terms of
(x, r) manifesting super-elasticity, i.e., having zero resid-
ual displacement upon unloading. Perhaps their behavior
could be modeled as memcapacitors or, more likely, mem-
capacitive systems.While simulated data is used for SMA
as described AppendixD, experimental data is examined
for a self-centering test structure in this subsection. In both
cases, the resulting mem-spring models utilized the switch-
ing mechanism discussed in Section3.4.

There are of course other mechanical capacitors (i.e.,
springs)that include memory effects; however many of them
are neither memcapacitors nor memcapacitive systems. For
example, the Ramberg-Osgood model (Jennings(1964))
is not a memcapacitor, nor is it a memcapacitive system.
The same can be said for the well-known bilinear model
(Caughey(1960b,a); Kalmár-Nagy and Shekhawat(2009)).

5.2 Experimental PC4 Data Modelled as a Mem-Spring

PC4 inRicles et al(2002) is a specimen typifying the po-
tential of self-centering structures.T = 8 seconds is as-
sumed for every cycle of an amplitude modulated sawtooth
displacement excitation as shown in Fig.20(a). Four colors
are used to indicate loading and unloading in both the posi-
tive and negative directions. Digitized data is only obtained
for the positive direction while antisymmetry is used for the
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Fig. 22 The functionS = S(a, x) was fit piecewisely with nonsmooth
surfaces using the digitized data.

negative direction.a(t) is obtained through calculating the
area underx(t). Fig.21(a) recoversRicles et al(2002)’s Fig.
8(a), while Fig.20(b) to (d) and Fig.21(b) and (c) provide
other quantities that are not presented inRicles et al(2002)
but useful in our modeling.

For the assumed excitation, the secant stiffnessS shown
in Fig. 22 was extracted by analyzing test data. To clarify
this, we selecta and ẋ as state variables and assume the
following input-output equation:

r = S(a, ẋ
︸︷︷︸

y

, x)x (32)

=

[
1

4
(sgn(x) + 1)(sgn(ẋ) + 1)S1(x)

+
1

4
(sgn(x) + 1)(1− sgn(ẋ))S2(a, x)

+
1

4
(1− sgn(x))(1 − sgn(ẋ))S3(x)

+
1

4
(1− sgn(x))(sgn(ẋ) + 1)S4(a, x)

]

x (33)

For this example, havinġx as a state variable is very help-
ful in defining the switching mechanism for a memcapactive
system. For each of the four zones selected by the joint signs
of x and ẋ, the value ofS is either a function ofx alone
(when it seems to be simply a nonlinear spring) or a func-
tion of botha andx (when it seems to be a memcapacitive
system).

Our proposed model works with the specified amplitude
and rate of the input. It is a black-box model that is quite
a simplification since it involves only a single-degree-of-
freedom. Since each nonlinear model would be different, our
model must be checked against additional test data. In addi-
tion, we anticipate the need for a damage index bounded
within a range, to be introduced as an internal state variable.

5.3 A Proposed Qualitative Mem-Spring Model for
Flag-Shaped Hysteresis

When an inputx(t) with a period ofT = 4 seconds is
used, we have the following model and simulation shown

in Figs.23 and24 by introducing an intermediate variable,
which isnot a state variable:

w(t) = a(t)− a(ti) [H(t− ti)−H(t− ti+1)]

t ∈ [ti, ti+1], wherex(ti) = 0, i = 1, 2, 3, . . . (34)

leading tow(t) = a(t) whenx(t) > 0, andw(t) = a(t)−
a local maximum value fora(t) whenx(t) < 0. All local
maximum values can be considered values of a memory pa-
rameter (Wright and Pei(2012)). The input-output equation
then becomes the following:

S(t) =

{
S0e

−a0 , |w(t)| < a0
S0e

−|w(t)|, |w(t)| > a0
(35)

wherea0 > 0. Comparing Figs.20 with 23, and21 with 24
indicate both the promise and limitation of this proposed
mem-spring model in capturing the flag-shaped hysteresis
given in the PC4 data inRicles et al(2002).

5.4 Comment on Generalizing Mem-Springs

Many continuum mechanics texts introduce constitutive
models by discussing linearly elastic materials that obey ten-
sorial stress-strain equations

σ = E : ε (36)

whereE denotes a constant tensor called the secant modulus
(Willam (2002)). These are called Hookean models because
they generalize Hooke’s law, which is a scalar equation, just
as each input-output equation in Table2 is scalar. By anal-
ogy, one way to generalize mem-springs is to embed them
in continuum mechanics by defining a secant modulus ten-
sor which depends on strain as well as other state variables
y that enable history dependenceE = E(y, ε).

