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ABSTRACT OF THE DISSERTATION 

 
Three Essays in Transportation Economics 

 
By 

 
Xiyan Wang 

 
Doctor of Philosophy in Economics 

 
 University of California, Irvine, 2016 

 
Professor Jan Brueckner, Chair 

 
 
 

 

      This dissertation revolves around understanding the determination of transportation 

networks and service quality, as well as quantifying the impact of these decisions on social 

welfare. 

      The first chapter, “Subway Capitalization in Beijing: Theory and Evidence on the 

Variation of the Subway Proximity Premium”, discusses the heterogeneity of the urban 

transit capitalization effect and its policy implications. This chapter analyzes the 

relationship between community attributes and the subway home-price capitalization 

effect, asking whether the magnitude of the subway proximity premium is affected by 

neighborhood economic status and location. Using longitudinal data from Beijing, the 

chapter empirically estimates that decreasing a community’s distance to a subway station 

by 10% increases the housing price per square meter by 0.2%-0.9%. The chapter also 

shows that, subway capitalization effect is around 0.1%-0.2% lower for communities that 

charge a 1 Yuan higher property management fee. Moreover, the analysis also reveals that 
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the subway capitalization will decrease by around 0.08% as a community’s distance to the 

CBD increases by 1 km.  

      The second chapter, “1-Hub, 2-Hub or Fully Connected Network? A Theoretical Analysis 

of the Optimality of Airline Network Structure”, focuses on the determination of airline 

network structure, and provides a simple justification for the existence of the multi-hub 

networks. This chapter sets up a formal model to explore the optimality of multi-hub 

networks, with or without competition. It is shown that a single-hub or a fully connected 

network may not be the optimal network configuration, while a 2-hub configuration may 

be favored under certain circumstances. In addition, the chapter shows that competition 

can also affect an airline’s optimal choice of network: a 2-hub network can be preferable if 

a competitor enters the market. 

      The third chapter “Service Competition in the Airline Industry: Schedule Robustness and 

Market Structure” investigates the relationship between airline’s schedule robustness (how 

well can a schedule cope with a delay to a particular aircraft) and market structure. 

Recognizing that schedule robustness is an important factor affecting the flight on-time 

performance, the chapter shows that there exists service quality competition in the airline 

industry, as carriers adopt more robust flight schedules when competition heats up. Such 

results shed light on the debate on the magnitude of airport congestion tolls, and have 

great public policy implications. 
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Chapter 1  

Subway Capitalization in Beijing:  

Theory and Evidence on the Variation of the Subway 

Proximity Premium  

 

1.1 Introduction 
 

      Building a fixed rail system like light rail or a subway is a costly investment for any 

metropolitan region. In Continental Europe, a fully-underground subway line costs anywhere 

between $110 million and $250 million per km, and in Beijing, subway construction costs are 

higher than one would expect given lower wages, as high as those of Europe. Fully-underground 

lines cost about $150 million per km.1 An investment of such scale will have an enormous impact 

on millions of people’s lives. For policy makers, part of the attraction of a rail-system investment 

                                                           
1  These numbers come from calculations in the blog of “pedestrian observations”. According to these calculations, the cost 

for Line 8 Phase 2 is $2.5 billion/17km, and the cost for Line 6 Phase 1 is $4.9 billion/30km. 
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would be the property value premium generated by such an investment. Thus, it is important for 

policy makers to know whether the investment can be paid off by capturing the home price 

premium through future taxation.         

       The value of a housing unit indicates how much people are willing to pay to live in it given the 

location and housing characteristics. In theory, if public transit allows people living nearby to 

travel faster and cheaper to their destinations, the value of the decreased travel time should also 

be reflected in home prices (Alonso, 1964; Mills, 1972; Hess and Almeida 2007).  While a number 

of studies have empirically investigated the effect of rail station proximity on property values, this 

chapter focuses on investigating the possibility that such a capitalization effect varies with 

community attributes and station characteristics. The consideration of a heterogeneous proximity 

premium is crucial for local policymakers and real estate developers, who must plan for future 

construction of housing and subways. 

       A vast body of previous research estimates the impact of proximity to transit stations on land 

values.  Bajic (1983) performed one of the earliest of these studies using a hedonic price 

regression model to measure the capitalization of the Toronto subway into residential property 

values. The most widely studied transit systems have been the BART system in San Francisco (Lee, 

1973; Dornbusch, 1975; Baldassare et al., 1979) and the Washinton D.C. METRO (Damm et al., 

1980; Aterkawi, 1991 ; Grass, 1992). Other major cities with rail transit like Chicago (McDonald 

and Osuji, 1995; McMillen and  McDonald, 2004), Miami(Gatzlaff and Smith, 1993), Toronto 

(Dewees, 1976), Philadelphia (Boyce et al., 1976; Voith, 1993), Portland (Knaap et al., 2001), 

Atlanta (Nelson, 1992; Bowes and Ihlanfeldt, 2001; Immergluck, 2009), Minneapolis (Goetz et al., 

2010)  and New York City (Anas and Armstrong, 1993). Asian cities like Soeul (Bae et al., 2003) 

and Beijing (Zheng and Kahn, 2008) are also studied to some extent. 
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      General consensus from the previous literature is that the accessibility benefit of living near 

transit leads to higher home values and rents in many cases (Wardrip, 2011). As for the magnitude 

of the impact, the price premium from being close to a transit station differs from case to case. 

Cervero et al. (2004) sets the range between 6% and 45%2, while Duncan(2008) states that 

generalization is quite difficult and that it would be safe to assume that properties near stations 

sell at a 0% to 10% premium. However, in some cases no significant capitalization effect is 

observed (Lee, 1973; Gatzlaff and Smith, 1993) or even a negative effect is found (Dornbusch, 

1973; Burkhardt, 1976). Possible reason for such mixed results could be that measures of crime 

and other negative externalities like noise and congestion are typically excluded from the property 

value equation, so that the direct capitalization effect from commuting benefit is underestimated 

due to these offsetting effects. 

      Various empirical works also reveal that, although rail proximity has a marginally positive 

impact on property value, the effects are not felt evenly throughout the system (Almeida, 2004). 

Hess and Almeida (2007) argue that for Buffalo NY, the premium homeowners will pay for station 

proximity is greater in high- than low-income neighborhoods. A similar conclusion was drawn by 

Gatzlaff and Smith (1993) and Bowes and Ihlanfeldt (2001). Interestingly, some other research 

shows the opposite conclusion: property values increase in low-income neighborhoods but 

decrease in high income neighborhoods in the case of Atlanta (Nelson, 1992). Using the Alonso-

type urban setting assuming two traffic modes and two income groups, Sasaki (1990) shows that 

the slower traffic mode is usually used by people with lower income. Following this logic, one 

could reason that in the short run, building subway stations would raise nearby communities’ 

                                                           
2 According to Cervero (2004), the average housing value premiums associated with being near a station are 6.4% in 

Philadelphia, 6.7% in Boston, 10.6% in Portland, 17% in San Diego, 20% in Chicago, 24% in Dallas, and 45% in Santa Clara 

County. 
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housing value only if it is needed and used by those who live there (the low income group most 

likely). Hence, one explanation for the mixed results is a failure to account for attributes of nearby 

communities, i.e. the housing quality of the neighborhood (which may reflect the income level of 

the neighborhood), the distance from the house to the CBD (Bowes and Ihlanfeldt, 2001) and in 

some special cases, the efficiency of different types of rail transit lines.  So the question this 

chapter is trying to answer is: Would the above mentioned attributes affect the magnitude of the 

capitalization effect, and if so, what is the underlying mechanism, and by how much can it affect 

the magnitude of capitalization?  

      The main contribution of this chapter is that it (1) answers the above question theoretically by 

utilizing a simple transportation mode-choice model (Anas and Moses, 1979; Brown, 1986; Sasaki, 

1990) and (2) tests empirically using a panel data set how community attributes and the type of 

transit lines affect the magnitude of the capitalization effect caused by the proximity of the 

subway.  

      As the standard Alonso-type model assumes that everyone commutes by the same mode, such 

a statement may not be true for modern cities. Besides automobile, public transit is also rely 

heavily on in Asia cities. For example, 39.7% of the commuting in Beijing is completed using public 

transit.3 Leroy and Sonstelie (1977) suggested that more than one transit mode should be 

included in the model in order to further explore the residential pattern of a city. They concluded 

that the introduction of the automobile before 1950s accounted for the resident pattern observed 

in most US cities. Similar Alonso-type models incorporating mode choice and income class are 

used in multiple analyses explaining urban land use (Anas, 1979), income’s effect on location 

(Brown, 1985), and the effect of transportation improvement on welfare (Sasaki 1988). Moreover, 

                                                           
3 Data source: 2011 Beijing Transportation Development Yearbook 
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Gin and Sonstelie(1992) assume two transportation modes (street car and walking) to prove that 

construction of a faster and more expensive transit mode will decentralize the high-income 

dwellers. However, none of the previous studies explores the possible causes of heterogeneous 

capitalization effect of transit improvements using the model.  

      The brief analytical section of the chapter shows that mode choice due to heterogeneous wages 

may cause a heterogeneous capitalization effect. The model also reveals that the capitalization 

effect is subject to change for houses at different location (the capitalization effect is smaller for 

houses farther away from the city center). In addition, houses with access to different types of 

transit may also experience different levels of the capitalization effect (the effect is higher for 

houses with access to faster transit lines). Using a subset of the aggregated data from the CPDB 

(China Property Data Base) for its empirical tests, this chapter is the first study to examine the 

subway proximity premium using longitudinal data. As longitudinal data is rarely used in similar 

empirical analyses, this dataset provides several advantages over the usual cross-sectional or 

before/after dataset: (1) a larger number of data points, which increases the efficiency of 

econometric analysis and (2)the use of repeated observations of the average home price for a 

large number of housing estates, which provides more information about how home prices have 

changed over time and makes it easier to establish a causal link by taking advantage of the data’s 

time dimension. 

 

1.2 The analytical model 

1.2.1 The capitalization effect of public transit 
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     As mentioned above, being close to a subway station can usually raise home prices through a 

capitalization effect. The goal of the analysis in this section is to explore the effect theoretically, 

analyzing the impact of income, home location and subway convenience on the magnitude of the 

capitalization effect. For simplicity, the analysis starts with the assumption that there is an open 

city with only one transit mode.  

       Let 𝑦 denote full income of a resident in the city, and let 𝑥 denote the distance a resident has to 

travel using the transit mode to get to the CBD. To get to this transit mode from home, residents 

incur an access cost 𝑇, and 𝑇 increases as one lives farther away from the closest transit station. 

Let 𝑤 denote the resident’s hourly wage, and 𝑡 denote the time spent commuting each mile on the 

transit mode, which reduces work hours. Thus the pre-tax income for a worker is: 𝑦 − 𝑤𝑡𝑥. Note 

that the product 𝑤𝑡 can be interpreted as the time cost of commuting per mile. Besides the time 

cost, each resident also needs to pay a money cost per mile of commuting, which is denoted  𝑘 . 

Thus the total commuting cost for each resident is (𝑤𝑡 + 𝑘)𝑥 + 𝑇, and each resident faces the 

problem:  

max
𝑐,𝑞

𝑈(𝑐, 𝑞)        𝑠. 𝑡.   𝑐 + 𝑟𝑞 = 𝑦 − (𝑤𝑡 + 𝑘)𝑥 − 𝑇 

      The resident chooses the amount of numeraire non-land good 𝑐 and the consumption of land 𝑞, 

to maximize 𝑈(𝑐, 𝑞) subject to the budget constraint. The home price  𝑟 adjusts so that the realized 

utility level is uniform across locations. Let the uniform utility level be 𝑢. Thus, to achieve 

equilibrium, the following two conditions must be satisfied: 

       
𝑈𝑞

𝑈𝑐
= 𝑟                                                                                                                                                                  (1.1) 

      𝑈(𝑦 − (𝑤𝑡 + 𝑘)𝑥 − 𝑟𝑞 − 𝑇, 𝑞) = 𝑢                                                                                                             (1.2) 
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      The conditions determine 𝑟 and 𝑞 as functions of other parameters: 𝑥, 𝑤, 𝑘, 𝑦, 𝑡, 𝑇 and 𝑢. Totally 

differentiating condition (1.2) with respect to 𝑇 gives: 

                                                                                       
𝜕𝑟

𝜕𝑇
= −

1

𝑞
< 0                                                                     (1.3) 

From (1.3), the price will increase when 𝑇 decreases, and |
𝜕𝑟

𝜕𝑇
| > 0 can be interpreted as the 

capitalization effect. In other word, compared with other locations, those closer to the transit 

station will experienced a higher price.  

1.2.2 Heterogeneous capitalization effect 

       To investigate the question of heterogeneous capitalization effect imbedded in this model, 

assume instead that now besides choosing 𝑐 and 𝑞 , the residents of the city can choose the 

commuting mode 𝑚  between the existing modes, 𝑐𝑎𝑟  and 𝑠𝑢𝑏𝑤𝑎𝑦 . Each mode 𝑚  has a 

corresponding inverse speed denoted by 𝑡𝑚, and a corresponding access cost denoted by 𝑇𝑚. The 

trade-off between travel speed and money cost per mile is now represented by the function 𝑘 =

𝑘(𝑡𝑚), where 𝑘′(𝑡𝑚)<0 and 𝑘′′(𝑡𝑚)>0, indicating that higher speed (lower 𝑡𝑚) is associated with 

higher money cost and that money cost falls at a decreasing rate as 𝑡𝑚 increases. These two modes 

also satisfy 𝑇𝑐𝑎𝑟 = 0 and 𝑇𝑠𝑢𝑏𝑤𝑎𝑦 > 0 since, unlike with the car mode (which has no access cost), 

people have to walk/take a feeder bus/drive to the closest subway station.   

      Further assume that the wages of the residents are heterogeneous. There are multiple wage 

groups, indexed by 𝑖, and each wage group 𝑖 has a corresponding wage level denoted by 𝑤𝑖. If wage 

group 𝑖 could have its ideal transportation mode, it would choose 𝑚 (between car and subway) to 

minimize the total transit cost   [𝑤𝑖𝑡𝑚 + 𝑘(𝑡𝑚)]𝑥 + 𝑇𝑚 . Let 𝑀𝑖  denote 𝑖’s best mode. Formally, 𝑀𝑖  

is given by  

                                  𝑀𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑚=𝑐𝑎𝑟,𝑠𝑢𝑏𝑤𝑎𝑦}[𝑤𝑖𝑡𝑚 + 𝑘(𝑡𝑚)]𝑥 + 𝑇𝑚                                                   (1.4) 
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      With the wage groups, the home price 𝑟 and land consumption 𝑞 now gain an 𝑖 subscript. Then, 

extending (1.3), the following relationship can be established:  

                                                                   
𝜕𝑟𝑖

𝜕𝑇𝑚
= {

−
1

𝑞𝑖
                 𝑖𝑓 𝑚 = 𝑀𝑖

0                      𝑖𝑓 𝑚 ≠ 𝑀𝑖

                                                      (1.5) 

Equation (1.5) indicates that the capitalization effect for a certain transit mode 𝑚 only exists for 

the income group whose best mode is 𝑚. To be more specific, being closer to a subway station 

(𝑇𝑠𝑢𝑏𝑤𝑎𝑦 ↓) will only raise the home price paid by the wage group who are commuting by subway. 

Moreover, for the group of residents whose best mode is subway, the capitalization effect from 

subway proximity is not homogeneous if there is a variation of wage within the group4: 

                                                           
𝜕2𝑟𝑖

𝜕𝑇𝑚𝜕𝑤𝑖
=

1

𝑞𝑖
2

𝜕𝑞𝑖

𝜕𝑤𝑖
> 0      𝑖𝑓 𝑚 = 𝑀𝑖                                                             (1.6) 

Thus, the subway capitalization effect is smaller (|
𝜕𝑟𝑖

𝜕𝑇𝑠𝑢𝑏𝑤𝑎𝑦
| is less negative) for residents with 

higher wages. The intuitive explanation is that, with higher income leading to a larger 𝑞, a smaller 

decrease in the price per square meter reduces overall housing costs enough to compensate for 

worse subway access. Similarly, the capitalization effect may also differ depending on the home 

location, with 𝑞𝑖 rising with distance 𝑥:  

                                                              
𝜕2𝑟𝑖

𝜕𝑇𝑚𝜕𝑥𝑖
=

1

𝑞𝑖
2

𝜕𝑞𝑖

𝜕𝑥𝑖
> 0      𝑖𝑓 𝑚 = 𝑀𝑖                                                          (1.7) 

                                                           
4 Note that 

𝜕𝑞𝑖

𝜕𝑤𝑖
> 0 can be proved using the method provide by Brueckner (1987). First, totally differentiating (1.2) with 

respect to 𝑤 yields  −𝑈𝑐 (𝑡𝑥 +
𝜕𝑟

𝜕𝑤
𝑞 +  

𝜕𝑞

𝜕𝑤
𝑟) + 𝑈𝑞

𝜕𝑞

𝜕𝑤
= 0, which yields 

𝜕𝑟

𝜕𝑤
= −

𝑡𝑥

𝑞
< 0  after substituting  

𝑈𝑞

𝑈𝑐
= 𝑟.  Further 

note that since utility is constant, the increase in 𝑞 corresponds to the substitution effect of the housing price decrease. 

Formally, it follows that  
𝜕𝑞

𝜕𝑤
= 𝜂

𝜕𝑟

𝜕𝑤
> 0, where 𝜂 =

𝜕𝑀𝑅𝑆

𝜕𝑞
|𝑢𝑡𝑖𝑙𝑖𝑡𝑦=𝑢

−1  is the slope of the appropriate income-compensated 

demand curve, and is a negative expression given the convexity of indifference curves (𝑀𝑅𝑆 ≡
𝑈𝑐

𝑈𝑞
). By analogues, 

𝜕𝑞𝑖

𝜕𝑥𝑖
 and 

𝜕𝑞𝑖

𝜕𝑡𝑚
 can also be proved to be positive. 
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Thus, as 𝑥𝑖  increases, the subway capitalization effect |
𝜕𝑟𝑖

𝜕𝑇𝑠
| decreases, so that home prices farther 

away from the CBD are less sensitive to station proximity.  

       Similarly, 
𝜕2𝑟𝑖

𝜕𝑇𝑚𝜕𝑡𝑚
=

1

𝑞𝑖
2

𝜕𝑞𝑖

𝜕𝑡𝑚
> 0  holds if 𝑚 = 𝑀𝑖 . Thus, a convenient subway line (a line with 

fewer transfers and thus a lower 𝑡𝑠𝑢𝑏𝑤𝑎𝑦) will generate a larger capitalization effect than an 

inconvenient line. The intuitive explanations of these latter conclusions parallel the one above. 

      To summarize, the above theoretical analysis shows that subway proximity will induce higher 

home prices for the wage group using subways, and that this capitalization effect is smaller for 

better-off households within the group. The analysis also concludes that the subway proximity 

premium will decrease as a community’s distance to the CBD increases, and that it is smaller when 

induced by an inconvenient subway line. 

 

1.3 Hedonic Price Model 
 

        This section tests the predictions from Section 2 using an hedonic price model. Such a model 

offers a way to consistently estimate the relationship between prices and product attributes in a 

differentiated product market. The coefficients of the regression show the effect on the market 

price of increasing a particular product attribute while holding the other attributes fixed. From the 

consumer’s perspective, the coefficient can be considered the implicit price of a certain attribute.   

        In this research, variables are measured for different housing estates  𝑖 in different weeks 𝑡 

over a multi-year period. The semi-log hedonic price equation is:  

                             𝑙𝑜𝑔 (𝑃𝑖𝑡) = 𝛼 + ∑ 𝛽𝑘𝑆𝑖𝑘𝑡 𝑘 + ∑ 𝛾𝑙𝑁𝑖𝑙𝑡 + ∑ 𝛿𝑟𝑙𝑜𝑔 (𝑇𝑟𝑡)𝑟 +  𝜖𝑖𝑡           𝑙                             (1.8) 
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The variation in home prices is explained as a function of structural characteristics (S), indexed by 

𝑘,  neighborhood characteristics (N), indexed by 𝑙, and subway-station proximity characteristics 

(T), indexed by  𝑟. The parameter vectors corresponding to S, N and T are 𝛽, 𝛾 and 𝛿, while α is a 

constant.   

        This chapter adopts the assumption that 𝜖𝑖𝑡 is not 𝑖𝑖𝑑 within group 𝑖. Thus in the presence of 

clustered errors, pooled OLS estimates are still unbiased but standard errors may be wrong. 

Considering that the error terms may also be auto correlated across time, inferences made in 

Section 1.5 are based upon “Clustered errors”.  For simplicity, the empirical analysis in section 1.5 

assumes that there is no spatial correlation between communities.  

        Section 1.5.2 adds interaction terms between the quality of the housing estate (an element of 

N) and subway proximity to the model, and in Section 1.5.3, the effect of distance to the CBD is 

captured by adding interaction terms and sub-sampling.  

1.3.1 Subway system in Beijing 

      Beijing, the capital of China, is the second largest city in China and ranks in the first tier of 

Chinese cities in terms of economic development and the volume of urban construction. The 

municipality covers 16,410 km2 and is composed of 18 urban districts and 2 counties. The total 

municipal population increased from 9 million in 1980 to 20.7 million in 2012. Beijing has also 

accommodated over 6 million migrants during the period. The transportation system needs to be 

expanded continuously to cope with the huge and growing number of residents and high 

population density, and Beijing’s subway and light rail system has become more complex over the 

past ten years. Figure 1.1 shows a map of all the present Beijing subway lines. 
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Figure 1.1 Beijing Subway Lines 
      During the period from 2002 to 2008, 638 billion Yuan had been spent on subway subsidies 

and subway construction.5  Annual subsidies of about 2 billion Yuan are invested by the Beijing 

Municipal Government for subway operations.  As a result, Beijing’s subway service is provided at 

a flat fare of only 2 Yuan (USD $0.3) per ride with free transfer, except for the Airport Express. All 

but two of the subway's 16 lines have entered service since 2000 as the system has undergone 

rapid expansion, thus lowering transportation costs for residents of Beijing. The most recent 

expansion of the network came into effect on December 30, 2012 with the opening of Line 6 and 

extensions to Line 8 (Phase 2 southern section), Line 9 (northern section) and Line 10 (Phase 2). 

Table 1.1 gives detailed information on each line that was opened or expanded after 2007.  After 
                                                           
5 Data source:  Chronicle Events of Beijing Subway: 2001-2004. 

http://en.wikipedia.org/wiki/Line_6,_Beijing_Subway
http://en.wikipedia.org/wiki/Line_8,_Beijing_Subway
http://en.wikipedia.org/wiki/Line_9,_Beijing_Subway
http://en.wikipedia.org/wiki/Line_10,_Beijing_Subway
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all these expansions, the existing network still cannot adequately meet the city's mass 

transit needs, and extensive expansion plans call for 19 lines to be in operation by 2015.  

Table 1.1 Subway Lines Opened and Extended after 2007 

Lines Opened Newest Extension Length(km) 

Line5 2007 - 27.6 

Line10 2008 2012 54.8 

Line8 2008 2012 22.0 

Line4 2009 2010 28.2 

Line15 2010 2011 30.2 

Changping Line 2010 - 21.24 

Daxing Line 2010 - 21.7 

Fangshan Line 2010 2011 24.79 

Yizhuang Line 2010 - 23.3 

Line9 2011 2012 16.5 

Line 6 2012 -  30.4 

 

 1.3.2 Spatial locations of Beijing 

      The Beijing Administrative Area consists of 18 districts, with 8 of them considered by the 

municipal government as the “inner 8 districts”. While most other papers examine the effect of 

subway construction within these 8 inner districts (Zheng and Kahn, 2013), the subway system in 

Beijing now reaches many of the suburban areas of Beijing, and the effect of such infrastructure 

may be different between inner city and suburban areas. Thus, it is necessary to include more 

districts in the research. In the dataset, an additional 5 suburban districts are included, for a total 

of 13 districts (Dongcheng, Xicheng, Chongwen, Xuanwu, Chaoyang, Haidina, Fengtai, Shijingshan, 

Tonzhou, Shunyi, Mentougou, Huairou, Fangshan).  

