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Envelopes of Massive Stars
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liushangfei@pku.edu.cn, gritschneder@kiaa.pku.edu.cn,

Richard.Stancliffe@sci.monash.edu.au, krumholz@ucolick.org

ABSTRACT

We investigate local radiative hydrodynamic instabilities in the envelopes of

massive stars. Two different stellar models are considered, a simple polytropic

model and a more realistic stellar evolution code model. For both cases, we

compare the local optical depth and radiative flux with analytically derived in-

stability criteria. Only a thin outer shell of the star, containing a mass of about

10−6M⊙ to 10−5M⊙, can be subjected to this instability. However, the growth

rate of the instability is relatively fast (∼ 104s) indicating a possible run-away

effect.

Subject headings: massive stars — radiative hydrodynamic instabilities

1. Introduction

Massive stars are still enigmatic in different evolutionary stages. It is yet unclear how

massive stars form, e.g. by core accretion or by competitive accretion (Krumholz & Bonnell

2009). The Eddington limit predicts that there should be an upper limit of stellar mass. If

a star grows beyond that limit, the radiation pressure becomes so strong that it will blow

away the outer part of the stellar envelope. Figer (2005) did find an absence of stars with

masses greater than 130M⊙ in the Arches cluster, and therefore claimed that this upper

limit is 150M⊙, which has been widely accepted. However, a very recent observation shows
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that several young stars in the R136 star cluster exceed that limit. One of them might have

a mass as high as 320M⊙ (Crowther et al. 2010). It is natural to ask whether these super

massive stars are stable or not.

Luminous blue variables (LBVs) are very massive, luminous evolved stars characterized

by long term variability and occasional eruptions with substantial mass loss. η Carinae, one

of the most spectacular LBVs, is well known for its great eruption around 1843, when it

produced the total luminous energy as much as a supernova does but survived (Davidson

& Humphreys 1997). Several scenarios to explain such a supernova impostor have been

proposed, but uncertainties still remain. Using high-resolution far ultraviolet spectra Iping

et al. (2005) confirmed that η Carinae is a close binary system, which has already been

inferred from the 5.52 year variability period (Damineli 1996). Some authors argued that

the great eruption was due to the binary evolution, either a close encounter (Kashi & Soker

2010) or a collision (Smith 2010). However, since almost all LBVs are single stars (Vink

2009), the binary evolution scenarios may not account for all the supernovae impostor events.

We will focus on investigating the possibilities of local radiative instabilities inside the

envelopes of massive main sequence stars, which may give a hint on understanding the

abnormal behaviors of massive stars. This report is organized as follows. In §2 we describe

our basic formalism and derive the instability criteria in the short-wavelength limit under

radiative diffusion assumption. In §3 we introduce two stellar models, the polytropic model

as well as the stellar evolution code model. In §4 we present the results of our calculations

using the two different criteria and briefly discuss them. The summary is given in §5.

2. Dispertion Ralation and Stability Analysis

2.1. Basic Equations and Assumptions

Here we adopt the eqations of radiation magnetohydrodynamics and their notations

discussed by Blaes & Socrates (2003, hereafter BS03) and references therein. As a first step

we neglect the magnetic field to simplify the equations, so the basic fluid equations are

∂ρ

∂t
+∇∇∇ ··· (ρvvv) = 0, (1)

0 = −∇∇∇p+ ρggg +
κFρ

c
FFF , (2)

∂u

∂t
+ vvv ··· ∇∇∇u+ γu∇∇∇ ··· vvv = κJρcE − κPρcaT

4

g − κTρc

(

4kBTg

mec2
−

hν̄

mec2

)

E, (3)
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∂E

∂t
+ vvv ··· ∇∇∇E +

4

3
E∇∇∇ ··· vvv = −κJρcE + κPρcaT

4

g + κTρc

(

4kBTg

mec2
−

hν̄

mec2

)

E, (4)

1

3
∇E +

κFρ

c
FFF = 0, (5)

where ρ, p, Tg, Tr, u, E are the density, pressure, gas temperature, radiation temperature,

energy density in the gas and radiation energy density, repectively. The relations between

these quantities are

µ =
p

γ − 1
, (6)

p =
ρkBTg

µ
, (7)

E = aT 4

r , (8)

where γ is the ratio of specific heats in the gas, and µ is the mean molecular weight of the

gas. These two quantities are assumed to be constant in the following discussions. Tg and Tr

are gas and raidation temperatures, respectively. κJ ,κP ,κF and κT are opacities defined by

different weighting functions which are denoted under the subscripts (angle-averaged mean

specific intensity, Planck function, radiation flux and Thomson scattering, respectively).

