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Abstract

Natural enzymes have evolved to perform their cellular functions under complex selective 

pressures, which often require their catalytic activities to be regulated by other proteins. We 

contrasted a natural enzyme, LovD, which acts on a protein-bound (LovF) acyl substrate, with a 

laboratory-generated variant that was transformed by directed evolution to accept instead a small 

free acyl thioester, and no longer requires the acyl carrier protein. The resulting 29-mutant variant 

is 1000-fold more efficient in the synthesis of the drug simvastatin than the wild-type LovD. This 

is the first non-patent report of the enzyme currently used for the manufacture of simvastatin, as 

well as the intermediate evolved variants. Crystal structures and microsecond molecular dynamics 

simulations revealed the mechanism by which the laboratory-generated mutations free LovD from 

dependence on protein-protein interactions. Mutations dramatically altered conformational 

dynamics of the catalytic residues, obviating the need for allosteric modulation by the acyl carrier 

LovF.

Directed evolution encompasses iterative cycles of genetic diversification and screening to 

generate novel proteins with desired functions.1,2 Due to the large number of mutations that 

are generally introduced to generate the dramatic increases sought after, deriving scientific 
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insights from such experiments is difficult. In particular, it remains poorly understood how 

beneficial mutations far from the active site confer improved catalytic properties. If such an 

understanding could be developed, it would aid the ab initio design of enzymes using 

computational tools.3 In this study, we tracked the evolutionary trajectory by which a natural 

enzyme, LovD, is converted to an efficient catalyst for an unnatural product of high 

pharmaceutical value (simvastatin).

LovD from Aspergillus terreus was previously discovered to catalyze the transfer of an α-

methylbutyrate side chain to the C8-hydroxy position of monacolin J acid (MJA) to yield 

lovastatin (Fig. 1).4,5 The reaction depends strongly on another protein, LovF; the acyl 

carrier protein (ACP) domain of LovF acts as substrate to deliver the α-methylbutyrate 

group to LovD, and then to MJA. The acyl transfer reaction in the LovD active site proceeds 

via a ping-pong mechanism, involving a covalent acyl intermediate at Ser76 (Fig. 1). The 

sequential acylation-deacylation reactions are promoted by acid/base catalysis involving 

hydrogen bonding and proton shuttling by catalytic residues Tyr188 and Lys79. Simvastatin, 

an important cholesterol-lowering agent, differs from the natural LovD product (lovastatin) 

by only one methyl group and was prepared by whole-cell biocatalysis by supplying cells 

with a non-natural acyl donor.6 However, wild-type LovD displayed poor activity towards 

the non-natural acyl donor.

Envisioning a potential enzymatic manufacturing route to simvastatin, laboratory-directed 

evolution was applied to transform LovD to a variant that accepts as a substrate the free 

unnatural acyl donor, α-dimethylbutyryl-S-methylmercaptopropionate (DMB-SMMP) (Fig. 

1). The improvement on the catalytic proficiency of the evolved enzymes was rationalized 

through structural comparisons of crystal structures of LovD and evolved variants and via 

molecular dynamics (MD) simulations. Crystallography and nanosecond MD did not 

provide an explanation for the improved performance of the evolved LovD; however, 

microsecond simulations provided dramatic new insights.

RESULTS

Direct evolution of LovD for simvastatin production

Through limited mutagenesis studies reported earlier, we evolved LovD to a simvastatin 

synthase, improving its kcat five-fold for the unnatural reaction.7 In subsequent experiments, 

nine rounds of directed evolution using ProSAR-based directed evolution technologies8 

provided an enzyme that exhibits a turnover number of ~25,000 in cell lysates over the 

course of the reaction, representing an increase of three orders of magnitude compared to the 

natural enzyme, and thereby enabling large scale simvastatin manufacture9,10 (Online 

Methods). A summary of the mutations incorporated, the turnover numbers measured in cell 

lysates, and the kinetic data for the purified enzymes of rounds 1, 3, 6, and 9 are given in 

Table 1. Over the nine rounds of evolution, diversity obtained from targeted NNK libraries 

or from homologous sequences was recombined. A total of 61,779 LovD variants were 

screened from an aggregate of 200 different libraries. In rounds 1 and 3 the best variants 

were identified from random mutagenesis libraries (L361M in round 1 and G275S in round 

3); in all other rounds, the best variant was identified from combinatorial libraries and had 2 

to 6 mutations. While the binding affinities (KM values) for the wild type LovD, LovD3 and 
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LovD9 fell in a narrow range (within 0.2 to 0.5 mM), we indeed observed a dramatic 

increase of the kcat values. As a consequence, the kcat/KM value of LovD3 was more than 20 

times higher than wild-type LovD, while those of LovD6 and LovD9 were around 230 and 

330 times higher. The optimized mutant, LovD9, contained 29 mutations resulting in a high 

reactivity towards the unnatural substrate (kcat/KM ~430 min−1 mM−1), and simultaneously 

showed complete loss of activity towards the natural α-methylbutyryl-ACP substrate. The 

29 mutations found in the final optimized variant (LovD9) were scattered throughout the 

entire enzyme (Fig. 2a,b and Supplementary Results, Supplementary Fig. 1 and 2), in 

accordance with previous directed evolution studies, in which changes in residues far from 

the active site had a pronounced effect on enzyme activity.11

Crystallographic structures of evolved mutants

Crystal structures were obtained for LovD9 and for an evolutionary intermediate from the 

sixth round of selection (LovD6), which displays a 63-fold improvement in kcat over the 

wild type (Online Methods and Supplementary Table 1). Both structures displayed the 

expected α/β hydrolase fold, which consists of a central seven-stranded antiparallel β-sheet 

flanked by α-helices on either side (Supplementary Fig. 3). Different packing arrangements 

were found in different crystal forms, i.e. four monomer subunits in wild-type LovD7 and 

LovD9 and two monomer subunits in LovD6. The dimeric arrangements shared an overall 

similarity but were different in detail (Supplementary Fig. 4), and were presumed to be non-

biological.