      Below the district level, the fundamental administrative level in Beijing is the Jiedao 

(subdistrict). Jiedaos are responsible for minor services such as garbage collection, but they are 

http://en.wikipedia.org/wiki/Mass_transit
http://en.wikipedia.org/wiki/Mass_transit
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also in charge of multiple Xiaoqus (communities). Every community has a community committee, 

and every committee administers the dwellings in that community.6 A community in China is 

normally a housing estate that has a population of 7000 to 15000 and an area of about 10 acres. 

These estates are usually built by a single contractor with only a few styles of house or building 

design, so that they tend to be uniform in appearance. Housing within these housing estates has 

similar floor space, heating type, number of bathrooms and other characteristics.  

      Distance from the CBD played a big role in the model of Section 2. Zheng and Kahn(2008) argue 

that Tiananmen Square is the only CBD of Beijing. However, according to the Beijing CBDs 

Administrative Committee, there are two distinct CBDs in Beijing. The main CBD is about 7 

kilometers to the east of Tiananmen Square, sandwiched between the 3rd Ring Road and the 4th 

Ring Road, as depicted in Figure 1.2. The second CBD is located to the west of Tiananmen Square 

on Financial Street.  About 53% of tertiary-industry employees in the municipal area commuted to 

Beijing’s two CBDs in 2008. With about 20% of the tertiary-industry workers commuting to the 

Financial Street district, and about 30% of the working force commuting to main CBD (Z. Yang 

et.al 2008). Besides the two CBDs, Zhongguancun Science Park (ZSP) is another employment 

center, to which 47% of the municipality’s workers commuted during the year 2009 (H, Duan, 

2008).  

                                                           
6 Data source: Law of the Urban Residents Committees of the Peoples Republic of China. 

http://en.wikipedia.org/wiki/3rd_Ring_Road_(Beijing)
http://en.wikipedia.org/wiki/4th_Ring_Road
http://en.wikipedia.org/wiki/4th_Ring_Road
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Figure 1.2 Spatial Location of Beijing 

Note. Retrieved from “Beijing” by Z. Yang, J. Cai, H. Ottens, and R.Sliuzas, 2008, Cities, volume 31, p. 491-506. 

      As made clear in the theoretical analysis, the capitalization effects of different subway lines 

may differ because of differences in convenience. Zheng and Kahn (2008) categorize subways into 

city subways and suburban subways, and they find different capitalization effects for the two 

types of subways using cross-sectional data from new housing projects in Beijing (there were only 

4 lines during their sample period). In addition, Zheng and Kahn (2013) examine both the start-up 

effect and the completion effect of subway construction.7 They find that the start-up effect is only 

marginally significant, but that the completion effect is significant and that the coefficient is 

consistent with their analysis in 2008: a 10% increase in distance to a subway station lowers 

home prices by 1.4%. They also find an insignificant announcement effect for un-built subways.8 

These results indicate that in Beijing, the capitalization effect is minimal for places where subway 

                                                           
7 The start-up effect measures the capitalization effect of subway stations that are still under construction. The completion 

effect measures the capitalization effect of subway stations that are already in use.  
8 The announcement effect measures the capitalization effect of subway stations that are planned by the municipality but are 

not yet under construction. 
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stations are undergoing planning and construction. Only when the real construction has been 

finished does a location experience significant home price appreciation.  

       This study divides the subway lines into 3 different groups according to their level of 

convenience. Some subway lines can get people to the CBDs and ZSP without a transfer, yet some 

suburb subway lines can only transport suburban dwellers to CBDs and ZSP with multiple 

transfers. Subway lines that go through CBDs or ZSP are denoted as subway group A. Lines 

directly connected to subway group A are denoted as subway group B. Lines directly connected to 

subway group B are denoted as subway group C. Table 1.2 shows the detailed classification of the 

subway lines.  

      Using GIS software, the CBDs (including ZSP), all the subway stations and housing estates in the 

data set are geocoded, and the geographical distances between the estates and the stations of a 

certain subway group are calculated. The geographical distances between the estates and the 

closest CBDs are also calculated. 9 Since the subway system in Beijing has been expanding with 

amazing speed since 2007, it is worth noticing that for some housing estates, distance to the 

closest subway group (A/B/C ) may dwindle over time as new subway lines open. Thus, the 

variables measuring subway proximity are not time invariant. 

Table 1.2 Subway Groups 

Subway group A Subway Group B Subway Group C 
Line1 
Line2 
Line10 
Line 6 

Line 9  
Line4 
Line 5 
Line 8 
Line 13 
Line Yizhaung 
Line Batong 

Line Fangshan 
Line Changping 
Line 15 

                                                           
9 Here distance is measured from the center of the estates. Most of the communities are relatively small (with a diameter 

smaller than 200m, so that they can be considered as a point on the map, with residents spending similar time to get to the 

subway station. For extremely huge housing estate (like the case of Tiantongyuan), developers always arrange shuttle buses 

to travel within the community so that residents can be transported to the gates of the community. Thus people living in the 

same community can have similar access to subway regardless of their residential location within the community.   
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      Other public goods should also be included in the hedonic price model, including the housing 

estate’s access to hospitals, gardens, core schools of all levels and business subcenters. Hospitals 

in China are organized according to a 3-tier system with highest grade of 3. Grade 3 (Tertiary) 

hospitals top the list as comprehensive or general hospitals at the city, provincial or national level, 

with a bed capacity exceeding 500. Further, based on the level of service provision, size, medical 

technology, medical equipment, and management and medical quality, these three grades are 

further subdivided into three subsidiary levels: A, B and C. 10 With the completion of  the medical 

insurance system, city dwellers’ valuation of proximity to hospitals with better service is rising. 

Hence, the capitalization of close medical services should be accounted for in the hedonic price 

model, and proximity to a 3A hospital is included to measure this attribute.  

      In Beijing, six years in primary school and three years in middle school are required under 

compulsory education. For each school district, there are several core middle schools and primary 

schools while the rest are common schools. Core schools have better funding and better faculties. 

Students studying in core schools not only have a better chance at higher quality education than 

other schools, but they may also be privileged when choosing a high school and even a university. 

Hence, proximity to core middle schools, core high schools and core primary schools is measured 

and included in the model. 

      Proximity to core universities is also measured and included in the model. By living close to a 

university, residents can have access to the available working opportunities. University areas also 

provide their residents with better a neighborhood and a tranquil atmosphere, including high 

quality amenities and cultural events. 

                                                           
10 Wikipedia: classification of Chinese hospitals 
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          Recognizing that some amenities like shopping centers and restaurants may cluster near the 

subway stations, proximity to sub-business centers and shopping malls are also controlled for.  An 

advantage of studying capitalization effects in Beijing is that the location of schools, hospitals, 

parks, universities and most of the subway stations are exogenously determined, because of the 

former planning economy and path dependency. Most of these public goods were built by the 

Central Government or local government without much consideration of the market forces and 

demand (with the exception of a few suburban lines).  

      It is mentioned in many studies that, because of nuisance effects from negative externalities 

like noise, homes located too close to above-ground heavy rail lines and some light rail lines sell at 

a discount relative to homes a bit further away (Landis et al. 1995; Bowes and Ihlanfeldt 2001; 

Chen et al. 1998; Lewis-Workman and Brod 1997; Goetz et al. 2010). In Beijing, most urban rail 

transit lines11 are underground, and thus no noise externalities are imposed on nearby residence. 

Similarly, almost all subway stations do not provide park-and-ride service so that congestion is 

not likely to be caused by subway stations.  Just to be cautious, variables indicating if a community 

is very close to a subway station or an above ground light rail station are also created and included 

in the model. 

 

1.4 Data 

1.4.1 Data sources 

      It is difficult to obtain micro level household data within a Chinese city. The National Bureau of 

Statistics of China conducted two waves of a large-scale survey in Chinese cities in 2007 and 2010, 

                                                           
11 Above ground light rail lines are Line 13, Line Batong, part of Line Yizhuang, Line Changping and Line Fangshan. All of 

them are suburban lines. 
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but the Bureau refuses to release micro household data for confidentiality reasons, only releasing 

zone-level data on the condition of a close collaborative relationship with the researcher. Without 

access to such data, this chapter is based on an original community-level dataset from “Home price 

Web” (FangjiaWang). As one of the most popular searching tool used by property buyers and 

sellers, the Web provides information based on the CPDB (China Property Data Base). The CPDB 

data covers basic characteristics and prices of 50 million housing properties in 300 cities and 

300,000 communities in China, and is so far the biggest and most detailed dataset available. The 

sample used in this chapter includes 251,239 observations, which include weekly average resale 

prices in 907 housing estates from 12/02/2007 to 03/24/2013 (277 weeks).  The spatial 

distribution of the 907 housing estates is shown in Figure 1.3. They spread evenly throughout the 

inner city but are clustered in the suburban areas. As was mentioned earlier, housing in these 

communities is mostly homogenous. Thus using community-level data will not induce significant 

bias. 

 
Figure 1.3 The Location of 907 Housing Estates in Beijing 
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      All the housing estates in the dataset consist of condominiums, the most typical housing type in 

Beijing. As of 2013, about 95% of the communities in Beijing consist of condominiums12, and the 

few single-family home communities are usually located outside the inner 8 districts, their major 

purpose being for vacation houses and retirement homes. Since some housing estates were built 

later than the initial sample week, the dataset is unbalanced, with data missing at random (MAR). 

Table 1.3 shows the number of housing estates within categories corresponding to the number of 

observations per housing estate. 626 out of 907 housing estates in the dataset have been observed 

more than 250 times, which means that most of the housing estates in the dataset were built 

before 2008. 

Table 1.3 Number of Observations per Community 

Number of Observations Number of Communities 

9<n≤50 21 

50<n≤100 165 

100<n≤150 21 

150<n≤200 91 

200<n≤250 75 

250<n≤277 625 

 

      As known to all, land is owned by the state in Chinese cities, yet after the land market reforms, 

land markets in Beijing started to emerge in 1992. But using home prices for new projects, as in 

previous papers, may be problematic since the prices are influenced by government supply 

decisions. On the other hand, the resale markets for condominiums are not subject to 

governmental supply regulation so that the resale prices only reflect the characteristics of the 

community and can be used to better identify the capitalization effects.   

                                                           
12 Unlike western counties where single family houses are the dominant type of housing, major Asian cities mainly consists 

of condominiums where both the poor and rich live.  
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1.4.2 Data Cleaning 

      The housing price data cover 13 districts in Beijing. But since the Mentougou and Huairou 

districts are far away from the CBDs and from subway stations, these two districts were dropped. 

After these deletions, the dataset contains 870 housing estates and a total of 240,990 observations. 

If a housing estate is 10 or more kilometers away from the nearest subway station on 3/12/2013, 

then this housing estate is assumed to be too far away from subway lines to be affected by them 

(threshold values of 5km and 2km are also applied to the sample to test for robustness). 17 

housing estates meet this criterion and are deleted, leaving 853 housing estates and 236,281 

observations. Among these 853 housing estates, some were built after the start of the sample 

period (later than 12/02/2007), so that there are missing values for these housing estates. 

Deletion of observations that contain missing value leaves an unbalanced panel data with 182,646 

observations. A list and the descriptive statistics of the variables are presented in Table A1 in the 

appendix.  

 

1.5 Results  

1.5.1 How do subway lines affect home prices? 

      The first set of home price regressions is presented in Table 1.4. A housing estate fixed effect is 

included, with all time-invariant variables excluded from the model.  While capturing some 

community characteristics that are observable, community-level fixed effects capture all 

unobserved housing estate characteristics. For example, whether or not the housing estate 

belongs to a popular school district is not specified. According to Beijing News, the price of a home 

located in an extremely popular school district is at least 10 thousand Yuan higher per square 
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meter than that of a nearby home not located in a popular school district. Similarly, the dataset 

does not include information about whether or not the property was built by a state-owned 

enterprise (SOE)13. Even though SOE and non-SOE developers produce similar products, SOE 

developers may sell their commodity housing units at a price discount, although Zheng and Kahn 

(2013) argue that such discounts are insignificant. In subsequent regressions, fixed effects are 

replaced by measured community characteristics.  

      Table 1.4 shows the results of the community fixed-effect model. Column (1) uses all the data 

and assumes that subway lines in each group all affect the home price. In column (2), (3) and (4), 

only the closest subway station is assumed to matter. With home prices only affected by the 

closest subway station, the sample can be divided into three groups: housing estates closest to 

subway groups A, B, C, respectively. Recall that since new construction means that subway access 

varies with time, its effect can be estimated despite the presence of fixed effects. 

      Nearly 95% of the variation in the log of home prices is explained by the fixed effect model. 

This compares favorably to similar models previously estimated in the literature. Moreover, 

estimated coefficients are generally statistical significant and with the expected signs.  As expected, 

the home price decreases as distance to the nearest subway station increases. For people whose 

closest station allows them commute to the CBD without a subway transfer (using subway group 

A lines), the home price decreases by 0.38% when distance to the subway station increases by 

10%.  Similarly, for people whose closest station allows them commute to the CBD with one 

subway transfer (using subway group B lines), the home price decreases by 0.08% when distance 

to the closest subway group B station increases by 10%, an effect that is not statistically significant. 

For people whose closest station allows them commute to the CBD with more than one subway 

                                                           
13 State-owned enterprises are projects in which the state is the largest shareholder.  
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transfer (using subway group C lines), the home price decreases by 0.2% when distance increases 

by 10%.  

Table 1.4 Fixed Effect Capitalization of Subway Proximity 

 (all samples are within 10km of a subway station) 

 

   This conclusion is similar to that of Zheng and Kahn (2008): the older subway lines that run 

through the CBDs have a higher capitalization effect than the newly built subway lines and 

suburban lines. But in their regression, all observations are pooled in one regression. However, 

Dependent Variable:  Log(Price) (1)  

Pooled  

(2) 

Subway  

Group A  

(3) 

Subway 

 Group B 

(4) 

Subway  

Group C 

Log(Distance to Subway Group A) -0.0286*** -0.0382***   

 (0.00355) (0.0104)   

Log(Distance to Subway Group B) -0.00123  -0.00831  

 (0.00201)  (0.0167)  

Log(Distance to Subway Group B) -0.00348   -0.0213*** 

 (0.00475)   (0.00501) 

Year 2008 -0.0396*** -0.0289*** -0.0439***  

 (0.00553) (0.00687) (0.00482)  

Year 2009 0.106*** 0.121*** 0.0928***  

 (0.0194) (0.00848) (0.00766)  

Year 2010 0.542*** 0.553*** 0.526*** -0.112*** 

 (0.00860) (0.00920) (0.0104) (0.0113) 

Year 2011 0.637*** 0.677*** 0.629*** -0.102*** 

 (0.0127) (0.0102) (0.0101) (0.0101) 

Year 2012 0.666*** 0.726*** 0.659*** -0.113*** 

 (0.0153) (0.0109) (0.0109) (0.00748) 

Year 2013 0.827*** 0.900*** 0.829***  

 (0.0172) (0.0129) (0.0128)  

Constant 9.533*** 9.677*** 9.407*** 9.772*** 

 (0.0217) (0.00840) (0.00937) (0.00650) 

     

Observations 182,646 90,250 88,612 15,826 

R-squared 0.943 0.942 0.940 0.962 
Standard errors in parentheses, and *** denotes a p value smaller than 0.01, **  denotes a p value smaller than 0.05, * 

denotes a p value smaller than 0.1. Similar regressions including indicators of being too close to the stations or light rail 

stations are run, yet the coefficients are statistically insignificant thus results are not shown here. Same strategy and results 

applies to other regressions. The same regressions with samples within 5km of the closest subway station are reported in the 

Appendix. 
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estimating the hedonic price model this way may be less appropriate since a far-away subway 

station from another subway group may have no effect on home prices, so that adding it to the 

model may underestimate the actual capitalization effect. Comparing the pooled results from 

column (1) and those from columns (2), (3) and (4), the capitalization effects are higher after 

observations are grouped according to the dwellers’ best commuting choice, which confirms the 

above statement. 

1.5.2 Does the capitalization effect depend on the quality of the housing estate? 

      As is mentioned in the introduction, this chapter aims to explore the heterogeneity of 

capitalization effects with respect to community attributes. The property management fee of each 

housing estate is utilized to measure the quality of the housing. The property management fee is a 

service fee charged by the property management department of a housing estate. The fee covers 

expenses like parking management, janitor’s wages and equipment, the maintenance of public 

facilities of the residential area, gardening and necessary renovations. The property management 

fee can be considered an indicator of the “quality” of the housing estate that cannot be captured by 

measured characteristics, reflecting instead cleanliness, public facilities or even the taste and 

design philosophy of the properties. 

      Now that we are to include a time invariant variable (property management fee) into the model, 

the community-level fixed effect can no longer be used, and other time invariant control variables 

should also be included for a better fitting model. After controlling for neighborhood 

characteristics, structural characteristics, district fixed effects and time fixed effects, Table 1.5 

shows regression results that reveal the effect of income on subway capitalization. Because of lack 

of data, few physical housing attributes are included in the model. Note that all of the housing 

estates are condominium and are quite similar in building structure, internal space and decoration. 
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In addition, the dependent variable is the price per square meter. Hence omitting physical housing 

attributes should not bias the results significantly.  

Without community fixed effects, the absolute value of the coefficients of subway proximity 

are higher than those in the previous section. As expected, all the coefficients of the interaction 

terms are significantly positive, so that comparing a housing estate with another one that charges 

a 1 Yuan higher property management fee, the latter estate’s home price is less sensitive to 

subway proximity. This finding implies that high-quality housing estates have a lower subway 

capitalization effect per square meter than low-quality housing estates, which according to the 

theory in Section 1.2, could be caused by the fact that with higher wage leading to larger house, so 

that a smaller decrease in the price per square meter reduces overall housing costs enough to 

compensate for worse subway access. Hence, the home prices of such communities are affected 

with lower magnitude by subway proximity. 

        On average, the capitalization effect is about 0.9%, 0.37% and 0.25% respectively for a home 

with a zero property management fee in housing estate groups A, B and C. It is also worth noticing 

that, as the convenience level of the subway group decreases, the capitalization effect also 

decreases, just as predicted in section 1.2.  

        According to the coefficients of the interaction terms in regressions (1) to (10), if a home in 

housing estate group A has a property management fee of approximately 4 Yuan, and then the 

capitalization effect of its nearby subway lines would decrease to zero. Similarly, if a home in 

housing estate group B charges a property management fee about 3 Yuan, then the capitalization 

effect of its nearest Subway group B station would be zero. The same can be said about a home in 

housing estate group C if it charges a property management fee of 1 Yuan. 
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As depicted in Figure 1.4, the property management fee for the 907 housing estates in the 

dataset ranges from 0 to 12 Yuan per square meter per month, with an average of 2 Yuan per 

square meter per month. Thus, for a house with an area of 100 square meters, property 

management fee can range between 0 to 1200 yuan per month. For an average employee earning 

around 520014 Yuan per month, the property management fee can be a burden if he/she is to live 

in a high-quality community with the fee as high as 800 Yuan. While the property management fee 

can be quite substantial, it is reasonable to believe that a resident will choose to live in 

communities whose property management fee is commensurate with his or her income15. Hence, 

without access to community level income data16, the result that the coefficients of the interaction 

terms between the property management fee and subway proximity measures are positive 

suggests that those who live in high-quality communities (probably people with higher wages) 

experience a smaller capitalization effect compared to those who live in low-quality communities 

(probably people with lower wages). Thus, to some extent, the  empirical results confirm the 

theory in Section 1.2.  

                                                           
14 Statistics on the average income of Beijing residents in 2012 come from National Bureau of Statistics of PRC. 
15 Further justification of the positive relationship between income and housing quality/management fee is provided in the 

appendix. 
16 Household or even Jiedao level income data is difficult to come by. Even though the official statistics bureau has already 

collected nearly 20 years of survey data on households, they have not been made available to researchers.  
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Figure 1.4 Histogram of property management fee 

   Table 1.5 also shows that communities using subway group A have significant negative 

price gradients with respect to the distance from all levels of core schools. Interestingly, the 

regressions show no evidence to support that the distances from business centers affect the home 

price of these communities (distance to the subway station is all that matters). The regressions in 

column (3) and (7) show that the home prices of communities using subway group B increases as 

their distances to core primary school, university,  business center and sub-center decreases.  

Similarly, column (4) and (8) show that for communities using subway group C, home prices 

increases if the distance to the closest university, hospital and garden decreases. The regressions 

also show that the home price is lower if the property is constructed earlier.  

         The land area of the community has almost a zero effect on the home price (per square 

meter). On the other hand, the floor area ratio has a significant influence on the home price for all 

communities. If the floor area ratio increases by 1, the home price will decrease by 0.1%, 0.19% 

and 0.29% for a community commuting using subway group A, B and C lines, respectively. As for 
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the greening rate (the ratio of greenery area and land area) , a 10% increase in the rate will 

increase the home price by 2.8% for communities using subway group A, but the greening ratio 

have little effect on home price of communities using subway group B or C. The results show that 

the signs of the coefficients for distance to a hospital and distance to the nearest public garden are 

both positive for communities using subway group A and B. This unexpected effect can be perhaps 

explained by the strong correlation between distance to a business center and the other two 

covariates. In unreported regressions, three dummy variables were created indicating proximity 

to a hospital, a business sub-center and parks to replace the continuous variables. These results in 

show that being close to a park or business sub-center (within 500m) will raise the home price by 

1.3% and 6%, respectively. On the other hand, being close to a hospital will decrease the home 

price by 2.1%, probably because of negative externalities brought by hospitals (like traffic jams 

and noise).  
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Table 1.5 Hedonic Estimation of the Interaction between Capitalization Effect of Subway and Housing Quality  

(all samples are within 10km of a subway station) 

 (1) (2) (3) (4) (7) (8) (9) (10) 

 

VARIABLES 

Pooled Subway  

Group A 

Subway 

 Group B 

Subway  

Group C 

Pooled Subway  

Group A 

Subway 

 Group B 

Subway  

Group C 

         

Log(Distance to Subway Group A) -0.046*** -0.095***   -0.041*** -0.089***   

 (0.014) (0.019)   (0.014) (0.019)   

Log(Distance to Subway Group B) -0.029**  -0.037**  -0.028*  -0.036**  

 (0.015)  (0.016)  (0.014)  (0.016)  

Log(Distance to Subway Group B) -0.0033   -0.025 0.012   -0.027 

 (0.0061)   (0.019) (0.0085)   (0.019) 

Prop manage fee 0.016* 0.045*** 0.036*** 0.029 0.018** 0.045*** 0.036*** 0.029 

 (0.0089) (0.0091) (0.011) (0.018) (0.0088) (0.0091) (0.011) (0.018) 

Log(Distance to A) * Fee -0.0050 0.021***   -0.0047 0.020**   

 (0.0056) (0.0078)   (0.0055) (0.0078)   

Log(Distance to B)* Fee 0.024***  0.013*  0.023***  0.013*  

 (0.0066)  (0.0072)  (0.0065)  (0.0072)  

Log(Distance to C)* Fee 0.0059***   0.029*** 0.0056***   0.029*** 

 (0.0016)   (0.011) (0.0016)   (0.011) 

Land area -1.8e-08 1.2e-08 -7.5e-08 6.7e-10 -1.6e-08 1.2e-08 -7.5e-08 1.7e-09 

 (1.9e-08) (4.5e-08) (4.6e-08) (2.2e-08) (1.9e-08) (4.4e-08) (4.6e-08) (2.2e-08) 

Floor area ratio -0.014*** -0.010* -0.019** -0.029 -0.014*** -0.010* -0.020** -0.028 

 (0.0050) (0.0052) (0.0091) (0.020) (0.0050) (0.0052) (0.0091) (0.020) 

Greening ratio 0.15 0.28** 0.085 0.30 0.15 0.29** 0.085 0.30 

 (0.11) (0.14) (0.15) (0.19) (0.11) (0.14) (0.15) (0.19) 

Time_of_Constru 0.000011*** 0.000019*** 9.0e-06* 1.4e-06 0.000011*** 0.000019*** 8.9e-06* 1.4e-06 

 (3.6e-06) (5.1e-06) (5.0e-06) (7.8e-06) (3.5e-06) (5.0e-06) (5.0e-06) (7.8e-06) 

Distance to Hospital 0.016** 0.030** 0.014 -0.11*** 0.014* 0.030** 0.013 -0.11*** 

 (0.0075) (0.015) (0.0085) (0.036) (0.0074) (0.015) (0.0086) (0.036) 

Distance to Park 0.015* -0.0022 0.026** -0.042*** 0.014* -0.0020 0.025** -0.042*** 

 (0.0078) (0.011) (0.010) (0.015) (0.0078) (0.011) (0.010) (0.015) 

Distance to Business District -0.018*** -0.0055 -0.018** 0.080** -0.015** -0.0062 -0.017** 0.080** 

 (0.0066) (0.012) (0.0079) (0.035) (0.0066) (0.012) (0.0079) (0.035) 

Distance to High School -0.012*** -0.041*** -0.0072 0.0012 -0.013*** -0.041*** -0.0073 0.0013 

 (0.0043) (0.0074) (0.0065) (0.0059) (0.0043) (0.0074) (0.0065) (0.0059) 
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Robust Standard errors in parentheses, and *** denotes a p value smaller than 0.01, **  denotes a p value smaller than 0.05, * denotes a p value smaller 

than 0.1. Regressions are clustered at community level. For simplicity, fixed effect coefficients for each regression are not reported.  The same 

regressions with samples within 5km of the closest subway station are reported in the Appendix.  

