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Abstract

The Drug Design Data Resource aims to test and advance the state of the art in protein-ligand 

modeling, by holding community-wide blinded, prediction challenges. Here, we report on our 

third major round, Grand Challenge 3 (GC3). Held 2017–2018, GC3 centered on the protein 

Cathepsin S and the kinases VEGFR2, JAK2, p38-α, TIE2, and ABL1; and included both pose-

prediction and affinity-ranking components. GC3 was structured much like the prior challenges 

GC2015 and GC2. First, Stage 1 tested pose prediction and affinity ranking methods; then all 

available crystal structures were released, and Stage 2 tested only affinity rankings, now in the 

context of the available structures. Unique to GC3 was the addition of a Stage 1b self-docking 

subchallenge, in which the protein coordinates from all of the cocrystal structures used in the 

cross-docking challenge were released, and participants were asked to predict the pose of CatS 

ligands using these newly released structures. We provide an overview of the outcomes and 

discuss insights into trends and best-practices.
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2 Introduction

Computer-aided drug design (CADD) technologies have enormous potential to speed the 

discovery of new medications, and to lower the costs of drug discovery. When the three-
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dimensional structure of a targeted protein is known, two key goals of CADD are to predict 

the bound conformation (pose), of candidate ligands; and to predict, or at least correctly 

rank, the binding affinities of candidate ligands for the target1–3. Today, multiple technical 

approaches to these problems are available in various software packages4,5 and 

computational chemists routinely face the challenge of deciding which method is best to use 

in a given scenario and how best to use it. Similarly, those developing new methods must put 

their innovations in the context of existing approaches. However, evaluations of CADD 

methods are typically retrospective, which is decidedly suboptimal method given that these 

methods must work prospectively in actual drug discovery project. Moreover, different 

methods are frequently benchmarked using different datasets, making it difficult to compare 

multiple methods on an equal footing.

The Drug Design Data Resource (D3R; www.drugdesigndata.org) was founded to address 

these problems by providing the research community with opportunities to compare CADD 

methods on shared, prospective datasets. Building on the prior Community Structure 

Activity Resource (CSAR)6–9, D3R has now held three major challenges10,11, and we report 

here the outcome of Grand Challenge 3 (GC3). This challenge is the largest to date, focusing 

on seven high quality datasets across five subchallenges for pose and affinity ranking 

predictions. It also includes a new self-docking stage, designed to evaluate docking program 

performance using the protein structure solved with the query ligand. The conclusions 

provided by GC3 largely overlap with those of prior studies7–17, with a few novel 

observations. In all, 28 research groups participated in GC3, submitting a total of 375 

predictions. Here, we detail the datasets, challenge submission assessment procedures, and 

prediction results, while seeking lessons regarding best practices and trends in the field. A 

complementary set of articles from individual challenge participant labs accompanies this 

overview in the present special issue of the Journal of Computer-Aided Molecular Design.

3 Methods

3.1 Datasets and subchallenges

Grand Challenge 3 comprised five subchallenges (Supplementary Table 1). Subchallenge 1 

included both pose-prediction and affinity ranking components and was based on 24 

Cathepsin S (CatS) ligand-protein cocrystal structures (Figures 1A and 1B), along with the 

CatS IC50s of 136 compounds, which included many in the cocrystal structures. A 

histogram of the pIC50 values is provided in Supplementary Figure 1. Experimental details 

pertaining to the CatS dataset can be found in the supplementary materials18. Both the 

affinity and pose prediction CatS ligands are large and flexible with molecular weights of 

530 to 810 Da and with 6 to 14 rotatable bonds. The 24 compounds with available cocrystal 

structures fall into two chemical series. The first series contains 22 of the 24 pose prediction 

CatS ligands (all but CatS_4 and CatS_6) that contain a tetrahydropyrido-pyrazole core. All 

members of the second series (CatS_4 and CatS_6) contain a pyridinone core. The 

tetrahydropyrido-pyrazole and pyridinone cores are demonstrated in Figures 1B and C, 

respectively. Compounds in the first series display consistent binding modes with CatS, 

except that CatS 7, CatS 9, and CatS 14 bind with the core flipped relative to the other 

members of the series (Figure 1D). CatS_11 was omitted from Pose 1 RMSD statistics 
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because it was found during analysis to be present in PDB entry 3kwn. This was missed 

initially due to an incorrect bond order assignment. Further details regarding all CatS 

compounds are provided in the supplementary material (Supplementary Table 2). Assay and 

crystallization conditions for the CatS subchallenge data are also provided in the 

supplementary material (folder SM_CatS_expt).

Subchallenges 2–5 included only affinity predictions or ranking and are based on 

dissociation constants (Kd) of various ligands for five kinases. To construct these datasets, 

the D3R team selected ligand-kinase pairs for Kd measurements from a large matrix of 

available ligand/kinase screening data (single concentration percent inhibition) that has since 

been published19. Histograms of the pKd values are provided in Supplementary Figure 1. 