The active site is gradually more buried in the evolved proteins, as shown in Fig. 2c–e. 

Simultaneously, the width of the substrate access channel was reduced throughout the 

evolutionary process, as indicated by the channel solvent-accessible volumes calculated for 

the X-ray structures of wild type LovD and LovD6 (Supplementary Fig. 5). As a 

consequence, as the enzyme evolves, the active site became inaccessible to potential binding 

proteins such as the ACP domain of LovF. However, while this constriction explained the 

decrease in activity towards protein-bound α-methylbutyryl-ACP, the increase in activity 

toward DMP-SMMP presented an intriguing mystery.

Despite the notable changes in the shape of the binding cleft (Supplementary Fig. 5 and 6), 

the crystal structures showed only very minor differences in the arrangement of the catalytic 

residues involved in the reaction (Fig. 3a and Supplementary Fig. 7). The positions of both 

the backbone and side chain orientations of the key residues Lys79, Tyr188 and Ser76 are 

maintained in LovD, LovD6 and LovD9, and are very close to the optimum positions 

predicted from the quantum mechanical optimizations of the resting state (Fig. 3b) and the 

transition state for acylation of the serine residue (Fig. 3c). Notably, the energy barrier 

associated with this transition state was calculated to be the rate-limiting step of the 

transacylation reaction (data not shown). This comparison of crystal structure active sites 

therefore failed to provide an explanation for the significant increase in kcat along the series 

of evolved mutants.
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Microsecond dynamics in solution

The minimal differences observed crystallographically between the active sites structures of 

LovD variants prompted us to explore MD simulations to analyze potential effects of remote 

mutations on the active site dynamics.12,13 Whereas LovD wild-type and some variants are 

dimers in the crystal form, the existence of a single peak in all gel filtration chromatography 

traces (Supplementary Fig. 8) and a single spot on all SDS-PAGE gels (Supplementary Fig. 

9), both corresponding to a molecular weight of 46 kDa, indicated that all the LovD proteins 

were monomers in aqueous solution. Hence, monomeric forms of the LovD structure were 

extracted from the observed crystal structures and used for unbiased all-atom MD 

simulations including explicit water (Online Methods). Picosecond or nanosecond 

simulations are generally not long enough to describe transitions between active and inactive 

protein conformations12, and in our studies nanosecond simulations similarly did not 

provide new insights (data not shown). Therefore we analyzed the dynamics of several 

mutants along the evolutionary pathway at longer timescales (1–1.5 µs) using the special 

purpose protein dynamics computer, ANTON.14–16

MD simulations reproduced the shrinkage of the active site channel noted in the 

crystallographic structures (Supplementary Fig. 10) of both LovD6 and LovD9 with respect 

to wild-type LovD. More significantly, in the simulations of the wild-type enzyme sequence, 

the apparently optimum catalytic conformation of the catalytic Ser76–Lys79–Tyr188 triad 

observed in the crystal structure (Fig. 4a) underwent a rapid transition to an inactive 

conformation characterized by a very long Lys79–Tyr188 distance (~9 Å, Fig. 4b), which 

was maintained along the whole microsecond trajectory (Fig. 4c). In aqueous solution, the 

non-catalytic conformation of Tyr188 around χ1 dihedral angle was stabilized by the 

neighboring residue Ile325, producing an unproductive hydrogen-bonded arrangement 

which differs dramatically from the one observed in the crystalline state. Simultaneously, 

the protein backbone at Tyr188 changes from an extended conformation (ψ ~150°) to a turn 

(ψ ~50°), which traps catalytic Lys79 in a non-productive conformation as well 

(Supplementary Fig. 11a). Additional interactions not observed in the crystal structures, 

such as between Tyr327 and Gly364 (Supplementary Fig. 11b,c), create a completely 

different hydrogen bond network in the active site.

The first round of evolution (LovD1) introduced a single mutation (L361M), which was 

maintained in subsequent rounds of evolution. This residue is located in a β-sheet 15Å from 

the α-helix holding the active residue Ser76 (Fig. 2b). In the simulations, this single 

mutation relative to the wild type sequence restored the Tyr188 backbone in its catalytic 

conformation and maintained it for about 300 ns (Fig 4c). Thereafter, the Tyr188 side chain 

underwent the same detrimental conformational change observed in the wild type LovD and 

remained in the inactive arrangement for an additional 800 ns before returning to the active 

conformation. Therefore, in LovD1 the arrangement of the catalytic triad was organized for 

catalysis about 30% of the simulation time, which agrees with the modest increase in 

activity measured for this enzyme. In LovD3, which displays a 10-fold increase in kcat 

compared to LovD, the correct arrangement of the catalytic triad was conserved ~56% of the 

simulation time, and the conformational change to the inactive arrangement occurs only 

after 800 ns. In LovD6 and LovD9, the catalytically active conformation of the Ser76–
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Tyr188–Lys79 triad was maintained during the whole simulations. The averaged Tyr188–

