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In the recent comparative literature the problem of simultaneously modeling func-
tional and diffusional effects is being penetrated from two directions. One approach
emphasizes the similar problem which arises in regression-based time series analysis.
A second approach focuses on the difficulties of constructing more realistic formal
representations of sample unit interdependencies. Both approaches have yielded
important and complementary, but distinct, insights. Here, we outline some recent
methodological developments which synthesize both approaches into a comprehen-
sive and unified analytical framework.

1.0 Introduction: Galton’s Problem as Spatial Autocorrelation

The oldest fundamental criticism of cross-cultural research is that

measures of trait interrelationships are problematic because observations
are not independent from one case to the next. Because traits are often
spread widely by the repeated historical fission and migration of peoples,
neither the number of truly independent cases nor the exact nature of the
interdependence among societies is generally known. The problem was first
pointed out by the statistician Galton in his comments on Tylor’s classic
comparative paper delivered in 1889 (Tylor 1970), and it is well-known in

anthropology as Galton’s Problem (Naroll 1970; Schaefer 1974).
In the cross-cultural literature the notion of sample unit interdependence

has recently become formalized in the concept of spatial autocorrelation
(Loftin 1972; Simonton 1975; Naroll 1976). Unlike earlier approaches to the
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problem, the spatial autocorrelation approach does not require conceptual-
izing sample unit interdependence as the lack of independence. As Murdock
and White (1969) show, the number of independent cases in even moderate
to large cross-cultural samples may be so few that the usual statistical

procedures are thus difficult or even impossible. Rather than attempting
somehow to restore independence, the current emphasis is upon attempting
to describe formally the existing interdependencies and incorporate these
into the modeling and estimating procedures. From this perspective, then,
the observations are seen as being &dquo;tied together, like bunches of grapes,
not separate, like balls in an urn&dquo; (Stephan 1934).
The methodological problem of simultaneously modeling functional and

diffusional effects is being penetrated from two directions. One approach
has been to explore the effects on classical (parametric) statistical estimates
and significance tests when the data are interdependent. A second approach
has focused on the difficulties of constructing realistic formal representa-
tions of sample interdependence and associated significance tests. Thus far,
both approaches have yielded important but complementary insights. That
is, both approaches are still analytically and procedurally distinct. We
briefly review each of these approaches before outlining some very recent
methodological developments which synthesize them into a more

comprehensive and unified analytical framework.

7.7 Time Series Approach to Spatial Autocorrelation

From this perspective the statistical problems found in the analysis of
spatially interdependent data are essentially the same as the problems
encountered in the analysis of serially interdependent time series data. Time
series observations do not usually change precipitously from one observa-
tion to the next, but tend rather to move smoothly and regularly through
time. Each observation thus tends to be like those close in time and to be

less like those distant in time. When measures of association are computed
using such serially dependent data, it is straightforward to show that they
are unbiased but inefficient (Hibbs 1974; Johnston 1972). That is, although
the empirical estimates are distributed around the true population
parameter, they tend to be widely dispersed and hence unreliable.
The analogy between temporal and spatial series was first discussed in the

cross-cultural literature by Loftin (1972). Loftin argued that since societies
tend to resemble one another when they are geographically close, and tend
to be less similar when they are geographically far apart, estimates based on
spatially interdependent data should also be unbiased but unreliable. What
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lends considerable bite to Loftin’s analogy is his demonstration of exactly
these effects in a previously published set of data (Ember 1971) testing the
effects of Galton’s Problem.
Even though parameter estimates based on serially dependent data are

known to be unreliable, the analysis of any particular sample will produce
estimates which appear to be considerably more reliable than is actually the
case. As Loftin notes, this is because an interdependent data set will

generally display less variation than a comparably sized sample of truly
independent data. And, since the standard errors of estimates are functions
of this variance, they will tend to be underestimated. The ratios of estimates
to their standard errors will thus consistently produce inflated t- and