Details of the experimental Kd measurement procedures may be found in the supplementary 

material folder SM_KinaseData_DiscoverX. Prior to the challenge, some of the dissociation 

constants and the full set of percent inhibition data were unblinded by Drewry et al.19. As 

the challenge pertains to the prediction of Kds, we omitted the disclosed Kds from our 

evaluation statistics. We further note that, given that the submitted predictions in general 

correlated worse with the Kd values than did the experimental percent inhibition data in 

Drewry et al. (Table 7), our assessment is that the availability of the percent inhibition data 

did not significantly affect the results of the challenge.

That said, this partial unblinding should be kept in mind when assessing the kinase results. 

Subchallenge 2 involved 85, 89, and 72 diverse ligands for kinases vascular endothelial 

growth factor receptor 2 (VEGFR2), Janus Kinase 2 (JAK2), and p38-α (mitogen-activating 

protein kinase 14 (MAPK14), respectively; 54 of these ligands were assayed for all three 

kinases. Subchallenges 3 and 4 aimed to generate activity cliffs20 and include, respectively, 

17 congeneric compounds with Kd values for JAK2, and 18 congeneric compounds with Kd 

values for the kinase Angiopoietin-1 receptor (TIE2). Because GC3 contains two different 

subchallenges involving JAK2, we will use the terms JAK2 SC2 and JAK2 SC3 to 

differentiate between the two corresponding datasets. Finally, subchallenge 5 consisted of 

Kd values for two compounds for the wild type and five mutants of the nonphosphorylated 

ABL1 protein: ABL1(F317I), ABL1(F317L), ABL1(H396P), ABL1(Q252H), and 

ABL1(T315I).

Although GC3 included components designed to test explicit solvent alchemical free energy 

methods, as done in prior Grand Challenges10,11, only one submission used such an 

approach, so these components are not discussed in the present paper.

3.2 Posing the Challenge

Similar to GC201511 and GC210, GC3 followed a two stage format for the CatS dataset, 

including a docking component in Stage 1 and affinity ranking components in both Stages 1 

and 2. In addition, for the first time, Stage 1 was split into two parts, Stages 1a and 1b. In 

Stage 1a, participants were asked to dock 24 CatS ligands into a CatS structure of their 

choosing from the Protein Data Bank (PDB) archive (https://rcsb.org); this constituted a 

cross-docking challenge because participants did not have the protein coordinates from the 

cocrystal structure with each ligand. At the end of Stage 1a, all 24 protein structures, without 

ligands, were released publicly, and participants were again invited to dock all 24 CatS 
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ligands to their respective protein cocrystal structures from the released set; this constituted a 

self-docking challenge. In both Stages 1a and 1b, participants were allowed to submit up to 

five poses per ligand, where their single best guess was designated as Pose 1. Because the 

kinases subchallenges did not include any new cocrystal structures, they were included only 

in the Stage 2 affinity component of GC3. Prior to the start of the challenge, participants 

were notified that the cocrystal structure with ligand CatS_14 has a dimethylsulfoxide 

(DMSO) molecule in a critical bridging location; and six other cocrystal structures with six 

other ligands, CatS_2, CatS_17, CatS_20, CatS_22, CatS_23, and CatS_24, have a sulfate 

(SO4) ion in a critical bridging location. In order to facilitate the docking of these ligands, 

representative structures of Cathepsin S, with the key SO4 and DMSO, but no ligands, were 

provided in the dataset, and participants were invited to use this information in their docking 

calculations. In addition, we asked participants to use the provided SO4-bound structure as 

the reference structure for superposition of all pose predictions, in order to facilitate 

evaluation.

3.3 EVALUATION OF POSE AND AFFINITY PREDICTIONS

Predictions were evaluated with the approach used for GC201511 and GC210, as summarized 

below. The scripts used to evaluate pose and affinity predictions evaluation scripts are 

available at Github (drugdesigndata.org/about/workflows-and-scripts). Pose predictions were 

evaluated in terms of the symmetry-corrected RMSD between predicted and crystallographic 

poses. These were calculated with the binding site alignment tool in the Maestro Prime Suite 

(align-binding-sites), where a secondary structure alignment of the full proteins is 

performed, followed by an alignment of the binding site Cα atoms within 5 Å of the ligand 

atoms21. Evaluations in this article are limited to the best guess poses (Pose 1, see above), 

unless otherwise noted. However, we also generated statistics for the pose with lowest 

RMSD to the crystallographic pose (“Closest Pose”), and for the mean across all ≤ 5 poses 

provided (“All Poses”); these additional analyses are provided on the D3R website.