For example, consider a long thin uniform cylindrical
wire, made of SMA, having lengthL and cross-sectional
areaA. Assume infinitesimal strain theory, let the axial dis-
placement be denoted by

δ = δ(ξ, t) (37)

whereξ ∈ [0, L] is the axial coordinate, and let

ε = ε(ξ, t) =
∂δ(ξ, t)

∂ξ
(38)

be the axial strain. Assume the SMA material obeys a uni-
axial stress-strain equation of the form

σ = E(α, ε)ε (39)

whereα = α(ξ, t) is the integral of the strain with re-
spect to time, called the “strain absement”, thereby enabling
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Fig. 20 All time histories reconstructed to study Specimen “PC4” inRicles et al(2002)’s Fig. 8(a).
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Fig. 21 (x, r), (a, r), (a, x) and (a, S) are shown here, where (a) matchesRicles et al(2002)’s Fig. 8(a), and (b) to (d) are derived from (a) and to
reveal the insights for modeling in this study.

history-dependent response under certain axial loading con-
ditions. Furthermore, since SMA is known to be rate de-
pendent (Zhu and Zhang(2007)), the secant modulus should
also depend on strain rateεt =

∂ε(ξ,t)
∂t

, so generalize further
by letting

E = E(α, εt, ε) (40)

which highlights the distinction between history- and rate-
dependent response. The local axial stiffness of this model
is

S(α, εt, ε) =
E(α, εt, ε)A

L
(41)

which is analogous to the secant stiffness in Eq. (32). Dy-
namically, this SMA wire model would satisfy the nonlinear
wave equation

µ
∂2δ

∂t2
=

∂

∂ξ

[

E(α, εt, ε)
∂δ

∂ξ

]

(42)

whereµ is the mass density of the SMA material.

In addition to nonlinear material behavior, nonlinear ge-
ometric behavior (finite strain) must ultimately be consid-
ered in three-dimensional configurations. As stated on page
609 ofWillam (2002), “the three versions of nonlinear elas-
ticity” (algebraic, integral, differential) “lead to constitutive
formulations which exhibit fundamental differences when
we consider triaxial conditions.” Constitutive models for
SMA (and other materials) must be generalized beyond non-
linear elasticity, thereby enabling hysteretic dissipative re-
sponse under diverse loading conditions. These are chal-
lenging topics which have been, and will continue to be, im-
portant areas of engineering mechanics research for many
decades.

6 SUMMARY AND CONCLUSIONS

In brief, Chua proposed the memristor inChua (1971),
presented memristive systems theory with Kang five years
later in Chua and Kang(1976), and presented memcapac-
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Fig. 23 Behaviors and inner workings of the proposed qualitative system model under multiple cycles of amplitude modulated sawtooth excitation
- in terms of time histories - in contrast to those in Fig.20.
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Fig. 24 Behaviors and inner workings of the proposed qualitative system model under multiple cycles of amplitude modulated sawtooth excitation
- in terms of hysteretic loops - in contrast to those in Fig.21and more.

itive and meminductive theories with Di Ventra and Per-
shin in Di Ventra et al(2009). Table2 summarizes the re-
sults of transplanting these theories to the field of engineer-
ing mechanics by following the lead ofOster and Auslander
(1973) andJeltsema and Scherpen(2009). Many examples
of memristors and memcapacitive systems, called mem-
dashpots, were found in the literature; however the same
could not be said of memcapacitors or memcapacitive sys-
tems, called mem-springs. Mathematical parallelisms be-
tween mem-dashpots and mem-springs were recognized and
exploited, but physical differences and the newness of mem-
springs led to the realization that these newer models de-
serve deeper study, in part because of a little-studied quan-
tity called absement which allows mem-spring models to
display hysteretic response in great abundance. However it
is nontrivial to devise mem-spring models that, when sub-
jected to arbitrary excitations, are passive. Even for peri-
odic excitations, a switching mechanism was needed so that
simulations with prototype mem-spring models could main-
tain passivity, as in Fig.1. Moreover, the input-output equa-

tions for all mem-models in Table2 are scalar, as is Hooke’s
law, which implies that embedding mem-models in contin-
uum mechanics is a nontrivial task. The mathematical form
of the stress-strain equations that arise from such consid-
erations involve secant modulus rather than tangent mod-
ulus, so these inherently nonlinear models are partly alge-
braic (the input-output equation) and partly differential(the
state equation). In other words, the stress-strain equations
that emerge from generalizing a scalar mem-spring model
would involve total stress and strain (not incremental re-
lations as in plasticity). AsWillam (2002) notes, differ-
ent versions (algebraic, differential) of nonlinear elasticity
alone (to say nothing of inelasticity) lead to constitutivefor-
mulations that display fundamental differences under triax-
ial conditions. Clearly these nonlinear constitutive models
merit more study.



