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Abstract. The Markoff injectivity conjecture states that w 7→ µ(w)12 is injective on the set
of Christoffel words where µ : {0, 1}∗ → SL2(Z) is a certain homomorphism andM12 is
the entry above the diagonal of a 2 × 2 matrix M . Recently, Leclere and Morier-Genoud
(2021) proposed a q-analog µq of µ such that µq(w)12|q=1 = µ(w)12 is the Markoff number
associated to the Christoffel word w when evaluated at q = 1. We show that there exists
an order <radix on {0, 1}∗ such that for every balanced sequence s ∈ {0, 1}Z and for all
factors u, v in the language of s with u <radix v, the difference µq(v)12 − µq(u)12 is a
nonzero polynomial of indeterminate q with nonnegative integer coefficients. Therefore,
the map u 7→ µq(u)12 is injective over the language of a balanced sequence. The proof uses
an equivalence between balanced sequences satisfying some Markoff property and indistin-
guishable asymptotic pairs.
Keywords. Balance, Markoff spectrum, Sturmian, Christoffel, q-analog
Mathematics Subject Classifications. 11J06, 68R15, 05A30

1. Introduction

A Markoff triple is a positive solution of the Diophantine equation

x2 + y2 + z2 = 3xyz. (1.1)

It was introduced by Markoff [Mar79,Mar80] to describe minima of indefinite real binary qua-
dratic forms. Positive solutions of Equation 1.1 can be computed recursively. If (x, y, z) is a
Markoff triple, then (x, 3xy − z, y) and (y, 3yz − x, z) are also Markoff triples, see Figure 1.1.
A Markoff triple is called proper as long as x, y and z are pairwise distinct. There are only two
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u.v
(x, y, z)

u.uv
(x, 3xy − z, y)

uv.v
(y, 3yz − x, z)

Figure 1.1: Binary tree structure of Christoffel words u.v and Markoff triples (x, y, z).

Markoff triples which are not proper, namely (1, 1, 1) and (1, 2, 1). If (x, y, z) is a properMarkoff
triple with y > x and y > z, then (x, 3xy−z, y) 6= (y, 3yz−x, z) and both 3xy−z and 3yz−x
are greater than y. Hence, the proper Markoff triples naturally label a complete infinite binary
tree, see Figure 1.2. All proper Markoff triple have a maximum value. Frobenius [Fro13] asked
whether each Markoff number (an element of a Markoff triple) is the maximum of a unique
Markoff triple. The question known as the uniqueness conjecture is still open. A book was
devoted to it and its many equivalent formulations for its 100th anniversary [Aig13].

0.1
(1, 5, 2)

0.01
(1, 13, 5)

01.1
(5, 29, 2)

0.001
(1, 34, 13)

001.01
(13, 194, 5)

01.011
(5, 433, 29)

011.1
(29, 169, 2)

0.0001

(1, 89, 34)

0001.001

(34, 1325, 13)

001.00101

(13, 7561, 194)

00101.01

(194, 2897, 5)

01.01011

(5, 6466, 433)

01011.011

(433, 37666, 29)

011.01111

(29, 14701, 169)

0111.1

(169, 985, 2)

0.00001

(1, 233, 89)

00001.0001

(89, 9077, 34)

0111.01111

(169, 499393, 985)

01111.1

(985, 5741, 2)

Figure 1.2: Binary tree of proper Christoffel words and proper Markoff triples.

The conjecture can be stated in terms of Christoffel words [Reu19]. Christoffel words are
words over the alphabet {0, 1} also satisfying a binary tree structure: 0, 1 and 01 are Christof-
fel words and if u, v, uv ∈ {0, 1}∗ are Christoffel words then uuv and uvv are Christoffel
words [BLRS09], see Figure 1.1. Note that these are usually named lower Christoffel words.
It is known that each Markoff number can be expressed in terms of a Christoffel word. More
precisely, let µ be the monoid homomorphism {0, 1}∗ → SL2(Z) defined by

µ(0) =

(
2 1
1 1

)
and µ(1) =

(
5 2
2 1

)
.
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Each Markoff number is equal to µ(w)12 for some Christoffel word w (see [Reu09]), that is, the
element above the diagonal in the matrix µ(w). Moreover, positive primitive elements of the
free group F2 on two generators are in bijection with Markoff triples [Bom07]. Both results
are equivalent since primitive elements of the free group F2 are in bijection with Christoffel
words [KR07].

In other words, the map w 7→ µ(w)12 from Christoffel words to Markoff numbers is surjec-
tive. For example, the Markoff number 194 is associated with the Christoffel word 00101 as it
is the entry at position (1, 2) in the matrix µ(00101) = ( 463 194

284 119 ). Whether this map provides a
bijection between Christoffel words and Markoff numbers is equivalent to the uniqueness con-
jecture. Indeed, the uniqueness conjecture can be expressed in terms of the injectivity of the
map w 7→ µ(w)12 [Reu19, §3.3].

Markoff Injectivity Conjecture. The map w 7→ µ(w)12 is injective on the set of Christoffel
words.

The map w 7→ µ(w)12 is defined over the monoid {0, 1}∗ not only on Christoffel words. On
this extended domain, Lapointe and Reutenauer showed that w 7→ µ(w)12 is strictly increasing
(thus injective) over the language of factors appearing in a Christoffel word [Lap20,LR21], thus
also for all Christoffel words on an infinite path in the binary tree of Christoffel words. The
map is not injective on {0, 1}∗ as for example, µ(0011)12 = 75 = µ(0101)12. But Lapointe
and Reutenauer conjectured that it is injective on the language of all factors of Christoffel words
[LR21, Conjecture 2].

1.1. q-analogs

Markoff numbers and the Markoff injectivity conjecture can be parametrized by introducing a
parameter q. Recall that the q-analog of a nonnegative integer n is

[n]q = 1 + q + · · ·+ qn−1 =
1− qn

1− q
.

Recently, the q-analog
[
a
b

]
q
∈ Q(q) of every rational number a

b
∈ Q was introduced to be a

ratio of polynomials over q defined from the continued fraction expansion of a
b
[MGO20]. It

also defines naturally the q-analog of all real numbers as an infinite series over the variable
q [MGO19]. The approach is based on the following q-deformation of the generators R = ( 1 1

0 1 )
and S = ( 0 −1

1 0 ) of PSL2(Z) = SL2(Z)/± Id:

Rq =

(
q 1
0 1

)
and Sq =

(
0 −q−1
1 0

)
.

Since µ(0) = R2SR and µ(1) = R3SR2SR, the q-analog of µ(0) and µ(1) are [LMG21]

µq(0) = R2
qSqRq =

(
q + q2 1
q 1

)
,

µq(1) = R3
qSqR

2
qSqRq =

(
q + 2q2 + q3 + q4 1 + q

q + q2 1

)
.
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Therefore, this defines a morphism of monoids µq : {0, 1}∗ → GL2(Z[q±1]).
The q-analog of a nonnegative integer, a rational or a real number α has the property of being

equal to α when evaluated at q = 1 or more generally when q → 1. Likewise, we may observe
that µq(0)|q=1 = µ(0) and µq(1)|q=1 = µ(1). Therefore, we have µq(w)12|q=1 = µ(w)12 for
all w ∈ {0, 1}∗. Thus, if w ∈ {0, 1}∗ is a Christoffel word, the polynomial µq(w)12 over the
variable q is a q-analog of a Markoff number satisfying that µq(w)12 evaluated at q = 1 is a
Markoff number, see Figure 1.3. For example,

µq(00101)12 = 1 + 4q+ 10q2 + 18q3 + 27q4 + 33q5 + 33q6 + 29q7 + 21q8 + 12q9 + 5q10 + q11

and

µq(00101)12|q=1 = 1 + 4 + 10 + 18 + 27 + 33 + 33 + 29 + 21 + 12 + 5 + 1 = 194.