 

 

 (1) (2) (3) (4) (7) (8) (9) (10) 

 

VARIABLES 

Pooled Subway  

Group A 

Subway 

 Group B 

Subway  

Group C 

Pooled Subway  

Group A 

Subway 

 Group B 

Subway  

Group C 

         

Distance to Primary School -0.016*** -0.028*** -0.024*** -0.0065 -0.015*** -0.028*** -0.024*** -0.0064 

 (0.0053) (0.0099) (0.0061) (0.0091) (0.0053) (0.0099) (0.0061) (0.0092) 

Distance to CBD 0.0069 0.0066 0.00065 0.088** 0.0057 0.0067 0.00019 0.088** 

 (0.0077) (0.013) (0.0095) (0.035) (0.0077) (0.013) (0.0095) (0.035) 

Distance to University -0.021*** -0.012 -0.023** -0.044*** -0.022*** -0.013 -0.023** -0.044*** 

 (0.0081) (0.0097) (0.0091) (0.015) (0.0081) (0.0097) (0.0092) (0.015) 

District Fixed Effect Yes Yes Yes Yes Yes Yes Yes Yes 

Year Fixed Effect Yes Yes Yes Yes No No No No 

Week Fixed Effect No No No No Yes Yes Yes Yes 

R-squared 0.819 0.827 0.794 0.741 0.834 0.845 0.811 0.753 



 

30 

 

1.5.3 Does the capitalization effect depend on distance to the CBDs? 

        According to the conclusion drawn in Section 1.2, communities far from the 

CBDs may experience a lower capitalization effect. This argument is tested by 

introducing an interaction term between distance to CBDs and distance to subway 

stations. In Table 1.6 column (1) assumes that home prices are not only affected by 

the closest subway station, but that they can also be affected by other subway lines, 

so that all the observations are used. Columns (2), (3) and (4) assume that the home 

price can only be affected by the closest subway lines.  

        The coefficients of the interaction terms are significantly positive in columns (2) 

and (3), but significantly negative in column (4). Thus, for a housing estate using 

subway group A or B, and that is 1 km farther away from CBD, the capitalization 

effect of its nearest subway station is smaller compared to that of a housing estate 

closer to the center. For housing estates using subway group A, the capitalization 

effect decreases the fastest: with each extra 1km from the CBD, the capitalization 

effect decreases by 0.08%. For a housing estates using subway group B, the 

capitalization effect decreases somewhat slower: the rate of decreasing 

capitalization is 0.06% per km away from CBD. For housing estates using subway 

group C, the effect of distance to the CBDs on the subway proximity premium has 

the opposite sign: with each extra 1 km from the CBD, the capitalization effect 

increases by 0.09%. Thus, the empirical analysis shows that the capitalization 

effects of convenient subway lines decrease as distance to the CBDs increases, which 

is consistent with the theoretical analysis in Section 1.2.  
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Table 1.6 Hedonic Estimation of the Interaction between Capitalization 

Effect of Subway and Distance to CBDs. (All samples are within 10km of the 

closest subway station) 
 (1) (2) (3) (4) 

VARIABLES Pooled Subway  

Group A 

Subway 

 Group B 

Subway  

Group C 

     

Log(Distance to Subway Group A) -0.12*** -0.084***   

 (0.020) (0.024)   

Log(Distance to Subway Group B) 0.050**  -0.075***  

 (0.020)  (0.024)  

Log(Distance to Subway Group B) -0.015**   0.28*** 

 (0.0072)   (0.054) 

Log(Distance to A)*Distance to CBD 0.012*** 0.0097***   

 (0.0023) (0.0037)   

Log(Distance to B )*Distance to CBD -0.0032*  0.0056***  

 (0.0019)  (0.0020)  

Log(Distance to C)*Distance to CBD 0.0013***   -0.0093*** 

 (0.00026)   (0.0018) 

District Fixed Effect Yes Yes Yes Yes 

Year Fixed Effect Yes Yes Yes Yes 

Observations 

R-squared 

170,978 

0.805 

83,793 84,136 14,583 

0.816 0.789 0.736 

Robust standard errors in parentheses, and *** denotes a p value smaller than 0.01. ** denotes a p 
value smaller than 0.05. * denotes a p value smaller than 0.1. District and yearly fixed effects are both 
controlled for in the above regressions. Other variables included in the model include: land area, 
floor area ratio, time of construction, distance to nearest hospital, park, sub-CBD, CBD, core high 
school, core university, prime school. The signs of the coefficients are consistent with the results 
reported in Table 5. For simplicity, fixed effect coefficients for each regression are not reported. The 
same regressions with samples within 5km of the closest subway station are reported in the 
Appendix.  

 
 

1.6 Conclusion 
 

      This chapter has shown that house-price capitalization of proximity to a subway 

station depends on the convenience level of the subway line and on community 

characteristics like housing quality and location. The capitalization effect is higher 

for communities using convenient subway lines (those directly connected to the 

CBDs) and lower for inconvenient subway lines (those requiring transfers to reach 

the CBDs). In addition, the capitalization effect decreases as the quality of housing in 

the community increases, as increasing property management fee at a community 
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by 1 Yuan reduces subway capitalization effect by approximately 0.1%~0.2%. The 

effect also decreases for communities located farther away from the CBDs, as 

communities 1km farther from the CBD experience around 0.08% lower subway 

capitalization effect.  

      The research suggests that when policy makers seek to achieve faster, frequent 

transit service that makes the CBDs more accessible, they should also implement 

strategies to preserve affordable housing near subway stations so that the rising 

prices caused by the new transit will not harm the low income families, whose 

dwellings will be affected most. In the short-run, homeowners can benefit from the 

capitalization effects, but in the long run, longstanding residents may no longer be 

able to afford rising rents and property taxes that will be levied in the future. 

Without such steps, locations that have the highest subway proximity premium 

(communities that are close to the CBDs or have access to convenient subways) may 

no longer be affordable for many working families.   
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Appendix 1: 
Table A.1.1 Variables and Descriptive Statistics 

Variable Description Mean Std.dev 
Panel 1. Structural Characteristics 
price The average price per square meter 

of the housing estate, by housing 
estate/week (Yuan per square 
meter) 

22671.15 12340.86 

Land area Total land area of the housing estate 159458.1 354287 
Floor area ratio Floor area ratio of the housing 

estate 
2.48 1.58 

Prop manage fee Property management fee per 
month per square meter 

1.99 1.63 

Greening ratio Greening ratio of the  housing estste 0.35 0.91 
Time_constru  Time of construction NA NA 
Panel  2. Neighborhood Characteristics 
Distance to Park A housing  estate’s distance to the 

closest park 
4.72 5.84 

Distance to 
Highschool 

A housing estate’s distance to the 
closest core high school 

4.63 4.59 

Distance to Middle 
School 

A housing estate’s distance to the 
closest core middle school 

4.54 4.45 

Distance to Hospital A housing estate’s distance to the 
closest 3A hospital 

5.52 7.64 

Distance to Primary 
school 

A housing estate’s distance to the 
closest core primary school 

6.94 7.73 

Distance to CBD A housing estate’s distance to the 
closest CBD 

11.4 10.07 

Distance to Business 
district 

A housing estate’s distance to the 
closest business subcenter 

9.00 9.37 

Distance to University A housing estate’s distance to the 
closest 985(core) university 

8.41 9.34 

Dongcheng Binary, 1=housing estate is located 
in Dongcheng District 

0.081 0.274 

Xicheng Binary, 1=housing estate is located 
in Xicheng District 

0.087 0.282 

Xuanwu Binary, 1=housing estate is located 
in Xuanwu District 

0.088 0.284 

Haidian Binary, 1=housing estate is located 
in Haidian District 

0.111 0.315 

Chaoyang Binary, 1=housing estate is located 
in Chaoyang District 

0.087 0.282 

Fengtai Binary, 1=housing estate is located 
in Fengtai District 

0.087 0.282 

Mentougou Binary, 1=housing estate is located 0.031 0.173 
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in Mentougou District 
Shijingshan  Binary, 1=housing estate is located 

in Shijingshan District 
0.011 0.104 

Fangshan Binary, 1=housing estate is located 
in Fangshan District 

0.072 0.260 

Tongzhou Binary, 1=housing estate is located 
in Tongzhou District 

0.157 0.364 

Shunyi  Binary, 1=housing estate is located 
in Shunyi District 

0.076 0.265 

Changping Binary, 1=housing estate is located 
in Changping District 

0.090 0.288 

Huairou Binary, 1=housing estate is located 
in Huairou District 

0.010 0.099 

Year 2008 Binary, 1=year 2008 0.170 0.375 
Year 2009 Binary, 1=year 2009 0.173 0.378 
Year 2010 Binary, 1=year 2010 0.173 0.378 
Year 2011 Binary, 1=year 2011 0.173 0.378 
Year 2012 Binary, 1=year 2012 0.173 0.378 
Year 2013 Binary, 1=year 2013 0.054 0.226 
Panel 3. Subway station Proximity 
Log(Distance to 
Subway Group A) 

A housing estate’s log distance to 
the closest group A subway station 

7.485 8.914 

Log(Distance to 
Subway Group B) 

A housing estate’s log distance to 
the closest group B subway station 

6.510 8.860 

Log(Distance to 
Subway Group C) 

A housing estate’s log distance to 
the closet group C subway station 

61.192 44.351 

Panel 4. Interaction Terms 
Distance to A * Fee Interaction between property 

management fee and Log(Distance 
to Subway Group A) 

 NA  

Distance to B* Fee Interaction between property 
management fee and Log(Distance 
to Subway Group B) 

 NA  

Distance to C * Fee Interaction between property 
management fee and Log(Distance 
to Subway Group C) 

 NA  

Log(Distance to A) * 
Distance to CBD 

Interaction between Distance to 
CBD and Log(Distance to Subway 
Group A) 

 NA  

Log(Distance to B )* 
Distance to CBD 

Interaction between Distance to 
CBD and Log(Distance to Subway 
Group B) 

 NA  

Log(Distance to C) * 
Distance to CBD 

Interaction between Distance to 
CBD and Log(Distance to Subway 
Group C) 

 NA  
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Justification for the positive correlation between housing quality and income 

Data are collected on district-average GDP per capita and district average property 

management fees for 4 megacities in China. Simple scatter plots and correlation 

coefficients (Table 6) show a significant positive correlation between income per 

capita and the property management fee.  

Table A.1. 2 Correlation between GDP per capita and Property Management 

Fee 

Megacities Beijing Shanghai Guangzhou Chongqing 

Correlation 
Coefficient 

0.705 0.604 0.562 0.692 
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Table A.1.3 Fixed Effect Capitalization of Subway Proximity 

(all samples are within 5km of a subway station) 

Dependent Variable:  ln_price (1)  

Pooled  

(2) 

Subway 

Group A  

(3) 

Subway 

Group B 

(4) 

Subway 

Group C 

Log(Distance to Subway Group A) -0.0205*** -0.0382***   

 (0.000993) (0.00202)   

Log(Distance to Subway Group B) -0.00403***  -0.0161***  

 (0.00136)  (0.00358)  

Log(Distance to Subway Group B) -0.0266***    

 (0.000745)    

Year 2008 -0.0381*** -0.0266*** -0.0436***  

 (0.00163) (0.00229) (0.00217)  

Year 2009 0.105*** 0.121*** 0.0892***  

 (0.00164) (0.00228) (0.00222)  

Year 2010 0.540*** 0.551*** 0.535***  

 (0.00168) (0.00230) (0.00226)  

Year 2011 0.599*** 0.676*** 0.636*** 0.0123*** 

 (0.00242) (0.00228) (0.00224) (0.00383) 

Year 2012 0.632*** 0.725*** 0.667*** 0.00264 

 (0.00243) (0.00230) (0.00224) (0.00384) 

Year 2013 0.798*** 0.901*** 0.838*** 0.130*** 

 (0.00265) (0.00278) (0.00268) (0.00412) 

Constant 9.683*** 9.735*** 9.446*** 9.706*** 

 (0.00387) (0.00201) (0.00187) (0.00366) 

     

Observations 159,332 82,804 76,088 12,070 

R-squared 0.935 0.918 0.935 0.956 
Robust standard errors in parentheses, and *** denotes a p value smaller than 0.01, ** denotes a p value 

smaller than 0.05, * denotes a p value smaller than 0.1. Similar regressions including indicators of being 

too close to the stations or light rail stations are run, yet the coefficients are statistically insignificant thus 

results are not shown here. The same regressions with samples within 2km of the closest subway station 

yield similar results and the results can be offered upon request. 
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Table A.1.4 Hedonic Estimation of the Interaction between Capitalization Effect of Subway and Housing Quality  

(all samples are within 5km of a subway station) 

 

 (1) (2) (3) (4) (7) (8) (9) (10) 

 

VARIABLES 

Pooled Subway  

Group A 

Subway 

 Group B 

Subway  

Group C 

Pooled Subway  

Group A 

Subway 

 Group B 

Subway  

Group C 

         

Log(Distance to Subway Group A) -0.044*** -0.070***   -0.038*** -0.063***   

 (0.014) (0.021)   (0.014) (0.021)   

Log(Distance to Subway Group B) -0.042***  -0.074***  -0.042***  -0.071***  

 (0.014)  (0.023)  (0.014)  (0.023)  

Log(Distance to Subway Group B) -0.020**   -0.028 0.0040   -0.028 

 (0.010)   (0.031) (0.015)   (0.031) 

Prop manage fee 0.0095 0.041*** 0.037*** 0.030 0.010 0.040*** 0.036*** 0.029 

 (0.011) (0.0093) (0.013) (0.023) (0.011) (0.0093) (0.013) (0.023) 

Log(Distance to A)*Fee 0.00053 0.016*   0.00025 0.016*   

 (0.0055) (0.0094)   (0.0055) (0.0095)   

Log(Distance to B)*Fee 0.024***  0.026**  0.024***  0.025**  

 (0.0068)  (0.012)  (0.0068)  (0.012)  

Log(Distance to C)*Fee 0.0069***   0.036** 0.0067**   0.036** 

 (0.0026)   (0.016) (0.0026)   (0.016) 

Land area -1.4e-08 1.8e-09 -3.3e-08 -2.6e-08* -1.4e-08 4.1e-09 -3.6e-08 -2.5e-08* 

 (2.1e-08) (4.9e-08) (4.9e-08) (1.4e-08) (2.1e-08) (4.8e-08) (4.8e-08) (1.4e-08) 

Floor area ratio -0.015*** -0.011** -0.024*** -0.058*** -0.015*** -0.011** -0.025*** -0.057*** 

 (0.0049) (0.0052) (0.0085) (0.018) (0.0049) (0.0053) (0.0085) (0.018) 

Greening ratio 0.17 0.26* 0.16 0.044 0.17 0.26* 0.16 0.044 

 (0.10) (0.15) (0.14) (0.29) (0.10) (0.15) (0.14) (0.29) 

Time_of_Constru 0.000013*** 0.000023*** 0.000014*** 9.3e-06 0.000013*** 0.000023*** 0.000014*** 9.1e-06 

 (3.5e-06) (5.0e-06) (5.1e-06) (8.9e-06) (3.5e-06) (5.0e-06) (5.1e-06) (8.9e-06) 

Distance to Hospital 0.013 0.022 -0.00036 -0.10*** 0.013 0.021 -0.00027 -0.10*** 

 (0.0079) (0.016) (0.011) (0.038) (0.0079) (0.016) (0.011) (0.039) 

Distance to Park 0.019** -0.0075 0.021* -0.029 0.018* -0.0085 0.020* -0.029* 

 (0.0093) (0.015) (0.012) (0.018) (0.0092) (0.015) (0.012) (0.018) 

Distance to Business District -0.020*** -0.014 -0.022** 0.079** -0.019*** -0.015 -0.022** 0.079** 

 (0.0065) (0.012) (0.0089) (0.037) (0.0066) (0.012) (0.0089) (0.037) 
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Distance to High School -0.018*** -0.042*** -0.010 0.016 -0.020*** -0.041*** -0.011 0.016 

 (0.0049) (0.011) (0.0085) (0.012) (0.0050) (0.011) (0.0085) (0.012) 

Distance to Primary School -0.024*** -0.042*** -0.041*** -0.0077 -0.025*** -0.043*** -0.041*** -0.0078 

 (0.0058) (0.011) (0.0069) (0.012) (0.0058) (0.011) (0.0069) (0.012) 

Distance to CBD 0.0055 0.012 0.0015 0.052 0.0062 0.012 0.0014 0.052 

 (0.0075) (0.013) (0.010) (0.034) (0.0075) (0.013) (0.011) (0.034) 

Distance to University -0.0077 -0.016* -0.00061 -0.0094 -0.0084 -0.017* 0.000068 -0.0094 

 (0.0061) (0.0098) (0.0079) (0.017) (0.0062) (0.0098) (0.0079) (0.017) 

District Fixed Effect Yes Yes Yes Yes Yes Yes Yes Yes 

Year Fixed Effect Yes Yes Yes Yes No No No No 

Week Fixed Effect No No No No Yes Yes Yes Yes 

Observations 149,245 77,274 72,045 11,048 149,245 77,274 72,045 11,048 

R-squared 0.802 0.761 0.810 0.780 0.820 0.784 0.828 0.794 

Robust Standard errors in parentheses, and *** denotes a p value smaller than 0.01, ** denotes a p value smaller than 0.05, * denotes a p value smaller 

than 0.1. Regressions are clustered at community level. For simplicity, fixed effect coefficients for each regression are not reported.  The same regressions 

with samples within 5km and 2km of the closest subway station are reported in the Appendix. The same regressions with samples within 2km of the 

closest subway station yield similar results and the results can be offered upon request. 
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Table A.1.5 Hedonic Estimation of the Interaction between Capitalization Effect of 

Subway and Distance to CBDs. (All samples are within 5km of the closest subway 

station) 

Dependent Variable:  log(Price) (1)  

Pooled  

(2) 

Subway 

Group A  

(3) 

Subway 

Group B 

(4) 

Subway 

Group C 
     
Log(Distance to Subway Group A) -0.12*** -0.086***   
 (0.020) (0.033)   
Log(Distance to Subway Group B) 0.045**  -0.054**  
 (0.021)  (0.024)  
Log(Distance to Subway Group B) -0.015*   0.31*** 
 (0.0085)   (0.064) 
Log(Distance to A)*Distance to CBD 0.013*** 0.012**   
 (0.0025) (0.0050)   
Log(Distance to B )*Distance to CBD -0.0040*  0.0032  
 (0.0020)  (0.0021)  
Log(Distance to C)*Distance to CBD 0.0011   -0.011*** 
 (0.00091)   (0.0023) 
     

Observations 149,245 77,274 72,045 11,048 

R-squared 0.789 0.749 0.805 0.735 
Robust standard errors in parentheses, and *** denotes a p value smaller than 0.01, ** denotes a p value 
smaller than 0.05, * denotes a p value smaller than 0.1. District and yearly fixed effects are both controlled for 
in the above regressions. Other variables included in the model include: land area, floor area ratio, time of 
construction, distance to nearest hospital, park, sub-CBD, CBD, core high school, core university, prime school. 
The signs of the coefficients are consistent with the results reported in Table 6. For simplicity, fixed effect 
coefficients for each regression are not reported. The same regressions with samples within 2km of the 
closest subway station yield similar results and the results can be offered upon request. 
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Chapter 2 

1-Hub, 2-Hub or Fully Connected Network?  

A Theoretical Analysis of the Optimality of Airline 

Network Structure 

 

2. 1 Introduction 
 

        The Hub-and-spoke (HS) network has been the focus of airline network studies since 

US airline deregulation. Abundant literature exists on airline networks, and the cost and 

demand conditions of an airline are the main determinants of network choice. Using linear 

marginal cost functions (𝑀𝐶 = 1 − 𝜃𝑄), most theoretical work relies on a high value of 

returns-to-density parameter 𝜃 to guarantee optimality of the HS network (Q is traffic). 

Empirically, the existence of substantial economies of density has been confirmed in a 
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number of papers (Caves el al. 1984, Brueckner et al. 1992 and Brueckner and Spiller 

1994). Moreover, studies on consolidation and dehubbing in the US and European airline 

industry have provided empirical support for the optimality of the single-hub solution 

(Burghouwt and De wit 2005; Dennis 1994; Redondi et al. 2012). As a number of 

theoretical studies have pointed out, each additional hub in the network reduces the 

cornerstone of the hub strategy, density economies. Moreover, additional hubs also incur 

complexity costs (Düdden 2006; Wojahn 2001a&b). Pels et al. (2000) investigate the 

optimality of HS versus FC networks and show that, although economies of density are 

important, it does not guarantee optimality of the HS network. However, much of the prior 

work is confined only to comparing 1-Hub network (1H) to point-to-point or fully 

connected (FC) configurations. 

The arguments that a single-hub network or an FC network may be the optimal 

solution do not explain the reality where the multi-hub network structure is popularly 

adopted by most of today’s airlines. Studies advance several arguments trying to explain 

the existence of multi-hub networks. In network simulation studies, Geodeking (2010) and 

Adler and Berechman (2001) argue that multi-hub networks with an effective geographical 

division tend to create the best opportunities for airlines to generate profits. Additionally, a 

single-hub network that disregards the dispersion of the spoke cities may result in great 

inconvenience for the passengers, as stated by O’Kelly (1998, p.177), thus affecting the 

level of demand. Another reason for airlines to deviate from the single-hub solution in 

practice, as mentioned by Swan (2002), is airport congestion caused by the constantly 

increasing level of demand. Bypassing major hubs with nonstops is one of the ways the 

airline network reacts to congestion, diverting traffic and thus forming secondary hub(s) at 
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major cities. In addition, by synchronizing flights to the same destination from both hubs, a 

multi-hub system can also be utilized to offer competitive complementary services in many 

connecting markets with the same origin and destination (O&D) at different times of the 

day (Geodeking 2010). Besides the reasons mentioned above, it has been argued that 

consolidation, strategic positioning and entry deterrence, better aircraft utilization, 

bilateral restrictions, and the influence of unions are incentives for airlines to adopt a 

multi-hub system rather than a single-hub system (Burghouwt 2013). 

So far, theoretical settings with networks of arbitrary size and structure have found no 

support for the existence of multi-hub networks as a result of cost-minimizing behavior 

under symmetric cost functions (Hendricks et al. 1995, Wojahn 2001). As a result, there is 

little theoretical basis to evaluate the current literature’s informal explanations of the 

existence of multi-hub networks. Looking beyond cost issues and economies of density, and 

including demand-related aspects to find a justification for multi-hub networks, Düdden 

(2006) used a simple theoretical model with exogenous price and demand. The model 

reasons that connecting certain spoke cities in the network can lead to a gain in high yield 

market share if competition is present, thus rendering a single-hub network inferior. 

