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Comparison of methods to identify aberrant
expression patterns in individual patients:
augmenting our toolkit for precision medicine

Daniel Bottomly'*, Peter A Ryabinin'?, Jeffrey W Tyner'”, Bill H Chang'*, Marc M Loriaux"”, Brian J Druker"*”,
Shannon K McWeeney'#®°" and Beth Wilmot'##"

Abstract

Background: Patient-specific aberrant expression patterns in conjunction with functional screening assays can
guide elucidation of the cancer genome architecture and identification of therapeutic targets. Since most statistical
methods for expression analysis are focused on differences between experimental groups, the performance of
approaches for patient-specific expression analyses are currently less well characterized. A comparison of methods
for the identification of genes that are dysregulated relative to a single sample in a given set of experimental
samples, to our knowledge, has not been performed.

Methods: We systematically evaluated several methods including variations on the nearest neighbor based
outlying degree method, as well as the Zscore and a robust variant for their suitability to detect patient-specific
events. The methods were assessed using both simulations and expression data from a cohort of pediatric acute B
lymphoblastic leukemia patients.

Results: We first assessed power and false discovery rates using simulations and found that even under optimal
conditions, high effect sizes (>4 unit differences) were necessary to have acceptable power for any method (>0.9)
though high false discovery rates (>0.1) were pervasive across simulation conditions. Next we introduced a
technical factor into the simulation and found that performance was reduced for all methods and that using
weights with the outlying degree could provide performance gains depending on the number of samples and
genes affected by the technical factor. In our use case that highlights the integration of functional assays and
aberrant expression in a patient cohort (the identification of gene dysregulation events associated with the targets
from a siRNA screen), we demonstrated that both the outlying degree and the Zscore can successfully identify
genes dysregulated in one patient sample. However, only the outlying degree can identify genes dysregulated
across several patient samples.

Conclusion: Our results show that outlying degree methods may be a useful alternative to the Zscore or Rscore in
a personalized medicine context especially in small to medium sized (between 10 and 50 samples) expression
datasets with moderate to high sample-to-sample variability. From these results we provide guidelines for detection
of aberrant expression in a precision medicine context.
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Background

The use of functional assays such as the interrogation of
patient-derived cancer cells against panels of small inter-
fering RNA (siRNA) duplexes or small molecule inhibitors
allows patients who are part of the same disease subgroup
to be further stratified based on an assessment of the
effect of gene down-regulation on cancer cell viability
[1,2]. The advent of precision medicine represents a
methodological paradigm shift from traditional detection
of differences between experimental groups towards identi-
fication of individual events or outliers (for example, indi-
vidual expression patterns and patient-specific siRNA/drug
sensitivities). Although some work has been done charac-
terizing patient-specific dysregulation of pathways [3-6],
univariate patient-specific analysis of gene expression has
not been thoroughly explored.

Arguably the most common type of analysis procedure
applied to mRNA expression experiments is the determin-
ation of putative differential expression [7-9]. However,
even within specific subgroups of patients with cancer, the
same genes are not always dysregulated in the same
manner in every specimen. Individual expression patterns
can reflect underlying mutation, chromosomal rearrange-
ment and copy number events. This shifts the focus to
a different type of analysis procedure: identification of
a single sample or small subgroups that have divergent
expression from the rest of the group (for example, the
detection of candidate oncogenic chromosomal aberrations
on the basis of outlier gene expression in prostate cancer
[10]). Many procedures have been devised to detect the
latter situation with earliest efforts, cancer outlier profile
analysis (COPA) [10] and the outlier sum (OS) [11], fo-
cused on prioritization after a robust standardization
procedure. Others have extended this to robust t or F
tests [12-16] or similar procedures [17-20]. Additionally,
the problem has also been viewed as one of ‘population’
or proportional differences between two groups [21-23].
Recently, the anti-profile method was developed to look
for genes with high variability across samples and used to
discriminate colon cancer cases from controls [24]. A
limitation of these procedures is that they assume both a
control as well as an experimental group though several,
including OS, COPA and the very recently described
mCOPA [25], will work with only one group. Others
have focused on the observation that, in the presence
of outlying subgroups of patients for a given gene, the
distribution would become bi- or multimodal [26-28].
Effective parameter estimation for such mixture models
would require substantial sample sizes thereby limiting
these approaches to large, well-defined cohorts. Addition-
ally, general methods originally devised in other fields such
as the outlying degree (OD) [29,30] or the gene tissue index
[31] can be used in a gene-wise univariate context for
finding outlying subgroups. However all of these methods,
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with the exception of the OD method, provide a ranking
of genes for a given cohort, not for a specific sample
within the cohort. Searching for outliers or ‘hits’ for a given
sample is a common procedure for some types of experi-
ments, such as genome-wide siRNA screens. Two proce-
dures used for these experiments are a Z-transformation
(Zscore) or robust Zscore (Rscore) along with a cutoff
dictating outlier or hit status [32]. Both methods have been
applied to microarray analysis as well. For instance, the
Zscore approach was first applied to microarray datasets
a decade ago [33] and still is used for sample-specific
analyses as implemented in the cBio web portal [34].
We also note that the Rscore is the first step of the
COPA and OS methods with outlier status determined
empirically [10,11].