Lys79 distance was, in both cases, close to the optimized QM value of 3.0 Å (3.6±0.4, and 

3.7±0.7 Å for LovD6 and LovD9, respectively). As depicted in Supplementary Fig. 12, the 

progressive weakening of the detrimental interaction of Tyr188 with Ile325, and the 

subsequent restoration of the catalytic triad in the catalytic conformation, correlate with the 

increase in the activity of the enzyme in the absence of the LovF-ACP partner, especially in 

the initial stages of the evolution process. While LovD6 and LovD9 both maintain the 

catalytic triad in an optimal conformation, LovD9 showed a kcat ~3 times higher than that of 

LovD6 and is ~2-fold more productive in simvastatin synthesis, indicating that other factors 

beyond the active site configuration impact catalysis.

Besides L361M, other remote mutations in the β-sheet region were found along the 

evolution trajectory (Fig. 2b and Supplementary Fig. 1). These buried mutations, all 

involving nonpolar and structurally similar residues, modify the protein backbone dynamics 

in such a way that the distance between the α-carbons of Gly364 in the mutated β-sheet and 

Tyr327, located in the same flexible loop as the catalytic Tyr188, was progressively reduced 

from 9.2±0.4 Å in the wild-type to 7.6±0.7 Å in LovD9 (Supplementary Fig. 13). Fig. 5a–e 

shows how the multiple, often non-catalytic, arrangements of Tyr188 and Tyr327 in wild-

type LovD became gradually more ordered in mutants LovD1, LovD3 and LovD6 and then 

localized in the optimal catalytic arrangement in LovD9, as a result of an apparent lowering 

of the free energy of the catalytic arrangement relative to the non-catalytic conformations. 

The progressive tightening of the second shell residues prevents Tyr188 from drifting into 

non-catalytic conformations, and as a consequence the catalytic activity of the triad is 

retained.

Thus, according to the MD simulations the catalytically-competent conformations predicted 

by QM calculations were progressively stabilized and appear with increasing frequency as a 

result of the dynamic effects of remote mutations on the active site residues (Fig. 4c and 

Supplementary Fig. 14). The relative free energy of the catalytic conformation, reflected in 

the population observed in dynamics simulations, is lowered gradually during enzyme 

optimization.

Role of interprotein interactions in active site dynamics

As noted above, the crystal structures of different enzyme variants all showed a very similar, 

catalytically competent arrangement of the active site, irrespective of their catalytic 

proficiencies (Fig. 3a). MD models for the monomeric enzymes in solution showed wide 

variations in the population of these active site conformers as evolution progresses. A 

possible source of this different behavior is that associations of proteins in the crystalline 

state somehow influence the conformational states of the active site of LovD, in the same 

way that association of LovF-ACP influences the active site. The effects of protein-protein 

interactions on the structure and dynamics of the active site were analyzed by performing 

MD simulations on both the LovD dimer as observed in the crystal form, and the complex 

formed between LovD and the LovF acyl carrier domain (ACP). While a model for 

simulating the dynamics of the LovD dimer was directly available from the X-ray structure 

(Fig. 6a), no structure of the LovD/LovF-ACP complex was available; complexes involving 
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other modular synthases are likewise unresolved.17,18 Computational models of LovD/

LovF-ACP were therefore generated (Fig. 6b), both including and lacking the 4'-

phosphopantetheine (PPN) acylating group, using homology modelling and protein docking 

techniques.19 MD simulations demonstrated (Fig. 6c) that protein-protein interactions lead 

to stabilization of the active site residues in an optimal catalytic conformation, which was 

conserved permanently in the LovD dimer, and for most of the simulation in the LovD/ACP 

complex. In the LovD dimer, the flexibility of Tyr188 was substantially reduced compared 

to the monomeric state (Fig. 5f and Supplementary Fig. 15). The presence of a flexible loop 

(323–329) from another protein chain in the vicinity of the active site precluded the great 

distortion of the active site occurring in the monomer state in solution, although some 

mobility is still observed in the catalytic residues.

In the LovD-ACP complexes, the detrimental conformational change of Tyr188 side chain 

did not take place along the whole trajectory either (Supplementary Fig. 16). The distance 

between Tyr188 and Lys79 was reduced from 8.7±0.5 Å for monomeric LovD to 3.7±0.6 Å 

for LovD-ACP-PPN. In the case of LovD-ACP lacking the PPN group, Tyr188 was still 

very flexible and the Tyr188-Lys79 distance was elongated to 5.2±1.6, indicating the key 

role of the PPN acylating arm to properly orient Tyr188 for catalysis. In agreement with the 

trend exhibited by the evolved LovD1–9 variants, the detrimental Tyr188-Ile324 interaction 

was elongated from 3.0±0.8 Å in monomeric LovD to 6.8±1.2 Å and 9.3±1.5 Å for LovD-

ACP and LovD-ACP-PPN, respectively. Interestingly, after 850 ns, the long acylating PPN 

arm abandoned the active site, and the Tyr188-Ile324 interaction was substantially reduced 

to approximately 7 Å, approaching the non-catalytic arrangement. The backbone 

arrangement of Tyr188 remained in an extended conformation in both LovD-ACP-PPN and 

LovD-ACP complexes. Overall, these simulations supported the important role protein-

protein interactions play in stabilizing the active site of wild type LovD.