F-values, leading to spurious attributions of significance to the various
associations being tested. The situation is considerably more complicated
when many competing causal hypotheses are being evaluated, since errors
of inference may thus accumulate and seriously impair the model building
process.
Simonton (1975) has proposed one way to tackle this problem of

underestimated standard errors. Drawing upon a rather old suggestion in
the time series literature, Simonton advocates the Orcutt-James (1948)
procedure to test the significance of a correlation between two time series.
Briefly, the idea here is to use measures of interdependence of each variable
to find a smaller, more &dquo;efficient&dquo; sample size with which to compute
standard errors. Since standard errors are inverse functions of sample size,
reducing the sample n in this way will correct them upwards. Ratios of
estimates to their standard errors will then decrease, lessening the possibility
of spurious inference. However, this procedure cannot be generalized
beyond the bivariate case; a separate reduced n must be computed for each
pair of variables of interest. What this means in the multiple regression
situation is not clear.

Despite the cumulative insights provided by the time series perspective
into the statistical problems which can arise in analyzing interdependent
data, there are inherent methodological limitations to this approach to
modeling functional and diffusional effects. First,

The spatial autocorrelation method consists in somehow aligning
societies in a worldwide sample into a single linear arrangement, such
that neighbors in the alignment are the most closely related through
geographical propinquity, linguistic relationship, and other known
historical connection. Then for each variable (trait) being studied, we
compute a spatial autocorrelation. That is to say, we compute the
correlation between a society’s score on that trait and its alignment
neighbor’s score on the same trait. (Naroll 1976:126)
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That is, &dquo;spatial&dquo; autocorrelation is computed with respect to a one di-
mensional alignment of sample units. Naroll (1976:127) goes on to caution,
however, that the uses of these spatial autocorrelations &dquo;depends entirely
on the validity of the alignment as a measure of historical relationships.&dquo;
Loftin and Hill (1974) also caution that the validity of such correlations
depends entirely on the accuracy of the alignment procedures, since the
effects of alignment errors are to bias measures of autocorrelation towards
the null of no autocorrelation. In short, &dquo;The problem is a fundamental
one. Measurement is primarily in one dimension at a time, but interdepen-
dence may move simultaneously in many directions&dquo; (Loftin and Hill
1974:32).
A second and related problem concerns the sampling procedures required

for unidimensional alignments. Obviously, the larger the sample the more
likely it is that errors will occur in ordering the sample units. And, of
course, the difficulties are considerably compounded when samples are
taken from restricted geographical regions. Decisions on how to align a
continuous area sample, particularly one of moderate to large size, may
often involve many arbitrary choices, and methods other than spatial
autocorrelation may be required in such cases. However, it is obviously
preferable to have available a unified set of procedures which are applicable
to both worldwide and continuous area studies.

1.2 Two Dimensional Spatial Autocorrelation

As we have just noted, the time series approach to modeling diffusion is
severely limited by the necessary assumption that a sample of societies
scattered about in two dimensions can be meaningfully reduced to a uni-
dimensional series, where diffusion operates through the series in one
direction only. Obviously this assumption is unrealistic. More realistic ap-
proaches to measuring spatial diffusion are discussed by Wirsing (1974a,b).
Drawing upon some earlier geographical and statistical work in this area,
Wirsing (1974b:201) presents three measures which allow diffusion to

operate simultaneously in all directions. The most interesting autocor-
relation coefficient from the present perspective is Geary’s (1954) &dquo;con-

tiguity ratio,&dquo; which was developed to detect spatial patterning of
measurements on a collection of nonoverlapping counties which subdivide a
region. Underling the Geary statistic is the notion of a contiguity matrix
which reflects the contiguity structure among n counties. This structure can
be represented as an n x n matrix where the i, jth element equals 1 if county i
and j are contiguous, and equals 0 otherwise. When the term &dquo;county&dquo; is
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replaced by the term &dquo;society,&dquo; Wirsing suggests that &dquo;the contiguity ratio
can be used as a convenient measure of diffusion between societies with

respect to certain variables or traits.&dquo;