Understanding memristors and memcapacitors in engineering mechanics applications 19

REFERENCES

ACI Committee 318 (2011) Building Code Requirements
for Structural Concrete and Commentary. American Con-
crete Institute

Applied Technology Council (2001) Evaluation and im-
provement of inelastic seismic analysis procedures,phase
ii work plan, www.atcouncil.org

Bellenger H, Duvel JP (2009) An analysis of tropical ocean
diurnal warm layers. J Climate 22:3629–3646

Bernstein DS (ed) (2009) IEEE Control Systems Magazine,
vol 29, IEEE Control Systems Society, IEEE

Caughey TK (1960a) Random excitation of a system
with bilinear hysteresis. Journal of Applied Mechanics
27:649–652

Caughey TK (1960b) Sinusoidal excitation of a system
with bilinear hysteresis. Journal of Applied Mechanics
27:640–643

Chang T, Jo SH, Kim KH, Sheridan P, Gaba S, Lu W (2011)
Synaptic behaviors and modeling of a metal oxide mem-
ristive device. Appl Phys 102:857–863

Christopoulos C, Tremblay R, Kim HJ, Lacerte M (2008)
Self-centering energy dissipative bracing system for the
seismic resistance of structures: Development and valida-
tion. ASCE Journal of Structural Engineering 134(1):96–
107

Chua LO (1971) Memrister - the missing circuit element.
IEEE Transactions on Circuit Theory CT-18(5):507–519

Chua LO, Kang SM (1976) Memristive devices and sys-
tems. In: Proceedings of the IEEE, vol 64, pp 209–223

Damic V, Cohodar M (2006) Bond graph based modelling
and simulation of flexible robotic manipulators. In: Wolf-
gang Borutzky RZ Alessandra Orsoni (ed) Proceedings
20th European Conference on Modelling and Simulation

Di Ventra M, Pershin YV (2013) On the physical properties
of memristive, memcapacitive, and meminductive sys-
tems. Nanotechnology 24(25),http://arxiv.org/
abs/1302.7063

Di Ventra M, Pershin YV, Chua LO (2009) Circuit elements
with memory: Memristors, memcapacitors, and memin-
ductors. In: Proceedings of IEEE, vol 97, pp 1717–1724

Dolce M, Cardone D, Marnetto R (2000) Implementation
and testing of passive control devices based on shape
memory alloys. Earthquake Engineering and Structural
Dynamics 29:945–968

Farrar CR, Worden K, Todd MD, Park G, Nichols J, Adams
DE, Bement MT, Fairnholt K (2007) Nonlinear sys-
tem identification for damage detection. Tech. Rep. LA-
14353, Los Alamos National Laboratory

Ferri AA (1995) Friction damping and isolation systems.
ASME Journal of Mechanical Design 117(B):196–206

Georgiou PS, Yaliraki SN, Drakakis EM, Barahona M
(2012) Quantitative measure of hysteresis for memristor

through explicit dynamics. Proceedings of The Royal So-
ciety A Mathematical Physical & Engineering Science
468:1–20

Guckenheimer J, Holmes P (1983) Nonlinear Oscillators,
Dynamical Systems, and Bifurcations of Vector Fields,
Applied Mathematical Sciences, vol 42. Springer-Verlag,
New York

Hogan N, Breedveld PC (2002) The Mechatronics Hand-
book, CRC Press, chap 15. The Physical Basis of Analo-
gies in Physical System Models

Ilbeigi S, Jahanpour J, Farshidianfar A (2012) A novel
scheme for nonlinear displacement-dependent dampers.
Nonlinear Dynamics 70:421–434

Inman DJ (1994) Engineering Vibration. Prentice Hall
Jeltsema D (2012) Memory elements: A paradigm shift in

lagrangian modeling of electrical circuits. In: Proc. Math-
Mod Conference, Vienna
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NOTATION

ẋ velocity
x displacement
a absement, first time integral of displacement,x

σ stress
ε strain
εt strain rate
α strain absement
ṙ the first time derivative ofr
r resisting force or characteristic force of an element
p general momentum, the first time integral ofr