Complicating the search for outlying subgroups is the
fact that microarrays as well as other high throughput
assays can be sensitive to many technical factors [35-39].
In addition, expression differences between samples can be
caused by many potentially confounding factors regarding
clinical samples such as gender, ethnicity and age as well as
differences in tissue or cell preparation. A concrete example
of such an effect leading to expression differences among
two subgroups is the non-coding RNA XIST, which is
highly expressed in females but has almost negligible levels
in males [40]. Although effective methods exist to correct
both known [41] and unknown [42] factors, it may still be
important to consider overall sample dissimilarities when
the expression values of single genes are compared between
samples and/or groups. This will become an even more
important issue as we move towards a precision medicine
clinical paradigm where it is likely that sample processing
would immediately follow acquisition rather than forming
balanced batches (in terms of relevant covariates) that can
be randomized.

In this paper, we consider the question of how to detect
genes that exhibit aberrant expression for a subset of
patients focusing on the situation where the subset
contains only a single patient sample. We perform simula-
tions testing the effectiveness of multiple approaches
including the widely used Zscore and Rscore as well as
weighted and unweighted variants of the OD method.
We first evaluate these approaches, simulating a wide
variety of conditions, and show that the OD methods
have advantages over the other two methods in terms of
performance. In addition to the simulations, we examine
gene ranking results across methods for exon array
leukemia expression data in the context of corresponding
functional assay results (siRNA hits performed on samples
from the same patients). We show that the OD methods
provide more flexibility than the Zscore and Rscore and
further show that the OD method performs similarly or
better than the Zscore for two analytical use cases relating
the expression data to the siRNA results.
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Methods

Simulations

Data were initially simulated from either a normal distribu-
tion with mean of seven and standard deviation of one
or a t-distribution with 15 degrees of freedom and a
non-centrality parameter set to seven. Each data set
generated contains 10,000 genes and 20 samples. These
distributions and parameters were chosen as they had
similar ranges as those from robust multi-array average
(RMA) summarized Affymetrix arrays as well as represent-
ing the extremes of sample-sample expression variability.
These distributions are depicted in Figure 1A along with a
hypothetical distribution which would likely mirror that of
expression values from a given patient cohort. For a given
sample and set of genes, a specified value (three, four or
five) was added to introduce the true outlier(s). Similarly,
negative two was added to the specified set of genes and
samples that were simulated as overall sample technical
outliers. The negative value here was chosen because tech-
nical outliers more frequently result in decreased intensity
values for Affymetrix arrays in our experience. The P-value
and false discovery rate (FDR) for each statistic was
calculated similar to previous work [11,43] as:

n 1 n
ZieGll(Ti >Tg,) + EZiéGll(Ti =Ta)

Page 3 of 10

Where I() is the indicator function, S is the number of
true positive genes (100 in all the simulations), T is a
vector of length n containing the absolute value of the
statistics from a given method, and O is an ordered
version of T such that its elements are decreasing. The
set G, is limited to a single integer in (1) whereas G is
a set of size S in (2) representing the position in 7 or O
respectively with the true outlier gene(s) for a given
sample j. Note that the FDR in this case assumes 100
true positives, which is meant to simulate an activated
pathway. The sample assessed for these statistics was
always the one with simulated outlier gene expression.
Each different combination of parameters was run
10,000 times. Power was computed as the proportion
of the 10,000 iterations which were significant at the .05
level. The FDR was reported as the average FDR observed
over the 10,000 iterations for each simulation. Simulations
and calculation of the P-values and FDR were carried
out in parallel on a Beowulf-style cluster using Rmpi
[44] with parallel random number generation using
L'Ecuyer’s method [45] via the rlecuyer package [46] using
R-2.15.1 [47]. Plotting and summaries for the simulations
were performed using ggplot2 [48] on R-3.0.1 [47]. Example
code for performing these simulations is provided in
Additional file 1.