Wirsing’s suggestions on measuring spatial autocorrelation, while clearly
an improvement over previous unidimensional procedures, are nonetheless
of limited usefulness in multivariate model building and testing. The tests he
proposes focus on univariate or bivariate associations. As with earlier

approaches, Wirsing considers the Galton Problem solved &dquo;if at least one

trait can be shown to display no autocorrelation.&dquo; However, correcting for
the effects of multilateral dependencies in the multivariate regression
situation depends on examining the residuals for autocorrelation. Hence,
one cannot simply focus on the autocorrelation of single traits. The con-
junction of autocorrelated residuals and even very limited autocorrelation
of the independent variable(s) in a regression equation can result in serious-
ly misleading inferences concerning the significance of the regression
estimates (Martin 1974).’

Pryor (1976) has also proposed several techniques to detect multilateral
diffusion, each of which depends on an n x n &dquo;diffusion possibility
matrix.&dquo; The elements of this matrix, which are more general than the
zero/one contiguity coefficients employed by Wirsing (1974), are simply a
weighted average of any factors thought to influence diffusion between two
societies, such as distance and common language, where the weights are
chosen a priori. Pryor refers to these matrix elements as &dquo;diffusion possibil-
ity (DP) indices.&dquo;

Given a suitably constructed diffusion possibility matrix, Pryor proposes
a variety of ad hoc procedures which may &dquo;suggest&dquo; the possibility of
diffusion with respect to traits of interest. Basically, the tests compare the
average of the DP indices between all pairs of societies both of which have
the trait to the average of the DP indices of those pairs of societies only one
of which has the trait. This clustering test can be carried out with respect to
the dependent or independent variables of interest, or on a combination of
independent variables weighted using the appropriate regression weights. A
similar procedure can be carried out using the residuals from a regression
equation. In each case, however, the &dquo;test&dquo; of diffusion reduces to a simple
comparison of mean values.’

1.3 Network Autocorrelatiorr

The problems encountered when applying classical statistical methods to
spatially interdependent data have increasingly come to the attention of
geographers, economists, and statisticians over the last few years. One ma-
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jor line of this research has been the development of multivariate regression
models for analyzing two-dimensional series data. These models all incor-
porate measures of the interconnectedness among societies. Basic analytical
and, especially, computational difficulties in estimating the parameters for
these complex models have recently been overcome, and several powerful
and flexible multivariate models are now well within computational reach.

Several advantages are apparent for these models over previous attempts
to deal with interdependent data sets. First, any network of interrelation-
ships which can be reasonably hypothesized can be easily formalized as a
connectivity or relational matrix, and this matrix incorporated into the
estimation procedures, provided that significant autocorrelation is found
with respect to the network. Each society in a cross-cultural sample may be
linked to many others without regard to direction, and any kind of linkage
or flow between the units employed in constructing the connectivity matrix.
Different hypotheses concerning interdependencies can be investigated by
testing various network matrices, or several matrices may be combined into
a single matrix. Second, the estimation procedures provide consistent (and
hence asymptomatically unbiased and efficient) estimates. Thus, increasing
sample sizes will result in more &dquo;precise&dquo; estimates. Third, complex pat-
terns of relationships among sets of variables may be modeled using several
regression equations. More elaborate causal schemes can now be

investigated.
Before discussing these regression models, we briefly examine the formal

representation of a network of interdependencies among sample units as a
connectivity matrix. We point out the need for a hypothesis concerning the
underlying structure of interrelationships, and we examine the nature of the
estimation problems associated with the usual regression procedures. We
briefly outline maximum likelihood procedures which overcome these diffi-
culties. Only the general nature of these procedures is discussed. Estimating
equations and significance testing procedures will be discussed in a later
paper.