ρ the first time integral ofp
y state variables, see Tables2 and3
z state variables in Table9
w internal state or intermediate variable in Sections4

and5
u driving force, see Eq. (1), Fig.25and Table9
M incremental memristance followingChua(1971)
W incremental memdunctance followingChua(1971)
G See Table2
F See Table2
g See Table2
f See Table2
e effort
f flow
D secant damping, See Table3 and Fig.15
S secant stiffness, see Table3 and Fig.15
K tangent stiffness, see Property4
P power, See Table3
U energy, see Table3
a0 See Section3.3, especially Table4
i current
v voltage
q charge
ϕ, φ flux
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Fig. 25 (1a) A Kelvin model connected in series with a mass; (1b) a
Maxwell model connected in series with a mass; (2a) a Kelvin model
connected with a memristor in parallel and then connected inseries
with a mass, and (2b) a Maxwell model connected with a memristor
in series and then connected in series with a mass. Each is subject to a
prescribed forceu(t).

A Appendix for Section2

Table8 lists various definitions of the memristor and the publications
from which they were taken. First, these seemingly different defini-
tions are indeed all consistent once notational differences are taken
into account. Next, they are for either a general or a specificelectrical
system. Last, they distinguish a flow- from an effort-controlled elec-
trical device. For electrical systems, charge- or current-controlled are
aliases for flow-controlled, while flux-, voltage-, or impulse-controlled
are aliases for effort-controlled.

Figure 25 depicts some simple situations where the necessity to
contrast flow- and effort-controlled mechanical systems becomes evi-
dent. After all, basic elements like springs, dampers, or memristors are
made to be used repetitively and in a well-organized manner in order to
form a “system” that models a complex real-world device or structure.
For translational mechanics, the connectivity of these basic elements
can be reduced to either parallel or serial connections, theroots of the
concepts of flow- and effort-controlled systems.

Figures25 (1a) and (1b) show the Kelvin and Maxwell models,
each connected in series with a mass.Jeltsema and Scherpen(2009) re-
veal the duality between these flow- and effort-controlled systems, ex-
pressed in terms of integro-differential equations. In a flow-controlled
device, the natural state variables are displacementx and velocityẋ.
These state variables should be solved (or calculated) firstby integrat-
ing the differential equation based on force equilibrium. In contrast, in
an effort-controlled device, the natural state variables are momentump
and restoring forcer, where momentum is the time integral of restoring
force. These state variables should be solved (or calculated) first from
the equation based on deformation compatibility.

These two linear time-invariant flow- and effort-controlled sys-
tems may be extended by introducing a new element – such as the
memristor (nonlinear time-invariant) – as shown in Fig.25 (2a) and
(2b). Table9 presents the state variables and state equations for the
corresponding models in Fig.25, whereu(t) is an applied force as in
Eq. (1). For systems in general, the constitutive relations of allcompo-
nents – either elements or systems – need to be “assembled” inaccord
with the connectivity of the components. Absent other important de-
tails, the need for two different mathematical expressionsfor the same
memristor to fit into these two different systems may be seen clearly.
In other words, when doing computations, we may need to deal with
either a flow-controlled memristor or an effort-controlledmemristor,
depending on the element or system connectivity.

Table 10 lists expressions that are analogous to the set of (i, v)
plots inStrukov(2011) under the title of “Curious Lay Person’s View-
graph - II”, plus one more for the memcapacitor. Table10 also illus-
trates the underlying mathematical parallelism in the caseof sinusoidal
excitation.

Table 13 Secant stiffnessS(a, x) used in simple mem-spring models
r = S(a, x)x in Section3.4.

Fig. ID S(a, x)

10(a) sgn(x) cos
(

πa
2a0

)

+ 2

10(b) −sgn(x) cos
(

πa
2a0

)

+ 2

11(b) 1−sgn((a−a0)x)
2

× 3 + 1+sgn((a−a0)x)
2

× 1

26(a) & 27(a) 1−sgn((a−a0)x)
2

(

1 + 2
a2
0
(a− a0)2

)

+

1+sgn((a−a0)x)
2

(

1 + 2
a6
0
(a− a0)6

)

26(b) & 27(b) 1−sgn((a−a0)x)
2

(

3 − 2
a0

(

a−
1−sgn(x)

2
2a0
)2
)

+

1+sgn((a−a0)x)
2

(

1 + 2
a6
0
(a− a0)6

)

The proof to Remark4 is given below.The equation of motion
corresponding to Fig.25(2a) is:

mẍ+ kx = u− [c+M(x)] ẋ, with x(0) = x0, ẋ(0) = ẋ0 (43)

Assume free vibration; i.e.,u = 0. Multiply both sides of Eq. (43) by
ẋ(t). Note that

(mẍ+ kx) ẋ =
d

dt
E(t) (44)

whereE(t) = 1
2
mẋ2 + 1

2
kx2. Multiply this equation bydt and inte-

grate fromt = 0 to t = T to obtainE(T ) = E(0) − ∆(T ), where

∆(T ) =

∫ T

0

[c+M(x)] ẋ2dt (45)

is a dissipation function. Ifc + M(x) ≥ 0, ∀x(t), then∆(T ) ≥ 0.
Thus,M(x) ≥ −c is sufficient for passivity (i.e., no produced energy).