Other constants are: c is the speed of light, a is the radiation density constant, kB is Boltz-

mann’s constant, and me is the electron mass. The vector vvv is the fluid velocity, and ggg is

the gravitational acceleration, which is assumed to be time independent.

As mentioned in BS03, we only consider static equilibria in LTE, which means the

equilibrium fluid velocity is zero and gas temperature and radiation temperature are tightly

coupled

Tg = Tr ≡ T. (9)

We assume radiative equilibrium

0 =∇∇∇ ···FFF , (10)

which is already used to derive Equation (5).

2.2. Hydrodynamic Instabilities within Short-Wavelength Limit and Tg = Tr

By adopting a linear perturbation in total pressure (gas plus radiation), BS03 derives

an equation for the total pressure perturbation in terms of the density and velocity perturba-

tions, which is equation (40) in BS03. Combining the perturbation equation with perturbed

continuity equation, perturbed gas momentum equation and flux freezing equation, they

get a dispersion relation for short-wavelength modes on a static, stratfied, and magnetized

equilibrium (equation (49)).
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In this work we will not use the eight-mode dispersion relation directly, because it’s too

complicated for our simple stellar models and as mentioned before we have to assume some

simplifications, so that numerical computations are possible. At this stage, we suppose mag-

netic effects are not prominent. In the short-wavelength limit with Tg = Tr, the dispersion

relation then reduces to four modes (cf equation (59) in BS03). Here we are only interested

in the acoustic wave modes. We take the equation (62) in BS03, which is the first-order

corrections to the frequencies of acoustic waves:

ω = ±kci − i
κF

2cci

(

1 +
3p

4E

)[(

4E

3
+ p

)

ci ∓
(

k̂ · F
)

Θρ

]

+O(k−1), (11)

where

ci ≡

(

p

ρ

)1/2

(12)

is the isothermal sound speed in the gas and Θρ is logarithmic derivative of the flux mean

opacity κF with respect to the density:

Θρ ≡
∂ lnκF

∂ ln ρ
> 0. (13)

We use isothermal sound speed in equation (11) because gas and radiation temperatures are

assumed to be tightly coupled.

Note that we have adopted wave form like exp[i(k · r − ωt)], so the acoustic waves

become unstable if the right-hand side of equation (11) has positive imaginary part, which

corresponds to the second term within the brackets (equilibrium flux F ) dominates the first

term (damping by radiative diffusion). One can easily find that if we take the upper sign

of right-hand side of equation (11), the upward-propagating wave is unstable. While taking

the lower sign of right-hand side of equation (11), k̂ is negative, then the imaginary part

will be positive. However, the real part ω = −kci becomes negative, which means the waves

propagate in the opposite direction of k̂ corresponding to upward-propagating waves. So we

conclude that only the upward-propagating wave is unstable.

If we assume k̂ and F to be parallel, the instability criterion for the upward-propagating

wave could be simplified as

FΘρ ∼>
(

4E

3
+ p

)

ci, (14)

and an order-of-magnitude estimate would be

FΘρ ∼> max[E, p]ci. (15)

In this work we are considering massive stars, where the radiation pressure E dominates gas

pressure p in the stellar envelopes, so equation (15) becomes FΘρ ∼> Eci. Radiative diffusion
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assumption implies that F ∼ Ec/τF, where τF is the flux mean (Rosseland) optical depth,

so equation (15) can be written as

τF ∼<
(

c

ci

)

Θρ. (16)