DISCUSSION

Enzymes may be improved as a result of various features, including lowering of the 

activation barrier (increasing kcat) and increasing substrate binding (lowering KM), but also 

protein expression, folding, stability, and other characteristics that do not directly relate to 

the intrinsic activity of the enzyme. Given the scattered distribution of mutations throughout 

the protein, the specific role of every mutation introduced in LovD1–9 cannot be assessed 

exactly; moreover, most of these positions are located far away from the active site. Based 

on their close location to the active site, mutations N191S, N191G, L192I (rounds 2–5) are 

likely to affect catalysis directly. These residues are situated at the end of an α-helix nearby 

the catalytic triad (Supplementary Fig. 17a) and prevent the detrimental interaction between 

the long side chain amide group of the natural Asn191 and the backbone carbonyl of 

Tyr188. The role of the three other mutations located close to the active site (L174F, A178L, 

S172N) which also appear early in the evolutionary pathway (rounds 2–4) is more difficult 

to assess since they are located in flexible loops, and could be affecting catalysis indirectly. 

Alternatively, these three mutations may affect folding kinetics as they appear to be part of a 

loop structure that wraps around a second loop. Triggered by the first key L361M mutation, 

up to four modifications were made at four consecutive strands of the internal β-sheet; three 

of them (V370I, A383V, I35L) were introduced sequentially at the last stages of the 
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evolution process (rounds 5–8) (Supplementary Fig. 17b). Such an evolution pattern where 

subsequent mutations are spatially adjacent to other mutations has been observed 

previously,11 and may increase enzyme stability through improved hydrophobic packing of 

the core. Another group of mutations (A247S, A9V, K26E, H404K, I4N, R28S) is located in 

the ACP-PPN binding motif (Supplementary Fig. 17b) hypothesized from our homology 

model/docking studies. This motif includes two antiparallel α-helices flanked by flexible 

loops, and the mobile tail (residues 1–12) found to contribute to ACP binding in our MD 

simulations. These mutations often include charged residues and might disrupt the formation 

of the protein-protein complex occurring in the natural enzyme; the conserved mutation 

K26E,7 which changes the electrostatic environment of this local domain drastically, is 

probably key to produce this effect. Finally, based on ProSAR analysis during the evolution 

work we believed that another set of late mutations (round 5–9) Q241M, A261V and A261H 

provide thermostability to the protein, and N43R, D96R, H404K reduce aggregation.

In natural LovD, the interaction with LovF-ACP plays a key role in ordering the active site 

for catalysis. The interaction with the ACP partner provides an induced fit to organize the 

catalytic triad. This interaction must be crucial for substrate specificity towards the acyl 

group bound to LovF. Such a mechanism suppresses LovD activity towards other acyl 

donors in the cell, such as those involved in fatty acid biosynthesis. Some remote LovD 

homologs, such as EstB,20 are active on small molecule substrates, while LovD is prevented 

from reacting with these substrates because the catalytic machinery is not properly poised 

without binding to the LovF-ACP carrier. Distinct evolutionary pressures have apparently 

led to diverse enzymes in this superfamily having varied substrate specificities and 

dependencies on protein interactions. We used directed evolution to convert an enzyme in 

this family that is naturally activated by protein binding into one that does not require a 

protein partner for catalysis.

The influence of remote mutations on the free energy of the catalytic conformation of the 

active site were revealed in our study by long timescale all-atom unbiased simulations that 

illuminated how numerous mutations remote from the active site increased, by three orders 

of magnitude, the catalytic activity in an enzyme acting on an unnatural substrate. Directed 

evolution increases activity for the small molecule substrate DMP-SMMP by rendering the 

catalytic site organization independent of LovF-ACP. This was accomplished by distributed 

mutations that lower the free energy of the catalytic arrangement of the triad relative to non-

catalytic arrangements. The dynamics that produce this type of preorganization21 have been 

the focus of many investigations of enzyme catalysis.22 In previous studies, remote 

mutations introduced in dihydrofolate reductase have been shown to interfere with the 

network of protein motions coupled to the reaction coordinate.23 We have shown how 

mutations incorporated into LovD are the evolutionary response to increase activity when 

the protein partner LovF is absent. These findings showed how features of natural enzymes 

that are necessary for effective chemistry in the cell can be modified to provide more 

effective catalysts for a manufacturing setting. The influence of protein-protein interactions 

in natural enzymes must be compensated for in the engineering of new or improved 

biocatalysts by evolution or design.
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The computational design of stable and functional enzymes is a longstanding and very 

challenging goal. Our approach is to learn how to predict beneficial mutations and to 

incorporate that understanding into the computational design process. Major achievements 

in enzyme engineering reported recently11,24 and the results reported here for LovD share a 

common and intriguing feature: many mutations leading to high activity are scattered 

remotely from the active site. By contrast, design protocols currently in use often involve 

manual reversion of second-shell mutations to the native residues, based on the idea that 

such mutations will be deleterious to folding. The results presented here demonstrated the 

crucial role that remote mutations can have on modulation of the catalytic proficiency of the 

active site by conformational changes transmitted throughout the protein backbone. Future 

design protocols will need to predict and allow remote mutations, evaluated by µs MD. 