Affinity predictions were evaluated in terms of the ranking statistics Kendall’s τ22,23 and 

Spearman’s ρ24. Compounds with experimental Kd values reported only as ≥10 μM were 

excluded from these ranking evaluations, but were used in an alternative classification 

metric, which is described in the following paragraph. (Ranking statistics for the full set of 

compounds are reported in Supplementary Table 3) The number of ligands per target 

including or excluding Kd or IC50 > 10 μM and their respective highest affinities are 

reported in Table 1. Uncertainties in these statistics were obtained by recomputing them in 

10,000 rounds of resampling with replacement, where, in each sample, the experimental 

IC50 or Kd data were randomly modified based on the experimental uncertainties. 

Experimental uncertainties were added to the free energy, ΔG, as a random offset δG drawn 

from a Gaussian distribution of mean zero and standard deviation RTln(Ierr). In this 

evaluation, the value of Ierr was set to 2.5, based on the estimated experimental uncertainty. 

For this challenge we do not compute the Pearson’s correlation metric or root-mean square 

error (RMSE) given that we ask participants to consistently provide only their ranking of 

compounds. The present article focuses on the Kendall’s τ results, which is regarded as 

having advantageous statistical properties25, and the Spearman’s ρ results may be found on 

the D3R website (drugdesigndata.org).
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Compounds with experimental Kd values reported only as ≥10 μM were considered in GC3 

by defining these compounds as “inactive”, while compounds with reported Kd values were 

defined as “active”. We then used the Matthews correlation coefficient26, a metric of 

classification accuracy, to assess how well each submission performed at distinguishing 

these two sets of compounds. Thus, if a given subchallenge comprised Na known actives and 

Ni known inactives, by the present criterion, we assigned the top-ranked Na compounds in 

the prediction set as “predicted actives” and the remaining Ni compounds as “predicted 

inactives” and compared this classification with the experimental classification.

As in previous challenges, two null models were used as performance baselines for ranking 

ligand potencies; the null models were then evaluated using Kendall’s τs and Matthews 

correlation coefficient in the same manner as the submitted predictions. The null models are 

“Mwt”, in which the affinities were ranked by decreasing molecular weight; and clogP, in 

which affinities were ranked based on increasing octanol–water partition coefficient 

estimated computationally by RDKit27. Null models were not calculated for the ABL1 target 

since this subchallenge only contains two ligands.

Results

In GC3, 28 unique participants submitted a total of 375 prediction sets, as detailed in Table 

2. The following subsections provide an overview of outcomes. Details of the methods and 

their performance statistics may be found in Supplementary Tables 4, 5, 7, and 8; further 

information, including raw protocol files, identities of submitters (for those that are not 

anonymous), and additional analysis statistics can be found on the D3R website (https://

drugdesigndata.org). Many submissions and methods are further discussed in articles in this 

special issue by the participants themselves.

3.4 Pose predictions

3.4.1 Overview of pose prediction accuracy—The CatS ligands appear to have 

presented a difficult docking challenge, as few submissions had a mean or median Pose 1 

RMSD below 2.5 Å (Figure 2). By comparison, roughly half of the submissions met one of 

these criteria for the HSP90 and FXR pose prediction challenges in GC201511 and GC210, 

respectively. Nonetheless, the best prediction sets did well, with lowest median RMSDs of 

1.87 Å and 1.01 Å, in Stages 1a and 1b, respectively.

The differences between mean and median RMSD values were often large (Figure 2), 

suggesting that the RMSD probability distributions have fat tails and are asymmetric. This is 

confirmed by inspection of the boxes and whiskers in Figure 2 and of the RMSD 

distributions themselves in Supplementary Figure 2. Indeed, even some of the top 

performing methods still generate rather inaccurate poses. These observations demonstrate 

the value of considering both mean and median in evaluating docking performance. For 

example, although not the top performing method in Stage 1a (Figure 2) as judged by 

median, submissions yq6gg and djcq4 both have low means and have the smallest pose 

prediction standard deviations of all top performing methods. Interestingly, both submissions 

used OMEGA and ROCS; but while yq6gg coupled these tools with the GLIDE docking 

code, djcq4 used Rosetta ligand.
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3.4.2 Analysis by docking methodology—A variety of methods yielded either a 

mean or median RMSD≤2.5 Å across all ligands, in both Stage 1a (Table 3A) and Stage 1b 

(Table 3B). Given the relatively wide spread of RMSD values within each submission (see 

prior paragraph), it is not clear that any one of these high-performing methods should be 

considered “best”. Multiple software packages are represented in these relatively successful 

approaches, including Glide28,29, ICM30, LeadFinder31, POSIT32, and SMINA33, and in-

house codes from the Kozakov34 and Bonvin groups35. Much as previously observed10,11, a 

given docking code could generate widely varied levels of accuracy when used in multiple 

submissions, as shown in Table 4 for several software packages that appear in multiple 

prediction sets. Thus, success was not determined only by what software was used, but also 

how it was used.