Hence, the model gives justification for the rationality of multi-hub networks with one large 

and one small hub, yet cannot explain a strategy of equal-size hubs, suggesting the need for 

the present generalization. 

To focus on the effect of network structure on profit, this chapter constructs a simple 

and general model based on the monopoly case, aiming to explicitly investigate the 

optimality of 2-hub (2H) networks versus 1-Hub (1H) networks and FC networks. The 

model shows that, using a functional specification that is quite common in the literature, 
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and assuming symmetric markets and no connecting time cost and no fixed cost, a 2H 

network is always dominated by a 1H or an FC network, as is similarly shown in Pels 

(2000). However, this chapter sheds new light on the optimum choice of network structure 

by showing that such a conclusion no longer holds if asymmetric markets (where major 

cities become hubs, and smaller cities are spoke cities) and fixed cost are introduced into 

the model. Under such circumstances, the model shows that there exists a portion of the 

feasible parameter space where 2H network is preferred by a monopoly airline. In addition, 

the proportion of area in the feasible parameter space favoring the 2H network increases 

greatly when market asymmetry increases. However increasing the total number of cities 

or increasing the fixed cost of establishing a spoke would decrease of the proportion of 

feasible parameter space supporting the 2H network.  

After establishing the above results, the chapter also analyzes an airline’s choice of FC, 

1H and 2H networks under Cournot duopoly, where a network airline is competing with a 

competitor who offers direct flights connecting the smaller cities.  

Interestingly, the model reveals that the ongoing consolidation and reshaping of the 

hub landscape could be the result of network carriers responding to competition, since it is 

more profitable for the network carriers to switch to 2H when confronted with a 

competitor challenge. With a competitor connecting previously unconnected airports, part 

of the connecting market that once belonged to the monopolistic airline is “stolen”. While 

an FC network is worthwhile when the demand is great between the smaller cities, this 

advantage is reduced when the competitor decreases revenue generated by the direct 

flights between the smaller cities, hence reducing the profitability of the FC networks.  
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This chapter is structured as follows: Section 2.2 presents the setup of the model, 

while Section 2.3 analyzes the monopoly airline’s network choice between 1H and 2H. 

Section 2.4 extends the monopoly case to a scenario with LCC entry, and Section 2.5 offers 

conclusions.  

 

2.2 Model Setup 

2.2.1 Network Structure 

The monopoly airline serves multiple symmetrically located cities, A, B, C and H. For 

simplicity, the model only distinguishes between two kinds of city size: a major city or a 

small city. Among the four node cities, two of them are major cities with greater population 

(B and H), and the other two are smaller cities with less population (A and C), as shown in 

Figure 2.1, where the size of the node presents the size of the city. In a 1H network, the 

airline operates flights connecting each spoke city (A, B and C) to the hub (H) which is also 

one of the major cities. Note that because of the symmetry, the two major cities H and B are 

identical, and whenever it is optimal to use a 1H network configuration with H as the hub, it 

is also optimal to use a 1H network with B as the hub. 

In a 2H network, the other major city (B) becomes another hub, forming a symmetric 

network where all the spoke cities are connected to the two hubs, while the two hubs 

themselves are also connected by a direct flight. In an FC network, all the cities are 

connected to all other cities.  
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Figure 2.2 Network Types 

In a 1H network, although passengers in markets from a spoke city to the hub city can 

enjoy nonstop service, passengers flying from one spoke city to another must make a 

connecting trip. In a 2H network, trips from spoke cities to either hub now have nonstop 

service, while passengers flying from one spoke city to another can choose connecting 

flights, changing planes at either hub. A direct route between the hubs (linking B and H) is 

also provided in the 2-hub case. In an FC network, passengers are able to fly to any other 

destination via nonstop service and connecting markets do not exist in such network. 

Figure 2.1 only depicts the cases where the number of small cities is 2. By analogues, 

when there are more than 2 small cities, each small city and the non-hub major city are 

connected to the only hub in the 1H network. In the 2H network, when there are more than 

2 small cities, each small city is connected to both hubs while there are no routes between 

the small cities. As for the FC network, each city is always connected to all other cities 

regardless of the total number of small cities. 
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2.2.2 Demand and Costs 

Following the demand constructed by Brueckner (2005), consumer utility is defined as 

𝑢 = 𝐶 + 𝐵 − 𝐺 , where 𝐶  is consumption and 𝐵 is travel benefit, which varies across 

consumers, and 𝐺 is the time cost for nonstop travel between any pair of cities. For 

simplicity, frequency is also suppressed in the model, so that schedule delay is not included 

in consumer utility. To derive the demand function, let 𝑌 denote consumer income and 𝑝 

denote the airfare, so that a consumer will undertake travel if  𝑌 − 𝑝 + 𝐵 − 𝐺 ≥ 𝑌, or if 𝐵 ≥

𝑝 + 𝐺. As an asymmetric city size model, it is reasonable to assume that more people tend 

to travel to and from major cities, so that the density of travel benefit B enlarges as the size 

of the end point cities increases. Suppose that 𝐵 has a uniform distribution with support 

[𝐵, 𝐵] and density 𝜂 =
𝛿𝑖+𝛿𝑗

(𝐵−𝐵)
, where （𝛿𝑖 + 𝛿𝑗） denotes the magnitude of the benefit 

coming from the size of the city-pair market, which depends on the size of the two end 

node cities (𝛿𝑖 and 𝛿𝑗). 

As mentioned in the previous section, the model only distinguishes between major 

cities and small cities, hence generating three distinct kinds of city-pair markets: small-

small, small-major and major-major. Let the superscripts 𝑠𝑠, 𝑠𝑚 and 𝑚𝑚 denote the three 

types of markets. Normalize the size of a small city to 
1

2
, so that travel benefit B for a small-

small market would have a uniform distribution with support[𝐵, 𝐵], and density 𝜂𝑠𝑠 =

1

(𝐵−𝐵)
 . Similarly, assuming that the size of a major city is δ times that of a small city (𝛿 ≥ 1), 

then the benefit of a major-major city-pair travel would be have density 𝜂𝑚𝑚 =
𝛿

(𝐵−𝐵)
, and 

correspondingly, 𝜂𝑠𝑚 =
1+𝛿

2(𝐵−𝐵)
 for a small-major city-pair.  
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The number of consumers traveling between a major and a small city is then found by 

integrating the density of 𝐵 over the interval [𝑝 + 𝐺, 𝐵]. The demand function for a small-

small market is thus given by 𝑝𝑠𝑠 = 𝛼 − 𝛽 𝑞𝑠𝑠, where α = 𝐵 − 𝐺, 𝛽 = (𝐵 − 𝐵) and 𝑞𝑠𝑠 is the 

number of consumers traveling. Similarly, the demand function for a major-major market is 

thus given by 𝑝𝑚𝑚 = 𝛼 −
1

𝛿
𝛽𝑞𝑚𝑚. By analogues, 𝑝𝑠𝑚 = 𝛼 −

2

1+𝛿
𝛽𝑞𝑠𝑚 . When 𝛿 = 1, all the 

cities are of the same size and the three demand functions are identical.  However when δ is 

greater than 1, then the demand curve of a larger market rotates outward with its x-

intercept fixed and becomes flatter (the slope of the demand curve is a function of 𝛿, and 

the slope become less negative when 𝛿 increases) . 

Connecting travel through the hub will incur extra time cost. Denoting the extra 

connecting cost by 𝜇, the intercept of the demand curve for connecting flights would be 𝛼 −

𝜇 in a small-small market instead of 𝛼. Similarly, the intercept for the 𝑠𝑚 demand curves 

would decrease by 𝜇, as would the intercept for the connecting markets.  

The marginal cost function is assumed to be linear (𝑀𝐶 = 1 − 2𝜃𝑄), as in most of the 

airline network literature (see e.g. Brueckner 2001, Brueckner and Spiller 1991, Nero 

1996, Zhang 1996, Zhang and Wei 1993 and Pels et al. 2000). Even though the HB route 

appears to be longer than other spokes according to Figure 1, the model assumes that this 

difference does not appear in the cost function for simplicity, so that distance is assumed 

not to matter.  

Quantities and prices will be the same in markets of the same type (i.e. direct markets 

and connecting markets). Hence we distinguish between quantities (prices) in direct and 

connecting markets for three different market sizes (small-small, small-major and major-

major), letting lower case letters (𝑞𝑠𝑠, 𝑞𝑠𝑚, 𝑞𝑚𝑚 and 𝑝𝑠𝑠 ,  𝑝𝑠𝑚,  𝑝𝑚𝑚) denote traffic and 
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prices in direct markets and upper case letters (𝑄𝑠𝑠, 𝑄𝑠𝑚, 𝑄𝑚𝑚 and 𝑃𝑠𝑠 , 𝑃𝑠𝑚 , 𝑃𝑚𝑚) pertain 

to connecting markets. 

 

2.3 The Choice between 1H, 2H and FC networks 

2.3.1 Basic Model 

Consider a network with 𝑛 nodes (including hubs) where 𝑛 ≥ 3 and the network 

structure follows Figure 1. The network structure, total traffic in direct and connecting 

markets and the traffic carried on each spoke for both 1H and 2H network are summarized 

in Table 2.1. Note that the subscripts ℎ, 2ℎ and 𝑓𝑐 denote the 1H, 2H and FC network 

respectively. 

As described in Table 2.1, a 1H network (Panel A) consists of 𝑛 − 1 direct markets 

(there are 3 such direct markets when 𝑛 = 4), 𝑛 − 2 among which are 𝑠𝑚 direct markets 

(HA and HB when 𝑛 = 4) and only 1 𝑚𝑚 market (HB when 𝑛 = 4). There are also 
(𝑛−1)(𝑛−2)

2
 

connecting markets (when 𝑛 = 4, there are 3 such markets), 
(𝑛−2)(𝑛−3)

2
 among which are 𝑠𝑠 

connecting markets and the rest (𝑛 − 2) are 𝑠𝑚 connecting markets. As for the cost side, 

each of the 𝑛 − 1 direct routes is used in 𝑛 − 2 connecting markets. Thus, for a given 𝑠𝑚 

direct route, there are 𝑛 − 3 corresponding 𝑠𝑠 connecting markets and one 𝑠𝑚 connecting 

market that also make use of the same spoke, hence a total traffic of 𝑞ℎ
𝑠𝑠 + (𝑛 − 3)𝑄ℎ

𝑠𝑠 +

𝑄ℎ
𝑠𝑚 for each route (when 𝑛 = 4, the HA or HB spoke needs to carry connecting traffic to 

the other small spoke city as well as the connecting traffic to the other major spoke city). As 

for the only 𝑚𝑚 route, besides its own direct traffic, it also needs to carry 𝑠𝑚 connecting 



 

49 

 

traffic to all the other (𝑛 − 2) small cities, hence a total traffic of 𝑞ℎ
𝑚𝑚 + (𝑛 − 2)𝑄ℎ

𝑠𝑚. Profit 

in a 1-Hub network is then:  

𝜋1ℎ𝑢𝑏 = (𝑛 − 2)𝑞ℎ
𝑠𝑚 [𝛼 −

2

1+𝛿
𝛽𝑞ℎ

𝑠𝑚] + 𝑞ℎ
𝑚𝑚 [𝛼 −

1

𝛿
𝛽𝑞𝑚𝑚] +

(𝑛−2)(𝑛−3)

2
𝑄ℎ

𝑠𝑠[𝛼 − 𝛽𝑄ℎ
𝑠𝑠 − 𝜇] +

(𝑛 − 2)𝑄ℎ
𝑠𝑚 [𝛼 −

2

1+𝛿
𝛽𝑄ℎ

𝑠𝑚 − 𝜇] − (𝑛 − 2)𝑐(𝑞ℎ
𝑠𝑚 + (𝑛 − 3)𝑄ℎ

𝑠𝑠 + 𝑄ℎ
𝑠𝑚) − 𝑐(𝑞ℎ

𝑚𝑚 +

(𝑛 − 2)𝑄ℎ
𝑠𝑚 )                                                                                                                              (2.1) 

where 𝑐(. ) is the quadratic function  𝑐(𝑞) = 𝑞 − 𝜃𝑞2 + 𝜙, incorporating the returns- to-

density parameter 𝜃 and the fixed cost per spoke parameter 𝜙.  

Table 2.1 Structure, Total Traffic and Spoke Traffic Compostition of Different Network Types 
Structure Total Traffic in: Spoke Traffic Composition 

Panel A.  1H Network 

(𝑛 − 1) spokes 

 

Direct 

Markets   

sm (𝑛 − 2)𝑞ℎ
𝑠𝑚   Each sm(mm) spoke carries direct 

traffic in the market: qh
sm(qh

mm) 
  Each sm spoke carries connecting 

traffic from n − 3  ss connecting 
markets: (n − 3)Qh

ss 
  Each sm spoke carries connecting 

traffic from one sm connecting 
markets: Qh

ss 
  The mm spoke carries connecting 

traffic from n − 2sm connecting 
markets: Qh

sm 

mm 𝑞ℎ
𝑚𝑚 

Connecting 

Markets 

ss 
(𝑛−2)(𝑛−3)

2
𝑄ℎ

𝑠𝑠  

sm (𝑛 − 2)𝑄ℎ
𝑠𝑚 

Panel B.  2H Network 

2(𝑛 − 2) spokes 

 

Direct 

Markets  
sm 2(𝑛 − 2)𝑞2ℎ

𝑠𝑚   Each sm(mm) spoke carries direct 
traffic in the market: 𝑞2ℎ

𝑠𝑚 (𝑞2ℎ
𝑚𝑚) 

  Each spoke also carries half of 
the connecting traffic from 𝑛 − 3 
connecting markets involving 

non-hub cities: 
𝑛−3

2
𝑄2ℎ

𝑠𝑠  

Connecting 

Markets  

  

ss 
(𝑛−2)(𝑛−3)

2
𝑄2ℎ

𝑠𝑠   

mm 𝑞2ℎ
𝑚𝑚 

Panel C.  FC Network 
𝑛(𝑛−1)

2
 spokes 

Direct 

Markets  

ss 
(𝑛−2)(𝑛−3)

2
𝑞𝑓𝑐

𝑠𝑠   

  Each spoke carries corresponding 
direct traffic in the market: qfc

ss, 
qfc

sm or qfc
mm 

sm 2(𝑛 − 2)𝑞𝑓𝑐
𝑠𝑚 

mm 𝑞𝑓𝑐
𝑚𝑚 
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There are two types of spokes in the 2-hub network (Panel B Column 3). First, along 

each spoke connecting a small city and a hub, in addition to the direct market, there are 

also traffic from 
𝑛−3

2
 𝑠𝑠 connecting markets to other small spoke cities since passengers can 

fly from one spoke city to another via either hub, with the traffic for such markets split in 

half (if 𝑛 = 4, then each spoke carries traffic in “one-half” a connecting market). Thus, on 

each spoke not connecting the hubs, the total traffic is 𝑞2ℎ
𝑠𝑚 +

𝑛−3

2
𝑄2ℎ

𝑠𝑠  (when 𝑛 = 4, this is 

𝑞2ℎ
𝑠𝑚 + 𝑄2ℎ

𝑠𝑠 ). In addition, the 𝑚𝑚 direct market carries traffic from its own direct market 

regardless of the total number of cities. Profit in a 2-Hub network is thus:  

𝜋2ℎ𝑢𝑏 = 2(𝑛 − 2)𝑞2ℎ
𝑠𝑚 (𝛼 −

2

1+𝛿
𝛽𝑞2ℎ

𝑠𝑚) +
(𝑛−2)(𝑛−3)

2
𝑄2ℎ

𝑠𝑠 [𝛼 − 𝛽𝑄2ℎ
𝑠𝑠 − 𝜇] + 𝑞2ℎ

𝑚𝑚 [𝛼 −

1

𝛿
𝛽𝑄2ℎ

𝑚𝑚] − 2(𝑛 − 2)𝑐 (𝑞2ℎ
𝑠𝑚 +

𝑛−3

2
𝑄2ℎ

𝑠𝑠 ) − 𝑐(𝑞2ℎ
𝑚𝑚)                                                            (2.2) 

       
For an FC network, the profit components are much simpler now that connecting 

markets are out of the picture. For a network with 𝑛 nodes, and  
𝑛(𝑛−1)

2
 spokes (when 𝑛 = 4, 

there are 6 spokes), 
(𝑛−2)(𝑛−3)

2
 of the spokes are 𝑠𝑠 direct markets (i.e. the AC market, when 

𝑛 = 4), while 2(𝑛 − 2) of the spokes are 𝑠𝑚 direct markets (i.e. HA, HC, BA, BC markets, 

when 𝑛 = 4) and the 𝑚𝑚 direct market again corresponds to one spoke (i.e. HB market, 

when 𝑛 = 4). Hence, Profit in an FC-network is thus:  

𝜋𝑓𝑐 = 2(𝑛 − 2)𝑞𝑓𝑐
𝑠𝑚 (𝛼 −

2

1+𝛿
𝛽𝑞𝑓𝑐

𝑠𝑚) +
(𝑛−2)(𝑛−3)

2
𝑞𝑓𝑐

𝑠𝑠 [𝛼 − 𝛽𝑞𝑓𝑐
𝑠𝑠 ] + 𝑞𝑓𝑐

𝑚𝑚 [𝛼 −
1

𝛿
𝛽𝑞𝑓𝑐

𝑚𝑚] −

2(𝑛 − 2)𝑐(𝑞𝑓𝑐
𝑠𝑚) −

(𝑛−2)(𝑛−3)

2
𝑐(𝑞𝑓𝑐

𝑠𝑠 ) − 𝑐(𝑞𝑓𝑐
𝑚𝑚)                                                                 (2.3) 
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2.3.2 Solutions 

Consider the simplest case where 𝑛 = 4  (as depicted in Figure 2.1) 𝜇 =

0 (the cases where 𝜇 does not equal to 0 will be discussed later), 𝛿 = 1 so that all cities are 

of the same size, and where 𝛽 is normalized to 1. Taking first order conditions and solving 

the equation system, the quantities that maximize (2.1) are: 

𝑞ℎ
𝑠𝑚 =

−1+𝛼+2𝜃−4𝛼𝜃+4𝛼𝜃2

2−14𝜃+20𝜃2       𝑞ℎ
𝑚𝑚 =

−2+2𝛼+4𝜃−8𝛼𝜃+8𝛼𝜃2

2(2−14𝜃+20𝜃2)
             

𝑄ℎ
𝑠𝑠 =

−4+2𝛼+8𝜃−2𝛼𝜃−4𝛼𝜃2

2(2−14𝜃+20𝜃2)
      𝑄ℎ

𝑠𝑚 =
−4+2𝛼+8𝜃−2𝛼𝜃−4𝛼𝜃2

2(2−14𝜃+20𝜃2)
                                                      (2.4) 

Similarly, the quantities that maximize (2.2) are: 

𝑞2ℎ
𝑠𝑚 =

2−2𝛼+𝛼𝜃

2(−2+4𝜃)
      𝑞2ℎ

𝑚𝑚 = −
−4+2𝛼+2𝛼𝜃

2(−2+4𝜃)
    𝑄2ℎ

𝑠𝑠 = −
−1+𝛼

2(−1+𝜃)
                                                   (2.5) 

And the quantities that maximize (2.3) are  

𝑞𝑓𝑐
𝑠𝑠 =

1−𝛼

2(−1+𝜃)
        𝑞𝑓𝑐

𝑠𝑚 = −
(−1+𝛼)

(−2+2𝜃)
       𝑞𝑓𝑐

𝑚𝑚 = −
(−1+𝛼)

2(−1+𝜃)
                                                     (2.6) 

The feasible parameter space is defined by the inequalities that result from the second 

order conditions for profit maximization (𝜃 <
1

5
 ) and the requirements of non-negative 

marginal costs and quantities in a 1H network:  
2

1+𝜃
< 𝛼 <

1

3𝜃
  when  𝜃 <

1

5
. The feasible 

region is shown in Figure 2, with the upper bound (α =
1

3θ
 ) and lower (𝛼 =

1

2+𝜃
 ) bound 

indicated.17  

                                                           
17 It is shown in Appendix 3 that the feasible area in a 2H network fully encompasses the feasible area in a 1H 

network. Further details about how to deduce the feasible area are also shown in the Appendix 3. 
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Figure 3.2 Feasible Parameter Space  

𝒏 = 𝟒, 𝜹 = 𝟏, 𝝓 = 𝟎 

2.3.3 Choice of network type 

After solving the 1H, 2H and FC optimization problems, the airline must make a global 

choice of network type. To carry out the analysis, first determine parameter combinations 

(𝜃, 𝛼) that make the airline indifferent between the network types, with  𝜋1ℎ𝑢𝑏 = 𝜋2ℎ𝑢𝑏 , 

𝜋𝑓𝑐 = 𝜋2ℎ𝑢𝑏  and 𝜋𝑓𝑐 = 𝜋1ℎ𝑢𝑏  holding. Let 2𝑣𝑠1, 𝑓𝑣𝑠2  and 𝑓𝑣𝑠1  denote comparisons 

between 1H and 2H, FC and 2H, and FC and 1H. Solving Δ2𝑣𝑠1 = 𝜋2ℎ𝑢𝑏
∗ − 𝜋1ℎ𝑢𝑏

∗ = 0, 

Δ𝑓𝑣𝑠2 = 𝜋𝑓𝑐
∗ − 𝜋2ℎ𝑢𝑏

∗ = 0 and Δ𝑓𝑣𝑠1 = 𝜋𝑓𝑐
∗ − 𝜋1ℎ𝑢𝑏

∗ = 0 (where profits are computed at the 

optimal prices and quantities), yields three profit indifference curves:  

           𝛼2𝑣𝑠1
∗ (𝜃) =

−2−16𝜃+22𝜃2±√2√2−19𝜃+59𝜃2−79𝜃3+47𝜃4−10𝜃5

−17𝜃+20𝜃2+𝜃3                                             (2.7) 

            𝛼𝑓𝑣𝑠2
∗ (𝜃) =

1+4𝜃±√1−4𝜃+5𝜃2−2𝜃3

4𝜃+𝜃2
                                                                                       (2.8) 
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                    𝛼𝑓𝑣𝑠1
∗ (𝜃) =

1+7𝜃±√1−7𝜃+11𝜃2−5𝜃3

7𝜃+𝜃2
                                                                                     (2.9) 

Checking the feasible parameter space confirms that 2 − 19𝜃 + 59𝜃2 − 79𝜃3 +

47𝜃4 − 10𝜃5 ≥ 0 , 1 − 4𝜃 + 5𝜃2 − 2𝜃3 ≥ 0  and 1 − 7𝜃 + 11𝜃2 − 5𝜃3 ≥ 0  hold, so that 

(2.7), (2.8) and (2.9) give real solutions inside the feasible parameter space.  

As depicted in Figure 2.3, the expressions in (2.7), (2.8) and (2.9) constitute three 

backward bending indifference curves with vertexes at (𝛼̅2𝑣𝑠1 = 𝛼̅𝑓𝑣𝑠1 =
5

3
, 𝜃2𝑣𝑠1 = 𝜃𝑓𝑣𝑠1 =

1

5
) and  (𝛼̅𝑓𝑣𝑠2 =

1

2
, 𝜃𝑓𝑣𝑠2 =

4

3
). Conveniently, the vertex for indifference curves in equations 

(2.7) and (2.8) are at the intersection of the upper bounds and lower bounds of the feasible 

parameter space, where 𝜃 =
1

5
. Figure 3 also shows that all three indifference curves’ lower 

parts and the upper part of the 𝑓𝑣𝑠2 indifference curve are outside the feasible parameter 

space (shaded area), while a majority part of the upper 𝑓𝑣𝑠2 and 𝑓𝑣𝑠1 indifference curves 

(𝛼2𝑣𝑠1
∗ (𝜃)+, when 0 < 𝜃 <

37−√649

72
 and 𝛼𝑓𝑣𝑠1

∗ (𝜃)+  when 0 < 𝜃 <
1

9
 ) 18  are in between the 

upper and lower bounds of the feasible parameter space. A small portion of the two upper 

indifference curves (𝛼2𝑣𝑠1
∗ (𝜃)+, for

(37−√649)

72
< 𝜃 <

1

5
 and and 𝛼𝑓𝑣𝑠1

∗ (𝜃)+ when 
1

9
< 𝜃 <

1

5
) are 

above the upper bound but bend downward, connecting to the lower part of the 

indifference curves at the vertex of the feasible parameter space.  