A natural question is to understand the structure of the coefficients of µq(w)12 whose sum is a
Markoff number when w is a Christoffel word.

0.1
1 + q + 2q2 + q3

0.01
1 + 2q + 3q2 + 3q3 + 3q4 + q5

01.1
1 + 2q + 5q2 + 6q3 + 6q4 + 5q5 + 3q6 + q7

0.001
1 + 3q + 5q2 + 7q3 + 7q4 + 6q5 + 4q6 + q7

001.01
1 + 4q + 10q2 + 18q3 + 27q4 + 33q5 + 33q6 + 29q7 + 21q8 + 12q9 + 5q10 + q11

01.011
1 + 4q + 12q2 + 25q3 + 42q4 + 58q5 + 68q6 + 69q7 + 61q8 + 45q9 + 28q10 + 14q11 + 5q12 + q13

011.1
1 + 3q + 9q2 + 16q3 + 24q4 + 29q5 + 29q6 + 25q7 + 18q8 + 10q9 + 4q10 + q11

Figure 1.3: Binary tree of proper Christoffel words w and proper q-Markoff numbers µq(w)12. The
sequence of polynomials associated to words w ∈ {00∗1} is a subsequence of a sequence indexed in the
Online Encyclopedia of Integer Sequences at http://oeis.org/A123245.

Question 1.1. Is there a combinatorial interpretation for the degree and coefficients of the q-
Markoff number µq(w)12 ∈ Z[q] associated to a Christoffel word w ∈ {0, 1}∗?

http://oeis.org/A123245
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Also, a natural extension of the Markoff injectivity conjecture to the q-analog of Markoff
numbers is the following.

Conjecture 1.2 (q-analog of the Markoff Injectivity Conjecture). The map {0, 1}∗ → Z[q]
defined by w 7→ µq(w)12 is injective over the set of Christoffel words.

Markoff Injectivity Conjecture implies Conjecture 1.2, since if µq(u)12|q=1 6= µq(v)12|q=1,
thenµq(u)12 6= µq(v)12. However, Conjecture 1.2 is weaker than the classicalMarkoff Injectivity
Conjecture since two different polynomials may take the same value at q = 1. So a priori
Conjecture 1.2 may be “easier” than the classical conjecture.

As mentioned above, the Markoff Injectivity Conjecture was extended to the language of
factors of all Christoffel words [LR21, Conjecture 2]. This language is equal to the language
of all balanced sequences over a binary alphabet. Balanced sequences include biinfinite peri-
odic ∞w∞ repetitions of a Christoffel word, Sturmian sequences which are aperiodic and more
(ultimately periodic biinfinite words which are not purely periodic, called skew by Morse and
Hedlund [MH40]). See its definition in Section 2. We extend the q-analog of the Markoff Injec-
tivity Conjecture to the language of all balanced sequences B = {s ∈ {0, 1}Z : s is balanced}.

Conjecture 1.3. Themap {0, 1}∗ → Z[q] defined byw 7→ µq(w)12 is injective over the language
L(B) =

⋃
s∈B L(s) of all balanced sequences.

Conjecture 1.3 implies Conjecture 1.2 since the set of Christoffel words is a subset of L(B).

1.2. Main results

In this article, we propose a result which progresses in the direction of Conjecture 1.3. More
precisely, we prove that the map w 7→ µq(w)12 is strictly increasing with respect to the radix
order on the language of a fixed balanced sequence.

Recall that the radix order is defined for every u, v ∈ {0, 1}∗ as

u <radix v if

{
|u| < |v| or
|u| = |v| and u <lex v.

Also we define a partial order ≺ on Z[q] as

f ≺ g if and only if f 6= g and g − f ∈ Z>0[q].

Theorem A. Let s ∈ {0, 1}Z be a balanced sequence and u, v ∈ L(s) be two factors in the
language of s. If u <radix v, then µq(u)12 ≺ µq(v)12, i.e., µq(v)12 − µq(u)12 is a nonzero
polynomial of indeterminate q with nonnegative integer coefficients.

Theorem A is illustrated in Table 6.1 in the appendix which shows the values of µ(w)12 and
µq(w)12 for the small factors in the Fibonacci word, the most well-known balanced sequence.
We observe that the coefficients of the polynomials over q are increasing from one row to the
next.

As a consequence, we prove Conjecture 1.3 when restricted to the language of a given bal-
anced sequence.
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Corollary 1. Let s ∈ {0, 1}Z be a balanced sequence. The map u 7→ µq(u)12 is injective over
the language L(s).

Remark that Corollary 1 can also be deduced from Corollary 1 of [LR21] since two poly-
nomials evaluated at q = 1 are distinct implies that the polynomials are distinct. We also state
a corollary of Theorem A when evaluating polynomials at q = γ for all positive real numbers
γ > 0 improving Corollary 1 from [LR21].

Corollary 2. Let s ∈ {0, 1}Z be a balanced sequence. For every γ > 0, the map {0, 1}∗ → R
defined by w 7→ µq(w)12|q=γ is strictly increasing and injective over the language L(s) with
respect to the radix order <radix.

To each word w ∈ {0, 1}∗ corresponds a function γ 7→ µq(w)12|q=γ . The graph of these
functions is shown on the interval 0 < γ < 100 with a logarithmic y-scale in Figure 1.4 for
every short factors w in Fibonacci word.

The proof of Theorem A follows the same idea as the proof that the map {0, 1}∗ → Z>0 :
w 7→ µ(w)12 is strictly increasing (for the radix order) over the factors of a Christoffel word
[Lap20, LR21]. When listing the conjugates of a Christoffel word in lexicographic order, only
a flip of two letters happens between consecutive conjugates [BR06, Corollary 5.1]. This ob-
servation was done in the context of the Burrows–Wheeler transform [MRS03]. Recall that
Burrows–Wheeler transform of a finite word w is obtained from w by first listing the conjugates
of w in lexicographic order and then concatenating the final letters of the conjugates in this or-
der, see [FMMB07]. When listing lexicographically the n+ 1 factors of a balanced language, at
most two letters are changed from one word to the next (see Lemma 4.1). This allows to prove
Theorem A for the language of a balanced biinfinite sequence.

This article is structured as follows. Section 2 gathers many equivalent characterizations
of balanced sequences including properties introduced by Markoff [Mar79,Mar82]. It is then
related to indistinguishable asymptotic pairs [BLS21] which we state as Theorem B since it
provides a link between an old notion ofMarkoffwith a recent one. Indistinguishable asymptotic
pairs naturally provides two compact representations of the language of length n of a balanced
sequence as the factors appearing in two words of length 2n, see Corollary 2.6. This is used
to show that only small local changes appear between a factor and the next factor according to
the radix order over the language of a balanced sequence. In Section 3, we show that the map
w 7→ µq(w)12 is increasing over the listed small local changes. The proof of Theorem A is
done in Section 4. In Section 5, we conclude with few examples illustrating that Theorem A can
unfortunately not be extended to the language of all balanced sequences using the radix order.

2. Balanced sequences

2.1. Definition and example

Let s ∈ ΣZ be a sequence over a finite set Σ. The language of s is L(s) = {sksk+1 · · · sk+n−1 |
k ∈ Z, n > 0} ⊂ Σ∗ is the set of subwords (or factors) occurring in s. The language of
subwords of length n ∈ Z>0 is Ln(s) = L(s)∩Σn. The reversal of a finite word w = (wi)16i6n
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Figure 1.4: The graph of the curves (γ, µq(w)12|q=γ) for 0 6 γ 6 100 for all 55 factors w of length
|w| < 10 in the Fibonacci word. The 55 polynomials µq(w)12 shown in the appendix are ranging from
degree 0 to 24 explaining why we see 25 curves in the figure instead of 55. A consequence of Theorem A
is that the 55 curves do not intersect when γ > 0. The difference between two polynomials of the same
degree is very small and can not be distinguished (the y axis uses a logarithmic scale). For example,
there are four factors of length 9 whose images under w 7→ µq(w)12 are polynomials of degree 23 whose
pairwise difference is a polynomial of degree 20, 18 or 14, see Table 6.1.

is w̃ = (wn+1−i)16i6n. Similarly, the reversal of a right infinite sequence s = (si)i∈Z>0
is the

left infinite sequence s̃ = (s−i)i∈Z60
.