Interestingly, all but two of the top-performing submissions in Stage 1a (Table 2a) used 

visual inspection to help with their pose predictions; the exceptions are b6t0o (MolSoft) and 

4ery5 (in-house Monte Carlo). In contrast, only one of the ten lowest-performing methods, 

based on Pose 1 median RMSD, used visual inspection (data not shown). This is in 

agreement with results previously found in GC201511, where the more successful methods 

tended to use visual inspection, though GC2 reported the opposite finding10. Thus, it is not 

clear whether visual inspection is a significant determinant of success; presumably, its value 

will depend on the expertise of the scientist. It is also worth noting that the use of visual 

inspection makes it difficult to use these challenges to assess the accuracy of the 

computational methods used, since it depends on factors outside the algorithms.

3.4.3 Analysis by ligand—An evaluation of pose prediction accuracy by ligand, rather 

than by docking method (Figure 3), suggests that some ligands are more difficult to dock 

correctly than others, although the large data ranges (see boxes and whiskers in Figure 3) 

make this assessment uncertain. The two pyridinone ligands, CatS 4 and CatS 6, fall toward 

the right in these graphs, and were the worst overall performing ligands in Stage 1b. 

Similarly, the ligands with the flipped binding mode, CatS 7, CatS 9, and CatS 14, fall to the 

right in the Stage 1a RMSD distribution, though only in the center of the Stage 1b 

distribution. Thus, the poses of the pyridinones and the flipped-mode tetrahydropyrido-

pyrazoles may have been more difficult to predict on average. We further analyzed the 

statistics of the flipped binding mode ligands, CatS_7, CatS_9, and CatS_14, by calculating 

pose 1 RMSD statistics for each submission on only these cases (Supplementary Table 9). 

Of the 5 submissions that obtained a median Pose 1 RMSD < 2.5 Å, all were already present 

in the top submitter category in Table 3. This demonstrates that methods that performed well 

overall also tended to perform well in the difficult binding mode flip case. However, the 

results become less clear when considering the results of Stage 1b. The submission rr5gx, 

which employed a Medusa docking protocol, was the second ranked submission by mean 

Pose 1 RMSD on the flipped binding mode ligands, with an impressive RMSD of 1.4 Å, but 

with a 3.37 Å median pose 1 RMSD on the full set. Another interesting example is CatS_11, 

whose structure was available in in PDB entry 3kwn. (This entry is now superseded by 5qc4 

as a result of our refinement process, which revealed that a pyrrole group in 3kwn was non-

planar.) Nonetheless, the predicted poses of CatS_11 were not especially accurate, as 
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CatS_11 was the 7th ranked ligand in Stage 1a and the 9th in Stage 1b, with median RMSDs 

of 5.1 and 8.8 Å, respectively.

3.4.4 Use of related crystal structures—The structure of a protein binding site can 

vary significantly in response to the binding of varied ligands, and the inability to adequately 

capture such responses is regarded as an important limitation in molecular docking36–38. 

One method to reduce the resulting errors is to dock each ligand into a protein structure that 

was solved with a similar ligand, as the binding site is likely to have already adopted a 

suitable conformation. Indeed, prior grand challenges11,10 as well as prior works by 

others32,39,40 support a view that docking into an available receptor structure solved with a 

similar ligand increases the probability of correctly predicting ligand poses. This result 

seems to have percolated into the strategies employed in GC3, as 64% of submissions (34 of 

53) in Stage 1a docked to the publicly available structure with the most similar ligand, in 

contrast to 45% (23 of 51) in GC210. During GC3, approximately 28 CatS crystal structures 

were present in the PDB. We performed a 2D Tanimoto coefficient (tc) comparison between 

the challenge compounds and those present in available cocrystal structures of CatS. The 

results (Supplementary Table 10) show that six of the 24 CatS ligands had a tc greater than 

0.6 with a ligand in the PDB at the time of the challenge. Results of GC3 provide continued 

support for the benefit of using ligand similarity to guide the selection of the receptor for 

docking (Table 3, and Supplementary Table 6 discussed below), as all of the top submissions 

in Table 3 are listed as having used available crystal structures to guide docking. The 

submissions in Table 3 that used ligand similarity used either the ROCS method41 or 

unspecified methods to do so. As a control, we also inspected the use of available crystal 

structures in the 10 submissions with largest median RMSD. Here, of the 10 submissions 

with largest median pose 1 RMSD, 6 used ligand similarity guided docking. We visually 

inspected a handful of the poses from these submissions and observed that the ligands were 

docked to the wrong portion of the binding pocket. If an incorrect subpocket is chosen for 

docking, ligand similarity guided receptor selection is not sufficient to prevent erroneous 

predictions.

The problem of accounting for binding site conformational adaptation does not obtain in the 

setting of self-docking, where a ligand is fitted back into the protein crystal structure with 

which it was cocrystallized. We, therefore, anticipated higher accuracy pose predictions in 

Stage 1b, where participants were provided with the precise protein structure determined 

with each bound ligand. It was, therefore, unexpected that overall accuracy was lower in 

Stage 1b than in Stage 1a (Section 3.4.1). However, this broad comparison may be hard to 

interpret because the participants and methods are not matched between these two stages. 