Pvalue; =
n-1 RNA sample preparation and array processing
All research was performed according to the guidelines of
s the Helsinki Declaration. Specifically, both oral and written
FDR. — Zi:ll (0:2G) ) informed consent was obtained from the patient or parent/
/ S legal guardian for inclusion in the study. Assent was also
A B N | Distrib t-Distrib C N | Distributic t-Distrib
o . &
’ ZA B -

5 10 15
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Figure 1 The outlying degree outperforms other methods in both high and low variability simulated datasets. (A) Expression data was
simulated from two distributions (normal with mean of seven and standard deviation of one as well as a t-distribution with non-centrality parameter
set to seven and the degrees of freedom equal to fifteen) that were at the extremes of what would be typically observed in microarray data with the
distribution of hypothetical patient data situated somewhere in the middle. (B, C) The outlying degree (k=9) significantly outperformed both the
Zscore and Rscore method in terms of power and false discovery for all combinations of effect size and distribution type. However, all the methods
were only effective when encountering high effect sizes (four to five) with low variability (normal distribution). The grey areas indicate 0.95 confidence
intervals. Note that for the false discovery rate, the estimates were very stable and the grey area is not readily observable. OD, outlying degree.
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obtained for patients between ages 7 and 17 years. The
study was reviewed and approved by the Institutional
Review Board of Oregon Health & Science University.

Mononuclear cells from blood or bone marrow of
patients with hematologic malignancies were isolated
using a Ficoll gradient. Cell pellets were snap-frozen in
liquid nitrogen and cryopreserved at -80°C for subsequent
batch extraction of RNA. RNA was extracted using
Qiagen RNeasy kits (Qiagen, Valencia, CA) according
to the manufacturer instructions, including perform-
ance of the optional on-column DNase treatment step.
Samples were amplified and labeled using the Ambion
WT Expression/Affymetrix WT Terminal Labeling proto-
col (Affymetrix, Santa Clara, CA). Amplified and labeled
cDNA target samples were each hybridized to a Human
Exon 1.0 ST array (Affymetrix, Santa Clara, CA). Image
processing was performed using Affymetrix Command
Console (AGCC) v.3.1.1 software. The expression data
have been deposited in the Gene Expression Omnibus
database under the identifier [GEO:GSE42731]. Twelve
samples had acceptable RNA integrity number scores
(>8) and similar overall intensity distributions and
were analyzed further. These samples were processed
using the oligo [49] Bioconductor package [50]. Back-
ground correction and normalization performed via the
RMA method [51] using the core metaprobesets as well as
probesets. Note that probeset-level summarizations were
used for the visualizations whereas metaprobeset-level
summarizations were used for the methods comparisons.
Here we consider metaprobesets to denote single tran-
scripts or genes. Ensembl annotations and coordinates
were retrieved from Ensembl Build 69 [52] and used in
conjunction with the GenomicFeatures package [53] to
provide gene contexts for the (meta)probesets. All of the
applied analysis was performed using R-3.0.1 [47] with
plotting again performed using ggplot2 [48] as well as
GenomeGraphs [54]. The reshape2 [55] and biomaRt [56]
packages were also utilized.

Expression prioritization approaches

Let x; be the expression or simulated expression data
at gene i=1,...,n and sample j=1,....,m. A commonly
used way to screen for outliers is the Zscore, which is
the X matrix mean centered and scaled by the standard
deviation (sd):

Xij—mean(x;)

sd(x;) )

Zscorej; =

where x; indicates application of the function to the
entire vector of sample expression values for gene i.
Similar to the Zscore method, we define a robust
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standardization (Rscore) of the X matrix as described
previously [10]:

x—median(x;)

mad (x;) )

Rscore;; =
where the mad function is the median absolute deviation.
The OD method [29,30], is a simple, distance-based
method for assigning a score to a given sample indicating
the degree with which it differs from the k nearest samples
for a given gene. For both the OD method and weighted
variants of the outlying degree (WOD), we first define
an expression distance matrix D of dimension #n x m-1
containing the absolute values of the pairwise expression
differences between the current sample j and the remaining
samples in the cohort indexed by j’ for gene i. That is, each
element of the D matrix denoted as d;; is defined as:

dipj = ‘xij—xijv ’ forj'#j (5)

For each gene, i, the absolute expression differences d
are sorted in increasing order giving the corresponding ;’
values provided in o;, which is indexed by / taking values
from 1 to m-1. The outlying degree value for each sample
and each gene, OD;;, is the sum of the first k elements of
the d;; vector ordered by the o; vector as is shown in (6)
and (7).