3. Hydrodynamic Instabilities Check with Different Stellar Models

3.1. n=3 Polytropic Stellar Model

As a first order approximation we investigate the problem with a simple toy model (e.g.

a polytropic stellar model). We use the approach discussed in chapter 19 of Kippenhahn

& Weigert (1994). By assuming a polytropic index n = 3, the polytropic relation between

pressure and density of the star is given as:

P = Kρ
4

3 , (17)

where K = πGρ
2/3
c R2/z2

3
is the polytropic constant, G = 6.673 × 10−8 dyn cm2 g−2 is the

gravitational constant, and z3 ≃ 6.897 defines the surface of the polytrope of index 3. The

central density of the star ρc can be determined by the mass M and radius R of the star:

ρc = 54.18
3M

4πR3
. (18)

We can get the density profile from

ρ(r) = ρcw
3, (19)

where w is the solution of the third order Lane-Emden equation w′′ + 2w′/z + w3 = 0. The

pressure can then be calculated from equation (17). If we assume the ratio β = Pgas/P

is constant throughout the star, we can obtain the value of β from “Eddington’s quartic

equation”:
1− β

µ4β4
= 3.02× 10−3

(

M

M⊙

)2

, (20)

where µ is the mean molecular weight. For an ideal gas with radiation pressure, the tem-

perature can be derived from

P =
R

µ
ρT +

aT 4

3
=

R

µβ
ρT, (21)

where R = 8.31 × 107 erg K−1 mol−1 is the universal gas constant. Thus, given the mass,

radius and chemical compostion of a star, the thermal quantities can be derived by the above

equations.
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We use equation (16) to check the instabilities. τF can be estimated using

τF ≃ κ · ρ ·

(

ρ

dρ/dr

)

, (22)

where the Rosseland mean opacity κ is taken from an opacity table for solar metallicity and

is based on the local temperature and density (cf section 3.2).

3.2. Stellar Evolution Code

The stellar evolution code STARS was originally developed by Eggleton (1971) and

substantial modifications have been made since then1. The most recent update was done

by Stancliffe & Eldridge (2009), which includes some new features such as binary evolution

and stellar mass loss. STARS uses an one-dimensional Lagrangian approach to compute the

stellar structure and chemical evolution simultaneously, iterating all variables at the same

time to converge to a new model.

To get a model of a massive star, we add mass to an existing less massive stellar model of

zero-age main sequence (ZAMS) slow enough to allow it to converge. We iterate this process

keeping the model not evolving until it reach the desired mass. In this way, we produce

several typical massive stellar models. In addition, we could produce more models to study

the trends in the future.

The code deals with a wide range of metallicities by using different opacity tables from

Z = 0 to Z = 0.05 (Stancliffe & Eldridge 2009). In this work, we assume that all the stars

have solar chemical abundance, which corresponds to Z = 0.02, initially. Figure 1 shows

how the opacities varies with densities and temperatures for solar metallicity (the density

has been scaled by the temperature in 106K). The blue solid line represents the Rosseland

mean opacities of a 300M⊙ stellar model computed by the code. Note that due to the

interior nucleosynthesis, the central metallicity would be a little bit higher than the inital

value Z = 0.02. The stellar evolution code automatically handles the changes of chemical

abundance (e.g. carbon and oxygen enrichment) and computes the real opacities properly.

Therefore, the high temperature end of the curve, which represents the the center of a star,

is not exactly on the original opacity plane. However, the deviation is rather small (note the

slight difference between cyan dotted line and orange solid line in figure 2), and does not

affect the results of the instability analyses. Thus, we can use the opacity table for Z = 0.02

in polytropic stellar models in spite of the changes of chemical composition. Furthermore,

1See STARS’s website: http://www.ast.cam.ac.uk/∼stars/
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Fig. 1.— The Rosseland mean of the opacity κ (in cm2 g−1) as a function of T (in K) and

R = ρ/T 3

6
(in g cm−3) for solar chemical abundance, where T6 = T/106K. The blue solid

line indicates a 300M⊙ stellar model.

the result can be compared with that of the stellar evolution code, since the difference is

caused by the models themselves not by the methods by which the opacities are calculated.