For a more meaningful comparison, we identified 13 participants who submitted predictions 

in both Stages 1a and 1b (Supplementary Table 6). Of these 13 participants, six used the 

same docking methodology in Stage 1a and 1b. For these participants, we quantified the 

performance change on going from Stage 1a to Stage 1b as R = 100(Xa − Xb)/Xa, where Xa 

is the median Pose 1 RMSD in Stage 1a, and Xb is the median pose 1 RMSD in Stage 1b. 

Across the six submissions, the mean improvement, <mi>, was modest, at 9.06%. However, 

the range of R was large, −9.05% to +46%, indicating significant improvement in some 

cases. (See Supplementary Table 6 for details.) These results support the value of similarity-
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guided docking but also emphasize the persistent importance of other factors. Thus, even a 

method that could reliably model the effects of binding on the receptor structure might not, 

in itself, yield large improvements in docking accuracy.

3.5 Affinity predictions

In this section, we evaluate the accuracy of predicted potency rankings for six different 

protein targets: CatS and the kinases ABL1, JAK2, p38-α, TIE2, and VEGFR2 (Table 5, 

Fig. 4). For CatS, the availability of 23 crystallographic poses in Stage 2 but not Stage 1 

allows an examination of the role of structural data as a determinant of ranking accuracy. For 

the kinase measurements, some experimental Kd values were reported as ≥ 10 μM, making 

them difficult to include in standard metrics of ranking accuracy. We made use of these data 

by categorizing these compounds as “inactive”, and using the Matthews correlation 

coefficient, a classification statistic, to quantify the ability of the prediction methods to 

classify compounds as active or inactive. Finally, we examine the correlation of the kinase 

Kd measurements with corresponding single-concentration percent inhibition data available 

to us when we were choosing which Kd measurements to purchase. This analysis allows an 

interesting comparison between the accuracy of an experimental high-throughput (single-

concentration) screen and the computational methods deployed in GC3.

3.5.1 Overview of potency ranking and active/inactive classification—Most of 

the ranking predictions correlate positively with the experimental data (Fig. 4, and 

Supplementary Table 7). Indeed, among all three Grand Challenges to date, GC3 yields the 

highest potency ranking accuracy, with values of Kendall’s τ exceeding the highest prior 

GC2 value of 0.46, for ABL1 (0.52 +/− 0.3), JAK2 SC2 (0.55 +/− 0.08), JAK2 SC3 (0.71 +/

− 0.16), and TIE2 (0.57 +/− 0.24). This boost in performance is not attributable to 

differences in the ranges of affinities, as both challenges have a similarly wide range of 

affinities in each of their datasets. Nonetheless, this trend is also followed by a boost in null 

model performance, for JAK2 SC3 (Mwt 0.56 +/− 0.16) and TIE2 (clogP 0.57 +/− 0.28). 

The molecular weight and clogP models outperform the mean Kendall’s τ values in five and 

three of the seven targets, respectively. Additionally, some targets appear to have been more 

challenging than others. This is particularly evident for the VEGFR2, JAK2 SC2, and p38-α 
subchallenge, which involved a set of 55 ligands that are common between three kinases, yet 

the average Kendall’s τ values range from −0.1 for p38-α, to 0.02 for JAK2 SC2, and 0.22 

for VEGFR2 (Fig. 4). Similarly, looking at the performance across the two ligand sets for 

JAK2 (SC2 and SC3), we observe a slight increase in Kendall’s τs of the top-performing 

methods for JAK2 SC3 (Fig. 4). Similar to the kinase targets, most of the ranking predictions 

for the CatS target also yield positive correlations with experimental data in both Stages 1 

and 2. The large errors associate with the Kendall’s τ statistics in some of the targets is due 

in large part to the differences in number of ligands; in particular, ABL1, JAK2 SC3, and 

TIE2 include relatively small numbers of compounds (Table 1).

For the first time, GC3 included many compounds with experimental Kd values reported 

only as ≥10 μM. These were excluded from our Kendall’s τ ranking evaluations. However, 

we further evaluated all submissions against the full compound sets, using the Matthews 

correlation coefficient (Fig. 5, Supplementary Table 8), a classification metric. Most of the 
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ranking predictions yield favorable Matthews correlation coefficients for the classification of 

active versus inactive compounds. This trend is followed by above average null model 

performances, where the molecular weight and clogP models outperform the mean Kendall’s 

τ values in five and four of the five targets, respectively, if we account for the reverse 

ranking performance of clogP in the case of p38-α and TIE2. Surprisingly, for TIE2, we see 

a notable performance across many of the methods with 56% of submissions reaching a 

Matthews correlation coefficient ≥ 0.55. Interestingly, TIE2 was designed as an activity cliff 

subchallenge to test the ability of current methods in detecting large changes in affinity due 

to small changes in chemical structure. Thus, the outstanding performance in TIE2 may 

reflect the ability of scoring function to classify congeneric ligands with a large activity cliff 

between actives and inactives. Furthermore, simple null models in which potency ranked by 

clogP and molecular weight have Matthews correlation coefficients of −0.8 and 0.78, 

respectively. JAK2 SC3 was also designed as an activity cliff subchallenge. However, the 

results are not as favorable in this case, which may be because it doesn’t have as sharp 

distinction between actives and inactives; i.e., the pKd (−log(Kd)) distribution of TIE2 is 

bimodal with peaks near the extremes, while the pKd distribution of JAK2 SC3 is unimodal, 

and has a smaller range.