Definition 2.1. A sequence s ∈ ΣZ is balanced if for every positive integer n, for every u, v ∈
Ln(s) and every letter a ∈ Σ, the number of a’s occurring in u and v differ by at most 1.

For example, the right-infinite Fibonacci word

F = 01001010010010100101 . . . ∈ ΣZ>0

over the alphabet Σ = {0, 1} is such that both

F̃ · 01 · F = . . . 10100101001001010010 · 01 · 01001010010010100101 . . .

and
F̃ · 10 · F = . . . 10100101001001010010 · 10 · 01001010010010100101 . . .
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are balanced sequences. This observation is illustrated for factors of length up to six in the
following table.

n Ln(F̃01F ) number
of 0’s

number
of 1’s

0 {ε} 0 0
1 {0, 1} 0 or 1 0 or 1
2 {00, 01, 10} 1 or 2 0 or 1
3 {001, 010, 100, 101} 1 or 2 1 or 2
4 {0010, 0100, 0101, 1001, 1010} 2 or 3 1 or 2
5 {00100, 00101, 01001, 01010, 10010, 10100} 3 or 4 1 or 2
6 {001001, 001010, 010010, 010100, 100100, 100101, 101001} 3 or 4 2 or 3

From the table, we confirm that the number of 0’s and the number of 1’s occurring in two factors
of the same length differ by at most 1.

2.2. The Markoff property

It is worth recalling that balanced sequences appeared in the work of Markoff himself [Mar79,
Mar82] under an equivalent condition, called Markoff property (M) in [Reu06].

Definition 2.2. [Reu06] We say that a biinfinite word s ∈ {0, 1}Z satisfies theMarkoff property
if for any factorization s = uxyv, where {x, y} = {0, 1}, one has

• either ũ = v,

• or there is a factorization u = u′ym, v = m̃xv′.

The Markoff property is related to the Markoff spectrum. Let U = (ai)i∈Z be a biinfinite
sequence such that ai are positive integers. For i ∈ Z, let

λi(U) = ai + [0; ai+1, ai+2, . . . ] + [0; ai−1, ai−2, . . . ].

The Markoff supremum of U is
M(U) = sup

i∈Z
λi(U).

Two results of Markoff can be stated in terms of Christoffel words and balanced sequences as
follows where σ is the substitution from {0, 1}∗ to {1, 2}∗ defined by 0 7→ 11 and 1 7→ 22.
It provides an equivalence between sequences satisfying the Markoff property and sequences
of positive integers such that the Markoff supremum is at most 3. The equivalence between
sequences satisfying the Markoff property and balanced sequences was not proved by Markoff
himself: it was stated without proof in [CF89] and a proof was provided in [Reu06].

Theorem 2.3 (Markoff). [Reu06, Theorem 3.1 and 7.1] Let s ∈ {0, 1}Z be a biinfinite word.
The following conditions are equivalent:

• s satisfies the Markoff property,
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• s is balanced,

• M(σ(s)) 6 3.

The Markoff supremum of a purely periodic balanced sequence can be computed from the
Markoff number associated to the Christoffel word which is a period of the sequence.

Theorem 2.4 (Markoff). [Reu19, Theorem 6.2.1] Let w be some lower Christoffel word as-
sociated with Markoff number m = µ(w)12. Let s be the biinfinite sequence ∞σ(w)∞. Then
M(s) =

√
9− 4

m2 .

2.3. Mechanical sequences

It is known that right-infinite aperiodic balanced sequences correspond to mechanical sequences
[MH40] which are binary encodings of irrational rotations, see the chapters [Fog02, Chapter 6],
[Lot02, Chapter 2] and [AS03, Chapter 9]. A biinfinite balanced sequence can also be periodic
and in this case expressed in terms of Christoffel words. To be more precise, let α ∈ [0, 1] and
ρ ∈ R and consider the lower and upper mechanical sequences sα,ρ and s′α,ρ with slope α and
intercept ρ given respectively by

sα,ρ : Z → {0, 1}
n 7→ bα(n+ 1) + ρc − bαn+ ρc

and
s′α,ρ : Z → {0, 1}

n 7→ dα(n+ 1) + ρe − dαn+ ρe.
When α is rational, the sequences sα,ρ and s′α,ρ are periodic and their period corresponds to a
Christoffel word [BLRS09]. When α is irrational, then sα,ρ and s′α,ρ are not periodic. It is clear
that if ρ − ρ′ is an integer, then sα,ρ = sα,ρ′ and s′α,ρ = s′α,ρ′ . Thus we may always assume
0 6 ρ < 1. Moreover, if Z ∩ αZ + ρ = ∅ then sα,ρ = s′α,ρ.

2.4. Four classes of balanced sequences

Biinfinite balanced sequences can be split into four different types of sequences. Reutenauer pro-
posed the following refinement of the Markoff property [Reu06] which was restated in [GLS08]
as follows. If a biinfinite sequence u ∈ {0, 1}Z satisfies the Markoff property, then it falls into
exactly one of the following classes:

(M1) u cannot be written as u = p̃xyp where {x, y} = {0, 1} and the lengths of the Christoffel
words occurring in u are bounded;

(M2) u cannot be written as u = p̃xyp where {x, y} = {0, 1} and the lengths of the Christoffel
words occurring in u are unbounded;

(M3) u has a unique factorization u = p̃xyp where {x, y} = {0, 1};

(M4) u has at least two factorizations u = p̃xyp where {x, y} = {0, 1}.
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Morse and Hedlund gave a classification of balanced biinfinite sequences into three classes
(periodic, Sturmian, skew) [MH40]. Since the Sturmian case naturally splits into two, Reute-
nauer proposed the following four classes (MHi)i∈{1,2,3,4} and proved their equivalence with
the (Mi).

Theorem 2.5. [Reu06, Theorem 6.1] Let u ∈ {0, 1}Z be a balanced sequence. For every
i ∈ {1, 2, 3, 4}, u satisfies (Mi) if and only if u satisfies (MHi) where

(MH1) u is a purely periodic word ∞w∞ for some Christoffel word w,

(MH2) u is a generic aperiodic Sturmian word, i.e., u = sα,ρ = s′α,ρ for some α ∈ [0, 1] \ Q
and ρ ∈ R such that Z ∩ αZ + ρ = ∅.

(MH3) u is a characteristic aperiodic Sturmian word, i.e., u = sα,ρ or u = s′α,ρ for some
α ∈ [0, 1] \Q and ρ ∈ R such that Z ∩ αZ + ρ 6= ∅.

(MH4) u is an ultimately periodic word but not purely periodic, i.e., u = · · ·xxyxx · · · or
u = · · · (ymx)(ymx)(ymy)(xmy)(xmy) · · · where {x, y} = {0, 1} and 0m1 is a
Christoffel word.

2.5. Indistinguishable asymptotic pairs

In this section, we give equivalent conditions for balanced sequences satisfying cases (M3) or
(M4). Cases (M3) and (M4) can be expressed in terms of limits of mechanical words toward
an irrational or rational slope from above or from below which were shown to be equivalent to
sequences that belong to an indistinguishable asymptotic pair [BLS21].

Concretely, given a finite set Σ, we consider the space of sequences ΣZ = {s : Z → Σ}
endowed with the prodiscrete topology and the shift σ : ΣZ → ΣZ where

(σ(s))m = sm+1 for everym ∈ Z and s ∈ ΣZ.

The shift on ΣZ is invertible and extends to a shift action Z σy ΣZ. In this setting, two sequences
s, t ∈ ΣZ are asymptotic if s and t differ in finitely many positions of Z. The finite set F = {n ∈
Z : sn 6= tn} is called the difference set of (s, t).