2. 0 Nature of Spatial and Network Autocorrelation

Simply stated, spatial autocorrelation implies that what happens at one
location in space is in some way related to what happens at nearby
locations. For example, if a large continuous geographical area is subdivid-
ed into a set of smaller nonoverlapping areas, then we could reasonably
hypothesize that the values on a variable at one location would be

systematically related to values on the variable at contiguous or nearby
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areas. More generally, network autocorrelation implies that the attributes
of each node of the network can be predicted in part from a knowledge of
the attributes at related nodes.
The underlying structure of interdependencies among a set of units can be

formally expressed in terms of a connectivity matrix. Any structural ar-
rangement connecting n sample units can be represented as an n by n matrix
as shown in Figure 1.

Several features of the above matrix formulation should be noted. First,
by convention a unit is not connected to itself, and so a connectivity matrix
will have zeros along the main diagonal. Second, although no restrictions
need be placed on the weights c,~, it will be more convenient in the analysis
that follows if each row is scaled to sum to one. That is, each element of the
C matrix is divided by its row sum to a new stochastic matrix W. One result
of this scaling is that in general w, 0 w,&dquo; since i and j will not usually be con-
nected to the same number of other units. Third, this matrix formulation
permits a very rich expression of the idea of interdependence. Any unit may
be connected to any other unit, not simply those which are actually
contiguous, spatially or otherwise. Fourth, any kind of linkage or flow
between units can be represented by the appropriate element of the W
matrix. Thus both direct and indirect feedback effects between units can be
modeled in this manner.

Selection of the weights is of major importance, since spurious results
may arise if the hypothesized weights do not correspond to any real process
(Cliff and Ord 1973). Commonly in geographical research, the weights (c,,)
are estimated according to some notion of space-friction constraints on the
possibility of effects from one unit to another. The simplest function in this
case is an exponentially decaying distance function such as D&dquo;,°where D&dquo; is
the distance from location i to j and a is a suitable exponent chosen a priori.
Notice, however, that if the units are a collection of subregions, then some
decision must be made as to the exact location of the points within the
regions which are to be used in measuring distance. Actually, the situation is
considerably more complex than simply computing distances, since consid-
eration of size and shape of the various regions may also be of importance
in realistically describing the interactions among a collection of regions.
Cliff and Ord (1973) attempt to overcome this problem by computing
weights based on both distance and proportion of boundary in common.
Gatrell (1979) has constructed a measure of interaction among Swedish
towns based on geographical distance and number of telephones. Bodson
and Peeters (1975) employ distance and minimum public transport time
when constructing an &dquo;accessibility function&dquo; to generate interaction
coefficients among 44 Belgian districts.
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Figure I. Matrix Representation of Network Interdependencies
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Clearly, the form of the weighting matrix will depend on the problem at
hand and the available data. In cross-cultural research, many possibilities
exist for constructing weights. Apart from the spatial functions which are
obviously applicable to a diffusion process, other pertinent network effects
which have commonly been hypothesized are language similarity, whether
or not two societies belong to the same state, and trading relationships.
A commonly hypothesized structure for time series observations is that

each is related to the preceding observation. This simple model can be
written as Y, = gY.-1 + u, where the u, are normally distributed random
error items. Likewise, the Linked Pair method of measuring spatial auto-
correlation hypothesizes that each society in an alignment is related only to
the succeeding society in the alignment. This hypothesis about the

underlying structure of interdependencies can be more formally expressed
using a connectivity matrix as suggested above. The appropriate matrix in
this case is shown in Figure 2.

Using this W matrix, and writing Y as an n x 1 column vector of trait

scores, and u as an n x 1 column vector of random error terms, the above

simple time series equation can be represented as

In this equation, WY represents a column vector of trait scores which are
&dquo;lagged&dquo; one period with respect to the Y scores. Hence the simple
regression coefficient is a measure of the flow of variable Y with respect to
the structure represented by the W matrix. That is, Q measures the autocor-
relation of Y with respect to W.