                                                           
18 Here the superscript “+” indicates the upper part of the indifference curve 
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Figure 2.4 Profit Indifference Curves  

𝒏 = 𝟒, 𝜹 = 𝟏, 𝝓 = 𝟎 

 

Since the 𝑓𝑣𝑠2 profit indifference curve is outside the feasible parameter space, the 

feasible parameter space is split into three regions by the upper parts of the 2𝑣𝑠1 and 𝑓𝑣𝑠1 

profit indifference curves. As a result, Δ𝑓𝑣𝑠2 is positive everywhere inside the parameter 

space, indicating that 2H is everywhere dominated by FC. The sign of Δ2𝑣𝑠1 and Δ𝑓𝑣𝑠1 is 

negative (positive) above (below) the upper part of the indifference curves. Hence, given 

symmetric markets, linear marginal costs with 4 nodes, no connecting time cost and no 

fixed cost, a 2H network is always dominated by a 1H or an FC network. 𝜋𝑓𝑐
∗ > 𝜋1ℎ𝑢𝑏

∗  if  

2

1+𝜃
< 𝛼 <

1+7𝜃+√1−7𝜃+11𝜃2−5𝜃3

7𝜃+𝜃2 , 𝜃 <
1

9
                                                                                            (2.13) 

Or 
2

1+𝜃
< 𝛼 <

1

3𝜃
,     

1

9
< 𝜃 <

1

5
                                                                                                             (2.14) 

And 𝜋1ℎ𝑢𝑏
∗ > 𝜋𝑓𝑐

∗  if 
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1+7𝜃+√1−7𝜃+11𝜃2−5𝜃3

7𝜃+𝜃2
< 𝛼 < 

1

3𝜃
, 𝜃 <

1

9
                                                                                               (2.15) 

As depicted in Figure 2.4, the dashed line depicts the upper and lower bound of the 

feasible parameter space. According to (2.13) (2.14) and (2.15), the feasible parameter 

space is divided into two regions, while in one of the regions (shaded by lighter gray in 

Figure 2.4), 1H network dominates the other two network types, and FC dominates in the 

other region (shaded by darker gray in Figure 2.4). Notice that the 𝑓𝑣𝑠1 indifference curve 

crosses the upper bound of the feasible parameter space at  𝜃 =
1

9
, hence separating the 

region where 1H dominates into two parts: (1) when 𝜃 <
1

9
, at any fixed value of 𝜃, the FC 

network is more profitable than the 1H network if 𝛼 is smaller than a certain threshold and 

(2) when 
1

9
< 𝜃 <

1

5
, the FC network is always more profitable than the 1H network 

regardless of the value of 𝛼. Similar to the results of Pels et al. (2000), an FC network is 

almost everywhere more profitable than an HS or an 2H network given zero fixed cost and 

symmetric market.  
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Figure 2.5 Parameter Spaces that Supports Each Network Type  

n=4, 𝜹 = 𝟏, 𝝓 = 𝟎 

 

2.3.4 Adding Asymmetric Markets and Fixed Cost 

In reality, hub cities (H and B) are usually larger than the spoke cities (A and C), and 

hence the size of markets with a hub or two hubs as endpoints is greater than the size of 

markets between the smaller spoke cities. In addition, establishing a new direct route 

between cities should incur a fixed cost for the airline. It follows that network structure 

might be made more realistic by accounting for asymmetric markets (𝛿 > 1) and a spoke 

fixed cost (𝜙 ≠ 0). As is shown later in this section, adding only market asymmetry or only 

spoke fixed cost into the model does not explain the presence of the 2H network. 

Asymmetric markets and spoke fixed cost must both be present in order to make 2H a 

possible optimal network structure.    
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Figure 2.5 shows the case where asymmetric markets exists by assuming δ = 4, so that 

the hub city is 4 times the size of a spoke city, and there is no fixed cost to establish a spoke 

(𝜙 = 0). Following the steps performed in the previous section, we can establish a new set 

of indifference curves. Similar to Figure 2.4, the feasible parameter space is divided into 

two regions, with the majority of it supporting the FC network (the dark grey area) and a 

small slice near the upper bound of the feasible parameter space supporting the 1H 

network (the light grey are). Therefore, if only market asymmetry is added to the model, 

the 2H network is still dominated by the other two network types.  

 

Figure 2.6 Parameter Space that Support Each Network Type  

n=4, 𝜹 = 𝟒, 𝝓 = 𝟎 
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Figure 2.7 Parameter Space that Support Each Network Type  

n=4, 𝜹 = 𝟏, 𝝓 = 𝟏𝟎 

 

Similarly, Figure 2.6 depicts the case where fixed cost ( 𝜙 = 10 )19 is added to the model 

but markets are considered symmetric. Again, the feasible parameter space is divided into 

two regions. When demands are high and economies of density is relatively low (the darker 

grey area), the FC network dominates the other two networks, and when demands are 

lower and economies of density is high (the lighter grey area), the 1H network dominates. 

As expected, the proportion of feasible parameter space supporting the FC network 

decreases compared to the cases without fixed cost as the FC network requires more 

spokes and hence is more costly when fixed cost is accounted for. Note that with only fixed 

                                                           
19 The fixed cost 𝜙 = 10 is picked randomly. However, by calculating the revenue given a parameter set in the 

feasible parameter space and compare the amount of fixed cost and revenue, it seems that 𝜙 = 10 is reasonable. For 

example, assuming  𝛼 = 10, θ = 0.001 (a point inside the feasible parameter space assuming 𝑛 = 4, δ = 1), the 

total revenue earned by each network type is about 140. Hence a FC network would spend around 
3

7
 (

60

140
, where 60 is 

the amount of fixed cost spent on establishing the 6 routes in the FC network) of its revenue on setting up the 

spokes. Similarly, the ratio between total fixed cost and ratio for 1H and 2H networks are 
5

14
 and 

3

14
 respectively, 

which are reasonable proportions. 



 

59 

 

cost considered in the model, the 2H network is still dominated by the other two network 

types. 

If both asymmetric markets and fixed cost are introduced into the model (𝛿 = 4 and 

𝜙 = 10),20 the three profit indifference curves are illustrated in Figure 2.7. Unlike the cases 

in Figure 2.5 and Figure 2.6 where the indifference curves do not intersect each other 

inside the first quadrant, the three indifference curves in Figure 2.7 intersects at one point 

inside the feasible parameter space and divide the space (shaded area) into 6 regions, with 

each region representing a different ordering of the choice between the three network 

types. The choice between 1H, 2H and FC networks is summarized in Figure 2.8. The 

darkest shaded region of the feasible parameter space is where 2H network is optimal 

among the three network structures. The lightest shaded region of the feasible parameter 

space is where 1H network is favored and the rest of the feasible parameter space is where 

FC network is favored. As is shown in Figure 2.8, the regions favoring the FC and the 2H 

networks form a “wedge” in the feasible parameter space, such that when θ is greater than 

a certain threshold, the FC or the 2H network would be dominated by the 1H network. 

Moreover, the upper (lower) part of this “wedge” is where the FC (2H) network is 

dominant, indicating that in the markets with higher demands, the FC network is likely to 

be more profitable than the 2H network.  

                                                           
20 Other parameter values will be considered in the following Sections. 
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Figure 2.8 Indifference Curves 

 𝒏 = 𝟒, 𝜹 = 𝟒, 𝝓 = 𝟏𝟎 

 

For example, when the value of 𝜃 is low (i.e. 𝜃 = 0.002), the 2H network is more 

profitable than the 1H and FC network if α is between point C and D. The 1H network 

would be more profitable than 2H and FC network if 𝛼 takes on a value between D and E or 

B and A. Similarly, the FC network would be optimal if 𝛼 takes on a value between B and C. 

Yet when the value of 𝜃 is high (i.e. 0.008), then 1H network would be the optimal choice as 

long as 𝛼 is in the feasible parameter space.  
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Figure 2.9 Parameter Spaces that Supports Each Network Type  

𝒏 = 𝟒, 𝜹 = 𝟒, 𝝓 = 𝟏𝟎 

 

It is clear from Figure 2.8 that Δθ < 0 holds along all three indifference curves, since 

moving to the left from a point on the curve raises the profit differences above zero. 

However, to get better insight, analysis is carried out to examine the relative profitability of 

the 1H, 2H and FC networks in the entire feasible parameter space.  

The effect of a parameter on network choice is found by differentiating 𝛥2𝑣𝑠1, 

𝛥𝑓𝑣𝑠1and 𝛥𝑓𝑣𝑠2, with respect to that parameter. If the derivative is positive, then a high 

value of the parameter favors the network with more spokes, with the opposite conclusion 

holding if the derivative is negative. Differentiation of the ∆s with respect to 𝜃 using the 

envelope theorem yields the following equations:  

𝛥𝜃
2𝑣𝑠1 = (𝑞2ℎ

𝑚𝑚)2 + 4 (𝑞2ℎ
𝑠𝑚 +

𝑄2ℎ
𝑠𝑠

2
)

2

− [(𝑞ℎ
𝑚𝑚 + 2𝑄ℎ

𝑠𝑚)2 + 2(𝑞ℎ
𝑠 + 𝑄ℎ

𝑠𝑚 + 𝑄ℎ
𝑠𝑠)2]                 (2.16) 

𝛥𝜃
𝑓𝑣𝑠1

= 𝑞𝑓𝑐
𝑚𝑚2

+ 4𝑞𝑓𝑐
𝑠𝑚2

+ 𝑞𝑓𝑐
𝑠𝑠 2

− [(𝑞ℎ
𝑚𝑚 + 2𝑄ℎ

𝑠𝑚)2 + 2(𝑞ℎ
𝑠 + 𝑄ℎ

𝑠𝑚 + 𝑄ℎ
𝑠𝑠)2]                       (2.17) 
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𝛥𝜃
𝑓𝑣𝑠2

= 𝑞𝑓𝑐
𝑚𝑚2

+ 4𝑞𝑓𝑐
𝑠𝑚2

+ 𝑞𝑓𝑐
𝑠𝑠 2

− [(𝑞2ℎ
𝑚𝑚)2 + 4 (𝑞2ℎ

𝑠𝑚 +
𝑄2ℎ

𝑠𝑠

2
)

2

]                                                  (2.18) 

It should be noted that since envelope theorem is used, quantities of traffic are all 

evaluated at their optimum values, so that assuming the signs of 𝛥𝜃
2𝑣𝑠1, 𝛥𝜃

𝑓𝑣𝑠1
 and 𝛥𝜃

𝑓𝑣𝑠2
  is 

tantamount to assuming that a certain portion of the parameter space is relevant. Checking 

the feasible parameter space shows that 𝛥𝜃 < 0 holds in almost all of the feasible 

parameter space, except for a very small region near the bottom of the feasible region. 

Recall that Δθ < 0 always holds along the relevant indifference curve. 

An intuitive explanation for this finding can be provided. Note that the sign of 𝛥𝜃 

hinges on the relationships between (𝑞2ℎ
𝑚𝑚)2 + 4 (𝑞2ℎ

𝑠𝑚 +
𝑄2ℎ

𝑠𝑠

2
)

2

, (𝑞ℎ
𝑚𝑚 + 2𝑄ℎ

𝑠𝑚)2 +

2(𝑞ℎ
𝑠 + 𝑄ℎ

𝑠𝑚 + 𝑄ℎ
𝑠𝑠)2and 𝑞𝑓𝑐

𝑚𝑚2
+ 4𝑞𝑓𝑐

𝑠𝑚2
+ 𝑞𝑓𝑐

𝑠𝑠 2
, which in turn depend on the relationships 

between (𝑞2ℎ
𝑚𝑚) + 4 (𝑞2ℎ

𝑠𝑚 +
𝑄2ℎ

𝑠𝑠

2
), 𝑞ℎ

𝑚𝑚 + 2𝑄ℎ
𝑠𝑚 + 2(𝑞ℎ

𝑠 + 𝑄ℎ
𝑠𝑚 + 𝑄ℎ

𝑠𝑠) and 𝑞𝑓𝑐
𝑚𝑚 + 4𝑞𝑓𝑐

𝑠𝑚 + 𝑞𝑓𝑐
𝑠𝑠 . 

The three expressions give optimum total traffic carried by the spokes of the 2H, 1H and FC 

networks, respectively. Since the networks with fewer spokes are meant to save costs 

through economies of density, a natural expectation is that network structures with fewer 

spokes would transport more total passengers compared to the network structures with 

more spokes. Thus inequalities 

(𝑞2ℎ
𝑚𝑚) + 4 (𝑞2ℎ

𝑠𝑚 +
𝑄2ℎ

𝑠𝑠

2
) < 𝑞ℎ

𝑚𝑚 + 2𝑄ℎ
𝑠𝑚 + 2(𝑞ℎ

𝑠𝑚 + 𝑄ℎ
𝑠𝑚 + 𝑄ℎ

𝑠𝑠)  (2.19) 

𝑞𝑓𝑐
𝑚𝑚 + 4𝑞𝑓𝑐

𝑠𝑚 + 𝑞𝑓𝑐
𝑠𝑠 < 𝑞ℎ

𝑚𝑚 + 2𝑄ℎ
𝑠𝑚 + 2(𝑞ℎ

𝑠𝑚 + 𝑄ℎ
𝑠𝑚 + 𝑄ℎ

𝑠𝑠)  (2.20) 

𝑞𝑓𝑐
𝑚𝑚 + 4𝑞𝑓𝑐

𝑠𝑚 + 𝑞𝑓𝑐
𝑠𝑠 < (𝑞2ℎ

𝑚𝑚) + 4 (𝑞2ℎ
𝑠𝑚 +

𝑄2ℎ
𝑠𝑠

2
) (2.21) 
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should hold for most parameter values, implying the expressions in (2.16) (2.17) and 

(2.18) are likely to be negative21. Therefore, increasing 𝜃 tends to raise the advantage of the 

network that carries more total traffic on its spokes, in a two way comparison. 22 

 

2.4 Increasing Market Asymmetry 

2.4.1 Increasing 𝜹 asymmetry  

It would be of interest to see what happens to the choice of network structure after 

increasing market asymmetry in the model. A crude comparison can be made by increasing 

the asymmetry parameter 𝛿 from 4 in the basic model as described in the last section to 

2523, so that the size of the major cities increases from 4 times the size of small cities to 25 

times their size. Figure 2.9 shows the shifts of two of the indifference curves (from the 

dotted line to the solid line). While the profit indifference curve between FC and 2H (the 

thinner curves) shifts leftward, the profit indifference curve between 2H and 1H (the 

thicker curves) shifts leftward and downward. 

                                                           
21 Note that inequalities (2.19)-(2.21) do not guarantee that (2.16)-(2.18) are negative since 𝐴 + 𝐵 < 𝐶 + 𝐷 does not 

guarantee that 𝐴2 + 𝐵2 < 𝐶2 + 𝐷2. However, 𝐴 + 𝐵 < 𝐶 + 𝐷 is sufficient to prove 𝐴2 + 𝐵2 < 𝐶2 + 𝐷2 if 

additional conditions like 𝐴 < 𝐶 and 𝐵 < 𝐷 are given. In our context, for example, adding conditions: q2h
mm <

qh
mm + 2Qh

sm and 2 (q2h
sm +

Q2h
ss

2
) < (qh

sm + Qh
sm + Qh

ss) can guarantee the negativity of (16).  
22 Figures showing the sign of the Δαs in the feasible parameter space can be provided upon request. 
23 Outcome for more values of δ are also studied and summarized later in Table 2.2. For simplicity, Section 2.4.1 

only gives details of the shifts in indifference curves for the case where δ increases from 4 to 25. 
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Figure 2.9 Shifts in the indifference curve when 𝛅 change from 4 to 25 

𝒏 = 𝟒, 𝝓 = 𝟏𝟎 
 

Figure 2.10 shows the change of the overall feasible parameter space, as well as the 

feasible parameter space favoring the 2H network, when δ increases from 4 to 25. Note 

that as the indifference curves shift, the feasible parameter space also shrinks. The “wedge” 

formed by the parameter space supporting the FC network (shaded by darker grey) and 2H 

network (shaded by light grey) takes up a higher proportion of the feasible parameter 

space, with the parameter space supporting the 1H network (the unshaded area inside the 

feasible parameter space) decreasing. Hence, even though the total area of the parameter 

space supporting the 2H network does not change much as 𝛿 increases, the percentage of 

the area in the overall feasible parameter space supporting the 2H network increases. By 
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numerically integrating the areas in Figure 2.10, 24 the percentage of the feasible parameter 

space favoring the 2H network when δ takes on different values is reported in Table 2.2 

Column 2. When 𝛿 increases from 2 to 25 as in Figure 2.10, the percentage of the feasible 

area favoring the 2H network increases from 1.5% to 43.1%. From the analysis above, it is 

safe to say that as asymmetry increases between the major cities and small cities, the 

network carrier becomes more likely to choose the 2H network.  

Columns 3 and 4 of Table 2.2 report the percentage of the feasible parameter space 

favoring the 1H and FC network at different values of δ. As δ increases, the percentages of 

the feasible area supporting the 1H network and the FC network decrease (except for the 

case where δ increase from 2 to 4). The decrease in the percentage of the feasible 

parameter space is fast for the 1H network (it drops from 63% to 31% when δ increases 

from 2 to 25), while the percentage of the feasible parameter space supporting the FC 

network decreases much slower as δ increases. The percentage slightly increases from 

35% to 38% when δ increases from 2 to 4, then decreases monotonically from 38% to 26% 

when δ increases from 4 to 25, which is small compared to the 32% drop of percentage of 

feasible parameter space supporting the 1H network. Hence, we can learn from Table 2.2 

that, as market asymmetry increases, the possibility that 2H network is optimal increases 

mostly due to the decreasing possibility that 1H network is optimal.  

                                                           
24 Since the areas are unbounded, the profit indifference curves and the upper bounds of the feasible parameter space 

are nonintegrable with respect to 𝜃 over its entire area. Noting that the 𝛼-axis is the asymptote for the two curves, 

approximating the areas by integrating them over a “truncated feasible parameter space”, where the minimum 𝜃 

equals 1 × 10−4 instead of 0, yields finite results. Note that the truncated parameter space captures nearly all of the 

actual region, and that the space extends up to an 𝛼 value of 1.11 × 104. 
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Figure 2.10 Feasible Parameter Space Supporting 2H network 𝒏 = 𝟒, 𝝓 = 𝟏𝟎, 𝜹 =

𝟒(𝒖𝒑𝒑𝒆𝒓 𝒑𝒂𝒏𝒆𝒍) 𝒂𝒏𝒅  𝜹 = 𝟐𝟓(𝒍𝒐𝒘𝒆𝒓 𝒑𝒂𝒏𝒆𝒍) 
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Table 2.2 Percentage of Parameter Space Supporting 2H when 𝛅 changes 

 𝐧 = 𝟒, 𝛟 = 𝟏𝟎 

δ = Percentage of 2H Percentage of FC Percentage of 1H 

2 0.0150 0.3590 0.6260 

4 0.0687 0.3837 0.5476 

5 0.0955 0.3830 0.5215 

10 0.2086 0.3539 0.4375 

15 0.2964 0.3192 0.3844 

20 0.3687 0.2872 0.3441 

25 0.4305 0.2582 0.3113 

 

  The above outcome is intuitively transparent. With growing market asymmetry, the 

carrier operating a 1H network would want to add direct flights to the potential hub city 

(city B) to capture its increasingly important direct market. However, there is less incentive 

to offer direct flights between smaller cities since these markets are thin and establishing 

direct routes is costly. Hence, relative attractiveness of the 2H network grows compared to 

the 1H and FC networks. 

2.4.2 Increasing 𝝓 asymmetry 

By analogue to section 2.4.1, another exercise is to increase the fixed cost 𝜙 and 

analyze how the indifference curves and the parameter spaces supporting each network 

structure change. Assuming again a simpler network with only 4 nodes, and setting 
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parameter δ = 25 instead of the previous value of 4,25 Figure 2.11 shows the change of 

overall feasible parameter space, as well as the feasible parameter space favoring the 2H 

network, when 𝜙 increases from 10 to 20. 26Note that, in contrast to a changing δ, the 

overall feasible parameter space does not change while the two indifference curves move 

leftwards. By numerically integrating the areas in Figure 2.9, the percentage of the feasible 

parameter space favoring the 2H network decreases from 43% to 31%. The percentages of 

the feasible parameter space favoring the 2H network when 𝜙 takes on different values are 

computed and reported in Table 2.3 Column 1. It can be concluded from the table that, 

holding everything else constant, an increase in the fixed cost parameter 𝜙 decreases the 

proportion of the feasible parameter space favoring the 2H network. 

Similar to the previous section, Columns 3, 4 and Columns 6, 7 of Table 2.3 report 

percentages of the feasible parameters space favoring the 1H and FC network at different 

value of 𝜙 given a high or low value of 𝛿. As 𝜙 increases, the percentage of the feasible area 

supporting the FC network decreases along with that supporting the 2H network. The 

percentage drops from 38% to 12% when 𝜙 increases from 10 to 60 given 𝛿 = 4, and it 

drops from 26% to 1% given 𝛿 = 25. Hence, regardless of the extent of market asymmetry, 

increasing fixed cost would decrease the possibility that FC network is optimal. Oppositely, 

the percentage of the feasible parameter space supporting the 1H network increases 

significantly as 𝜙 increases. The percentage increases from 55% to 81% when 𝜙 increases 

from 10 to 60 when 𝛿 = 4 and the percentage increases from 31% to 68% when 𝛿 = 25. 

                                                           
25 Here a greater value of 𝛿 is used so that the changes of indifference curves is significant enough to be observed 

visually in Figure 2.11 when 𝜙 increases. However, the change in parameter space supporting different networks 

given different value of 𝜙 when δ is small (δ = 4) is also analyzed and reported in Table 2.3 Column 1. The same 

logic applies to Section 2.4.3.   
26 Outcome for more values of 𝜙 are also studied and summarized later in Table 2.3. For simplicity, Section 2.4.2 

only gives details of the shifts in indifference curves for the case where δ increases from 10 to 20. 
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Hence, we can learn from Table 2.3 that, as fixed cost increases, the decrease in the 

percentage of the feasible parameter space supporting 2H mostly comes from the increase 

in possibility that 1H network is optimal.  

Such an outcome can also be explained intuitively: since the FC network requires 

the carrier to establish more direct routes, which becomes costly as 𝜙 increases, it would 

be beneficial to the carrier to operate a network with fewer direct links. While the 2H 

network requires fewer direct spokes compared to the FC network, it almost doubles the 

required spokes needed by a 1H network (2(𝑛 − 2) spokes compared to 𝑛 − 1 spokes). 