B Appendix for Section3

See Tables12 and13 for some models used in Sections3.3 and3.4,
respectively:
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Fig. 26 Two system models (see Table13) illustrate the behavior of
(x, r) at x = 0 and the impact of (a) Situation (1), and (b) Situation
(2) to the tangent stiffness of (x, r); x(t) = A sin(ωt) with A = 1 and
ω = 1.

C Appendix for Section4

C.1 Case studies from nano-field

Tables14and15 give an overview of all these case studies.
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Table 8 Many faces of mathematical expressions for the memristor. All notations in this table follow those in the original publications. Note:ϕ is
the same asφ.

In Device of Algebraic Form Differential Form
“charge-controlled” (Chua(1971)) v(t) = M(q(t))i(t), M(q) = dϕ(q)

dq

“charge-controlled” (Oster and Auslander(1973)) p = G(q) ṗ = G′(q)q̇ =⇒ e = M(q)f

“charge-controlled” (Jeltsema and Scherpen(2009)) φ = φ̂(q) V = M(q)I

“flux-controlled” (Chua(1971)) i(t) = W (ϕ(t))v(t), W (ϕ) = dq(ϕ)
dϕ

“impulse-controlled” (Oster and Auslander(1973)) q = F (p) q̇ = F ′(p)ṗ =⇒ f = W (p)e
“flux-controlled” (Jeltsema and Scherpen(2009)) q = q̂(φ) I = W (φ)V

Table 9 Summary of possible state variables and equations for all cases in Fig.25.

Flow-Controlled Force-Controlled
Fig. 25(1a) Fig.25(1b)

z =

[
x

ẋ

]

z =

[
p

r

]

ż =

[
ẋ

ẍ

]

=

[
0 1

− k
m

− c
m

] [
x

ẋ

]

︸︷︷︸

z

+

[
0
1
m

]

u ż =

[
r

ṙ

]

=

[
0 1

− k
m

− k
c

] [
p

r

]

︸︷︷︸

z

+

[
0
k
m

]
∫
udt

Fig. 25(2a) Fig.25(2b)

z =

[
x

ẋ

]

,

[
z1
z2

]

z =

[
p

r

]

,

[
z1
z2

]

ż =

[
z2

− 1
m

(kz1 + cz2 +M(z1)z2) +
1
m
u

]

ż =

[
z2

−k
(

1
m
z1 + 1

c
z2 +W (z1)z2

)
+ k

m

∫
udt

]

Table 10 Periodic solution for spring and memcapacitor subject to†x(t) = A sin (ωt), and for mass, dashpot and memristor subect to‡ẋ(t) =
A sin (ωt). ♯ Other damper equations may be used.

Element r Expression for r Signature Plot
Spring† r = kx kA sin (ωt) an ellipse ẋ2

(Aω)2
+ r2

(kA)2
= 1 in the (ẋ, r) plane

Memcapacitor† r = M(a)x M
(
A
ω

− A
ω
cos (ωt)

)
·A sin (ωt) “bow tie” in the (x, r) plane

Mass‡ r = mẍ mAω cos (ωt) an ellipse ẋ2

A2 + r2

(mAω)2
= 1 in the (ẋ, r) plane

Dashpot‡, ♯ r = cẋ cA sin (ωt) one-to-one mapping in the (ẋ, r) plane
Memristor ‡ r = M(x)ẋ M

(
A
ω

− A
ω
cos (ωt)

)
·A sin (ωt) “bow tie” in the (ẋ, r) plane (Williams (2008))
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Fig. 27 The same system models as in Fig.26 (see Table13) but
subject tox(t) = 4A

T

(
t− T

2

⌊
2t
T

+ 1
2

⌋)
(−1)⌊

2t
T

+ 1
2
⌋, with a(0) =

0, T = 2π
ω

, A = 1, andω = 1. This is to illustrate the behavior of (x,
r) atx = 0 and the impact of (a) Situation (1), and (b) Situation (2) to
the tangent stiffness of (x, r).