Given two asymptotic sequences s, t ∈ ΣZ, we may compare the number of occurrences
of a fixed pattern. A pattern is a function p : S → Σ where S, called support, is a finite sub-
set of Z. The occurrences of a pattern p ∈ ΣS in a sequence s ∈ ΣZ is the set occp(s) :=
{n ∈ Z : σn(s)|S = p}. Observe that when s, t ∈ ΣZ are asymptotic sequences, the difference
occp(s) \ occp(t) is finite because the occurrences of p are the same outside the difference set.
We say that (s, t) is an indistinguishable asymptotic pair if s and t are asymptotic and

# (occp(s) \ occp(t)) = # (occp(t) \ occp(s))

for every finite support S ⊂ Z and every pattern p ∈ ΣS . Extending the results proved
in [BLS21] about indistinguishable asymptotic pairs, we may prove equivalent conditions for
balanced sequences satisfying Markoff property (M3) or (M4). In the statement, we denote the
position of the origin of a biinfinite sequence s = · · · s−2s−1.s0s1s2 · · · ∈ ΣZ with a dot (.)
between positions −1 and 0.
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Theorem B. Let s ∈ {0, 1}Z and n0 ∈ Z. The following are equivalent conditions describing
balanced sequences satisfying Markoff property (M3) or (M4):
(1) the sequence s has a factorization σn0s = p̃x.yp where {x, y} = {0, 1};

(2) there exists a sequence (αk)k∈Z>0
with αk ∈ [0, 1] \ Q such that σn0s = limk→∞ sαk,0 or

σn0s = limk→∞ s
′
αk,0

;

(3) there exists a sequence t ∈ {0, 1}Z such that (s, t) is an indistinguishable asymptotic pair
with difference set {n0 − 1, n0}.

Proof. (1) =⇒ (2). It is sufficient to prove it for n0 = 0. We suppose that s has a factor-
ization s = p̃x.yp where {x, y} = {0, 1}. The symmetry n 7→ −n − 1 keeps the sequence s
invariant except at {−1, 0}. In other words, s(n) = s(−n − 1) for every n ∈ Z \ {−1, 0} and
{s(−1), s(0)} = {0, 1}.

Suppose that s satisfies case (M3). From Theorem 2.5, s also satisfies case (MH3), that is,
there exists an irrational number for some α ∈ [0, 1]\Q and ρ ∈ R such that s = sα,ρ or s = s′α,ρ
with Z∩αZ+ρ 6= ∅. Since s(n) = s(−n− 1) for every n ∈ Z \ {−1, 0}, we must have ρ = 0.
Because α is irrational, for every n ∈ Z \ {−1, 0} and every sequence (αk)k∈Z>0

of irrational
numbers αk such that limk→∞ αk = α, we have

sα,0(n) = bα(n+ 1)c − bαnc = lim
k→∞
bαk(n+ 1)c − bαknc = lim

k→∞
sαk,0(n),

s′α,0(n) = dα(n+ 1)e − dαne = lim
k→∞
dαk(n+ 1)e − dαkne = lim

k→∞
s′αk,0

(n).

Also, since each αk is irrational, we have sα,0(0)sα,0(1) = 10 = limk→∞ sαk,0(0)sαk,0(1) and
s′α,0(0)s′α,0(1) = 01 = limk→∞ s

′
αk,0

(0)s′αk,0
(1). We conclude that s = limk→∞ sαk,0 or s =

limk→∞ s
′
αk,0

.
Suppose that s satisfies case (M4). From Theorem 2.5, s also satisfies case (MH4), that

is, s is an ultimately periodic word but not purely periodic, i.e., s = · · ·xxyxx · · · or s =
· · · (ymx)(ymx)(ymy)(xmy)(xmy) · · · where {x, y} = {0, 1} and 0m1 is a Christoffel word.
From [BLS21, Lemma 4.2], there exists a, b ∈ Z>0 coprime integers such that

p̃1.0p = lim
α→ a

a+b
+
sα,0 and p̃0.1p = lim

α→ a
a+b

+
s′α,0 (limit from above)

or
p̃1.0p = lim

α→ a
a+b
−
sα,0 and p̃0.1p = lim

α→ a
a+b
−
s′α,0 (limit from below).

(2) =⇒ (1). If limk→∞ αk ∈ Q, then from [BLS21, Lemma 4.2], we directly have that
σn0s has a factorization σn0s = p̃x.yp where {x, y} = {0, 1}. If limk→∞ αk = α ∈ [0, 1] \ Q,
then limk→∞ sαk,0 = sα,0 and limk→∞ s

′
αk,0

= s′α,0. Both are symmetric satisfying sα,0(n) =
sα,0(−n− 1) and s′α,0(n) = s′α,0(−n− 1) for every n ∈ Z \ {−1, 0} and {sα,0(−1), sα,0(0)} =
{s′α,0(−1), s′α,0(0)} = {0, 1}.

(2) ⇐⇒ (3). It was proved in [BLS21, Theorem B] that (2) holds if and only if there exists a
sequence t′ ∈ {0, 1}Z such that (σn0s, t′) is an indistinguishable asymptotic pair with difference
set {−1, 0}. This holds if and only if (s, σ−n0t′) is an indistinguishable asymptotic pair with
difference set {n0 − 1, n0} since the shift preserves indistinguishable asymptotic pairs [BLS21,
Proposition 2.5]. It concludes the proof if we let t = σ−n0t′.
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2.6. Language of a balanced sequence

Balanced sequences have other equivalent definitions, for example, in terms of factor complexity
[CH73]. A balanced sequence satisfies Markoff properties (M2), (M3) or (M4) if and only if it
has complexity n+ 1, see [Lot02, Theorem 2.1.13] stated for right-infinite sequences.

The language of a balanced sequence of complexity n + 1 can be compactly represented in
two ways as described in the following result. It shows that there exist two words of length 2n
that contains the language of factors of length n > 1 occurring in a balanced sequence. The
proof follows easily from the notion of indistinguishable asymptotic pairs [BLS21].

Corollary 2.6. Let s ∈ {0, 1}Z be a balanced sequence having at least one factorization s =
p̃xyp where {x, y} = {0, 1}. Let n > 1 and w be the prefix of p of length n − 1. The two
words w̃01w and w̃10w of length 2n contain the n + 1 factors of s. More precisely, Ln(s) =
Ln(w̃01w) = Ln(w̃10w).

Proof. Let n0 ∈ Z be such that σn0s = p̃x.yp. We may assume that n0 = 0 and σn0s = s since
shifting the sequence s preserves its language. From Theorem B, there exists a sequence t ∈
{0, 1}Z such that (s, t) is an indistinguishable asymptotic pair with difference set {n0−1, n0} =
{−1, 0}. In particular, s and t are equal outside of the difference set, i.e., s|Z\{−1,0} = t|Z\{−1,0},
and different on the difference set. Since the alphabet is binary, we must have t−1t0 = yx.
Therefore the sequence t satisfies t = p̃y.xp. Replacing {x, y} by {0, 1}, we have that the
indistinguishable asymptotic pair is of the form {s, t} = {p̃0.1p, p̃1.0p}. Thus, for every prefix
w of length n − 1 of p, we have {s−ns−n+1 · · · sn−1, t−nt−n+1 · · · tn−1} = {w̃01w, w̃10w}.
From [BLS21, Corollary 3.6], we have

Ln(s) = Ln(s−ns−n+1 · · · sn−1) = Ln(t−nt−n+1 · · · tn−1)
= Ln(w̃01w) = Ln(w̃10w).