3.5.2 Analysis by affinity prediction methodology—As in GC210, the majority of 

submissions used structure-based approaches to rank the ligands, while a minority used 

ligand-based approaches. The two approaches performed similarly across most 

subchallenges, in terms of both Kendall’s τ and Matthews correlation coefficients. The most 

notable exception was JAK2 SC2, where multiple structure-based methods (max τ = 0.55) 

outperformed the top-performing ligand-based approach (nzud3; τ = 0.15) (Supplementary 

Table 7).

As noted above, a number of methods exceeded the top performing methods in GC2. Here, 

the top-performing methods, based on Kendall’s τ (Table 5) and Matthews correlation 

coefficient (Table 6), are now reviewed. For ABL1, the top-performing methods include the 

Rhodium docking and scoring algorithm developed by Southwest Research Institute (τ= 

0.52 +/− 0.3; 3o8xi), and a topology-based machine-learning method by Guo-Wei Wei 

group42 (τ = 0.52 +/− 0.3; rdn3k) (Table 5). For JAK2 SC2, among the top-performing 

methods is a combination method of gnina docking and a convolutional neural network 

scoring model from the group of David Koes (τ = 0.55 +/− 0.08;zdyb5)43. This method 

noticeably outperformed all other methods for this target, where the next top-performing 

method has a Kendall’s τ of 0.36 +/− 0.09 (7yjh3) and uses a custom ICM-score and 3D 

atomic property field quantitative structure–activity relationships (QSAR) model developed 

by Molsoft LLC (Table 5). For JAK2 SC3, three methods scored above the top-performing 

Kendall’s τ in previous challenges. These include a knowledge-based scoring function, 

itscore2, from the group of Xiaoqin Zou (τ = 0.71 +/− 0.16; 87mci) and two variations of a 

convolutional neural network docking and scoring method from the group of David Koes 

group43 (τ = 0.60 +/− 0.17 and 0.56 +/− 0.17; bi2k and yghq5) (Table 5). Lastly, for TIE2, 

the top-performing methods include two topology-based machine-learning methods from the 

group of Guo-Wei Wei group42 (τ = 0.57 +/− 0.24 and 0.57 +/− 0.22; uuhe and y7qxv), and 

a convolutional neural network docking and scoring method from the group of David Koes43 

Gaieb et al. Page 9

J Comput Aided Mol Des. Author manuscript; available in PMC 2020 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(τ= 0.5 +/− 0.23; xpmn7) (Table 5). Another notable prediction set for the CatS dataset in 

Stage 1 was submitted by Molsoft LLC (vtuzm); this exceeded all other methods by at least 

one standard deviation of 0.06 for that dataset (Table 5). We further report on the top-

performing methods based on the classification metric, Matthews correlation coefficient 

(Table 6). As noted above TIE2 sees a notable performance across many of the methods 

employed. One method, in particular, was able to achieve a Matthews correlation coefficient 

of 1, thus classifying eight actives and 10 inactives perfectly. This was done at Southwest 

Research Institute using their proprietary Rhodium docking and scoring algorithm.

In GC3, we also observed increased use of machine- and deep-learning methods. These 

methods spanned conventional machine-learning methods, topology-based machine-

learning, convolutional neural networks, and methods that combine physics-based and 

machine-learning models. However, based on the violin plots it is not clear that such 

methods performed better overall than methods using alternative approaches, as machine-

learning methods appear in the top and bottom tails of the distribution (Figures 7 and 8). 

Both types of approaches, provided similar overall performance for all targets, with the 

exception of TIE2, for which all but three submissions used machine-learning (Figures 7 and 

8).

3.5.3 Relationship between affinity ranking accuracy and pose prediction—
We used the CatS subchallenges to examine whether knowledge of the crystallographic 

poses of the ligands to be ranked would improve affinity rankings. Thus, we evaluated the 

Stage 1 and Stage 2 Kendall’s τ statistics for the 18 CatS ligands for which affinity data 

were available and crystallographic poses were released between the two stages. (CatS 1 to 

CatS 24, excluding CatS 7, 9, 11, 14, 19, and 21) (Supplementary Table 11). Much as seen 

in prior Grand Challenges10,11 and prior literature44, Stage 2 affinity rankings were no more 

accurate overall than Stage 1, even though crystallographic poses had been revealed for 

every ligand (Fig. 6). However, Fig. 6 does show a slight increase in the top Kendall’s τ in 

Stage 2 relative to Stage 1. For example, the topology-based machine-learning methods from 

the group of Guo-Wei Wei42 yielded values of Kendall’s τ in Stage 2 of 0.15 – 0.56 (median 

0.36; submissions 6jekk, ymv87, yf20t, sdrvf, pgrod, mht0p, and 5d0rq), compared with 

Stage 1 values of −0.11 – 0.21 (median 0.03; submissions (04kya, t3dbz, tq8gb, xyy85, 

m7oq4, and hn0qy) (Supplementary Table 8).