0jj :j' 1...j' m-1 such that d,‘jr g <..< d,‘jl Y (6)
k

OD; = > " dyj|j' = oy (7)
=1

The WOD methods are similar to the OD method but
rely on a weight matrix describing the sample-to-sample
dissimilarity, which is the m x m matrix W and is defined
by the Euclidean distances between samples as in (8).

n
Wi = Zi:1|xij—xi/' ‘2 (8)

The simplest variation of the OD is WODa, which
weights each of the k nearest distances by the scaled
Euclidean distance between the two samples in question.
That is, the weights are applied after determining the
nearest absolute expression differences.

* wid li' =0
_ Wirdyilj = o
WODﬂl'j = l_}( p (9)
wii |j' = o4

=1

By contrast, the WODDb approach first applies the
scaled weights, computes the nearest absolute expression
differences and then finds the sum of the k nearest
weighted differences. One difference between (9) and (11)
is that the value used to scale the weights is based on
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the sum of the weights associated with the k nearest
differences in (9) and the sum of the non-diagonal weights
in (11).

. . Win di" . win di" i
OW,‘,’ :]V 1‘“11 el such that 17y 1 N m-17Y m-1]

(10)
Wjjv Z Wjj‘
=i i
> widilf =
WODb; = =E S, /
A

J'#

(11)

For all the OD methods, k was set to nine or six for the
simulated and real data respectively, based on the simula-
tions in Figures S3 and S4 in Additional file 2. An imple-
mentation of these methods is provided in Additional file 1
and will be provided as part of an R package ‘pod’ at [57].

Results and discussion

Methods and parameters

The Zscore as defined (see Methods) is a simple approach
to assessing whether an outlier exists in a moderately sized
dataset [58]. However, its use of the difference from the
mean as the numerator (as well as the standard deviation
in the denominator) means that it potentially could be
influenced by outliers itself. This is a well-known property
of related procedures based on means and many alter-
natives exist to reduce the influence of outliers, such as
the use of trimmed means or medians. The median-based
robust analogue of the Zscore utilizes the difference from
the median divided by the median absolute deviation
(Rscore) as has been suggested in some of the initial
work in looking for genomic outliers [10]. The OD, as
implemented (see Methods), is a measure of how different
the expression value for a given sample is from the expres-
sion values from the k nearest samples for a given gene.
The choice of the k parameter in this respect is important
as it may impact sensitivity and specificity. The k parameter
can take integer values between 1 and m -1 (assuming
m >1) with the case of k=1 equivalent to the absolute
difference between the given sample and the most similar
of the remaining samples for a given gene. For the case of
finding genes containing single sample outliers, we carried
out several simulations examining both power and FDR
for a wide range of k values. For our simulation size of 20
samples, we found that k=9 seemed to provide good
performance over a range of effect sizes (Figures S1
and S2 in Additional file 2) with relatively little additional
performance gains above nine. In general a k value set to a
value near m/2 seemed to provide adequate performance
for cohort sizes >10 (Figures S3 and S4 in Additional
file 2). Note that this assumes that the conditions of
the simulation roughly approximate that of the dataset
in question and that one is mainly interested in finding
single sample outliers. This is likely to be the case for
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the simulations as they were carried out using similar
parameters. Utilizing a different k value may influence
power and FDR estimates for a given simulation, though
from these simulations it appears that decreases in per-
formance would mainly occur when utilizing a substantially
lower k value. Although performance is difficult to assess
using experimental data, we argue that for detection of
single sample outliers it is similar enough due to the RMA
preprocessing, which makes the overall expression distri-
butions more comparable to each other as well as having
a range of expression values similar to the simulations.