For example, the following two words of length 16 contain one occurrence of each factor of
length 8 occurring in the Fibonacci word:

1010010.01.0100101
1010010.10.0100101

We use Corollary 2.6 in Lemma 4.1 to show the existence of a bijection f : Ln(s) → Ln(s)
which is a cyclic permutation and having the property, except for two words in Ln(s), of flipping
a 01 into a 10 from u to f(u). This property is well-known in the context of the Burrows–Wheeler
transform of a Christoffel word, see [MRS03,BR06] or more recently [Reu19, Theorem 15.2.4].

Small local changes from a factor to the next (in radix order) can also be seen in the language
of a balanced sequence. For example, we list below the factors of length 8 in the Fibonacci word
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as well as the greatest (for the radix order) factor of length 7 and the smallest factor of length 9:

1010010 = 1m
00100101 = 00100101 = 0m1

00101001 = 00101001
01001001 = 01001001
01001010 = 01001010 = ũ01v
01010010 = 01010010 = ũ10v
10010010 = 10010010
10010100 = 10010100
10100100 = 10100100 = 1m0

10100101 = 1m1

001001010 = 0m10

In the left column, the 8 cyclic conjugates of the Christoffel word 00100101 are listed in lexico-
graphic order. It illustrates what happens in the context of the Burrows–Wheeler transform: in
each word (except the last), the factor 01 that is changed into a 10 is underlined. In the middle
column, the 9 factors of length 8 in the language of the Fibonacci word. There is also the lexi-
cographically largest factor of length 7 and the lexicographically smallest factor of length 9. As
for the conjugates of a Christoffel word, we observe that at most two letters change from a word
to the next. The type of changes summarized in the right column can be verified on the factors
of the Fibonacci word of length up to 9 ordered in radix order in Table 6.1 in the appendix.

This observation proved in Lemma 4.1 is a key point in the proof of Theorem A. More
precisely, we observe that the small local changes are of the following forms:

ũ01v 7→ ũ10v, w0 7→ w1, 1w 7→ 0w0, 1w 7→ 0w1 (2.1)

where u, v, w ∈ {0, 1}∗ and u is a prefix of v or vice versa.

3. Increasing over small local changes

In this section, we prove that the map w 7→ µq(w)12 is increasing over the small local changes
listed in Equation (2.1). Recall that we use the partial order ≺ on Z[q] is defined as

f ≺ g if and only if f 6= g and g − f ∈ Z>0[q].

More precisely, we prove the following two propositions.

Proposition 3.1. For every w ∈ {0, 1}∗,

µq(w0)12 ≺ µq(w1)12 and µq(1w)12 ≺ µq(0w0)12 ≺ µq(0w1)12.

Proposition 3.2. Let u, v ∈ {0, 1}∗ such that u is a prefix of v or vice versa. Then

µq(ũ01v)12 ≺ µq(ũ10v)12.
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The proof of each proposition is preceded by a lemma. The proof of the two lemmas is the
q-analog of the proofs made in [Lap20, LR21] over the integer entries. In particular, the next
lemma extends Lemma 2 from [LR21].

Lemma 3.3. Letw ∈ {0, 1}∗ and polynomialsm,n, o, p ∈ Z[q] such that µq(w) = (m n
o p ). Then

m, p and

qm− q2n+ o, (3.1)
(q + q2)m− (q2 + q3 + q4)n+ o− qp, (3.2)

are nonzero polynomials with nonnegative coefficients. Moreover, o and n are nonzero polyno-
mials with nonnegative coefficients except if w is empty in which case o = n = 0.

Proof. The proof is done by induction on the length of w. If w is the empty word, then m =
p = 1 and n = o = 0. Therefore,

qm− q2n+ o = q ∈ Z>0[q] \ {0},
(q + q2)m− (q2 + q3 + q4)n+ o− qp = (q + q2)− q = q2 ∈ Z>0[q] \ {0}.

Let w ∈ {0, 1}∗ such that µq(w) = (m n
o p ) for some polynomials m,n, o, p ∈ Z>0[q]. As-

sume by induction that m, p, (3.1) and (3.2) are nonzero polynomials with nonnegative coeffi-
cients.

Let w′ ∈ {0, 1}∗ be a nonempty word w′ = w0 or w′ = w1. We have µq(w′) =
(
m′ n′

o′ p′
)
for

some polynomialsm′, n′, o′, p′ ∈ Z[q]. If w′ = w0, then

µ(w′) =

(
m′ n′

o′ p′

)
=

(
m n
o p

)(
q + q2 1
q 1

)
=

(
(q + q2)m+ qn m+ n
(q + q2)o+ qp o+ p

)
. (3.3)

We observe that m′, n′, o′ and p′ are nonzero polynomials with nonnegative coefficients. Also,
we have

qm′ − q2n′ + o′ = q
((
q + q2

)
m+ qn

)
− q2 (m+ n) +

((
q + q2

)
o+ qp

)
= q
(
q2m+ (q + 1)o+ p

)
∈ Z>0[q] \ {0},

sincem, p ∈ Z>0[q] \ {0} and o ∈ Z>0[q]. Moreover, using the induction hypothesis, we have

(q + q2)m′ − (q2 + q3 + q4)n′ + o′ − qp′ = (q + q2)
((
q + q2

)
m+ qn

)
− (q2 + q3 + q4)(m+ n)

+
((
q + q2

)
o+ qp

)
− q(o+ p)

= q2
(
qm− q2n+ o

)
∈ Z>0[q] \ {0}

by Equation (3.1).
If w′ = w1, then

µ(w′) =

(
m′ n′

o′ p′

)
=

(
m n
o p

)(
q + 2q2 + q3 + q4 1 + q

q + q2 1

)
=

(
(q + 2q2 + q3 + q4)m+ (q + q2)n (1 + q)m+ n
(q + 2q2 + q3 + q4)o+ (q + q2)p (1 + q)o+ p

)
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We observe that m′, n′, o′ and p′ are nonzero polynomials with nonnegative coefficients. Also
we have that both

qm′ − q2n′ + o′ = q
((
q + 2q2 + q3 + q4

)
m+

(
q + q2

)
n
)
− q2 ((1 + q)m+ n)

+
((
q + 2q2 + q3 + q4

)
o+

(
q + q2

)
p
)

= q
(
(q2 + q3 + q4)m+ q2n+ (1 + 2q + q2 + q3)o+ (1 + q)p

)
and

(q + q2)m′ − (q2 + q3 + q4)n′

+o′ − qp′ = (q + q2)
((
q + 2q2 + q3 + q4

)
m+

(
q + q2

)
n
)

− (q2 + q3 + q4) ((1 + q)m+ n)

+
((
q + 2q2 + q3 + q4

)
o+

(
q + q2

)
p
)

− q ((1 + q)o+ p)

= q2((q + q2 + q3 + q4)m+ qn+ (1 + q + q2)o+ p)

belong to Z>0[q] \ {0} sincem, p ∈ Z>0[q] \ {0} and n, o ∈ Z>0[q].

Proof of Proposition 3.1. Let w ∈ {0, 1}∗ such that µq(w) = (m n
o p ) where m,n, o, p ∈ Z>0[q]

from Lemma 3.3. Firstly, we have

µq(w1)− µq(w0) = µq(w) [µq(1)− µq(0)]

=

(
m n
o p

)[(
q + 2q2 + q3 + q4 1 + q

q + q2 1

)
−
(
q + q2 1
q 1

)]
=

(
m n
o p

)(
q2 + q3 + q4 q

q2 0

)
We compute the entry (1, 2) of the above matrix and we obtain

µq(w1)12 − µq(w0)12 = mq ∈ Z>0[q] \ {0}

sincem ∈ Z>0[q] \ {0}.
Secondly, we have

µq(0w0)− µq(1w) = µq(0) (m n
o p )µq(0)− µq(1) (m n

o p )

=
(
q+q2 1
q 1

)
(m n
o p )

(
q+q2 1
q 1

)
−
(
q+2q2+q3+q4 1+q

q+q2 1

)
(m n
o p ) .