3.5.4 Comparison of experimental high-throughput kinase screening data 
and computational predictions—As noted in the Methods section, the kinase Kd 

datasets were measured specifically for use in GC3. In choosing the measurements to be 

carried out, we referred to a much larger matrix of existing compound-kinase interaction 

data that had been obtained based on high throughput screening (HTS), single-concentration 

measurements of percent inhibition19. Such measurements are less reliable than Kd values 

derived from titration curves, and it is of interest to consider how their reliability compares 

with that of the computational methods used in this challenge. We, therefore, evaluated the 

correlation of the HTS percent inhibition data with the Kd data in terms of Kendall’s τ and 

the Matthews correlation coefficient (MCC) (Table 7) and compared these with the best 

results from the computational methods. For JAK2 SC3, p38-α, TIE2, and VEGFR2, the 

Gaieb et al. Page 10

J Comput Aided Mol Des. Author manuscript; available in PMC 2020 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



correlation coefficients for HTS versus Kd are ~0.8 (better than the computational results). 

However, the HTS results correlate poorly with Kd for ABL1 (τ 0.24, MCC −0.43), and here 

computational methods performed well relative to single shot experiments. However, it is 

possible that this outcome reflects in part the fact that ABL1 has a small ligand set, so good 

agreement with the measured Kd values could more readily occur by chance, given the 

variance of the computational methods. In addition, the calculations yield a Matthews 

correlation coefficient value of 0.49 for JAK2 SC2, which is close to the HTS result of 0.54.

4 DISCUSSION

This was the largest D3R GC to date in term of datasets, with six different protein targets 

and 5 subchallenges, and with a total of 465 prediction sets submitted by 28 research groups. 

It was encouraging to see the highest performance to date on affinity rankings, though it is 

not clear how much this improvement is due to methodological improvements and how 

much to the nature of the systems used in the challenge. For unknown reasons, only one 

submission used full free energy methods, in contrast with extensive use of this approach in 

prior challenges10. (GC3 included challenge components specifically designed for such 

methods.) We observed increased use of machine-learning methods married to structure-

based modeling, though such methods did not, overall, perform better than those without 

machine learning.

New to GC3 was inclusion of an initial cross-docking challenge, which was then converted 

to a self-docking challenge for the same set of ligands and protein. On one hand, the general 

lack of improvement on going to self-docking was unexpected, since there is no longer 

uncertainty regarding the protein conformation corresponding with each ligand. On the other 

hand, it is perhaps encouraging that the cross-docking methods employed here approached 

self-docking accuracy. Other broad observations from GC3 largely reprise those of prior 

GCs. Thus, making full use of available structural data tended to improve the accuracy of 

pose prediction, and, in most cases, little to no improvement in ranking accuracy was 

obtained when protein-ligand crystal structures are provided. The difficulty of obtaining 

accurate rankings despite having what are arguably bona fide poses highlights the pressing 

need for improved scoring or energy functions.

Two new evaluation issues arose in this challenge. First, we suggest that the quality of a 

docking method be assessed not only in terms of its mean or median RMSD, but also 

through metrics that quantify the width of pose RMSD distributions, such as standard 

deviation. Thus, a method which yields a median RMSD of 1 Å but a maximum RMSD of 6 

Å might be considered less desirable than one with a worse median RMSD of 2 Å but a 

lower maximum of 3.5 Å. Second, this is the first GC to assess ligand rankings for their 

ability to classify compounds as active versus inactive, via the Matthews correlation 

coefficient. Given that more effective identification of experimentally-verified hit 

compounds from large compound libraries is a prime application of docking and scoring 

methods, future blinded challenges designed specifically to test this capability could be of 

significant interest.
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The present challenge also provides a unique comparison of computational accuracy with 

the accuracy of experimental high throughput screening data. Because we selected the 

kinase Kd measurements to be carried out based on available high throughput measurements, 

GC3 allowed a new comparison of computational methods with HTS. (It is remarkable that 

prior studies comparing HTS with docking and scoring have used different metrics, because 

they have focused on identification of active compounds within large, diverse libraries of 

putative inactives45.) Although HTS data were generally more predictive of the Kd values, 

this was not universally true. For two datasets, the best computational methods did well 

relative to the HTS measurements. This encouraging observation lends support to the value 

of available computational methods and to the prospects for further improvement in 

modeling technologies.