For a time series the matrix W is certainly a reasonable hypothesis, since
the essential asymmetry of time is reflected in the structure of weights in W.
Observation i is affected by observation i-1, and there is no reciprocal ef-
fect, which intuitively corresponds to the notion that current events cannot
influence past events. This natural temporal asymmetry results in a rather
special form for the W matrix: all of the elements above the main diagonal
are zero. So long as W has this upper triangular structure and the error
terms meet the usual assumptions, ordinary least squares (OLS) regression
procedures will generate consistent and relatively efficient parameter
estimates (Malinvaud 1970). However, this fact depends heavily on the W
matrix having the above triangular structure, since this corresponds to the
assumption that the errors are not correlated with the independent (WY)
variable. In time series this is not an unreasonable assumption, but in the
two dimensional spatial case, where societies are related to one another in a
multilateral fashion, the assumption that the errors are uncorrelated with
the WY variable while being a function of the Y variable is clearly
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Figure 2. First-Order Lag Time Series Matrix
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untenable. In this case, the OLS regression procedures produce inconsistent
estimates, that is, the estimates do not converge to the true population
parameters no matter how much the sample size is increased.
The failure of the usual regression procedures to deal with multilateral

spatial or network interdependencies raises some new estimation problems.
In the following section we review briefly the sources of bias and inconsis-
tency in the OLS estimating procedures, and discuss the methods recently
proposed which overcome these limitations and which allow consistent
(asymptotically unbiased and efficient) estimates to be found. Although the
discussion here focuses on the regression model, it should be noted that

partial correlation procedures are incorrect for the same reasons that OLS
regression is incorrect. And, although correlations between Y and WY will
be unbiased, the distributions of such statistics are quite different from the
usual distributions (Cliff and Ord 1973).

3.0 Maximum Likelihood Estimation of Network Autocorrelation

Within the regression framework, then, the network autocorrelation

problem is twofold: formulation of a plausible network structure W, and
estimation of the autocorrelation coefficient. While the difficulties of con-

structing a W matrix will depend on the problem at hand, estimating a
network autocorrelation coefficient belongs to a more general set of

problems.
In the usual application of OLS regression analysis, coefficients are esti-

mated by the method of moments. That is, the means, variances, and
covariances of all of the variables are calculated, and these are then used to
find estimates of the population parameters of the regression model. An
alternative procedure which does not employ sample moment is the method
of maximum likelihood. The basic idea behind this latter procedure is to try
to locate estimates of population parameters which are most likely to have
generated the observed sample values.

For the normal regression model with independent errors, maximum
likelihood (ML) estimation and ordinary least squares (OLS) are equivalent
procedures. For example, in the time series case, where W has an upper
triangular structure as previously mentioned, the procedures produce the
same parameter estimates and variances. However, the two methods are
importantly different in the case where there are multilateral dependencies
among the sample units and the W connectivity matrix has a more general
form. In this latter situation, ML procedures are superior to OLS, since
they yield asymptotically consistent estimates, whereas OLS estimates are
inconsistent (Hepple 1976). To see this important and crucial difference in
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the properties of these two estimation procedures we consider again the
simple regression model. We begin our discussion with the following uni-
variate case in which there is one autocorrelated variable Y; later we will
consider the more general case in which there is a dependent variable and
one or more independent variables.

Again, Y is an n x 1 column vector of scores on variable Y, W is an n x n
connectivity matrix, and the errors, u, are an n x 1 column vector of nor-

mally distributed random errors with mean zero, no autocorrelation or
heteroscedasticity (i.e., u rv N(0, av 1)).3

This basic equation can be rewritten as follows:

the n x n identity matrix.