We compute the entry (1, 2) of the above matrix and from Lemma 3.3, we obtain

µq(0w0)12 − µq(1w)12 =
(
q + q2

)
m+

(
q + q2

)
n+ o+ p

−
(
q + 2 q2 + q3 + q4

)
n− (1 + q)p

= (q + q2)m− (q2 + q3 + q4)n+ o− qp ∈ Z>0[q] \ {0}.

From the first part of the proof, we also have µq(0w0)12 − µq(0w1)12 is a nonzero polynomial
with nonnegative coefficients.



16 Sébastien Labbé, Mélodie Lapointe

Let
Dq = µq(10)− µq(01) =

(
0 q + q4

−q2 − q5 0

)
.

The matrix Dq represent the flip between two consecutive factors in the language of a balanced
language. Hence, properties of this matrix are used to prove our main result. In the next lemma,
we use the following notation. If u ∈ {0, 1}∗ and a ∈ {0, 1}, then |u|a is the number of
occurrences of the letter a in u.

Lemma 3.4. Let u ∈ {0, 1}∗. Then

µq(ũ10u)− µq(ũ01u) = qnDq = det(µq(u))Dq

where n = 2|u|0 + 4|u|1.

Proof. It follows from the following two equalities

µq(0)Dqµq(0) =

(
q + q2 1

q 1

)(
0 q + q4

−q2 − q5 0

)(
q + q2 1

q 1

)
=

(
0 q3 + q6

−q4 − q7 0

)
= q2Dq = det(µq(0))Dq

and

µq(1)Dqµq(1) =

(
q + 2q2 + q3 + q4 1 + q

q + q2 1

)(
0 q + q4

−q2 − q5 0

)
(
q + 2q2 + q3 + q4 1 + q

q + q2 1

)
=

(
0 q5 + q8

−q6 − q9 0

)
= q4Dq = det(µq(1))Dq.

Proof of Proposition 3.2. There are three cases: u = v, v is longer than u or u is longer than
v. First assume u = v. We use the identity µq(ũ)Dqµq(u) = qnDq for some n > 0 from
Lemma 3.4. We have

µq(ũ10v)12 − µq(ũ01v)12 = ( 1 0 )µq(ũ)[µq(10)− µq(01)]µq(u) ( 0
1 )

= ( 1 0 ) · qnDq · ( 0
1 ) = qn

(
q4 + q

)
∈ Z>0[q] \ {0}.

Assume |v| > |u| and let s ∈ {0, 1}+ such that v = us. We compute

µq(ũ10v)12 − µq(ũ01v)12 = ( 1 0 )µq(ũ)[µq(10)− µq(01)]µq(u)µq(s) ( 0
1 )

= ( 1 0 ) · qnDq · µq(s) ( 0
1 )

= qn ( 0 q4+q )µq(s) ( 0
1 ) ∈ Z>0[q] \ {0},

since s is non-empty and from Lemma 3.3 the entries of µq(s) are nonzero polynomials with
nonnegative coefficients.
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Assume |u| > |v| and let s ∈ {0, 1}+ such that u = vs. We obtain

µq(ũ10v)12 − µq(ũ01v)12 = ( 1 0 )µq(s̃)µq(ṽ) [µq(10)− µq(01)]µq(v) ( 0
1 )

= ( 1 0 )µq(s̃) · qnDq · ( 0
1 )

= qn ( 1 0 )µq(s̃)
(
q4+q
0

)
∈ Z>0[q] \ {0},

since s is non-empty and from Lemma 3.3 the entries of µq(s̃) are nonzero polynomials with
nonnegative coefficients.

4. Proof of Theorem A

The following lemma can be seen as a extension to biinfinite balanced sequences of complexity
n+1 of Theorem 15.2.4 from [Reu19] stated for the n conjugates of a Christoffel word of length
n.

Lemma 4.1. Let s ∈ {0, 1}Z be a balanced sequence having at least one factorization s = p̃xyp
where {x, y} = {0, 1}. Let n > 1 and u0, . . . , un be the n+ 1 factors of length n of s such that

u0 <lex · · · <lex un.

If w is the prefix of length n− 1 of p, we have

• u0 = 0w and un = 1w,

• there exists i ∈ {0, . . . , n− 1} such that ui = w̃0 and ui+1 = w̃1,

• for all j ∈ {0, . . . , n − 1} \ {i}, there exist prefixes x, y of w such that uj = x̃01y and
uj+1 = x̃10y.

Proof. Let f : Ln(s)→ Ln(s) be the map such that f(u) is the factor appearing in w̃10w at the
same position as the occurrence of u in w̃01w. From Corollary 2.6, f is a bijection.

From the definition of f , if u 6= 1w then u <lex f(u). Thus f is a cyclic permutation (if f
had at least 2 cycles, there would exist two distinct words u such that u 6<lex f(u)). Thus there
exists a minimal word u0 for the lexicographic order such that

u0 <lex f(u0) <lex f
2(u0) <lex · · · <lex f

n(u0) 6<lex f
n+1(u0) = u0

It also implies that the maximal factor for the lexicographic order is fn(u0) = 1w and the
minimal one is u0 = f(fn(u0)) = f(1w) = 0w. This ends the proof if we let ui = f i(u0) for
all i ∈ {1, . . . , n}.

We may now show that the q-analog of the Markoff injectivity conjecture holds over the
language of a balanced sequence satisfying property (M3) or (M4).

Proposition 4.2. Let s ∈ {0, 1}Z be a balanced sequence having at least one factorization
s = p̃xyp where {x, y} = {0, 1}. Let u, v ∈ L(s) be two factors in the language of s. If
u <radix v, then µq(u)12 ≺ µq(v)12.
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Proof. Let (xi)06i6n be a maximal chain for the radix order such that

u = x0 <radix x1 <radix · · · <radix xn = v.

Let i ∈ {0, . . . , n− 1}. Since the chain is maximal, we have |xi+1| = |xi| or |xi+1| = |xi| + 1.
First assume that |xi| = |xi+1|. Since xi <radix xi+1, we have xi <lex xi+1. From Lemma 4.1
and Proposition 3.2, we conclude that µq(xi)12 ≺ µq(xi+1)12.

Now assume that |xi+1| = |xi| + 1. Since the chain is maximal, then xi is the lexico-
graphically maximal factor of its length and xi+1 is the lexicographically minimal factor of
its length. From Lemma 4.1, the prefix w of length |xi| − 1 of p is such that xi = 1w and
xi+1 ∈ {0w0, 0w1}. From Proposition 3.1, we obtain that µq(xi)12 ≺ µq(xi+1)12.

We may now prove the main result and its corollaries.

Proof of Theorem A. Let s ∈ {0, 1}Z be a balanced sequence over the alphabet Σ = {0, 1}. The
sequence s is in one of the four cases: (M1), (M2), (M3) or (M4).

If s satisfies case (M1), then from Theorem 2.5, s is a purely periodic sequence ∞w∞ for
some Christoffel word w. From Theorem 2.5, there exists an eventually periodic sequence s′
satisfying (MH4) and (M4) such that L(s) ⊂ L(s′). If s satisfies case (M2), then there exists
a characteristic Sturmian sequence s′ of the same slope satisfying case (M3) such that L(s) =
L(s′). If s already satisfies case (M3) or (M4), then let s′ = s.

In summary, s′ is a balanced sequence satisfying property (M3) or (M4) such that L(s) ⊂
L(s′). Thus s′ ∈ {0, 1}Z is a balanced sequence having at least one factorization s′ = p̃xyp
where {x, y} = {0, 1}. From Proposition 4.2, if u, v ∈ L(s′) such that u <radix v, then
µq(u)12 ≺ µq(v)12.

Proof of Corollary 1. Let s ∈ {0, 1}Z be a balanced sequence. Let u, v ∈ L(s) such that u 6= v.
Without loss of generality, we may assume that u <radix v. From Theorem A, µq(u)12 ≺
µq(v)12. In particular, µq(u)12 6= µq(v)12. Therefore, the map u 7→ µq(u)12 is injective over the
language L(s).