Evaluation using simulations

Several aspects of the OD method could be improved based
on an examination of actual array experiments. First,
overall dissimilarities between samples could inappropri-
ately increase the score for a given gene, making it desirable
to down-weight sample-sample differences based on a
measure of overall dissimilarity. An example of this would
be an array that had a subset of genes with dissimilar
hybridization characteristics but not to the extent that it
would be removed for quality control purposes. Also,
this would be important in a precision medicine context
as we would expect samples to vary in similarity based
on technical and biological factors. A straightforward
adaptation of the OD method would be to incorporate
weights that would decrease the influence on sample-
sample comparisons for a given gene if the samples
themselves were highly dissimilar. Based on previous work
in the field of spatial statistics [59], we implemented
several variants of the weighted OD, the only difference
being whether the weighting was taken into account
before (WODD) or after (WODa) the nearest neighbors
were computed.

We first compared all methods using a straightforward
power simulation where a single gene had a single sample
outlier with a true effect size ranging from three to
five units, and where data were either generated from a
re-centered normal or t-distribution to capture the range
of sample-sample variability to which actual samples
might belong (Figure 1A). Weighting the OD method
based on overall sample dissimilarity in this context had
no benefit over the basic OD approach as all samples
would be overall very similar as a product of the simulation
approach. However, the OD methods had significantly
higher power than either the Zscore or Rscore in all six
simulations (Figure 1B). Even for the normal distribution
simulation, large effect sizes of four or five were necessary
to reach high power (>0.9) for all methods whereas only
the OD method achieved adequate power (>0.8) at the
lowest evaluated effect size. For the t-distribution, no
method was able to achieve adequate power even at the
highest effect size. An analogous simulation addressing
the FDR was also carried out, which demonstrated that
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the OD method overall had lower FDR values (all six were
significantly lower than Zscore or Rscore; Figure 1C). For
both distribution types, the FDR was high especially for an
effect size of three. The OD method was the only one to
achieve acceptable FDR (<0.10) at an effect size of five for
the normal distribution. Together, this indicates that
reasonable power should be achievable for experimental
samples at the expense of higher false discovery for effect
sizes greater than four. As discussed below, effect sizes of
this magnitude are observable in expression datasets.

A more realistic case involves one or more samples
containing genes with lower expression on average than
the remainder of the cohort. This is often seen due to
technical issues that affect the overall hybridization
characteristics of a given array. We simulated a rather
extreme situation where 2,500 or 7,500 genes in one or
three samples were affected by such a technical issue
and therefore were two units lower on average than
the remainder of the samples (Figure 2A). In each
case, we considered the situation where the sample
and gene(s) with the true outlier effect were among
those impacted by the technical factor. Otherwise data
were simulated from the normal distribution with an
effect size of five. Overall, the OD methods had signifi-
cantly higher power and lower FDR values in all four simu-
lations (Figure 2B,C). Differences between the three OD
variants were observed when there were three affected
samples with the WODb variant having additional per-
formance gains over the other two methods. In all cases,
performance was seriously hampered by the introduction

Page 6 of 10

of the technical factor, meaning that that these proce-
dures will only perform adequately if all samples are
overall similar.