While computationally expensive, µs MD simulations are capable of predicting the 

structural consequences of mutations, particularly how mutations remote from the active site 

can alter the active site geometry. Experience shows that precise control of catalytic group 

geometries at the ideal positions for catalysis is crucial for high activity, and the remote 

mutation/MD evaluation strategy is a way to build this into the computational design 

process.

ONLINE METHODS

Production of the LovD gene

The acyltransferase encoding gene lovD from wild-type Aspergillus terreus (GenBank 

AAD34555.1) was designed for expression in E. coli using standard codon optimization. 

Genes were synthesized using oligonucleotides composed of 42 nucleotides and cloned into 

expression vector pCK110900,25 under the control of a lac promoter. Resulting plasmids 

were transformed into E. coli W3110 or E. coli BL21 using standard methods.

Production of LovD libraries

LovD variants were obtained via directed evolution using APS methods for library 

generation,26 HTP screening (below) and ProSAR analysis27 of the data. Over the course of 

nine iterative rounds of in vitro evolution, 216 libraries were constructed and 61,779 variants 

were screened resulting in improved LovD variant such as LovD1, LovD3, LovD6 and 

LovD9 as representative hits from the screens in rounds 1, 3, 6 and 9. Complete protein 

sequences and detailed procedures are described.27,9 Mutations in LovD were generated by 

methods described previously.11 Beneficial mutations identified in HTP screening using the 

ProSAR algorithm27 were recombined via semi-synthetic shuffling methods.11

Preparation of soluble LovD cell lysate

Single colonies of E. coli containing a plasmid encoding a variant LovD polypeptide of 

interest was inoculated into 50 mL 2xYT broth containing 30 µg/ml chloramphenicol and 

1% glucose. Cells were grown overnight at 30 °C with shaking at 250 rpm. The culture was 

diluted into 250 ml 2xYT broth containing 30 µg/ml chloramphenicol to an OD600 of 0.2 

and expression of lovD was subsequently induced at OD600 06–0.8 by addition of 

isopropyl-D-thiogalactoside (IPTG) to a final concentration of 1 mM. Incubation was then 

continued overnight. Cells were harvested by centrifugation (2400 g, 15 min, 4 °C) and the 
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cell pellet re-suspended with an equal volume of cold (4°C) 50 mM phosphate buffer (pH 

8.5) and harvested by centrifugation as above. The washed cells were resuspended in two 

volumes of the cold phosphate buffer and passed through a French Press (18,000 psi, 4 °C). 

Cell debris was removed by centrifugation (7700 g, 30 min, 4 °C). The cleared lysate 

supernatant was collected and stored at −20°C. Lyophilization of frozen clear lysate 

provides a dry shake-flask powder of crude LovD polypeptide. Alternatively, the cell pellet 

(before or after washing) can be stored at 4°C or −80°C.

Purification of LovD polypeptides for kinetic assays and crystallization

The wild type LovD as well as variants were cloned into pET28a vector with an N-terminal 

6Xhis tag. The Cys40 and Cys60 were mutated to Ala and Asn to prevent oxidative 

multimerization as previously demonstrated.10 The resulting plasmids were transferred into 

E. coli BL21 for protein expression. All LovD proteins were purified to homogeneity by Ni-

NTA agarose affinity chromatography and eluted with an increasing gradients of imidazole 

in buffer A (50 mM Tris-HCl, 500 mM NaCl, pH 7.9). Protein concentrations were 

qualitatively assessed by SDS-PAGE and quantitatively determined by the Bradford protein 

assay using bovine serum albumin as the standard. (Supplementary Fig. 9). Samples for gel 

filtration chromatography were prepared at 10 mg/ml concentration and loaded onto a 

Superdex 200 (GE Healthcare) column and eluted at a flow rate of 0.5 ml min−1 in 50 mM 

Tris pH 8.0 and 2 mM DTT. The final concentration of samples was in the 20–40 µM range.

Synthesis of DMB-SMMP

α-dimethylbutyryl-S-methyl 3-mercaptopropionate (DMB-SMMP) was prepared according 

to reported procedures (ref. 6).

HPLC method for determining conversion of Na+-monacolin J to Na+-simvastatin

At 10 g/L LovD and 4 equivalents of DMB-SMMP, 50% conversion of 3 g/L monacolin J 

was obtained in an 18 h reaction, corresponding to a volumetric productivity of 0.0024 g/L h 

gLovD. Cell free lysates of LovD variants were screened under increasingly stringent 

conditions over nine rounds of evolution, during which the concentration of monacolin J 

was gradually increased, and the concentration of DMB-SMMP gradually decreased. The 

best LovD9 variant produced simvastatin at a rate of 2.70 g/L h gLovD (75 g/L monacolin J, 

was 97% converted in a 36 h reaction using 0.75 g/L LovD9). Cell lysates made in 100 mM 

triethanolamine buffer were pre-incubated for 1 to 24 h at 35 to 45 °C prior to the 

simvastatin forming reaction. Over the course of the LovD evolution the pH of the buffer 

was increased from pH 8 to 9.5. LovD activity assays were set-up in 96-well plates using 