Proof of Corollary 2. Let u, v ∈ L(s) be two factors in the language of a balanced sequence
s ∈ {0, 1}Z such that u <radix v. From Theorem A, µq(u)12 ≺ µq(v)12. Thus µq(v)12−µq(u)12
is a nonzero polynomial with nonnegative coefficients. In particular, for every γ > 0, (µq(v)12−
µq(u)12)|q=γ > 0 or equivalently µq(u)12|q=γ < µq(v)12|q=γ . In particular, µq(u)12|q=γ 6=
µq(v)12|q=γ . Thus the map {0, 1}∗ → R defined by w 7→ µq(w)12|q=γ is strictly increasing and
injective over L(s) for every γ > 0.

5. Conclusion

As we have shown in Theorem A, the map w 7→ µq(w)12 is increasing over the language of
a balanced sequence. But this is not true for the language of all balanced sequences. Thus the
Markoff injectivity conjecture can not be extended to the injectivity of the mapw 7→ µq(w)12|q=γ
for all γ > 0. We provide few counterexamples below.
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Observe that 011 <radix 100 but

µq(100)12 = 1 + 3q + 4q2 + 4q3 + 4q4 + 2q5 + q6,

µq(011)12 = 1 + 2q + 5q2 + 6q3 + 6q4 + 5q5 + 3q6 + q7,

and
µq(100)12 − µq(011)12 = q − q2 − 2q3 − 2q4 − 3q5 − 2q6 − q7

has negative coefficients.
Another example is 011101 <radix 101011 but

µq(101011)12 − µq(011101)12 = q + 3q2 + 7q3 + 12q4 + 17q5 + 20q6 + 21q7 + 19q8

+14q9 + 9q10 + 4q11 + q12 − q13 − q14

which has negative coefficients.
The words 100, 101011 and 011101 are not Christoffel words, but even in the case of

Christoffel words, there are counterexamples. For example,

µq(00001)12 = 1 + 4q + 8q2 + 13q3 + 16q4 + 17q5 + 14q6 + 10q7 + 5q8 + q9,

µq(0111)12 = 1 + 3q + 9q2 + 16q3 + 24q4 + 29q5 + 29q6

+ 25q7 + 18q8 + 10q9 + 4q10 + q11,

and their difference

µq(00001)12 − µq(0111)12 = q − q2 − 3q3 − 8q4 − 12q5 − 15q6

− 15q7 − 13q8 − 9q9 − 4q10 − q11

has negative coefficients. Another counterexample is given by the Christoffel words 0121 and
017.

The above counterexamples show that Corollary 2 does not hold for γ > 0 over the language
of all balanced sequences. Thus a proof of Markoff Injectivity Conjecture needs to use the
hypothesis that polynomials are evaluated only at q = 1, perhaps extending the approach used
in [BRS09].

Finally, we observe that the map w 7→ µq(w)12 from {0, 1}∗ to polynomials in the indeter-
minate q is not injective, as for example:

µq(000111)12 = 1 + 5q + 16q2 + 38q3 + 70q4 + 109q5 + 145q6 + 168q7 + 171q8

+ 152q9 + 118q10 + 79q11 + 44q12 + 19q13 + 6q14 + q15

= µq(011001)12.

6. Appendix: values of µq(w)12 over the language of the Fibonacci word

The following table gathers the values of µ(w)12 and µq(w)12 over the language of the Fibonacci
word for factors of length up to 9 sorted in radix order. We observe that the coefficients of the
polynomials are increasing from one row to the next. The graph of the 55 polynomials listed in
the table is shown in Figure 1.4. The difference between two polynomials of the same degree
can’t be seen in the figure as it is relatively very small.
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w µ(w)12 µq(w)12
ε 0 0
0 1 1
1 2 1 + q
00 3 1 + q + q2

01 5 1 + q + 2q2 + q3

10 7 1 + 2q + 2q2 + q3 + q4

001 13 1 + 2q + 3q2 + 3q3 + 3q4 + q5

010 17 1 + 2q + 4q2 + 4q3 + 3q4 + 2q5 + q6

100 19 1 + 3q + 4q2 + 4q3 + 4q4 + 2q5 + q6

101 31 1 + 3q + 5q2 + 6q3 + 7q4 + 5q5 + 3q6 + q7

0010 44 1 + 3q + 6q2 + 8q3 + 9q4 + 8q5 + 5q6 + 3q7 + q8

0100 46 1 + 3q + 6q2 + 9q3 + 9q4 + 8q5 + 6q6 + 3q7 + q8

0101 75 1 + 3q + 7q2 + 11q3 + 14q4 + 14q5 + 12q6 + 8q7 + 4q8 + q9

1001 81 1 + 4q + 8q2 + 12q3 + 15q4 + 15q5 + 13q6 + 8q7 + 4q8 + q9

1010 105 1+4q+9q2 +14q3 +18q4 +19q5 +17q6 +12q7 +7q8 +3q9 +q10

00100 119 1+4q+9q2 +15q3 +20q4 +22q5 +19q6 +15q7 +9q8 +4q9 +q10

00101 194 1+4q+10q2 +18q3 +27q4 +33q5 +33q6 +29q7 +21q8 +12q9 +
5q10 + q11

01001 196 1+4q+10q2 +19q3 +27q4 +33q5 +34q6 +29q7 +21q8 +12q9 +
5q10 + q11

01010 254 1+4q+11q2 +21q3 +32q4 +40q5 +42q6 +39q7 +30q8 +19q9 +
10q10 + 4q11 + q12

10010 274 1+5q+13q2 +24q3 +35q4 +43q5 +46q6 +41q7 +31q8 +20q9 +
10q10 + 4q11 + q12

10100 284 1+5q+13q2 +24q3 +36q4 +45q5 +47q6 +43q7 +33q8 +21q9 +
11q10 + 4q11 + q12

001001 507 1+5q+14q2 +29q3 +48q4 +67q5 +79q6 +81q7 +71q8 +54q9 +
34q10 + 17q11 + 6q12 + q13

001010 657 1 + 5q + 15q2 + 32q3 + 55q4 + 79q5 + 96q6 + 102q7 + 94q8 +
76q9 + 52q10 + 30q11 + 14q12 + 5q13 + q14

010010 663 1 + 5q + 15q2 + 33q3 + 56q4 + 80q5 + 97q6 + 103q7 + 95q8 +
76q9 + 52q10 + 30q11 + 14q12 + 5q13 + q14

010100 687 1 + 5q + 15q2 + 33q3 + 57q4 + 82q5 + 100q6 + 107q7 + 99q8 +
80q9 + 55q10 + 32q11 + 15q12 + 5q13 + q14

100100 741 1 + 6q + 18q2 + 38q3 + 64q4 + 90q5 + 109q6 + 115q7 + 105q8 +
84q9 + 57q10 + 33q11 + 15q12 + 5q13 + q14

100101 1208 1 + 6q+ 19q2 + 43q3 + 78q4 + 119q5 + 156q6 + 178q7 + 179q8 +
158q9 + 121q10 + 80q11 + 44q12 + 19q13 + 6q14 + q15

101001 1210 1 + 6q+ 19q2 + 43q3 + 78q4 + 119q5 + 156q6 + 179q7 + 179q8 +
158q9 + 122q10 + 80q11 + 44q12 + 19q13 + 6q14 + q15

0010010 1715 1 + 6q+ 20q2 + 48q3 + 91q4 + 145q5 + 198q6 + 237q7 + 249q8 +
233q9 + 192q10 + 138q11 + 86q12 + 45q13 + 19q14 + 6q15 + q16
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0010100 1777 1 + 6q+ 20q2 + 48q3 + 92q4 + 148q5 + 203q6 + 244q7 + 259q8 +
243q9 + 201q10 + 146q11 + 91q12 + 48q13 + 20q14 + 6q15 + q16