5 Conclusions

1. Docking a ligand into a receptor conformation from a cocrystal structure 

determined with a similar ligand tended to improve docking accuracy.

2. Conversion of a cross-docking challenge into a self-docking challenge led to 

modest overall improvement in pose predictions, with some methods showing 

marked improvement.

3. The accuracy of the poses used in affinity rankings did not correlate well with the 

accuracy of the affinity predictions.

4. Docking results can be quite inconsistent, often generating skewed distributions 

of pose RMSDs with fat tails. Therefore, reporting both mean and median is 

informative, and it is of interest to explore ways of narrowing RMSD 

distributions.

5. It is not clear that machine-learning methods performed better overall than 

alternative approaches.

6. Although experimental HTS data were generally more predictive of Kd values 

than current computational methods, the best computational methods 

outperformed the HTS measurements for two of the datasets.

7. A given docking algorithm can yield a wide range of accuracies, depending on 

how it is used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: A. 
Binding poses of all 24 CatS ligands used in GC3 with the crystallographic surface 

displaying shallow and surface-exposed nature of the CatS binding pocket. B. 

Tetrahydropyrido-pyrazole core scaffold found in 22 of the CatS ligands and C. Pyridinone 

core scaffold found in 2 of the CatS ligands. D. Core scaffold flip in the Tetrahydropyrido-

pyrazole core exemplified for ligands CatS_1 (brown) and CatS_7 (green).
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Figure 2 A. 
Box plots of pose 1 RMSD statistics for all Stage 1a pose prediction submissions. B. Box 

plots of pose 1 RMSD statistics for all Stage 1b pose prediction submissions. Data labels are 

submission IDs. Red diamonds: means. Red lines: medians. Green boxes: interquartile 

ranges. Whiskers: minimum and maximum RMSDs. The results are ordered from left to 

right by increasing median RMSD.
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Figure 3. A. 
Box plots of RMSD statistics, across submissions, for each ligand in Stage 1a. B. Box plots 

of RMSD statistics across submissions, for each ligand in Stage 1b. Data labels are ligand 

IDs. See Figure 2 for details.
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Figure 4. 
Violin plots of Kendall’s τ ranking correlation coefficients between predicted rankings and 

experimental IC50 rankings for the CatS dataset in Stages 1 and 2, and for predicted and 

experimental Kd values for all six kinase datasets: ABL1, JAK2 SC2, JAK2 SC3, p38-a, 

TIE2, and VEGFR2. Mean, minimum, and maximum Kendall’s τs for each target are shown 

by whiskers. Null models based on clogP and molecular weight are shown in green and 

purple, respectively. Null models were not calculated for the ABL1 target since this 

subchallenge only contains two ligands. The number of ligands for each subchallenge is 

given above each column.
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Figure 5. 
Violin plots of Matthews correlation coefficients between predicted classifications and 

experimental Kd classifications of active and inactive compounds for all six kinase datasets: 

ABL1, JAK2 SC2, JAK2 SC3, p38-a, TIE2, and VEGFR2. Mean, minimum, and maximum 

Matthews correlation coefficients for each target are shown by whiskers. Null models based 

on clogP and molecular weight are shown in green and purple respectively. Null models 

were not calculated for the ABL1 target, since this subchallenge only contains two ligands. 

The number of ligands for each subchallenge is given above each column.
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Figure 6. 
Violin plots of Kendall’s τ ranking correlation coefficients between predicted rankings and 

experimental IC50 rankings for the CatS dataset in Stages 1 and 2, using only the 18 ligands 

for which crystallographic poses had been provided in Stage 2 (CatS 1 to CatS 24, excluding 

CatS 7, 9, 11, 14, and 21). Mean, minimum, and maximum Kendall’s τs for each CatS stage 

are shown by whiskers.
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Figure 7. 
Violin plots of Kendall’s τ ranking correlation coefficients between predicted rankings and 

experimental rankings for submissions that use machine learning (“yes”) and those that do 

not (“no”) in each target dataset: CatS dataset in Stages 1 and 2, ABL1, JAK2 SC2, JAK2 

SC3, p38-a, TIE2, and VEGFR2. Mean, minimum, and maximum Kendall’s τs for each 

target are shown by whiskers. Null models based on clogP and molecular weight are shown 

in green and purple, respectively. Null models were not calculated for the ABL1 target, since 

this subchallenge only contains two ligands.
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Figure 8. 
Violin plots of Matthews correlation coefficients between predicted classifications and 

experimental Kd classifications of active and inactive compounds for submissions that use 

machine learning and those that don’t in each target dataset: ABL1, JAK2 SC2, JAK2 SC3, 

p38-a, TIE2, and VEGFR2. Mean, minimum, and maximum Matthews correlation 

coefficients for each target are shown by whiskers. Null models based on clogP and 

molecular weight are shown in green and purple, respectively. Null models were not 

calculated for the ABL1 target, since this subchallenge only contains two ligands.
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