C.2 Understanding case study #3

To see thatW = i(t)
v(t)

is a bivariate function ofv(t) andφ(t), note that

i(t), defined by Eq. (58), is a bivariate function ofw(t) andv(t). Ap-
plying the fundamental existence-uniqueness theorem for ODEs (e.g.,
in Guckenheimer and Holmes(1983)) to Eq. (57), the solution exists
and is unique on an open set forv; i.e., (w, φ) is one to one (since the

Table 14 Three case studies on nano-devices selected as case studies
herein with the equation or page numbers appeared in these papers.

Case Study Reference State Eqs. I/O Eq.
#1 Strukov et al(2008) Eq. (6) Eq. (5)
#2 Strukov(2011) pp. 17 pp. 15
#3 Chang et al(2011) Eq. (5) Eq. (4)

hyperbolic sine in Eq. (57) is analytic and thus satisfies the Lipschitz
condition). Hence,W = f(w(φ), v) = g(φ, v).

Hereafter consider only prescribed piecewise linearv(t) as in
Chang et al(2011). Assumev(t) = bt + c for a generic section of
the excitation and proceed as follows:

dφ

dv
=

φ̇

v̇
=

v(t)

b
(59)

leading to the following piecewise relation for the phase plot (v, φ):

φ(t) =
v2(t)

2b
+ φ0 =⇒ v(t) = ±

√

2b(φ(t) − φ0) (60)
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Table 11 Examples of mem-dashpots.

ID Application and Governing Eq.
1. The Van der Pol oscillator and Liénard equation contain mem-dashpots. The Van der Pol oscillator can be viewed as a mem-

dashpot connected in parallel with a linear dashpot and a linear spring before connecting in series with a mass, as illustrated in
Fig. 25(2a):

ẍ− ε[1− x2]ẋ+ x = 0, with ε > 0 =⇒ ẍ
︸︷︷︸

unit mass

−εẋ
︸︷︷︸

classical dashpot

+ εx2ẋ
︸ ︷︷ ︸

mem-dashpot

+ x
︸︷︷︸

classical spring

= 0 (46)

A more general expression for a mem-dashpot in a flow-controlled mechanical system is the termD(x)ẋ in the Liénard equation:

ẍ
︸︷︷︸

unit mass

+ D(x)ẋ
︸ ︷︷ ︸

mem-dashpot

+ f(x)
︸︷︷︸

nonlinear spring

= 0 (47)

The Liénard equation, which includes the Van der Pol oscillator, is one of the most theoretically studied nonlinear dynamics
equations (e.g.,Guckenheimer and Holmes(1983); Strogatz(1994); Nayfeh and Mook(1995)).

2. Displacement-dependent dampers, which have been investigated for earthquake mitigation (Ferri (1995); Priestley and Grant
(2010)), are mem-dashpots. A general form is:

D(x) =
∞∑

n=1

αn|x|
n, αn ≥ 0 (48)

where the use of the absolute function and the requirement ofnon-negativity ofαn are to ensure passivity of the memristor
(Remark4). Ilbeigi et al(2012) studied nonlinear displacement-dependent dampers of thetype:

D(x) = λ

[

µ2

(

1

1− βx(
1
s
)

)2

− 1

]2

(49)

whereλ > 0 satisfies the passivity property, Remark4, (µ, β ands are other design parameters). This formula is approximated
using Taylor series expansion inIlbeigi et al(2012), resulting in two other damper formulas as follows:

D(x) = α1 + α2|x|
1
s + α3|x|

2
s + α4|x|

3
s + α5|x|

4
s (50)

D(x) = α1 + α2x
2 + α3x

4 + α4x
6 + α5x

8 (51)

Each of these can be considered a linear viscous damper connected with memristors (mem-dashpots) in series. The passivity
conditionsα’s ≥ 0 are satisfied inIlbeigi et al(2012) but not mentioned.

3. Variable dampers have been studied for earthquake mitigation as well. Unlike the displacement-dependent dampers discussed
above, they are not memristors but they are memristive systems. For example, settingy = x, the two-step viscous damping in
Madhekar and Jangid(2009) is of the form:

r =

[
1

2
(1 + sgn(xẋ)) cd1

+
1

2
(1− sgn(xẋ)) cd2

]

︸ ︷︷ ︸

D(y,ẋ)

ẋ (52)

wherecd1
andcd2

are two different viscosity values. This is an input-outputequation of a time-invariant flow-controlled mem-
dashpot as in Table3; also see the two (ẋ, r) plots with prominent zero-crossing feature inMadhekar and Jangid(2009).