0100100 1793 1 + 6q+ 20q2 + 49q3 + 94q4 + 150q5 + 206q6 + 247q7 + 261q8 +
245q9 + 202q10 + 146q11 + 91q12 + 48q13 + 20q14 + 6q15 + q16

0100101 2923 1 + 6q+ 21q2 + 54q3 + 110q4 + 188q5 + 276q6 + 356q7 + 405q8 +
411q9 + 371q10 + 296q11 + 207q12 + 125q13 + 63q14 + 25q15 +
7q16 + q17

0101001 2927 1 + 6q+ 21q2 + 54q3 + 110q4 + 188q5 + 276q6 + 356q7 + 406q8 +
412q9 + 371q10 + 297q11 + 208q12 + 125q13 + 63q14 + 25q15 +
7q16 + q17

1001001 3157 1 + 7q+ 25q2 + 63q3 + 126q4 + 211q5 + 306q6 + 390q7 + 439q8 +
441q9 + 394q10 + 312q11 + 216q12 + 129q13 + 64q14 + 25q15 +
7q16 + q17

1001010 4091 1 + 7q+ 26q2 + 68q3 + 140q4 + 241q5 + 358q6 + 467q7 + 542q8 +
562q9 + 521q10 + 433q11 + 319q12 + 207q13 + 116q14 + 55q15 +
21q16 + 6q17 + q18

1010010 4093 1 + 7q+ 26q2 + 68q3 + 140q4 + 241q5 + 358q6 + 468q7 + 542q8 +
562q9 + 522q10 + 433q11 + 319q12 + 207q13 + 116q14 + 55q15 +
21q16 + 6q17 + q18

00100101 7561 1 + 7q+ 27q2 + 75q3 + 166q4 + 309q5 + 496q6 + 701q7 + 881q8 +
994q9 + 1008q10 + 920q11 + 753q12 + 548q13 + 351q14 + 194q15 +
89q16 + 32q17 + 8q18 + q19

00101001 7571 1 + 7q+ 27q2 + 75q3 + 166q4 + 309q5 + 496q6 + 701q7 + 882q8 +
995q9 + 1010q10 + 922q11 + 754q12 + 550q13 + 352q14 + 194q15 +
89q16 + 32q17 + 8q18 + q19

01001001 7639 1 + 7q+ 27q2 + 76q3 + 169q4 + 314q5 + 504q6 + 711q7 + 893q8 +
1006q9+1018q10+928q11+758q12+551q13+352q14+194q15+
89q16 + 32q17 + 8q18 + q19

01001010 9899 1+7q+28q2 +81q3 +185q4 +353q5 +579q6 +836q7 +1075q8 +
1242q9+1296q10+1222q11+1040q12+797q13+545q14+329q15+
172q16 + 76q17 + 27q18 + 7q19 + q20

01010010 9901 1+7q+28q2 +81q3 +185q4 +353q5 +579q6 +836q7 +1075q8 +
1243q9+1296q10+1222q11+1041q12+797q13+545q14+329q15+
172q16 + 76q17 + 27q18 + 7q19 + q20

10010010 10679 1+8q+33q2 +95q3 +214q4 +401q5 +649q6 +926q7 +1178q8 +
1348q9+1393q10+1303q11+1100q12+836q13+567q14+339q15+
176q16 + 77q17 + 27q18 + 7q19 + q20

10010100 11065 1+8q+33q2 +95q3 +215q4 +406q5 +661q6 +947q7 +1211q8 +
1393q9+1446q10+1358q11+1152q12+879q13+598q14+359q15+
186q16 + 81q17 + 28q18 + 7q19 + q20

10100100 11069 1+8q+33q2 +95q3 +215q4 +406q5 +661q6 +948q7 +1212q8 +
1393q9+1447q10+1359q11+1152q12+879q13+598q14+359q15+
186q16 + 81q17 + 28q18 + 7q19 + q20
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10100101 18045 1+8q+34q2+102q3+242q4+481q5+826q6+1251q7+1692q8+
2063q9 + 2278q10 + 2284q11 + 2078q12 + 1712q13 + 1270q14 +
841q15 + 490q16 + 246q17 + 103q18 + 34q19 + 8q20 + q21

001001010 25606 1+8q+35q2+109q3+268q4+551q5+977q6+1527q7+2132q8+
2686q9 + 3071q10 + 3198q11 + 3037q12 + 2626q13 + 2063q14 +
1464q15 +930q16 +522q17 +254q18 +104q19 +34q20 +8q21 +q22

001010010 25610 1+8q+35q2+109q3+268q4+551q5+977q6+1527q7+2132q8+
2686q9 + 3072q10 + 3199q11 + 3037q12 + 2627q13 + 2064q14 +
1464q15 +930q16 +522q17 +254q18 +104q19 +34q20 +8q21 +q22

010010010 25840 1+8q+35q2+110q3+272q4+560q5+993q6+1550q7+2162q8+
2720q9 + 3105q10 + 3228q11 + 3060q12 + 2642q13 + 2072q14 +
1468q15 +931q16 +522q17 +254q18 +104q19 +34q20 +8q21 +q22

010010100 26774 1+8q+35q2+110q3+273q4+565q5+1007q6+1580q7+2214q8+
2797q9 + 3208q10 + 3349q11 + 3187q12 + 2763q13 + 2175q14 +
1546q15 +983q16 +552q17 +268q18 +109q19 +35q20 +8q21 +q22

010100100 26776 1+8q+35q2+110q3+273q4+565q5+1007q6+1580q7+2214q8+
2798q9 + 3208q10 + 3349q11 + 3188q12 + 2763q13 + 2175q14 +
1546q15 +983q16 +552q17 +268q18 +109q19 +35q20 +8q21 +q22

010100101 43651 1 + 8q + 36q2 + 117q3 + 302q4 + 653q5 + 1219q6 + 2008q7 +
2958q8 + 3937q9 + 4763q10 + 5261q11 + 5315q12 + 4910q13 +
4141q14 + 3176q15 + 2200q16 + 1363q17 + 744q18 + 350q19 +
137q20 + 42q21 + 9q22 + q23

100100101 47081 1 + 9q + 42q2 + 137q3 + 351q4 + 750q5 + 1384q6 + 2254q7 +
3286q8 + 4331q9 + 5194q10 + 5690q11 + 5702q12 + 5229q13 +
4378q14 + 3333q15 + 2292q16 + 1409q17 + 763q18 + 356q19 +
138q20 + 42q21 + 9q22 + q23

100101001 47143 1 + 9q + 42q2 + 137q3 + 351q4 + 750q5 + 1384q6 + 2254q7 +
3287q8 + 4334q9 + 5199q10 + 5697q11 + 5712q12 + 5239q13 +
4387q14 + 3341q15 + 2297q16 + 1412q17 + 764q18 + 356q19 +
138q20 + 42q21 + 9q22 + q23

101001001 47159 1 + 9q + 42q2 + 137q3 + 351q4 + 750q5 + 1384q6 + 2255q7 +
3289q8 + 4336q9 + 5202q10 + 5700q11 + 5714q12 + 5241q13 +
4388q14 + 3341q15 + 2297q16 + 1412q17 + 764q18 + 356q19 +
138q20 + 42q21 + 9q22 + q23

101001010 61111 1 + 9q + 43q2 + 144q3 + 378q4 + 826q5 + 1556q6 + 2585q7 +
3844q8 + 5171q9 + 6336q10 + 7105q11 + 7310q12 + 6905q13 +
5985q14 + 4749q15 + 3434q16 + 2249q17 + 1321q18 + 687q19 +
310q20 + 118q21 + 36q22 + 8q23 + q24

Table 6.1: The values of µ(w)12 and µq(w)12 for the factors of the Fibonacci word of length up to 9
ordered in radix order. Factors of the Fibonacci word that are Christoffel words and Markoff numbers are
underlined. Christoffel words form a sparse subset of the language of the Fibonacci word.
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