Evaluations using experimental data

We next applied all five methods to an experimental
dataset consisting of samples from 12 pediatric patients
with acute B lymphoblastic leukemia run on Affymetrix
Exon arrays (see Methods). For the OD methods we set
k to six. We first determined the number of genes that
roughly fell into our simulation effect size categories of
three, four and five. This was done by computing the
difference between the sample with the highest gene
expression value and the sample with the second highest
gene expression for a given gene (note that this is
equivalent to using the OD method with k=1 for the
sample with the highest gene expression). We refer to
this value as the delta and it assumes that there is a
single sample that is up-regulated relative to the rest for
a given gene, which is the case in the simulations. We
found that there were 3, 14 and 55 genes respectively in
each of the effect size categories. As the delta is computed
per gene and does not convey sample level information
we determined the ranks for the patient sample with the
highest expression value. Focusing on the genes with delta
values of four or greater, the OD methods performed
similarly and all ranks were within the top 10 for the
given patient sample. In 9 out of 14 cases (64%), the
OD method ranked equal to or higher than the Zscore
method, and in 10 out of 14 (71%) when compared to
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dataset from the normal distribution with a technical factor affecting 2,500 of the 10,000 genes of sample one, making it divergent. The size of
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where either 2,500 or 7,500 genes of one or three samples were affected. The effect size was kept at five units. The WODb method outperforms
the others at least for the case where the number of divergent samples was equal to three. The grey areas indicate 0.95 confidence intervals.
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the Rscore method. Because the Rscore had relatively
poor performance in the simulations, and the weighted
variants of the OD method are most useful in cases of
large technical differences for multiple samples, we then
focused on the comparison between the OD method and
the Zscore. To quantify the differences between the two
methods, we examined the top 20 genes for patient
sample 09206 from the Zscore and OD method and
found that, in general, the Zscore method ranked higher
those genes with low sample-sample variability outside of
a single outlier whereas the OD method (k = 6) tolerated
greater variability. We quantified this by computing the
standard deviation after removing the highest expression
value for the top 20 genes from both methods and observed
that the median value of this standard deviation from the
OD method was 0411 (range: 0.144 to 1.784) whereas for
the Zscore it was 0.174 (range: 0.051 to 0.384; Figure 3 and
Table S1 in Additional file 3). As shown in Figure 3, the top
ranked genes for the OD and Zscore methods, PTPRM and
TDRD9Y, exhibited clear gene-level over-expression. We
note that knockdown of PTPRM has been previously
suggested to decrease cell growth and survival in glioblast-
oma multiforme [60], suggesting its possible inclusion
in a future iteration of the siRNA panel. Less seems to
be known about TDRD9. It should be noted that the k
parameter provides a mechanism through which the
user can control the type of events that are prioritized
for a given sample. For example, increasing k allows
more sample-sample variability and therefore the rankings
will be more divergent from the Zscore, decreasing k
will do the opposite (Figure S5 in Additional file 2). The
user can choose k based on his/her hypothesis regarding
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the sample-sample differences, keeping in mind its effect
on power and false discovery as discussed above.

As an initial applied analysis, we examined the results
of the OD and Zscore in the context of the patient sample
T119, which had an siRNA hit for RORI (Table S2 in
Additional file 4). We chose patient sample T119 as it
had only a single siRNA hit and therefore we could
expect some dysregulated genes that were unique to the
sample, demonstrating the arguably most common use
case for the Zscore. Overexpression of RORI in acute
lymphoblastic leukemia samples with the t(1;19) trans-
location has been previously characterized [61] and it
was hypothesized that the resulting fusion of the genes E24
(TCF3) and PBX1 halt the development of the progenitor B
cells and continue the expression of RORI along with
the preBCR complex. ROR1 and the preBCR complex
contribute to proliferation and survival through the PI3K,
AKT and MEK/ERK pathways. Examining the expression
of E2A and PBX1 in our dataset, we found that E2A was
highly expressed across all samples while PBX1 was highly
expressed in sample T119 with moderate or low expression
in the other samples. As a result, PBX1 was ranked first
and second for the Zscore and OD methods respectively
for sample T119. It has also been previously suggested
by their joint down-regulation following siRNA treatment
of the fusion product [62] that EB-1 (ANKS1B) and one iso-
form of WNT16 were also up-regulated as a consequence
of the E2A-PBX1 fusion. The ANKSIB gene was ranked
first by the OD method and ninth by the Zscore method,
while the WNT16 gene was ranked 11™ by both methods.
RORI itself was ranked 28th and 30th for the Zscore and
OD methods respectively. This demonstrates that both

0957
3
|

== Samples
« 09206

S |\
i

1

log2(Intensity)

ao

>

=i=@;i;£1

TDRDY

Jo | . VA»/xv/\\v//r\

Figure 3 The outlying degree is more robust to variability across samples than the Zscore in experimental data. (A) The top five genes
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the OD and Zscore methods are effective at pulling out
potential gene expression signatures related to a specific
patient’s disease characteristics when divergent from the
rest of the cohort.

Another use case is the identification of commonalities
among patient samples that share one or more gene targets.
In our dataset, the siRNA hit for samples 09206 and 08419
was shared (TNKI) so a natural question is whether
there are genes that have shared expression dysregulation
between the pairs (Table S2 in Additional file 4). As they
differ by gender, we first took the step of removing
expression differences due to gender. This was done by
first fitting a linear model contrasting the genders for all
genes and using the resulting matrix of residuals from
the model fit as the expression matrix. We then reran
the OD and Zscore methods on the matrix of residuals
and compared the ranks of the top 20 of each sample
using both methods. For the OD method, the TMPRSS15
gene was shared between the top 10 genes in the two
patient samples ranked second and third for 09206 and
08419 respectively. By comparison, the Zscore method
applied to both samples did not share any genes in the
top 10, in fact the lowest ranked gene for 08419 that was
in the top 10 of 09206 ranked 10,424™. This demonstrates
that the OD method can, in addition to finding the diver-
gently expressed genes for a single sample, identify and
prioritize those genes with shared dysregulation between
samples with similar functional or clinical phenotypes.