Hence when 𝜙 increases, 1H becomes more favorable relative to the other two network 

types.  
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Figure 2.11 Feasible Parameter Space Supporting 2H network 𝒏 = 𝟒, 𝜹 = 𝟐𝟓, 𝝓 =
𝟏𝟎(𝒖𝒑𝒑𝒆𝒓 𝒑𝒂𝒏𝒆𝒍) 𝒂𝒏𝒅 𝝓 = 𝟐𝟎(𝒍𝒐𝒘𝒆𝒓 𝒑𝒂𝒏𝒆𝒍) 
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Table 2.3 Percentage of Parameter Space Supporting 2H when 𝛟 changes 
𝐧 = 𝟒 

 
𝛅 = 𝟒 𝛅 = 𝟐𝟓 

𝛟 = % of 2H % of FC % of 1H % of 2H % of FC % of 1H 

10 0.0687 0.3837 0.5476 0.4305 0.2582 0.3113 

20 0.0672 0.2784 0.6544 0.4195 0.1156 0.4649 

40 0.0634 0.1770 0.7596 0.3655 0.0751 0.5594 

60 0.0593 0.1215 0.8192 0.3114 0.0128 0.6758 

 

2.4.3 Increasing Number of Cities 

Another exercise is to increase the number of cities served by the airline. Fixing the 

asymmetry parameter (𝛿 = 25) and the fixed cost parameter (𝜙 = 10), Figure 2.12 

compares the cases where 𝑛 = 4 and 𝑛 = 1027. Again, the lightly shaded areas again show 

the feasible parameter space favoring 2H and the darkly shaded areas show the feasible 

parameter space favoring FC, while the rest of the feasible parameter space favors 1H. 

Numerically integrating the areas, the percentage of the feasible parameter space favoring 

2H network decreases from 43% to 25%. Further analysis shows that further increasing 

the number of cities would decrease the percentage, so that it can be concluded that, as the 

total number of cities increases, the 2H network becomes relatively less profitable. 

Again, Columns 3 and 4 in Table 2.4 show the change in the percentage of the 

parameter space for the 1H and FC networks. Similar to the case where 𝜙 increases, an 

increase in 𝑛 also decreases the percentage of the parameter space supporting FC while 

increasing the parameter space supporting 1H. 
                                                           
27 Outcomes for more values of 𝑛 are also studied and summarized later in Table 2.4. For simplicity, section 2.4.3 

only gives details of the shifts in indifference curves for the case where 𝑛 increases from 4 to 10. 
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The above observation seems counterintuitive, as one would naturally think 

increasing the number of cities in the network would result in a need for more hubs. 

However, as the number of cities increases, the 1H network can make more use of 

economies of density now that there are more connecting passengers traveling out of any 

given spoke city. While the 2H network also utilizes economies of density, connecting 

passengers are split between the two hubs and thus each hub has a much lower utilization 

of economies of density as compared to the 1H network. Hence, the 2H and FC network 

become less profitable compared to the 1H network, decreasing the percentage of the 

feasible parameter space supporting the network structures with more spokes.  
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Figure 2.12 Feasible Parameter Space Supporting 2H network 

 𝜹 = 𝟐𝟓, 𝝓 = 𝟏𝟎, 𝒏 = 𝟒(𝒖𝒑𝒑𝒆𝒓 𝒑𝒂𝒏𝒆𝒍) 𝒂𝒏𝒅 𝒏 = 𝟏𝟎(𝒍𝒐𝒘𝒆𝒓 𝒑𝒂𝒏𝒆𝒍) 
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Table 2.4 Percentage of Parameter Space Supporting 2H when 𝛅 changes 

 𝜹 = 𝟐𝟓, 𝝓 = 𝟏𝟎 

𝒏 = Percentage of 2H Percentage of FC Percentage of 1H 

4 0.4305 0.3837 0.1858 

8 0.2892 0.3830 0.3278 

10 0.2502 0.1001 0.6497 

16 0.1653 0.0600 0.7747 

20 0.1312 0.0473 0.8215 

 

2.5 The choice between 1H and 2H network after competitor entry 
 

Now consider the effect of the entry of a competitor on network choice. Similar to the 

monopoly airline case described in section 2.2, the network carrier (NC) serves multiple 

symmetrically located cities with asymmetric city sizes: two major cities (H and B) and two 

small cities (A and C). Different from the monopoly model, a competitor enters the market 

by connecting the two small cities A and C, as depicted by Figure 2.13 for the case of four 

cities. For simplicity and to focus only on the effect of network structure on network choice, 

assume that the competitor and network carrier share the same cost function, with the 

same value of 𝜃. 
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Figure 2.13 Network Types with Competitor 

Additionally use superscript N(C) to denote the type of carrier: Network Carrier 

(Competitor). Note that the presence of the competitor creates competition in the AC 

market, so that the demand functions in the AC market for 1H, 2H and FC network become: 

𝑝ℎ
𝑠𝑠𝑁

= 𝛼 − 𝛽(𝑞ℎ
𝑠𝑠𝐶

+ 𝑄ℎ
𝑠𝑠𝑁

) − 𝜇       𝑝ℎ
𝑠𝑠𝐶

= 𝛼 − 𝛽(𝑞ℎ
𝑠𝑠𝐶

+ 𝑄ℎ
𝑠𝑠𝑁

) 

𝑝2ℎ
𝑠𝑠𝑁

= 𝛼 − 𝛽(𝑞2ℎ
𝑠𝑠𝐶

+ 𝑄2ℎ
𝑠𝑠𝑁

) − 𝜇       𝑝2ℎ
𝑠𝑠𝐶

= 𝛼 − 𝛽(𝑞2ℎ
𝑠𝑠𝐶

+ 𝑄2ℎ
𝑠𝑠𝑁

) 

𝑝𝑓𝑐
𝑠𝑠𝑁

= 𝑝𝑓𝑐
𝑠𝑠𝐶

= 𝛼 − 𝛽(𝑞𝑓𝑐
𝑠𝑠𝐶

+ 𝑞𝑓𝑐
𝑠𝑠𝑁

)  

Other than the changes in the demand functions, the network carrier’s profit functions for 

the three network types remain unchanged. The competitor’s profit is:  

             max  𝜋𝑠𝑠𝐶
= 𝑞𝑠𝑠𝐶

𝑝𝑠𝑠𝐶
− 𝑐(𝑞𝑠𝑠𝐶

)                                                                                           (2.27) 

Again, consider the simplest case where 𝑛 = 4 and where 𝛽 is normalized to 1. Solving 

for the optimal quantities, prices and the feasible parameter space,28 the new profit 

indifference curves can be compared with the ones before the competitor entry. In the case 

where ϕ = 10, δ = 4, Figure 2.14 shows that within the feasible parameter space, the profit 

indifference curve comparing 2H and 1H (the thick black curve) does not visibly change as 

a competitor enters the market, while the profit indifference curve comparing the FC 

network and 2H network (the thin black curve) shifts up after the competitor’s entry. Thus, 

                                                           
28 Since the analytical solution in this case is extremely complex, the process is not repeated here. 
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the area of feasible parameter space supporting the 2H network increases (from the black 

area to the summation of black and gray areas) when Cournot competition is introduced. 

Numerically integrating the areas in Figure 2.14 and the corresponding feasible parameter 

spaces shows that the percentage of the feasible parameter space favoring the 2H network 

increases from 6.9% with monopoly to 9.3% after introducing competition.  

To sum up, given asymmetric markets, linear marginal costs with 4 nodes and fixed 

cost per spoke, competitor entry connecting one pair of the spoke cities shrinks area of the 

feasible parameter space and increases the percentage of the feasible space favoring the 2H 

network. Hence, the network carrier is more likely to choose the 2H network after the 

entry of a competitor. 

 

Figure 2.14 Shifts in the Indifference Curve before and after Competitor Entry 

 𝒏 = 𝟒, 𝜹 = 𝟒, 𝝓 = 𝟏𝟎 
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2.6 Conclusion 
 

This chapter has provided a simple justification for the existence of the multi-hub 

networks adopted by many large network carriers around the world. It shows analytically 

that, for a monopolist airline using a cost function specification that is quite common in the 

literature, economies of density do not guarantee optimality of the 1H or FC network if 

fixed cost and asymmetric markets are introduced into the model. A two-hub network may 

be favored in a large portion of the feasible parameter space as long as there is a large 

asymmetry between the sizes of major cities and small cities. Moreover, with increasing 

asymmetry in market sizes, the monopoly airline has a higher likelihood of adopting the 2H 

network. Increases in fixed cost or number of cities would slightly decrease this likelihood. 

After incorporating competition from another carrier offering a non-hub direct route 

from one small spoke city to another, the model reveals that such competition makes the 

network carrier more prone to adopt a multi-hub network. For future work, a useful 

extension would add flight frequency and aircraft-size to the model, so that the effect of 

these factors on network structure choice could also be evaluated. Another extension 

would be welfare analysis comparing the network choices of the monopolist and social 

planner.    
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Appendix 2 
 

Derivation of the Parameter Space: Matrix of the second order derivatives for the 1H 

network maximization problem is:  

(a1) [ 

−4 + 4𝜃 0 4𝜃 4𝜃
0 −2 + 2𝜃 0 4𝜃

4𝜃 0 −2 + 4𝜃 4𝜃
4𝜃 4𝜃 4𝜃 −4 + 12𝜃

]  

For (a1) to be negative definite, the following conditions must be satisfied：  

(a1) −4 + 4𝜃 < 0  

(a2) 1 − 2𝜃 + 𝜃2 > 0 

(a3) (1 − 3𝜃)(−1 + 𝜃) < 0 

(a4) 1 − 7𝜃 + 10𝜃2 > 0 

Combining the above conditions, θ <
1

5
 must hold for the Hessian matrix to be negative 

definite. When μ = 0, the non-negativity constraints (when 𝜃 <
1

5
) for 𝑞ℎ

𝑠𝑠, 𝑞ℎ
𝑚𝑚, 𝑄ℎ

𝑠𝑠, 𝑄ℎ
𝑠𝑚, 

𝑝ℎ
𝑠𝑠, 𝑝ℎ

𝑚𝑚, 𝑃ℎ
𝑠𝑠 , 𝑃ℎ

𝑠𝑚 , and the corresponding marginal cost(MC) are listed below:  

(a5) 
1

1−2θ
< 𝛼  when θ <

1

5
 

(a6)  
2

1+θ
< 𝛼  when θ <

1

5
 

(a7) 
1

−1+8θ
< 𝛼  when 

1

8
< 𝜃 <

1

5
 ,  0 < 𝛼 when  θ <

1

8
   

(a8) 
2

−1+11θ
< 𝛼  when 

1

11
< 𝜃 <

1

5
 , 0 < 𝛼 when  θ <

1

11
 

(a9) α <
1

3θ
  when θ <

1

5
  

When 𝜃 ≠
1

8
 𝑎𝑛𝑑 𝜃 ≠

1

11
, it is easy to simplify the above conditions to:  

(a10)  
2

1+θ
< 𝛼 <

1

3θ
  when θ <

1

5
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Thus, equation (a10) describes the feasible parameter space in the optimization 

problem for HS network. 

Similarly, matrix of the second order derivatives for the 2H network maximization 

problem is:  

(a11) [
−8 + 8𝜃 4𝜃 0

4𝜃 −2 + 2𝜃 0
0 0 −2 + 2𝜃

] 

For (a11) to be negative definite, the following condition must be satisfied: 

(a12) −8 + 8θ < 0 

(a13) 16 − 32𝜃 > 0 

(a14) (16 − 32𝜃)(−2 + 2𝜃) < 0 

Hence θ <
1

2
 must hold for the Hessian matrix to be negative definite. When μ = 0, the 

non-negativity constraints (when 𝜃 <
1

2
) for 𝑞2ℎ

𝑠𝑚, 𝑄2ℎ
𝑠𝑠 , 𝑄2ℎ

𝑚𝑚, 𝑝2ℎ
𝑠𝑚, 𝑃2ℎ

𝑠𝑠 , 𝑃2ℎ
𝑚𝑚, and the 

corresponding marginal cost(MC) are listed below:  

(a15) 
2

𝜃−2
< 𝛼 ,  

(a16) 1 < 𝛼   

(a17) 
2

1+𝜃
< 𝛼  

(a18) 0 < 𝛼, when 0 < 𝜃 ≤
2

7
, 0 <  α <

2

−2+7𝜃
, when 

2

7
< 𝜃 ≤

1

2
 

(a19) 0 < 𝛼, when 0 < 𝜃 ≤
1

5
, 0 < 𝛼 <

2

−1+5𝜃
, when 

1

5
< 𝜃 <

1

2
 

(a20) 0 < 𝛼 <
2−3𝜃

3𝜃−5𝜃2+𝜃3, when 0 < 𝜃 ≤
1

2
 

(a21) 0 < 𝛼 <
1

𝜃+𝜃2, when 0 < 𝜃 ≤
1

2
, 

When  𝜃 ≠
2

7
 and ≠

1

5
 , it is easy to simplify the conditions (a12) ~ (a15) to:  



 

80 

 

(a22) 
2

1+θ
< 𝛼 <

1

θ+θ2  when θ <
1

2
 

Similarly, the matrix of the second order derivatives for the FC network maximization 

problem is:  

(a23) [
−2 + 2𝜃 0 0

0 −8 + 8𝜃 0
0 0 −2 + 2𝜃

] 

For (a22) to be negative definite, the following conditions must be satisfied: 

(a24) −2 + 2𝜃 < 0 

(a25) 16(−1 + 𝜃)2 > 0 

(a26) 32(−1 + 𝜃)3 < 0 

Hence θ < 1 must hold for the Hessian matrix to be negative definite. When μ = 0, the 

non-negativity constraints (when 𝜃 <
1

2
) for 𝑞𝑓𝑐

𝑠𝑚, 𝑞𝑓𝑐
𝑠𝑠 , 𝑞𝑓𝑐

𝑚𝑚, 𝑝𝑓𝑐
𝑠𝑚, 𝑝𝑓𝑐

𝑠𝑠 , 𝑝𝑓𝑐
𝑚𝑚, and the 

corresponding marginal cost(MC) are listed below:  

(a27) 1 < 𝛼  

(a28) 0 < 𝛼  when 0 < 𝜃 ≤
1

2
, 0 < 𝛼 <

1

−1+2𝜃
 when 

1

2
< 𝜃 < 1 

(a29) 0 < 𝛼 <
1

𝜃
 

it is easy to simplify the conditions (a24) ~ (a29) to:  

(a30) 1 < 𝛼 <
1

𝜃
  when 𝜃 < 1 

Comparing (a10), (a22) and (a30), it is easy to see that the feasible areas in a 2H and 

an FC network fully encompass the feasible area in a 1H network. Figure a1 below 

demonstrates the relationship between the three feasible areas. The shaded area is the 

feasible area that we adopt for the analysis.   
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Figure 2.A1 Profit Indifference Curve and Feasible Parameter Space 
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Chapter 3  

Service Competition in the Airline Industry: 

Schedule Robustness and Market Structure 

 

3.1   Introduction 
 

      Starting from as early as 1987, air traffic delays and their impact on consumers have 

become a significant issue in the airline industry. Over the past 20 years, on-time arrival 

performance (percentage of flights arriving at the destination gate within 15 min of 

scheduled arrival) has fluctuated between 65% and 90% on a seasonal basis.29 The 

successful implementation of solutions to flight delays depends on understanding the 

airline's scheduling decisions, given the impact of these decisions on delays. While a large 

literature studies the factors that affect airlines' scheduling decisions, little attention has 

                                                           
29 The terrorist attack of 9-11 and the subsequent crisis of SARS alleviated the flight delay concerns for a short 

period after 2001, but the issue returned in 2005. 
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been paid to the relationship between market structure and airlines' schedule robustness 

(how well can a schedule cope with a delay to a particular aircraft). To remedy this issue, 

the present study attempts to answer the question of how airline decisions on schedule 

robustness are affected by market structure. The contribution of this study is to measure a 

flight's “ground buffer”, which equals the excess turnaround time over the minimum 

possible time, and to relate it to measures of competition. The results show how 

competition affects the “tightness” of airline scheduling, and thus the schedule's robustness 

to disruptions. More generally, this study provides evidence on product-quality 

competition in the airline industry, asking whether carriers improve the robustness of their 

schedules when markets become more competitive. 

      High costs arise from delays for airlines and passengers. For airlines, delays increase the 

costs of staffing, fuel, maintenance and potential rebooking (Peterson et al. 2013). Besides 

these direct costs, delays also have an impact on airlines’ revenue, as inferior on-time 

performance may lead passengers to switch to airlines with better on-time performance 

(Cook, Tanner, and Lawes 2012). For passengers, delays cause unanticipated additional 

travel time, hence creating opportunity costs both for leisure and business activities 

(Baumgarten et al., 2014). In addition, delays also induce a welfare loss incurred by 

passengers who avoid air travel. Using econometric and simulation models, Ball et al. 

(2010) estimate the costs of delays borne by airlines in 2007 due to above factors to be 

$8.3 billion, and the total costs of delay borne by passengers to be $18.9 billion. Moreover, 

travel delays are also estimated to reduce gross domestic product (GDP) by a further $4 

billion.  
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      To identify the cause of delays, airlines are required by DOT to report the causes of flight 

delays using the following five tracking codes: 1) carrier delays: airline-specific factors 

including mechanical failures, limited labor resources, gate/ramp congestion, etc. 2) 

extreme weather 3) National Airspace System (NAS): delays and cancellations attributable 

to the national aviation system arising from a broad set of conditions, such as non-extreme 

weather conditions, airport operations, heavy traffic volume, and air traffic control 4) 

security: delays caused by bomb threats, weapon issues and excessive lines at security 

screening area, etc. 5) late arriving aircraft. It should be noted that airport congestion 

caused by limited airport capacity is one of the major contributors to NAS delays (i.e. 

aircraft queuing for runways).  

      Figure 3.1 summarizes the total number of delay minutes associated with each cause in 

the period Aug 2004 - May 2005. It shows that carrier-related delays cause 28% of overall 

flight delays, and NAS related delays are responsible for around 31% of delays. It should be 

noted that the most important source of delays is aircraft late arrivals, which account for 

34% of total delays. Moreover, as Figure 3.2 shows, this percentage has been increasing 

over the years. Since the year 2004, late arriving aircraft delays have become the #1 cause 

of delays. Taking a closer look at the cause of delays through a single day, Figure 3.3 shows 

that late aircraft delays snowball through the day as the follow-on impact of carrier, 

weather and airspace delays is felt on future flight departures using the impacted aircraft 

(Jenkins et al.  2012). 

      Airport congestion is a major cause of NAS delays and may be the original cause of late 

arriving aircraft delays (i.e. aircraft encountered runway congestion during their previous 

flight segment), and a large literature focuses on mitigating such congestion, mainly 
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through investigating the relationships between on-time performance, airlines’ bank 

structure, airport hubbing, and airports’ competitive structure (Mazzeo and Michael, 2003; 

Rupp et al. 2006). Among these studies, the existence of internalization of airport 

congestion has been shown to have important public policy implications for the magnitude 

of airport congestion tolls. Internalization by airlines (where carriers take account of self-

imposed congestion) implies that flight operations in airports where one airline operates 

most of the flights will be organized to generate less congestion on the runways and gates 

than in airports where multiple airlines operate and each airline operates a small share of 

the flights, limiting the extent of internalization (Brueckner, 2002; Brueckner and Pels, 

2005; Pels and Verhoef, 2004; Zhang and Zhang, 2006; Basso and Zhang, 2007; Brueckner, 

2009). 

 

Figure 3.1  Minutes of Flight Delays and Percentage of Total Delays for Different 

Causes of Delay. Aug 2004-May 2005 
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Figure 3.2: Percentage of Total Delay Minutes by Cause, from 2003 to 2014. 

SOURCE: Bureau of Transportation Statistics 
 

 

Figure 3.3: Average Delay per Scheduled Flight, by Cause and Hour of Day. 

SOURCE: “The State of US Aviation: Comprehensive Analysis of Airline Schedules 

and Airport Delays” by Jenkins et al. 2012, American Aviation Institute. 
 

      However, one should also realize that, besides reducing airport congestion and 

increasing airport capacity, on-time performance can also be improved through mitigating 



 

87 

 

the “snowball effect” of late aircraft delays by loosening aircraft rotation schedules, 

allowing more “buffer” time between flights. Therefore, it is crucial to understand how such 

scheduling decisions are made and how they depend on the competitive structure of the 

market. 

      Combining elements of previous approaches, this chapter explores this issue, offering an 

innovative addition to the theoretical and empirical literature on the cause of delays and 

the effect of market structure on delays. While empirical literature on the subject mainly 

focuses on the relationship between market structure and airport congestion-related 

delays (Daniel (1995) and Ater (2012)), this chapter explores how market structure affects 

airlines’ scheduling-related delays. In particular, this chapter hypothesizes airlines would 

respond to competition by adjusting the operational robustness of their schedules, which is 

captured by the buffer time built into an aircraft’s turnaround time. This buffer time equals 

the extra time beyond the minimum time required for loading and unloading that is 

incorporated in the turnaround interval. The connection is explored by relating the length 

of buffer time (in minutes) to the extent of route competition (measured by the number of 

carriers serving the same route) and airport concentration (measured by the Herfindahl-

Hirschman index (HHI), which is computed from airline flight shares at the airport).  

      Theoretically, buffer time should be added until the resulting marginal cost equals the 

marginal benefit from fewer flight delays caused by foreseeable factors. However, such 

marginal costs and marginal benefits are also subject to change under a different 

competitive environment. Following this intuition and to motivate the empirical analysis, 

section 3.2 provides a simple theoretical model with price and service-level competition 

(each firm simultaneously chooses a service level and a price level). Such “attraction 
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models” (Bernstein and Fedegruen (2004)) are commonly used in the marketing and 

operations research literature. For example, Calton (1989) and Calton and Perloff (1999) 

argue that demand functions should be specified as a function of prices and customer 

service levels, which they quantify by the customer's waiting time. Banker et al. (1998) and 

Tsay and Agrawal (2000) characterize the equilibrium behavior of oligopolies with a fixed 

number of firms competing simultaneously with their price and a “quality" or service 

instrument. Similar models are also used to explain flight frequency in the airline industry 

(Brueckner and Flores-Fillol (2006), Brueckner and Zhang (2010), Brueckner (2010), and 

Brueckner and Luo (2012)). 

      The model points out that airlines face a trade-off between benefits arising from 

increased operational robustness through adding buffers into flight schedules and the costs 

due to a decrease in fleet utilization. Moreover, the model yields a unique Nash equilibrium 

and provide comparative-static properties of the equilibrium. A large empirical literature 

studies such a choice of product quality using structural models (Berry (1994), Berry, 

Levinsohn and Pakes (1995)), yielding estimates of taste and cost parameters, which are 

then used to simulate the effects of mergers on product quality or variety. By contrast, the 

goal of this study is to measure the direction and strength of market-structure effects on 

airline scheduling decisions instead of identifying the underlying parameters of the utility 

and production parameters. 

      Guided by the theoretical model in section 3.2, the first step of the empirical analysis is 

to use a Tobit model to verify that an increase in the length of the ground buffer indeed 

reduces departure and arrival delays (the negative empirical relationship is shown in 

Figure 3.4 after controlling for other factors that may contribute to delays (including 
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schedule-related factors like airport congestion and non-schedule related factors like 

weather). The measure of ground buffer is derived using flight schedules, following a 

detailed procedure described in section 3.3.2. The estimation reveals that around 0.35 

minutes of departure delay can be eliminated by 1 extra minute of buffer, while the effect of 

buffers on arrival delays is around 0.23 minutes. 

      The second step of the empirical analysis examines how buffer length is affected by 

market structure, which is quantified at the route and airport level using the airport 

concentration level and route competition. While route competition is used to account for 

the direct effects of competition driven by the non-stop passengers on the route, it should 

be noted that airlines operating hub-and-spoke networks will inevitably compete on one-

stop routes that originate at the airport, flying passengers to the same destinations via 

different hubs. Hence effects of competition at such a level is captured by the airport 

concentration at the origin airport, as the concentration levels reflect the choice sets of 

airlines for the originating passengers.  

      Controlling for route-specific effects, the baseline estimations reveal a significant 

positive effect of competition on buffer time, so that decreasing the market concentration 

at the origin airport, or increasing the number of competitors serving a route, increases the 

operational robustness of flight schedules, improving on-time performance. As an 

extension of the baseline estimations, the study also explores whether this positive 

relationship between competition and buffer time is heterogeneous across routes playing 

different roles in a hub-and-spoke network. In such a network, a longer buffer time at hub 

airports not only improves the operational robustness of the schedule, but it also serves as 

a tool to synchronize the arrival and departure banks (waves of flights departing or 
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arriving at the hubs). Moreover, longer buffer time at the hubs also prolongs the layover 

time for connecting passengers. With this additional trade-off between achieving 

economies of density and lower demand (due to the longer layovers), the effect of market 

structure on buffer decisions for hub originating flights is expected to differ from non-hub 

originating flights. Interacting the market structure measures with an indicator of an 

airline-hub originating flight, extended estimation in section 3.4 reveals that the effect of 

competition on operational robustness is weaker for the hub originating flights.  