The usual OLS regression problem is to minimize the sum of squares of
the error terms. This is equivalent to maximizing the following likelihood
function:

since this function is maximized when the negative exponent, the sum of
squared error terms, is minimized. However, since the v are unobserved it is
preferable to make a change of variable in the likelihood function to the
observed Ys. After the change of variable, the new likelihood function is

where Det (A) is the Jacobian of the linear transformation of the Y’s to the
v’s (v = AY).4 Analytically, it is more convenient to deal with the logarithm
of this function, which introduces no new difficulties, since the maximum
of the above function will remain the same under such a montonic transfor-
mation. The log-likelihood function is thus
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The fundamental difference between OLS and ML procedures concerns
the last term of this equation, Det (A). In the time series case, and where a
one dimensional alignment of societies is analyzed using, for example, the
Linked Pair statistic, the matrix A = I - QW has a rather special struc-
ture : it has all ones on the main diagonal apart from the first term and all
zeros within the upper triangular portion of the matrix. Now, the
determinant of such a matrix is simply the product of the main diagonal
elements (Hepple 1976), and so the determinant of matrix A, i.e., Det (A), is
easily computed. In time series analysis the first diagonal element is usually
set equal to (1 - e2) 1/2 which is thus the value of Det (A). However, since this
term remains constant when the sample size increases, its magnitude be-
comes swamped by the other terms of the likelihood function, and so it is
asymptotically negligible. Hence minimizing the sum of squared errors and
maximizing the above log-likelihood function are equivalent procedures in
this situation. However, there is no such equivalence when W has a more
general structure, that is, when W is no longer upper triangular, since the
determinant is no longer simply the product of its main diagonal elements.
Not only does the determinant of A not collapse to a simple quantity, but it
is neither negligible nor invariant to sample size (Hepple 1976). Whittle
(1954) has shown that the expectation of the bias by ignoring this term is
nonzero, and that the OLS regression coefficient is thus asymptotically
biased and inconsistent.

Clearly, then, the usual regression procedures are invalid where there are
multilateral dependencies among the sample units. However, the ML esti-
mates which maximize the log-likelihood function have the desirable

properties of consistency (Ord 1975; Hepple 1976). Also, since the ML
estimates are asymptotically normally distributed, variances and covari-
ances can be computed and inferential procedures applied.
The major computational difficulty in obtaining the estimate Q which

maximizes the likelihood function above involves evaluating Det (A) term.
Since Q is found by a direct search procedure, this determinant would have
to be evaluated at each iteration, a computational burden. Recently, Ord
(1975) has proposed a new procedure which brings the maximum likelihood
solution well within computational reach. Ord shows that the heavy compu-
tational step of evaluating the determinant of A at each iteration can be
reduced to the problem of computing the eigenvalues of the W matrix one
time only, and then using these eigenvalues in a simple formula at each
iteration. That is, given the eigenvalues of matrix W, ÅIÅ2’ .. Ån’ then



229

The computational savings involved in using this simple product function in
place of the complete evaluation of Det (A) are considerable. S

Using Ord’s simple identity, and after condensing the log-likelihood
function by eliminating oZ, the ML estimate of Q is the Q which minimizes
the following expression:

Once a suitable Q is found its significance may be ascertained using the
asymptotic variance-co-variance matrix of ol and (Ord 1975: 124).
Ord (1975) notes that it is useful though not necessary to have the matrix

W row scaled to unity, which implies that Q < 1. This latter restriction
enhances the interpretability of Q in the more complex models discussed
below.
One point to note with respect to calculating the ML estimates of spatial

or network autocorrelation is that the largest real valued nonsymmetric
connectivity matrix W for which eigenvalues can be computed given current
computational facilities is around 70 x 70. However, considerably larger
samples can be handled using this approach if the W matrices can be forced
into block structure. That is, if by elimination of a few elements of W it can
be arranged in the structure shown in Figure 3, then the eigenvalues of the
entire W matrix can be obtained easily from the eigenvalues of each sub-
matrix. Careful blocking of the larger matrix should require few elements to
be deleted, and this will not affect the asymptotic properties of the ML
coefficients. Other simplifications are also possible (Ord 1975).

4. 0 Some Related Regression Models for Network Autocorrelated Data

The methodological focus so far has been on the problem of finding a
statistically satisfactory measure of autocorrelation with respect to an hy-
pothesized multilateral structure of interdependencies among the data units.
However, the univariate situation discussed above is obviously of limited
utility in model building and testing. In most usual research settings, the
investigator is interested in the pattern of relationships among a set of
variables. Fortunately, the ML approach is straighforwardly extended to
the multiple regression situation.