4. Results

First we use equation (16) to perform the instability check for the 85M⊙, 150M⊙ and

300M⊙ stellar models, repectively. Figure 3 shows the results of comparison: the green dotted

lines and blue solid lines describe the local values of the optical depth and the instability

criterion given by the right-hand side of euqation (16) for polytropic models, while red dashed

lines and cyan dashed lines are the local values of optical depth and the instability criterion

for the STARS models.



– 8 –

10 20 30 40 50
r�R
�

1.00

0.50

0.70

Κ

Opacity

Fig. 2.— Different opacities of 300 M⊙ stellar models. The blue solid line is calculated

by looking up the opacity table using the temperatures and densities of an n=3 polytropic

stellar model. The orange solid line is also obtained by looking up the opacity table but

using temperatures and densities of a STARS model, while the cyan dotted line is using the

opacities directly calculated in the code.

We find that the optical depth could drop below the threshold of unstable optical depth

near the stellar surface in every model, which means that the short-wavelength acoustic

waves may become unstable in that regions. However, this conclusion is weakened by two

facts: 1) the polytropic model may not be a good approximation when the stars become very

massive: the difference of opacities between the polytropic model and the STARS model is

large in figure 2; 2) The method of estimating optical depth may not be correct at some

points: equation (22) to some negative values in the STARS models, so the lines of optical

depth in logarithmic scale become discontinuous in figure 3.

Figure 4 shows the results of using equation (14) to perform the instability check for 85

M⊙, 150 M⊙ and 300 M⊙, respectively. The orange dashed lines represent the radiative flux,

and the green dashed lines represent the energy density propagating at the sound speed.

Again, the radiative flux can overtake the energy damping near the stellar surface, which

means that the radiative flux accumulates the local energy density faster than the acoustic
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waves could transport the energy density upward. Figure 4 also suggests that massive stars

more likely satisfy this criterion. Our calculations show that only 10−6M⊙ to 10−5M⊙ are

subject to the instability because of the low density in the outer envelopes of massive stars.

As the growth rate of the instability is higher than 10−5 s−1, even a tiny unstable layer may

lead to a global eruption.

5. Conclusions & Discussion

We apply the instability analysis of BS03 in the context of the envelopes of massive stars,

where the radiation pressure dominates the gas pressure. The massive stars are modeled us-

ing a n = 3 polytropic model and a more realistic model calculated by a stellar evolution

code (STARS). For a first estimate, we compare the optical depth and the instability thresh-

old in each stellar model for 85M⊙, 150M⊙ and 300M⊙, respectively. The short-wavelength

acoustic waves in the regions where the optical depth drops below the instability threshold

are potentially unstable.

We also check the instability in the STARS model by comparing the speeds of radiative

flux and radiative damping. The results are similar to those of the simple estimation by the

optical depth. We do see these unstable regions near the stellar surfaces, where the radiative

flux accumulates the local radiation energy density faster than the radiative damping at the

sound speed in the gas. The more massive the star is, the further inwards it will become

unstable. Although the masses of the unstable layer are not substantial, the growth rate is

relatively short, which may lead to a run away effect.
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Fig. 3.— Optical depth vs. Threshold of instability criterion. From the top to the bottom

are 85 M⊙, 150 M⊙ and 300 M⊙, respectively. Green solid lines and blue solid lines are

the optical depth and the threshold of instability criterion in each polytropic model, while

red dashed lines and cyan dashed lines are the optical depth and the threshold of instability

criterion in each STAR’s model.
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Fig. 4.— Radiative instabilities in the envolopes of massive stars. From the top row to the

bottom row are stellar models of 85 M⊙, 150 M⊙ and 300 M⊙, respectively. The orange

dashed lines are related to the radiative flux FΘρ, and the green dashed lines represent the

damping term
(

4E
3
+ p

)

ci. The left panels are ploted in terms of the stellar radius, while the

right panels are in terms of the stellar mass below that point.
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