10–20 µL cell free extract, 3–75 g/L Na+-monacolin J and incubated at room temperature to 

45 °C for 24 hrs. Conversion of Na+-monacolin J to Na+-simvastatin was determined using 

an HPLC 1200 (Agilent) equipped with a Gemini® C18 column (4.6 × 50 mm). For the 

assay, 10 µL samples were eluted with a 52% (v/v) aqueous solution of acetonitrile 

containing 0.1 % trifluoroacetic acid (TFA) at a flow rate of 1.5 mL/min and a temperature 

of 30 °C. The eluate was monitored at 238 nm. Under these conditions, the retention times 

of monacolin J acid sodium salt, DMB-SMMP, and simvastatin sodium salt are 

approximately 0.8, 2.9, and 3.9 min respectively.
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Kinetic characterization of the LovD variants

To access the kinetic parameters (kcat and KM), of the different variants, the concentration of 

MJA was varied from 0.25 to 5 mM, while the DMB-SMMP concentration was fixed at 2 

mM to obtain a Michaelis-Menten kinetic curve. The assays were performed at room 

temperature in 50 mM HEPES (pH = 7.9) with 10 mM MgCl2. Dimethyl sulfoxide (DMSO) 

was added to a final concentration of 10% to facilitate the solubilization of DMB-SMMP. 

Since LovD3, LovD6 and LovD9 were expected to convert MJA to SVA much faster than 

wild-type, reaction time and enzyme concentration were optimized to get the initial reaction 

velocity. LovD wild-type and LovD1 were set up to a final concentration 10 µM, while only 

1 µM LovD3, LovD6 and LovD9 were used in the assays. Also, the reaction time for LovD 

wild-type and LovD1 was 1 h, but only 5 min for LovD3, LovD6 and LovD9. At the desired 

time point, an aliquot of the reaction mixture was removed, quenched and clarified of 

protein using with ethyl acetate (EA) containing 1% trifluoroacetic acid (TFA). The organic 

phase was separated, dried, resolubilized by acetonitrile (ACN), and samples were analyzed 

by HPLC (Shimadzu) using a Luna 5 µm, 2.0 mm × 100 mm C18 reverse-phase column 

(Phenomenex). Samples were separated on a linear gradient of 5–95% (v/v) ACN in water 

(0.1% (v/v) TFA) for 30 min at a flow rate of 0.1 ml min−1 followed by isocratic 95% (v/v) 

ACN in water (0.1% (v/v) TFA) for 5 min. Conversion of MJA to SVA was measured by 

integration of the peaks at 238 nm. Measurements were made in triplicate.

Crystallization of LovD6 and LovD9

Additional C40A and C60N mutations were introduced in LovD6 and LovD9 to facilitate 

crystallization. LovD6 was cloned into pET28a vector with an N-terminal 6Xhis tag. 

However, well-ordered crystals of LovD9 could not be obtained from this version, so we 

moved the 6Xhis tag to the C-terminus. Both LovD6 and LovD9 were purified as previously 

described. The proteins were then dialysed overnight into 50 mM Tris pH 8.0, 150 mM 

NaCl and 10 mM DTT (using Spectra/Por molecular porous membrane tubing MWCO 

6~8,000 Da). LovD proteins were concentrated to 20 mg ml−1 (using Amicon Ultra 15 

MWCO 30,000 Da) for crystallization experiments. Crystals of LovD6 were grown at room 

temperature by a hanging drop vapor diffusion method using a 1:1 protein to reservoir 

solution ratio for a total drop size of 2 µl. Diffraction quality crystals were obtained in 1~2 

days when using 50 mM sodium citrate, 16% propanol, 18% PEG 4,000, 1 mM DTT, as a 

reservoir solution. In preparation for data collection, crystals were briefly soaked in 

30%/70% mixture of glycerol/reservoir solution and flash frozen. Crystals of LovD9 were 

grown at room temperature by the hanging drop vapor diffusion method using a 2:1 protein 

to reservoir solution ratio for a total drop size of 3 µl. Diffraction quality crystals were 

obtained in 1~2 days when using 0.2 M MgCl2, 0.1 M Bis-Tris pH 5.5, 18% PEG3,350 and 

10 mM DTT, as a reservoir solution.

Data collection and structure determination

The LovD9 crystal belonged to space group P1 with four protein molecules in the 

asymmetric unit. X-ray diffraction data were collected at the Advanced Photon Source 

(Argonne National Laboratory), beamline 24-ID-C, using a Quantum 315 CCD detector 

(ADSC). Crystals were cryo-protected by a quick dip in a solution consisting of 6.5 µl 
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reservoir and 3.5 µl 50% (w/v) D-(+)-trehalose. Crystals were cooled to 100 K during the 

data collection. One-hundred-twenty 1.0° oscillation frames were collected at a wavelength 

of 0.9791 Å. Data reduction and scaling were performed using XDS.28 Diffraction to 3.2 Å 

resolution was observed. The LovD6 crystal belonged to space group P21 with two protein 

molecules in the asymmetric unit. X-ray diffraction data were collected at the same 

beamline as LovD9. Crystals were cryo-protected by a quick dip in a solution consisting of 

6.5 µl reservoir and 3.5 µl glycerol. Crystals were cooled to 100 K during the data collection. 

One-hundred-eighty 1.0° oscillation frames were collected at a wavelength of 0.9641 Å. 