 

Figure 3.4: The relationship between ground buffer time and departure delay for 

airports with at least 1 percent of flights, calculated from flights departed during Aug 

2004 - May 2005. This figure displays a negative empirical relationship between ground 

buffer length and departure delay experience by flights. The bubble size denotes the 

percentage of total flights handled by the airports. 

       

      The remainder of the chapter is organized as follows. Section 3.2 describes the 

theoretical model that guides the empirical estimation. Section 3.3 presents the sources of 

data and the construction of variables used in the estimation. Section 3.4 discusses the 

empirical model and presents the estimation results. Section 3.5 concludes the chapter.  
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3.2   Theoretical Framework 

3.2.1 Turnaround time and buffer 

      Before the theoretical model is presented, it is important to clarify the concepts of 

turnaround time and buffer, as well as the relationships between them and delay. Before an 

airplane can make another trip, it must remain at the gate to allow passengers to 

disembark, have cargo and baggage unloaded, have the airplane serviced, have cargo and 

baggage loaded, and to allow passengers to board for the next trip. According to Geodeking 

(2010), the time span from touching the gate (“on blocks”) until pushing back from the gate 

again (“off blocks”) is called turnaround time, or TAT, of an aircraft.  

 

Figure 3.5: The relationships between turnaround time, buffer and departure delay. The 

solid arrows represent the scheduled arrival time and the scheduled departure times of 

flights 𝜶 and 𝒃. The dotted arrows represent the actual departure and arrival times of 

flights 𝜶 and 𝒃. The scheduled turnaround time (TAT) is the time in between flight 𝜶's 

scheduled arrival and flight 𝒃's scheduled departure. The TAT must be larger than the 

minimum turnaround time (minTAT) required for turning the aircraft, and the additional 

time in TAT in excess of minTAT is the (ground) buffer. 
 

 

      Because each aircraft routing is a sequence of flight segments flown by a single aircraft, 

and arrival delay will result in a departure delay if not enough TAT is scheduled between 

the two consecutive flight segments in that routing. This “delay propagation” often results 
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in delays for downstream flight segments. Building buffers into ground times30 helps 

reduce departure delays, as shown in Figure 3.5. The solid arrows in Figure 3.5 represent 

the original schedule for two flight segments 𝛼 and 𝑏, performed by one aircraft. The dotted 

arrows represent the actual departures and arrivals of these flight segments. As illustrated 

in the figure, the scheduled TAT consists of two components: the minimum turnaround 

time (minTAT) which is the minimum time required to turn the plane around, and the 

buffer built into the TAT to reduce the vulnerability of the schedule structure to delays. 

Hence, buffer is the additional time in TAT in excess of minTAT: 

                                                 Buffer𝑎𝑏 = TATab −  𝑚𝑖𝑛TAT                                                            (3.1) 

      If the arrival delay of flight 𝛼 is shorter  than the buffer built into the turnaround time 

(i.e., the actual departure and arrival time follows 𝛼′), then the arrival delay can be 

absorbed by the buffer and the aircraft can depart on time for its next flight segment 𝑏. 

However, if the actual arrival delay of flight 𝛼 is longer than the buffer built into the 

turnaround time between flight 𝛼 and 𝑏 (i.e., the actual departure and arrival time follows 

𝛼′′), then some portion of the arrival delay cannot be absorbed and is propagated to flight 

𝑏, causing the actual departure and arrival time at 𝑏 to be postponed to 𝑏′. 

3.2.1 Theoretical model 

      Consider a travel market connecting two cities. Passengers in the market have mass 𝑀, 

and the market is served by 𝑛 identical competing airlines. First consider the demand side 

of the model, where consumers value consumption and travel, and travel valuation 

depends on the airline used to make the trip. Assume a random utility model in which 
                                                           
30 Adding buffers to “airtime” was found ineffective in reducing delays by the airlines, as these buffers were 

reabsorbed probably due to down-prioritization when approaching a congested airport and to less favorable taxiing 

routes or gate allocation (Geodeking, 2012, p.69). 
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consumers make a discrete choice among the 𝑛 airlines in the market, selecting the 

alternative yielding the greatest utility (Ben-Akiva and Lerman, 1985; McFadden, 1974). In 

the model, indirect utility for consumer 𝑖  traveling by airline 𝑗 is given by 𝑦 − 𝑝𝑗 +

𝑡𝑟𝑎𝑣𝑒𝑙 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 − 𝑓𝑙𝑖𝑔ℎ𝑡 𝑑𝑒𝑙𝑎𝑦 𝑐𝑜𝑠𝑡𝑗 + 𝜖𝑖𝑗, where 𝑦 is income, and 𝑝𝑗  is airline 𝑗's fare, so 

that 𝑦 − 𝑝𝑗 is consumption of other goods if the price of the other goods is normalized to 1. 

The term 𝜖𝑖𝑗 represents an individual-specific component of utility that is uncorrelated 

with price, 𝑝𝑗 .  

      Flight delay measures the difference between the scheduled departure and the actual 

departure times. As was previously discussed, shorter turnaround time for a flight means a 

higher expected departure delay, implying a negative correlation between turnaround time 

𝑇𝑗  and expected departure delay. For determinate results, assume that the expression for 

expected departure delay takes the following specific form: 𝐷 +
𝜔

𝑇𝑗
, where 𝜔 > 0 indicates 

the magnitude of reduction in departure delay from adding turnaround time (or adding 

buffer time, since turnaround time 𝑇𝑗  equals the minimum turnaround time plus buffer 

time). When the turnaround time is set to a value that is sufficiently large (so that 
𝜔

𝑇𝑗
 is 

sufficiently small), departure delay can still happen due to other factors such as weather; 

hence the expected departure delay given enough turnaround time is denoted by 𝐷. Flight 

delay cost is given by a disutility parameter 𝜓 > 0  times the above expression, thus 

equaling 𝜓 (𝐷 +
𝜔

𝑇𝑗
) ≡ 𝐹 +

𝜙

𝑇𝑗
  for 𝑗 = 1,2 … 𝑛 where 𝐹 = 𝜙𝐷 and 𝜙 = 𝜓𝜔. 

      Given the expression for the flight delay cost, the indirect utility function for consumer 𝑖 

flying on airline 𝑗 is 𝑦 − 𝑝𝑗 + 𝑏 − 𝐹 −
𝜙

𝑇𝑗
+ 𝜖𝑖𝑗, where 𝑏 denotes the travel benefit, assumed 
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to be constant for all airlines and consumers. Hence, the only quality difference among 

different airlines is on-time performance. Let  𝐵 = 𝑏 − 𝐹, so the indirect utility function can 

be simplified to 𝑦 − 𝑝𝑗 + 𝐵 −
𝜙

𝑇𝑗
+ 𝜖𝑖𝑗.  

      If the 𝜖𝑖𝑗's are independently and identically distributed according to the Type I extreme 

value distribution, the choice probability, or the aggregate market share of airline 𝑗, has the 

familiar multinomial logit form: 

                                        Π𝑗 =
𝑒𝑥𝑝 (𝑦−𝑝𝑗+𝐵−

𝜙

𝑇𝑗
)

∑ 𝑒𝑥𝑝 (𝑦−𝑝𝑘+𝐵−
𝜙

𝑇𝑘
)𝑛

𝑘−1

                                               (3.2) 

Recalling that the total consumer population is 𝑀, the quantity of passengers for airline 𝑗 is 

simply 

                                                                      𝑞𝑗 = 𝑀Π𝑗                                                                 (3.3) 

      On the cost side, following Brueckner (2004), but changing the specification of cost per 

flight to cost per hour, the cost of operating a flight per hour is given by 𝜃 + 𝜏𝑠, where 𝑠 

equals the number of seats on the flight. Each operation hour thus entails a fixed cost 𝜃 and 

also a marginal cost per seat 𝜏. Under such a specification, cost per seat (given by 
𝜃

𝑠
+ 𝜏 

realistically falls with the total number of seat flown per hour. Multiplying the expression 

by total air time 𝑒 gives the total air-time cost 𝑒𝜃 + 𝜏𝑠.  

      In addition to the cost incurred while an aircraft is in the air, the fixed cost per hour (𝜃) 

is also incurred when an aircraft is not generating passenger miles (when the aircraft is on 

the ground). Recalling that the turnaround time (TAT) scheduled for a flight before take-off 

is 𝑇, the total cost of operating a flight is 𝑐(𝑇) = 𝑒(𝜃 + 𝜏𝑠) + 𝜃𝑇, or 𝑐(𝑇) = 𝑒𝜏𝑠 + (𝑒 + 𝑇)𝜃, 

where the first term denotes the variable cost per flight, and the second term is the fixed 
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cost per flight. Under this specification, total cost per flight rises with the number of seats 

on an aircraft and rises if more operation time is required by a flight (if 𝑒 + 𝑇 increases).  

      To account for aircraft utilization in the model, let 𝐻 denote the total number of hours 

that an aircraft is “available” in a given period (i.e. a year)31. Hence, dividing aircraft 

availability 𝐻 by the operation time of a flight (𝑒 + 𝑇) gives the maximum number of flights 

an aircraft can complete in a given period. Moreover, the total number of flights provided 

by an airline is the product of the number of aircraft it operates and the maximum number 

of flights that can be provided by each aircraft, or 𝑓ℎ/(𝑒 + 𝑇), where 𝑓 represents the 

number of aircraft operated by the airline. Using this information, the airline's total cost is 

assumed to be given by 

                                           𝑐(𝑇) = (𝑒𝜏𝑠 + (𝑒 + 𝑇)𝜃) (
𝑓𝐻

𝑒 + 𝑇
)

𝛼

                                                         (3.4) 

where 𝛼 is  the economies of scale parameter. For example, when 𝛼 = 1, the average cost 

per flight does not rise with the total number of flights operated (the total cost is linear in 

𝑓𝐻/(𝑒 + 𝑇). However, when 𝛼 > (<)1, the average cost per flight increases (decreases) 

when the total number of flights operated increases.  

      A final assumption in the model is that all aircraft seats are filled, with the load factor 

equal to 100 percent. Under this assumption, total seats provided by the airline must be 

sufficient to accommodate its passenger volume, requiring 

                                                                         
𝑠𝑓𝐻

𝑒 + 𝑇
= 𝑞                                                                           (3.5) 

      Combing the above elements, airline 𝑗's profit-maximization problem can be stated. 

Given that an airline can adjust its flight schedule fairly easily, it may be reasonable to 

                                                           
31 In the airline industry, 𝐻 is usually called the aircraft availability (Mirza, 2008). 
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assume that in maximizing profit to the constraint in (3.5), the airline chooses the fare and 

the length of turnaround time simultaneously, taking the choices of its competitors as given 

in Nash fashion. Thus, the problem is 

                                          max
{𝑝𝑗,𝑇𝑗}

𝜋𝑗 = 𝑝𝑗𝑞𝑗 − (𝑒𝜏𝑠 + (𝑒 + 𝑇𝑗)𝜃) (
𝑓𝐻

𝑒 + 𝑇𝑗
)

𝛼

                                  (3.6) 

                                                         = 𝑝𝑗𝑞𝑗 − (𝑒𝜏𝑠 + (𝑒 + 𝑇𝑗)𝜃) (
𝑞𝑗

𝑠
)

𝛼

                                           (3.7) 

                                                          = 𝑝𝑗𝑀Π𝑗 − (𝑒𝜏𝑠 + (𝑒 + 𝑇𝑗)𝜃) (
𝑀Π𝑗

𝑠
)

𝛼

                                 (3.8) 

where the second equality is derived using (3.5) and the third equality is derived using 

(3.3). 

      With the model specification now clear, the first-order conditions are 

      
𝜕𝜋𝑗

𝜕𝑝𝑗
= 𝑀Πj + 𝑀𝑝𝑗

𝜕Π𝑗

𝜕𝑝𝑗
− (

1

𝑠
)

𝛼

(𝑒𝜏𝑠 + (𝑒 + 𝑇𝑗)𝜃)𝛼𝑀(𝑀Π𝑗)
𝛼−1 𝜕Π𝑗

𝜕𝑝𝑗
= 0                          (3.9) 

      
𝜕𝜋𝑗

𝜕𝑇𝑗
= 𝑝𝑗𝑀

𝜕Π𝑗

𝜕𝑇𝑗
− (

1

𝑠
)

𝛼

[𝜃(𝑀Π𝑗)
𝛼

+ (𝑒𝜏𝑠 + (𝑒 + 𝑇𝑗)𝜃)𝛼𝑀(𝑀Π𝑗)
𝛼−1 𝜕Π𝑗

𝜕𝑇𝑗
] = 0           (3.10) 

The second-order conditions 𝜕2𝜋𝑗/𝜕𝑝𝑗
2, 𝜕2𝜋𝑗/𝜕𝑇𝑗

2 are satisfied if 𝛼 > 1 and the remaining 

positivity condition on the Hessian determinant is assumed to hold. Consider the choice of 

𝑇𝑗holding 𝑝 fixed. The first-order condition for 𝑇 says that the increase in revenue after 

increasing turnaround time should equal the increase in costs, which consist of the increase 

in cost per flight and the increase in the total number of flights operated to accommodate 

the increased number of passengers. While the optimality rule embodied in (3.10) is 

unsurprising, its usefulness lies in formalizing the trade-off between better on-time 

performance and higher operation costs. 
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     It is easily verified that, the price sensitivity of each firm's market share with respect to 

its own price is given by  
𝜕Π𝑗

𝜕𝑝𝑗
= −Π𝑗(1 − Π𝑗). Similarly, it can be proven that  

𝜕Π𝑗

𝜕𝑇𝑗
=

𝜙

𝑇𝑗
2 Π𝑗(1 − Πj).  Moreover, with firm symmetry, the symmetric equilibrium is the natural 

focus. This equilibrium can be found by setting 𝑝𝑗 = 𝑝𝑘, 𝑇𝑗 = 𝑇𝑘, ∀𝑗 ≠ 𝑘 and  Π𝑗 =
1

𝑛
, ∀𝑗 in 

(3.9) and (3.10) and solving for these values. Substituting (3.8) into (3.9), the 𝑇𝑗  and 𝑝𝑗  

solution satisfies 

                                𝑝𝑗 = (
1

𝑠
)

𝛼

(𝑒𝜏𝑠 + (𝑒 + 𝑇𝑗)𝜃𝛼 (
𝑀

𝑛
)

𝛼−1

+
𝑛

𝑛 − 1
                                (3.11) 

                                𝑇𝑗 = √
𝑠𝛼𝜙𝑛𝛼−1

𝜃𝑀𝛼−1
                                                                                         (3.12) 

      The optimal 𝑇 is increasing in the number of seats (𝑠) and the efficiency of turnaround 

time 𝜙, while decreasing in the amount of fixed cost (𝜃). These results also capture the 

trade-off between improving service quality (higher 𝑇) and the increased cost from the 

increased cost per flights (longer (𝑒 + 𝑇)) and the requirement of a larger fleet (higher 𝑓).  

      Moreover, the effect of the number of competitors on turnaround time depends on the 

parameter 𝛼. When the cost function exhibits diseconomies of scale (𝛼 − 1 > 0), an 

increase in the number of competitors (𝑛) increases turnaround time (𝑇). However, there 

has been an ongoing debate over the existence of economies of scale in the airline industry. 

Caves et al. (1984) show that there is little evidence of economies of scale in the airline 

industry. However, that paper and others focus on evaluating the economies of scale on the 

network level instead of the route level. Hence, given the current empirical literature, the 

magnitude of 𝛼 and thus the effect of market competition on 𝑇 is hard to infer. Given this 
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lack of generality, the current analysis should be viewed as only providing an example of 

how optimal turnaround time can be derived in a full theoretical model, a demonstration 

that helps to motivate the ensuing empirical work. 

      A final point is that, the model only considers the decision on the turnaround time at the 

route level, and the role of network structures and banking behaviors in the choice of 

buffer time is overlooked. For instance, prolonging buffers for aircraft at a hub airport 

allows the hub originating flights to “collect" connecting passengers from more arrival 

flights, which lowers the average cost per seat for the airlines by increasing load factors of 

the airline-hub originating flights. However, prolonging the buffer time of such flights also 

induces longer layovers for connecting passengers, hence presenting a new trade-off for 

the airlines on their decisions on buffer length at hubs. Such issues are explored further in 

the empirical models. 

 

3.3   Data and variable construction 

3.3.1 Dataset 

      The most important data source for this study is the On-Time Performance Database 

from Bureau of Transportation Statistics (BTS), which includes data on all non-stop 

domestic flights operated by airlines carrying more than 1% of US domestic passengers. 

The 19 reporting carriers during the sample period, Aug 2004-May 2005 were American, 

Alaska, JetBlue, Continental, Independence, Delta, ExpressJet, Frontier, AirTran, Hawaiian, 

America West, Envoy, Northwest, Comair, Skywest, ATA, United, US Airways and 

Southwest. For each flight, the dataset provides the scheduled and actual departure and 
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arrival times, the departure and arrival delays, flight origin and destination, distance, and 

tail number of the aircraft that flew the flight. A majority of the variables used in the 

empirical estimation are constructed from the original dataset of 5 million flights during 

the sample period. For example, the tail numbers are used to reproduce historical aircraft 

rotations (routes and schedules of a specific aircraft), which is then used to derive the 

scheduled and actual Turnaround Time (TAT) before each flight, as well as the scheduled 

buffer time before each flight in the dataset. Due to computational constraints presented by 

such a large dataset, a 10% sample from the original dataset is randomly selected after all 

the variables are constructed, reducing the sample size to around 0.5 million.  

      The On-Time Performance Database has limits that prevent this study from fully 

reproducing the historical schedule. First, international flights are not included. This is an 

issue because some airports analyzed in the study are also important international hubs. 

Thus, the study is missing a proportion of the airlines’ scheduled operations as 

international departures and arrivals at not accounted for. Hence, in this study, buffer time 

and on-time performance for international flights cannot be observed and no formal 

conclusion on how international flights are handled in airline scheduling can be drawn. The 

second limitation of the On-Time database is that it does not include all flights flown 

domestically, as many small affiliate airlines are not required to report their on-time 

statistics. Without these affiliate airline flights, market structures including route 

competition and airport concentration, operation rates and flight frequencies at the origin 

and destination airports cannot be accurately calculated.  
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Using the aircraft tail number, the characteristics of the aircraft are known including type 

of the aircraft and seat capacity.32 The number of runways of each airport in the dataset is 

tabulated using the FAA’s airport data (from the National Flight Data Center (NFDC)).33 

Finally, daily weather data at both origination and destination airports are collected from 

the U.S. National Oceanic & Atmospheric Administration (NOAA). 34 

3.3.2 Measuring Turnaround Time and Buffer 

      The BTS on-time performance data includes reported scheduled gate departure and 

arrival times, the actual gate departure and arrival times, and the tail number of each flight 

as a unique identifier for the aircraft. This information is used to construct each aircraft’s 

daily itinerary and to derive the scheduled and actual turnaround times by calculating the 

elapsed time between the arrival and departure of consecutive flight segments. The same 

method is employed by Robingson et al. (2011) using Airline Service Quality Performance 

(ASPQ) data. For example, Table 3.1 shows the BTS flight records from October 28, 2004 

for Delta Airlines (DL) tail number N326DL. This aircraft was scheduled to arrive at ORD at 

7:48am and to depart ORD to return to ATL at 9:05am, leaving 77 minutes to “turn” the 

aircraft. Using a similar method, the scheduled and actual TATs are calculated for all flights 

in the sample period. If the scheduled TAT is greater than 200 minutes,35 then it is most 

likely that the previous flight segment of the aircraft happened on the previous day, or that 

the aircraft was on a flight with international endpoint and hence the record is incomplete, 
                                                           
32 Since some of the tail numbers in the On-Time dataset are actually fleet numbers (or registration numbers), two 

websites (rzjet and avitop) are used to recreate the tail numbers of the aircraft (available at http://rzjets.net/aircraft 

and  http://www.avitop.com). Then, the “Landings” database (available at http://www.landings.com) and the FAA 

aircraft registration database (available at http://registry.faa.gov/aircraftinquiry) are used to find the type of aircraft 

for each tail number. 
33 Available at http://nfdc.faa.gov/xwiki/bin/view/BFDC/Airport+Data. 
34 Available at http://www.ncdc.noaa.gov/cdo-web. 
35 The maximum turnaround time for a large aircraft type such as the Boeing 747, DC-8 or MD-11 is 180 minutes 

according to Schaefer and Tene (2003). Allowing for some slack, 200 minutes is used as the cutoff point. 
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resulting in large TATs. Such TATs were considered invalid and the observations were 

deleted. 

Table 3.1 October 28, 2004 Aircraft Rotation for Delta Airline Tail Number N326DL 

 
 

      Figure 3.6 shows the distribution of all turnaround times under 200 minutes. The 

distribution is skewed to the right, with the mean TAT equal to 53.9 minutes and 99% of 

flights having a TAT greater than 16 min (the 1st percentile of the distribution is thus 16 

minutes). 

 

Figure 3.6 Distribution of turnaround times that are less than 200 min 

      Note that the TAT of a flight depends upon the aircraft type, the airline operating the 

aircraft and the airport at which the turn occurs. The same logic applies to the minimum 

TAT. Without official data on airport, airline and aircraft specific-minimum TATs, the BTS 
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dataset is exploited to measure the minimum TAT for each airport-airline-aircraft 

configuration. The minimum TAT is set equal to the 1st percentile36 of all the valid actual 

TATs in a specific airport-airline-aircraft configuration. For example, among all Delta 

operated Boeing 757-232s (with a passenger capacity of 240)  that departed from Atlanta 

(ATL), 1% of them departed with an TAT of less than or equal to 42 minutes. Thus the 

minimum TAT for the configuration ATL-DL-Boeing 757-232 is 42 min. Similarly, for a 

smaller aircraft like the Boeing 737-2H4 (with a passenger capacity of 130) operated by 

Southwest departing from Houston (IAH), the minimum TAT is 10 minutes. Finally, 

applying equation (1) the scheduled ground buffer time of a flight was then calculated by 

subtracting the minimum TAT from the scheduled TAT. 

3.3.3 Airport concentration and route competition 

      To examine the effect of competition on schedule robustness, airport concentration (the 

HHI based on the share of flights by the various airlines that serve the airport each day) 

and route competition (the number of airport-pair competitors) are constructed. The role 

of affiliate airlines in the airline scheduling process is also considered when constructing 

the two measures since affiliate airlines can make up a large portion of total operations at 

hub airports. 

      Affiliate airlines developed in response to the creation of the hub-and-spoke network 

(Gillen 2005). Since major airlines do not have enough aircraft to serve all the endpoints in 

their hub-and-spoke networks, they seek arrangements with smaller airlines operating 

regional aircraft, with these “feeder” airlines “feeding” passengers from smaller 

                                                           
36 Buffers can also be derived using the a minimum TAT set equal to the 5th percentile. However, the estimation 

results are qualitatively unchanged. These results are available upon request. 
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origins/destinations to/from the hubs. To identify partnerships, the regional carrier 

assignment information provided by Pai (2007) and the annual 10K reports filed each year 

with the Securities and Exchange Commission for all the carriers are analyzed, and the 

carriers are regrouped using the assignments in Table 3.2. 

Table 3.2 Affiliated Airlines Assignment, Aug 2004 ~ May 2005 

 

      In all, the sample includes 4475 routes and 486 airports. Route competition and airport 

concentration variables are then constructed using the adjusted carrier identifications. 

Slightly more than 50% of flights serve monopoly routes, and one third of the flights are on 

duopoly routes while the rest of the flights are serving routes with more than two carriers. 