The general solution of Eq. (57) with v(t) = bt+ c is:

w(t) = w(t0) +
2λ

ηb
[cosh(ηv(t)) − cosh(ηbt0 + ηc)] (61)

Eq. (60)
= w(t0) +

2λ

ηb

[

cosh

(

±η

√

2b (φ(t)− φ0)

)

− cosh(ηbt0 + ηc)

]

(62)

where the sign± remains the same within each piece as before. Clearly,
(w, φ) is a one-to-one mappingwithin eachpiece of the solution curve
separated by the time events. Given thatcosh is an even function, the
first and third quadrants in (v, i) share the same (w, φ). These can be
verified in Fig.28.

Substituting Eqs. (61) to (58), it can be seen that, for a pair ofv and
−v, the absolute values of theiri differ, so do theirq andW values - as
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Fig. 28 More insights in terms ofw
D

to understandChang et al
(2011)’s Fig. 5a and Fig. 5b.
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Table 12 Secant stiffnessS(a) used in simple mem-spring modelsr = S(a)x in Section3.3.

Fig. ID S(a) Differentiability Classification
3(a) (a − a0)2 + 2 Cω (analytic), quadratic function ofa

3(b) |a− a0|+ 2 = 1−sgn(a−a0)
2

(

3− a
a0

)

+ 1+sgn(a−a0)
2

(

2 + a−a0

a0

)

C0, continuous ata0, piecewise linear

4(a) & 5(a) cos
(

πa
2a0

)

+ 2 Cω , analytic for alla

4(b) & 5(b) − cos
(

πa
2a0

)

+ 2 Cω , analytic for alla

6(a) & (b) 1−sgn(a−a0)
2

[

− sin
(

πa
2a0

)

+ 3
]

+ 1+sgn(a−a0)
2

[

sin
(

πa
2a0

)

+ 1
]

C1, differentiable ata0, piecewise analytic

7(a) & (b) 1−sgn(a−a0)
2

(

3− 5a
3a0

)

+ 1+sgn(a−a0)
2

(
4
3
− a−a0

3a0

)

C0, continuous ata0, piecewise linear

8(a) & (b) 1−sgn(a−a0)
2

[

− sin
(

πa
2a0

)

+ 3
]

+ 1+sgn(a−a0)
2

sin
(

πa
2a0

)

C−1, integrable ata0, piecewise analytic

11(a) 1−sgn(a−a0)
2

× 3 + 1+sgn(a−a0)
2

× 1 C−1, integrable ata0, piecewise constant

Table 15 Case studies: Both the state and input-output equations arefrom the original papers where they are cited from.

ID State and Input-Output Eqs. and Inter. Var.
1 Equations (6) and (5) fromStrukov et al(2008) are the state and input-output equations to produce Fig. 2 in that paper:

State Eq.:
dw

dt
= µV

RON

D
i (53)

I/O Eq.: v =
(

RON

w

D
+ROFF

(

1−
w

D

))

i (54)

wherev(t) = v0 sin(ω0t) andv(t) = v0 sin
2(ω0t) for Fig. 2b and 2c, respectively, withv0 = 10, andω0 = 10π - differing

from Strukov et al(2008), wherev0 andω of being 1 and200π, respectively. In addition,ROFF

RON
= 160 and ROFF

RON
= 380 for

Fig. 2b and 2c, respectively,RON = 100, D2

µV
= 0.01, and w

D
|t=0 = 0.1.

2 Strukov et al(2008) points that Chua does not anticipatew being bounded by 0 andD. A term called “window function” is used
to simulate nonlinear drift whenw approaches 0 andD. The expression for the term, unfortunately, has a typo. Thecorrect one
is given inStrukov(2011):

State Eq.:
dw

dt
= µV

RON

D
i
w

D

(

1−
w

D

)

(55)

I/O Eq.: v =
(

RON
w

D
+ROFF

(

1−
w

D

))

i (56)

whereROFF

RON
= 50, RON = 100, D2

µV
= 0.01, and w

D
|t=0 = 0.001 assumed by the authors - not being zero asw ∈ (0, D)

on pp. 17 ofStrukov(2011). To reproduce the response given on pp. 17 inStrukov(2011), the authors were able to follow the
specified frequency but not amplitude.

3 FromChang et al(2011):

State Eq.:
dw

dt
= 2λ sinh(ηv) (57)

I/O Eq.: i =
(

1−
w

D

)

α
[
1− e−βv

]
+

w

D
γ sinh(δv) (58)

whereλ = 4.5, η = 4, α = 0.5 × 10−6, β = 0.5, γ = 4 × 10−6, andδ = 2. D = 412.5 was obtained by trial-and-error in
this study withw

D
as given in Eq. (58) (instead of Eq. (4) inChang et al(2011) which gives a wrong range fori).

stated in the caption for Fig.19. Indeed, this system is not a memristor;
rather it is a memristive system.