Data reduction and scaling were performed using XDS. Diffraction to 1.8 Å resolution was 

observed. The crystal structures were determined by the molecular replacement method 

using the program PHASER29 and search model LovD G5 mutant, PDB entry 3HLC4. The 

models were refined using REFMAC530 and Buster/TNT31 with TLS parameterization of 

domain disorder.32 After each refinement step, the models were visually inspected in 

COOT,33 using both 2Fo-Fc and Fo-Fc difference maps. The models were validated with the 

following structure validation tools: PROCHECK,34 ERRAT35 and VERIFY3D.36 For the 

LovD9 structure, 90.4% of the residues are within the most favored region of the 

Ramachandran plot, 9.3% were in additional allowed regions, and 0.3% were in generously 

allowed regions. There were no residues in disallowed regions. For the LovD6 structure, 

91.9% of the residues are within the most favored region of the Ramachandran plot, 7.8% 

were in additional allowed regions, and 0.3% were in generously allowed regions. There 

were no residues in disallowed regions. The Errat scores, 93.7% and 94.5%, for LovD9 and 

LovD6 structures respectively, indicates that these percentages of residues fall within the 

95% confidence limit for correctly modeled regions. Verify3D reports 100% and 96.2% of 

the residues have an averaged 3D-1D score greater than 0.2 for LovD9 and LovD6 

structures, respectively. Data collection and refinement statistics are reported in 

Supplementary Table 2.

DFT calculations

All calculations were carried out with the M06-2X hybrid functional37 and 6–31G(d,p) basis 

set. Full geometry optimizations and transition state searches were carried out with the 

Gaussian 09 package (Frisch, M. J. et al., Gaussian, Inc., 2009). Frequency analyses were 

carried out at the same level used in the geometry optimizations, and the nature of the 

stationary points was determined in each case according to the appropriate number of 

negative eigenvalues of the Hessian matrix. Bulk solvent effects were considered implicitly 

during optimization through the IEF-PCM polarizable continuum model38 as implemented 

in Gaussian 09. The internally stored parameters for diethylether (ε = 4) were used as an 

estimation of the dielectric permittivity in the enzyme active site.39,40

Homology modeling and protein-protein docking

A homology model of the PPN binding region of the LovF sequence4 was obtained using a 

solution (NMR) structure of a fungal type I polyketide synthase ACP domain41 as a template 

and using MOE 2012 (Chemical Computing Group, 2013). This small protein was then 

docked into a hypothesized suitable binding region of wild-type LovD using ClusPro42–45 

and refined with Rosie (RosettaDock Online Server).46 Finally, the 2-methylbutyryl form of 

PPN was modeled at the active ACP serine (Ser44) and docked in a proper orientation along 
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the binding channel and into the active site close to the catalytic triad of LovD using Gold 

5.1.47 To dissect the influence of protein-protein contacts and the presence of the long 

acylating arm, a control model lacking the 2MB-PPN function was also built in a similar 

way.

Generation of computational models for the mutants

The crystallographic structure of G5 mutant obtained previously7 (PDB ID 3HLG) was used 

as a template for defining a starting model for MD simulation of the various DE mutants. 

This was the only structure among all crystallized LovD variants for which the entire protein 

chain could be visualized by X-ray crystallography. Mutations corresponding to the DE 

variants were introduced into the model using RosettaDesign48 to obtain low-energy 

conformations after stochastic repacking and minimization of the side chains. Structures 

were then refined through 80 ns MD simulations in explicit water using AMBER (see 

below). After the MD equilibration, the generated structures were in good agreement with 

the partially resolved X-ray structures.

MD simulations

Long-timescale Molecular Dynamics (MD) simulations were performed using either the 

special-purpose ANTON (D. E. Shaw Research)14 machine or an in-house GPU cluster. 

Unless otherwise stated, monomer proteins in explicit water were subjected to simulation, 

according to experimental observations. When necessary, homo- and heterodimer protein-

protein complexes were also modeled. Parameterization and preparation for the simulations 

were carried out externally prior to production-level MD on ANTON. Substrate parameters 

for the MD simulations were generated within the antechamber module of AMBER 12 

(Case, D. A. et al., UCSF, 2012) using the general AMBER force field (GAFF),49 with 

partial charges set to fit the electrostatic potential generated at the HF/6–31G(d) level by the 

RESP50 model. The charges were calculated according to the Merz-Singh-Kollman 

scheme51.52 using Gaussian 09. Each enzyme was immersed in a pre-equilibrated truncated 

cuboid box with a 10 Å buffer of TIP3P53 water molecules using the leap module, resulting 

in the addition of around 25,000 solvent molecules. The systems were neutralized by 

addition of explicit counter ions (Na+ and Cl−). All subsequent calculations were done using 

the widely tested Stony Brook modification of the Amber 99 force field.54 A two-stage 

geometry optimization approach was performed. The first stage minimizes the positions of 

solvent molecules and ions imposing positional restraints on solute by a harmonic potential 

with a force constant of 500 kcal mol−1 Å−2, and the second stage is an unrestrained 

minimization of all the atoms in the simulation cell. The systems are gently heated using six 

50 ps steps, incrementing the temperature 50 K each step (0–300 K) under constant-volume 

and periodic-boundary conditions. Water molecules are treated with the SHAKE algorithm 

such that the angle between the hydrogen atoms is kept fixed. Long-range electrostatic 

effects are modeled using the particle-mesh-Ewald method.55 An 8 Å cutoff was applied to 