Table 3.3 identifies the major carriers and reports airport concentration, average buffer 

time and average departure delay for all airports with at least 1 percent of the total flights 

during the sample period. 
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Table 3.3 Buffer and Concentration for Airports with at least 1 percent of Flights 

during Aug 2004 ~ May 2005 

 

      Note that the two competition measures capture the effects of competition on service 

quality from different sources. Route competition captures the direct effect under which 

non-stop passengers on this route may switch to another airline if their flight is frequently 

delayed. However, in current hub-and-spoke networks, a large proportion of the 

passengers are transported from the origin to the destination through connecting flights at 

the airline's hub. Hence, airlines can compete in the same origin and destination market 
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without operating the same route. As such, competition cannot be captured by the route-

competition measure alone, being partially measured by airport concentration.  

      Airport concentration at the origin affects the available airline choices for all originating 

passengers. For example, if an airport is served by only one airline (having an airport 

concentration of 1), then all the passengers in the catchment area of this airport can only 

travel on this particular airline, regardless of their destination. With other airlines present, 

passengers unhappy with the on-time performance of a given flight could switch to a 

connecting (rather than nonstop) flight to their destination. In this way, lower airport 

concentration can raise competition on a route even while route-level competition itself 

remains fixed. Another source of competition captured by origin-airport concentration is 

competition for frequent fliers in the catchment area (Bilotkach & Lakew, 2014), as airlines 

at less concentrated airports are expected to compete more aggressively for frequent fliers 

residing in the airport’s catchment area. 

3.3.4 Other control variables 

      To isolate the effect of market structure on schedule robustness, it is necessary to 

control for factors that also affect the choice of buffers. One such variable is a bank 

departure indicator, which equals one if the flight departs during a bank period. As was 

mentioned in section 3.2, operational stability and hubbing activities are also 

interdependent, and flights that depart in a bank at the airline’s hub airport may have 

longer buffers to synchronize the arrival banks and the departure banks. Because of the 

irregularity in the spacing and length of banks, heuristic procedures for identifying bank 

flights are developed for this study. The appendix contains a detailed description of the 

bank identification procedure. In all, around 30% of the flights in the sample were 
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identified as departing their airline’s hub (from which the airline serves more than 26 

destinations) during a bank. Among all the flights that depart from their airline's hub, more 

than 70% depart during a bank period.   

      Congestion at the origin and sometimes the destination airport is also included as a 

control variable. Congestion is measured by the operation rate per hour, which divides the 

airport's daily operations (takes-offs at the origin airport and landings at the destination 

airport) by the number of runways at the airport. As runway congestion reduces the 

efficiency of the buffer (with on-time departures becoming less efficient in reducing arrival 

delays), shorter buffers may be assigned to flights departing or landing during peak hours. 

In addition, a longer buffer can be crucial for an aircraft departing later in a day as these 

aircraft are more likely to experience an arrival delay on their previous flight segment. 

Moreover, for an aircraft flying a longer route (i.e., from the East coast to the West coast), a 

longer buffer may be required as it takes a longer time to prepare these flights for take-off. 

For aircraft scheduled to fly “ping-pong" schedules (a daily routing with multiple short-

haul flight segments between the hub and non-hub airports), shorter buffers are natural 

because of the need to operate many segments per day. Hence, the departure hour 

(measured on a 24-hour clock), flight distance, and flight segments per day (to capture the 

“ping-pong" effect) are also included as control variables. 

 

3.4   Empirical estimation 

3.4.1 Delays and buffer 
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      Before exploring the relationship between market structure and scheduled robustness, 

it is important to confirm that improving schedule robustness through adding buffers into 

the schedule can actually reduce delays. Departure and arrival delays happen when the 

time a flight is ready to take off or land is later than the scheduled time of departure or 

arrival. In most cases, a flight would choose to depart or arrive on time even if it is ready to 

depart or arrive before schedule, so that the dependent variables of departure and arrival 

delays are truncated at zero. Hence, a Tobit model is used to estimate the impact of buffers 

on delays, aiming at establishing a link between ground buffers and better on-time 

performance. The empirical Tobit model for the estimation of the impact of buffers on 

departure or arrival delays of flight 𝑖 flying from airport 𝑗 to airport 𝑘 at time 𝑡 is: 

𝑑𝑒𝑙𝑎𝑦𝑖𝑗𝑘𝑡 = 𝛽0 + 𝛽1𝐵𝑢𝑓𝑓𝑒𝑟𝑖𝑗𝑘𝑡 + 𝛽2𝑃𝑟𝑒𝑣_𝑑𝑒𝑙𝑎𝑦𝑖𝑗𝑘𝑡 

                             +𝛽3𝑂𝑟𝑖𝑔_ℎ𝑢𝑏𝑗𝑡 + 𝛽4𝐷𝑒𝑠𝑡_ℎ𝑢𝑏𝑘𝑡 

                             +𝛽5𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒𝑗𝑡 + 𝛽6𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒𝑘𝑡 

                             +𝛽7𝑆𝑒𝑎𝑡𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 + 𝛽8𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 + 𝛽9𝐷𝑒𝑝_𝑇𝑖𝑚𝑒𝑖 

                             + ∑ 𝜔𝑤𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑡
𝑤

+ ∑ 𝛿𝑙𝐶𝑎𝑟𝑟𝑖𝑒𝑟𝑙
𝑙

+ ∑ 𝛾𝑤𝐷𝑎𝑦_𝑜𝑓_𝑤𝑒𝑒𝑘𝑤
𝑤

+ ∑ 𝛾𝑚𝑀𝑜𝑛𝑡ℎ𝑚
𝑚

+ ∑ 𝛾𝑛𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑛
𝑛

+ 𝜖𝑖𝑗𝑘𝑡                                 (3.13)    

      The control variables include 𝑃𝑟𝑒𝑣_𝑑𝑒𝑙𝑎𝑦𝑖𝑗𝑘𝑡, which is the arrival delay of the previous 

flight segment. In addition, delays may also depend on whether an airport is a hub, since 

hub airports may experience greater delays due to the banking activities by the hub airline 

(i.e., waiting for connecting passengers). Mayer and Sinai's (2003a) definition for hub 

airport is used, with airports that serve more than 26 destinations considered hubs. In 

addition to these control variables, the two congestion measures mentioned above are also 
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included in the regressions. A high operation rate at the origin may produce departure 

delays, and a high operation rate at the destination may have the same effect, with aircraft 

subject to origin “ground holds” when the destination is congested.  

      Important logistical factors such as seat capacity of the aircraft, distance of the flight and 

departure time are also included as control variables. The control variable 𝑊𝑒𝑎𝑡ℎ𝑒𝑟 is a 

vector covering the daily weather conditions at both origin and destination airports, 

including daily precipitation, minimum and maximum temperature, average wind speed 

and snow depth. To address carrier-specific characteristics and weekly and seasonal 

demand fluctuations, all estimations include 𝐶𝑎𝑟𝑟𝑖𝑒𝑟𝑙 , 𝐷𝑎𝑦_𝑜𝑓_𝑤𝑒𝑒𝑘 , 𝑀𝑜𝑛𝑡ℎ𝑚  and 

𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑛, which are carrier, day of week, month and quarter fixed effects, respectively. 

Dummy variables for each origin and destination airport are included in some of the 

regressions to control for unobserved airport-specific effects that may affect delays, such as 

runway layout, equipment and maintenance facilities. Note that the hub indicators for the 

origin and destination airports are dropped in such regressions, as there is not enough 

variation in hub status over time to identify the airport hub effects. Descriptive statistics 

for the variables are presented in Table 3.5. 

     The Tobit results are shown in Table 3.4.37 The first two columns of the table give the 

effect of buffers on departure delays, and columns 3 and 4 give the effect of buffers on 

arrival delays. Origin and destination airport fixed effects are included in the even columns. 

All the regressions reveal that a longer ground buffer before the scheduled departure time 

                                                           
37 Estimations for the subset of non-slot constrained airports are also conducted and the results are provided in the 

Appendix, Table A.1. The four airports during the sample period that operated under the FAA’s High Density 

Traffic Airports Rule (HDR) established in 1969 are ORD (Chicago O'Hare), LGA (Laguadia New York), JFK 

(New York), and DCA (Washington Reagan), this rule requires that each carrier obtain a “slot" for each take-off and 

landing during a specific 60 minute period, which may affect the delays experience by flights related to such airport. 

The results show that excluding the slot controlled airports slightly increases the effect of buffers in reducing 

departure and arrival delays.} 
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of a flight reduces departure and arrival delays. In all the regressions, the buffer 

coefficients are negative with an absolute value smaller than 1 minute, implying that 

departure or arrival delays decrease by less than 1 minute with a 1 minute increase in the 

buffer. More specifically, according to the Tobit estimations, a buffer increase of 1 minute is 

associated with a 0.35 minute reduction in departure delay. The effect of buffers on arrival 

delay is slightly smaller, implying that, although buffering ground time is useful when 

preventing the propagated delay from spreading to an aircraft's other flight segments, on-

time departure alone does not guarantee on-time arrival of a flight, as other factors like 

weather and airport congestion occurring after take-off also contribute to arrival delay.  

 

Table 3.4 Tobit Estimation of the Effect of Ground Buffers on Departure and Arrival 

Delay, 10% sample of U.S. Domestic Flights, Aug 2004 ~ May 2005 
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      The coefficients on the arrival delay from the previous flight segment are positive and 

significant, as expected. Increasing the arrival delay of the previous flight segment by 1 

minute increases the departure delay of the next flight operated by the same aircraft by as 

much as 0.9 minutes, which indicates that delay propagation is a major factor in departure 

delays. Hubbing at the origin airports also contributes to departure and arrival delays, as 

flights with a hub-airport origin experience 3 more minutes of departure delay. The 

coefficients for the operation rate at the origin airport is positive and significant: adding 

one flight per runway can increase the departure delay and arrival delay of flights by 

around 0.2-0.5 minutes, while the effect of runway congestion at the destination is much 

smaller. Such results imply that runway congestion, especially runway congestion at the 

origin airport, has a strong impact on the length of delays. The coefficients for distance are 

positive, so that longer flights are more likely to be delayed (increasing the distance of a 

flight by 100 miles increases the departure delay by 0.3 minutes). The coefficients on the 

scheduled departure hour are positive, implying that both departure delays and arrival 

delays increase as a day progresses onward, so that flights departing later during a day 

experience more delays than flights departing early in the morning. 
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Table 3.5 Descriptive Statistics 
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3.4.2 Delays and buffer 

      With the results in the previous section confirming that schedule robustness can 

effectively improve on-time performance, this section explores the main focus of this study: 

the effect of airport concentration and route competition on schedule robustness, as 

measured by buffers. The central question then is: all else equal, will competition increase 

or decrease the length of buffers and thus schedule robustness? An underlying assumption 

is that airlines, operating flights on a daily basis, can learn firsthand how many flights other 

airlines operate and when. Using information on the amount of traffic, market structure at 

the origination and destination airports, competition at route level, departure time, day of 

the flight, and the type of aircraft, the hub carrier can adjust the length of the buffer of each 

flight. 

3.4.2.1 Empirical model  

     a.. Baseline estimation 

      To estimate how the length of buffers of flight 𝑖 departing from airport 𝑗 to airport 𝑘 at time 𝑡 

varies with the market structure, variations of the following baseline equation are estimated: 

𝐵𝑢𝑓𝑓𝑒𝑟𝑖𝑗𝑘𝑡 = 𝛽0 + 𝛽1𝐴𝑖𝑟𝑝_𝐶𝑜𝑛𝑐𝑗𝑡 + 𝛽2𝑅𝑜𝑢𝑡𝑒_𝐶𝑜𝑚𝑝𝑒𝑡𝑗𝑘𝑡  

                                +𝛽3𝐵𝑎𝑛𝑘_𝑓𝑙𝑖𝑔ℎ𝑡𝑗𝑡 + 𝛽4𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒𝑗𝑡  

                                +𝛽5𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡𝑐ℎ𝑎𝑟 + 𝛽6𝑅𝑜𝑢𝑡𝑒𝑐ℎ𝑎𝑟 + ∑ 𝜎𝑐𝐶𝑎𝑟𝑟𝑖𝑒𝑟𝑐
𝑐

 

                                                      + ∑ 𝛾𝑤𝐷𝑎𝑦_𝑜𝑓_𝑤𝑒𝑒𝑘𝑤
𝑤

+ ∑ 𝛾𝑚𝑀𝑜𝑛𝑡ℎ𝑚
𝑚

+ ∑ 𝛾𝑛𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑛
𝑛

   

                                                       +𝛾𝑦𝑌𝑒𝑎𝑡2005 + ∑ 𝜙𝑗𝑂𝑟𝑖𝑔𝑖𝑛𝑗 + ∑ 𝜙𝑘𝐷𝑒𝑠𝑡𝑘 +

𝑘

𝜖𝑖𝑗𝑘𝑡       (3. 14)

𝑗
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      As described in section 3.3, in addition to market structure measures, variables that 

could affect carriers’ decisions on buffer times are included. These factors include the bank-

departing flight indicator, the operation rates at the origin airport, as well as aircraft 

characteristics variables (seat capacity and the type of engine) and route characteristics, 

including scheduled departure time, flight distance, and the total number flight segments 

each day scheduled for the aircraft used by flight 𝑖. Again, all estimations include carrier, 

day-of-week, month and quarter fixed effects. As buffer choices are likely to be clustered 

due to unobserved influences like carrier experience or previous weather conditions, 

standard errors are clustered into the following groups: carrier × month × year (i.e., Delta 

August 2004). Basic descriptive statistics of all the variables are also presented in Table 3.5.   

     In this set of regressions, airport fixed effects are also added to control for unobserved 

airport-specific effects that may affect buffer choices, such as equipment, airport facility 

and the airport's position in the carrier's network. Since these variables eliminate any time-

invariant airport specific effects, identification of the coefficients is driven by the variation 

in variables within, not across, airports and routes. For instance, the coefficient on airport 

concentration reveals how buffers respond to changes in concentration at the endpoint 

airports of a route over time, not how buffers respond to differences across airports. Note 

that as the market structure measures are constructed daily and the panel is sufficiently 

long, within-route variation in the key market structure measures is enough for 

identification of market-structure effects. 
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    b. Hub vs. non-hub originating flights 

      According to Mirza (2008), buffer (and turnaround time) for flights departing a hub may 

be longer to allow for synchronization between the feeder network and trunk routes. 

However, longer turnaround times at the hub airport usually mean a longer connecting 

time for passengers (Geodeking 2010) as aircraft will have to wait longer on the ground, 

shifting the departure bank away from the previous arrival bank and prolonging bank 

length. This relationship between buffers for hub departure flights and bank length 

(reflecting average layover times of the passengers) at hubs is depicted empirically in 

figure 3.7, where bank length is calculated heuristically using the method described in the 

appendix. As these longer layovers may generate disutility for the passengers, buffer 

decisions for flights leaving a hub also take into consideration the trade-off between bank 

synchronization (lower cost through economies of density) and longer layovers (less 

demand). With such considerations, the sources of service competition is different for 

flights flying different routes: while passengers on a flight originating from the airline's hub 

airport care about both layover time and on-time performance, passengers on a flight 

originating from a non-hub airport are mostly local passengers who only care about on-

time performance. Consequentially, the market-structure/schedule-robustness 

relationship may be different between flights originating from the airline's hub airport and 

flights originating from a non-hub airport. 

      In order to test the above prediction and better understand the effect of market 

structure on buffers at the network level, the main sample is supplemented by a sub-

sample including flights destined for non-hub airports. As passengers on such flights are 

terminating, not connecting at the destination, possible hubbing activities are not 
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considered by airlines when making the buffer choice for these flights. Moreover, in 

regressions using the sub-sample, interaction terms between an airline-hub-originating 

indicator variable (equal to 1 if the flight originates from the airline's hub) and the market-

structure variables are added to the baseline estimation, so that the difference in market 

structure's effect on schedule robustness between airline-hub originating flights and non-

hub originating flights can be captured.  

 

Figure 3.7 The Relationship between Airport Average Buffer Time and Average Bank 

Length for the 30 Biggest Airports in the US. This figure displays a strong positive 

relationship between the buffer times of flights departing these airports and bank length. 

Bank length is derived using a peak and trough identification algorithm described in the 

appendix A.3.1 
 

3.4.2.2 Results 

a. Baseline estimation   
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   Results for the baseline estimations are shown in Table 3.6. 38 While column 1 and 2 

only include one of the two market-structure measures, column 3 includes both measures 

in the estimation. The most noteworthy finding from Table 3.6 is that, when market 

structure becomes more competitive (airport concentration decreases or route 

competition increases), longer buffers are chosen. Numerically, when market concentration 

at the origin airport decreases by 0.1, buffer time increases by around 1.3 minutes. 

Moreover, an increase of one competitor on a route would cause the carriers to increase 

the buffer of the flights on this route by around 0.4 minutes. The results thus show 

evidence of service competition in the airline industry, as competition drives the carriers to 

improve the robustness of their schedules and thus on-time performance. Moreover, recall 

that, in the theoretical model presented in section 3.2, buffer increases with the number of 

competitors on a route when 𝛼 > 1 is satisfied. Therefore, the empirical positive effect of 

competition on the buffer is consistent with decreasing returns of scale in the number of 

flights on a route. 

      There are no surprises present in the coefficients for control variables. The regression 

reveals that flights departing in a bank period at the airline's hub experience around 2.7 

minutes of additional buffer time, confirming the argument that flights are waiting longer 

at the hub airport to synchronize the arrival and departure banks, “collecting” passengers 

and thus increasing load factors. Increasing the operation rate at the origin airport 

shortens buffers, as congestion on the origin runways reduces the efficiency of buffers in 

limiting departure delays. Aircraft configurations also affect the choice of buffer length. 

Larger aircraft are given less buffer time, probably because the long minimum turnaround 

                                                           
38 Estimations for the subset of non-slot constrained airports are also conducted. However, the results are 

qualitatively unchanged. These results are available upon request. 
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time assigned for these larger aircraft makes buffers less important. Turboprops are 

scheduled longer buffers probably because such aircraft are sometimes not assigned a gate 

after they land, so that longer buffers are needed to control for such an uncertainty. Other 

control variables all show the expected signs. Flights that depart later in a day, or flights 

flying a longer distance are given longer buffers, and aircraft flying more segments per day 

are given shorter buffers, probably due to their demanding schedules. Although not shown 

in the tables, the signs of the carrier fixed effects also show expected signs and magnitudes, 

with the hub-and-spoke carriers like United, American, Delta, Continental and Northwest 

scheduling longer buffers, and low cost carriers like Southwest and JetBlue scheduling 

shorter buffers. 

Table 3.6 The Effect of Market Structure on Ground Buffer, 10% sample of U.S. 

Domestic Flights, Aug 2004 ~ May 2005 
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    b. Hub vs. non-hub estimations 

      Taking into consideration the network effect on schedule decisions, Table 3.7 gives the 

results after sub-sampling flights heading toward a non-hub airport and including 

interaction terms between the origin airline-hub indicator and the market structure 

variables from the baseline model. Several stylized facts appear from the tables. First, 

similar to the results obtained in the baseline model; lower market concentration and 

higher route competition are associated with longer buffers for flights destined for non-hub 

airports. Numerically, a flight between two non-hub airports experience an additional 2.3-

2.6 minutes additional buffer, when the origin airport market concentration falls by 0.1. 

Moreover, a flight between two non-hub airports with one more competitor serving the 

same route is given around 0.8-1 minutes more buffer. Note that the market structure 

effects in this sub-sample almost double the effect estimated in the baseline model.   

Therefore, it appears that the results for the full sample estimation are mainly driven by 

flights with passengers terminating at the destination.39 While passengers care most about 

the on-time arrival performance at their final destination (arriving late at a hub for 

connecting trips may not generate disutilities for the passengers, as long as the delays do 

not lead to missed connections), it is expected that service competition is the fiercest on 

routes where most of the passengers are terminating at the destination. 

      Second, as predicted in section 3.4.2.1, the association between buffers and competition 

is slightly weakened for flights departing from an airline's hub airport, as the signs of the 

coefficients on the interaction terms are the opposite of those on the market structure 

variables, reducing the effects. According to column 3 in Table 3.7, hub originating flights 

                                                           
39 Regressions using flights destined for the airline-hub airport shows that origin airport concentration has little 

effect on buffer choices. These results are available upon request. 
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are scheduled around 2.2 more minutes40 of additional buffer time when the origin airport 

market concentration falls by 0.1. Similarly, the effect of an extra route competitor reduces 

to around 0.4 minutes for hub originating flights. Although the individual coefficients on 

the interaction terms in column 1 and column 2 are insignificant, an F-test also finds joint 

significance of sum the market structure coefficient (airport concentration or route 

competition) and the interaction term coefficient for each regression. The above results 

provide some evidence that airlines are less motivated to compete via on-time 

performance on routes originating from the airline’s hub, since longer buffers for such 

flights improve on-time performance, at the expense of prolonging layover time, which 

reduces the utility of connecting passengers. 

 

                                                           
40 The effect of market concentration on buffer for flights originating from the airline-hub airport is calculated as 

follows: (−26.09 + 5.85) ∗ 0.1 = 2.24 minutes. 
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Table 3.7 Sub-sample Estimation of the Effect of Market Structure on Buffer with 

Interaction Terms 

 

 

3.4   Conclusion 
 

     This chapter differs from most studies examining on-time performance in the airline 

industry in one important way. Instead of looking at how market structure directly affects 

on-time performance at the route level, this study asks how carriers adjust their schedule 

robustness when market structure changes, recognizing that schedule robustness is an 

important factor affecting the flight on-time performance.  

      To answer this question, the chapter first recreates each flight's ground buffer time from 

historical flight schedules, using it as a measure of schedule robustness. Examining the 
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relationship between on-time performance and buffers of flights confirms that lack of 

schedule robustness is a major culprit in producing delays.  

      Further examining the relationship between buffers and market structure shows that 

there exists service-quality competition in the airline market, with carriers adopting more 

robust flight schedules when competition heats up. Furthermore, examining the association 

between competition and schedule robustness using interaction terms shows that market 

structure's effect on buffer choices is slightly attenuated for hub-originating flights. 

      Such results shed new light on the debate in the internalization literature, where some 

empirical evidence fails to support the basic prediction that more-concentrated airports 

should have better on-time performance. While congestion externalities can be internalized 

when an airport is dominated by one carrier, this study shows that airport domination may 

also induce worse on-time performance as the dominant carriers reduce their schedule 

robustness, hence offsetting the probable improved on-time performance brought about by 

internalization. 
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Appendix 3:  
 

      Because of the irregularity in the spacing and length of banks, heuristic procedures for 

identifying bank characteristics are developed for this study.  

     For each hub airport, and each major carrier in the hub airport, the total number of 

departure and arrival flights for each 5 minutes is derived using the BTS dataset. Then, as 

depicted by Figure A.3.1, a 1-hour moving average (MA) is calculated to smooth out the 

flight frequency time series. The smoother MA is then compared with the daily mean of 

flight frequency per 5 minutes. A peak occurs when the MA is higher than the daily mean of 

the departure frequency (the constant threshold) while trough occurs when the MA is 

lower than the daily mean. The algorithm then locates the point with the minimum MA 

level for each trough period, and these minimum points are identified as the “cutoff points” 

between banks, and the length of time between the cutoff points is derived and considered 

the length of a bank. However, without further constraint, it is possible that two cutoff 

points are extremely close to each other if the MA process exhibits a volatile fluctuation, as 

in the cases illustrated by the black circles in the upper panel of Figure A.3.1. Hence, to 

eliminate such cases, the second cutoff point is deleted if the time gap between two points 

is within 1 hour.  

      In all, around 30% of the flights in the sample were identified to be departing their 

airline's hub (an airport serving more than 26 destinations for the airline) during a bank. 

The average departure bank length is around 110 minutes (less than 2 hours), so that on 

average, a hub would operate around 10 banks per day (assuming it operates from 6am to 

11pm). 
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Figure A.3.1: Departure Bank of AA at DFW on 08/01/2004. The figure illustrates the 

algorithm used to identify banks in DFW, where AA operates as a hub-carrier. The 

smooth line depicts the 1 hour moving average based on the hub-carrier number of 

departing flights. 
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