In fact, the pair ofẇ andv defined in Eq. (57) represents a rela-
tionship in a nonlinear resister witḣw andw corresponding to current
and charge, respectively. Having said this, (w, φ) must be a one-to-one
mapping as stated above and illustrated in Fig.28. Alternatively (and
at the risk of unnecessary length), the one-to-one’ness andinflection

points on (w, φ) shown in Fig.28 can be understood as follows:

dw

dφ
=

ẇ

φ̇
=

2λ sinh(ηv)

v
(63)

For all v(t), dw
dφ

> 0, which explains the monotonic (w, φ); i.e., (w,
φ) is one-to-onefor all t. Furthermore, the continuity ofsinh can be
used to explain the continuity of (w, φ) even whenv(t) is only C0

continuous.
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D Appendix for Section5

A prototype mem-spring model for SMA wire is given as herein.While
the models in Figs.26and27could be candidates for SMA wire in ten-
sion (e,g., those inDolce et al(2000)), there is a useful methodology
for establishing a memcapacitor model for any individual set of SMA
wire data under a clearly defined excitation - if we adopt the philoso-
phy of Section4.6by paying attention to time-varying secants. For the
piecewise-defined displacement in Eqs. (13) to (16), this methodology
is illustrated in Fig.29and explained in the next two paragraphs.

The mathematical expressions involved in modeling - for theex-
ample illustrated in Fig.29 - are given as follows:

r1 (x) ⇒ s1 (x) =
r1 (x)

x
= s1 (h1(a)) = S1(a) (64)

r2 (x) ⇒ s2 (x) =
r2 (x)

x
= s2 (h2(a)) = S2(a) (65)
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Fig. 29 Illustrations of the procedure of developing a memcapacitor
model by using an arbitrary set of SMA wire under a piecewise linear
displacement as in Eqs. (13) to (16).

To clearly demonstrate this modeling method, Fig.9 presented
previously is utilized again. The restoring force vs. displacement plot
in the first quadrant is examined first. As shown in Fig.30, the model
parametersx1, r1, andx2 are to be given in advance. Others can be
conveniently obtained from geometry:r2 = R − A−x2

x1
r1 whereR

is the restoring force corresponding toA, x3 = x2 − (A − x1);
r3 = x3

x1
r1. The corresponding absement values are:a1 = T

8A
x2
1;

a2 = 2a0 − T
8A

x2
2, anda3 = 2a0 − T

8A
x2
3. By varying the val-

ues ofx1, r1 andx2, a set of these sub-models are obtained. In all
these sub-models, applying Eqs. (64) and (65) but considering a total
of five pieces that characterize an experimental restoring force vs. dis-
placement plot, we have the following equations to defineS(a) in a

piecewise manner:

S1(a) =
r1

x1
,

a ∈ [0, a1], red lines in Fig.30 (66)

S2(a) =

(

r1 −
x1

A− x1
(R − r1)

)√

T

8Aa
+

R− r1

A− x1
,

a ∈ [a1, a0], orange lines in Fig.30 (67)

S3(a) =

(

R−
A

x1
r1

)√

T

8A(2a0 − a)
+

r1

x1
,

a ∈ [a0, a2], green lines in Fig.30 (68)

S4(a) =

(

r3 −
x3

x2 − x3
(r2 − r3)

)√

T

8A(2a0 − a)
+

r2 − r3

x2 − x3
,

a ∈ [a2, a3], blue lines in Fig.30 (69)

S5(a) =
r1

x1
,

a ∈ [a3, 2a0], black lines in Fig.30 (70)

After finishing modeling the first quadrant, the model in the third
quadrant must be made “anti-symmetric with respect to the origin” fol-
lowing Di Ventra et al(2009) (see Section3.4), which is conveniently
carried out, say, using vector concatenation under MATLAB.Mathe-
matically, this could be done using either of two approachesgiven in
Sections5.2 and5.3. Data sets from other analytic or piecewise con-
tinuous displacements can be treated in a similar manner.
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Fig. 30 To expand on Fig.9, different variations in the hysteric loop in the first quadrant (subject to a piecewise linear displacement) and their
corresponding models. The piecewise linear displacement is defined in Eqs. (13) to (16) with a(0) = 0, A = 1, andω = 1. Five sets of values are
used forx1, r1 andx2.
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