Lennard-Jones and electrostatic interactions. Harmonic restraints of 10 kcal/mol are applied 

to the solute, and the Langevin equilibration scheme is used to control and equalize the 

temperature. The time step is kept at 1 fs during the heating stages, allowing potential 

inhomogeneities to self-adjust. Each system is then equilibrated without restrains for 4 ns 

with a 2 fs timestep at a constant pressure of 1 atm and temperature of 300 K. After the 
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systems were equilibrated in the NPT ensemble, the frame of these simulations with the 

volume closest to the average volume were chosen as the starting structures for the 

subsequent long MD simulations on the ANTON hardware. Then 1.2–1.6 µs production MD 

simulations on ANTON specialized hardware were performed for each of the systems in the 

NVT ensemble and periodic-boundary conditions using the Nose-Hoover thermostat with a 

relaxation time of 1.0 ps. A cutoff of 9.5 Å for the Lennard-Jones and the short-range 

electrostatic interactions was used. For the long-range electrostatic interactions the k-

Gaussian split Ewald method56 with a 32 × 32 × 32 grid and the Particle Mesh Ewald 

method57 with a 32 × 32 × 32 grid and a fifth-order interpolation scheme were used in the 

Desmond simulations. A multistep r-RESPA scheme58 was employed for the integration of 

the equations of motion with time steps of 2.5 fs, 2.5 fs and 5.0 fs for the bonded, short-

range non-bonded and long-range non-bonded interactions, respectively. In all simulations 

performed on ANTON, geometry and velocity snapshots were saved every 100 ps to provide 

10,000 data points upon completion of the simulation. Trajectories were merged and 

converted into AMBER format using the VMD software59 and were analyzed using the 

AMBERTOOLS utilities (ptraj module). Solvent-accessible volumes of active site entrance 

channels60 were measured using 3V (http://3vee.molmovdb.org/).

Statistics

Data are represented as mean values ± s.d.

The coordinates of the X-ray structures of mutants LovD6 and LovD9 have been deposited 

in the Protein Data Bank (http://www.rcsb.org/) with PDB codes 4LCL and 4LCM, 

respectively.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Chemical reactions catalyzed by LovD
The natural reaction in which LovD is acylated with the α-methylbutyrate group from the 

megasynthase LovF, and the engineered reaction in which LovD accepts 2,2-

dimethylbutyrate, DMB, from small acyl carriers, are shown. The final step involves an acyl 

transfer reaction from acylated LovD to MJA to yield either LVA or semisynthetic SVA.
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Figure 2. Location and structural effects of laboratory-evolved mutations in LovD
(a) Surface and (b) β-sheet mutations in LovD9. The catalytic triad (Ser76–Lys79–Tyr188) 

is shown in red. Mutations are shown in gold. One of the critical mutations, L361M, is 15 Å 

away (dashed line) from the catalytic triad (Ser76-Lys79-Tyr188). (c) Surface representation 

of wild-type LovD,7 (d) LovD6 and (e) LovD9 X-ray structures showing active site channel 

reduction. Active site residues are rendered in space-filling models.
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Figure 3. Structural features of the Ser76–Lys79–Tyr188 catalytic triad
(a) Overlays of active sites from X-ray structures in LovD (yellow), LovD6 (cyan) and 

LovD9 (green). (b) QM optimized model calculated for the catalytic triad resting state. (c) 

QM optimized TS model calculated for Ser76 acylation with methyl 2,2-

dimethylpropanethioate. Aliphatic hydrogens have been omitted for clarity. Distances are in 

Angstroms.
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Figure 4. Active site dynamics of LovD variants determined through MD simulations
Catalytically inactive (a) and Non-catalytic active (b) arrangements of the Ser76–Lys79–

Tyr188 triad revealed by MD simulations on LovD1 (600 and 1200 ns, respectively). (c) 

The catalytic Tyr188–Lys79 distance along the MD trajectories. The optimal value for this 

distance determined through QM calculations has been used as reference and represented 

using a horizontal gray line. Catalytic and non-catalytic regimes have been depicted in green 

and magenta, respectively.
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Figure 5. Conformational ensembles of the active site of LovD variants obtained through MD 
simulations
Overlay of 15 snapshots obtained from 1.2 µs trajectories for: (a) wild-type LovD, (b) 

LovD1, (c) LovD3, (d) LovD6, (e) LovD9 and (f) LovD dimer. The catalytic triad (Ser76–

Lys79–Ttyr188) is represented in blue, together with other relevant non-catalytic residues 

(Gly364, Tyr327 and Ile325) in green. For clarity, Tyr188 has been represented in different 

colors depending on its catalytic (blue) or non-catalytic (purple) side chain conformation.
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Figure 6. The role of protein-protein interactions on LovD active site dynamics
Models used in MD simulations: (a) Homodimer observed in the LovD X-ray structure, and 

(b) LovD-ACP complex constructed using homology modelling and protein-protein docking 

techniques. (c) The catalytic Tyr188–Lys79 distance along the MD trajectories. The optimal 

value for this distance determined through QM calculations has been used as reference and 

represented using a horizontal gray line. Catalytic and non-catalytic regimes have been 

depicted in green and magenta, respectively.
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