Conclusions

We have addressed the motivating problem of how to
detect patient-specific expression dysregulation events,
as well as providing guidelines and considerations for these
types of analyses. Our emphasis was on the situation where
one sample was an outlier relative to the rest and on small
to moderate cohort sizes, which was representative of our
cohort of patient samples also analyzed using an siRNA
sensitivity screen. We benchmarked several methods,
Zscore and Rscore as well as several variants of the OD
method, under a variety of conditions including different
effect sizes and the introduction of technical noise. We
determined that the OD method performed equally
well or better than the others in the majority of our
simulations in terms of power and FDR. The weighted
variants of the OD methods had greater performance
when a large amount of technical noise was introduced
into the simulations.

When these methods were applied to a set of 12 expres-
sion arrays from acute B lymphoblastic leukemia samples,
we showed that the OD method ranked the majority of
high effect size genes higher or equivalent to Zscore or
Rscore. Focusing on the Zscore and OD comparison, we
found that the Zscore ranked higher those genes that
had low sample-sample variation outside of a single outlier,
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whereas the OD method was more tolerant of sample-
sample variation depending on the choice of k. It was
further shown that the results of an OD run with k=1
were more similar to Zscore than OD runs with higher
k values. When examining the expression data in the
context of the siRNA hits, we noted that the pattern of
hits derived from the siRNA screen could either be unique
to a cohort or be similar among multiple members. This
implies that related gene expression outliers should either
be unique or shared. The OD was able to robustly
prioritize such unique and shared genes whereas the
Zscore was only effective at finding the former. We
note that there are other similar contexts in which these
methods may be successfully applied outside of finding
genes related to siRNA screens. For instance, one could
find genes related to adverse clinical outcomes that affect
only one or two subjects in a given small to medium sized
cohort.

Here, we focused on the detection of genes containing
sample expression values that were up-regulated relative
to the remaining samples. The OD method can also be
applied for the detection of down-regulated genes, by
determining the sign of the difference from the sample
in question and the mean or median of the samples for a
given gene.

One of the difficulties of focusing on the detection of
outliers for a given set of samples is that it is much more
difficult to control for potential confounders, because any
number of technical or biological factors can impact a
given sample in a high throughput expression experiment.
One way to address known confounders would be the
application of these methods to the residuals from a least
squares fit or robust alternative, as we demonstrated
through the correction of gender effects. Protecting against
unknown confounders as in the surrogate variable analysis
method [42] would seem a natural extension to this idea
though further research would be necessary.

For our simulations, we assumed that the overall dis-
tributions between the samples were highly similar. This
assumption is likely to be valid for Affymetrix arrays when
RMA [51] preprocessing and summarization is applied
due to the default use of quantile normalization [63].
Because RMA requires the arrays to be preprocessed
together, it is desirable to have the expression distributions
as comparable as possible to ensure the expression esti-
mates are accurate. As the B-ALL dataset described here
was processed in a single batch and each sample analyzed
relative to other members of the batch, the RMA procedure
was utilized. If multiple batches or even single arrays are
analyzed together, a variant of RMA, frozen RMA [64], is
an alternative.

This work represents a step towards the analysis of
patient samples in a personalized or precision medicine
context. We found that the OD method was more efficient
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at the task of prioritizing gene expression outliers than
other alternatives. Also, by being able to take into account
overall sample dissimilarities, it is better suited to address
the issues inherent in such a clinical paradigm where
analysis should not ideally wait for sufficient sample
accrual before processing and analysis. The OD method
provides the user with the ability to potentially detect gene
expression dysregulation events shared between several
samples. It can be used in relatively small cohorts and has
high power in that scenario to detect outlier samples if
there is a high effect size and relatively little sample-sample
variability. We note that these requirements appear to
be satisfied in the dataset examined here. Because of
this, the OD can perform well in many situations and
provides a robust analytical approach for the detection
of patient-specific events.
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