The models that have been developed allow for network autocorrelation
in basically two ways: either by formulating these effects as an explicit vari-
able and including it as an independent variable in the equation to be
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Figure 3. Block Diagonal Network Matrix
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estimated, or as a change in the assumptions concerning the structure of the
error terms. It is also possible to incorporate both kinds of autocorrelation
into a single model.

4. I Single Network Models

i) Network Disturbances Model. In regression analysis the assumption of
independence applies not to the variables but to the error terms. That is, the
usual specification of the regression model Y = X(3 + E, e~-N (0,0/1),
requires no asumptions concerning independence with respect to the mea-
sured variables. However, the error term assumptions are crucial. These
assumptions require the errors to be (1) normally distributed with zero
mean, (2) homoscedastic (i.e., equal variances), and (3) uncorrelated with
each other (i.e., no autocorrelation). While there is some evidence to show
that the regression model is robust with respect to violations of normality
and homoscedasticity (Macdonald 1976; Bohrnstedt and Carter 1971),
violation of the nonautocorrelation assumption can have disastrous conse-
quences. Serious errors of inference may result if the errors are autocor-

related and this is not corrected, since again the t- and F- statistics will

generally be inflated (Hibbs 1974; Martin 1974).
When data are obtained from a sample with known interdependencies, it

is possible to incorporate this structure into the error term assumptions.
Specifically, given any hypothesized network matrix W the usual regression
model can be respecified as the following simultaneous equations:

Here, the error terms are hypothesized as being autocorrelated with respect
to W. The X matrix contains K independent variables plus an initial column
of ones which results in the intercept term appearing as the first element of
the K + 1 column vector of coefficients, (3. Note that when Q = 0, this is

simply the OLS model, which shows that the above model is an appropriate
generalization of OLS. Likewise, if the W matrix has all zeroes, corres-

ponding to complete independence of each unit from all of the others, this
model is again identical to OLS.
The nonrecursive nature of the relationship among the variables implied

by equations 4.1 and 4.2 is more immediately grasped by inspecting the
corresponding structural diagram. For clarity and simplicity, we consider
only three interrelated network units and one independent variable. Exten-
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Figure 4. Structural Diagram for the Network Disturbances Model

sion to n nodes and several independent variables is straightforward. Thus,
given three related nodes i, j, and k, the relationships implied by the above
simultaneous equations are shown in Figure 4.

Figure 4 illustrates quite clearly that embedding the network matrix W in
the error term equation avoids the question of how the hypothesized net-
work might interact with and affect the measured X, Y variables. In an
exploratory stage of research it may not be possible to specify precisely such
interactions. As the nature of various network structures and processes
become better understood, it should then be possible to make more detailed
specifications. Hence, concern at this stage of analysis would probably
focus on obtaining efficient estimates of the (3s, and perhaps on gaining
some understanding of various networks of interest. Also, it should be
noted that if in the exploratory stage of analysis there are several networks
of interest, then row scaling the W matrices to unity will allow comparisons
of the feedback parameters Q by eliminating the differences due to the
different scales used to construct the W matrices.



233

Some further insights into this model are obtained if the equations are
transformed and combined in the following manner:
From 4.2 we get E-QWE=v

Thus (I-QW)E=v
and E=(I-QW) -’v (4.3)

Substituting this latter expression into A.1 above gives

and, after premultiplying each side of this equation by (I-QW) we gets

or,

Equation 4.4 implies that for a known Q, if we subtract out of each vari-
able score that portion due to the influence of contiguous or related units,
i.e., if we form new variables Y* = Y-QWY and X* = X-QWX, then OLS
applied to the regression equation,

will yield unbiased and efficient estimates of {3. This is so because the errors
are now by definition not autocorrelated. In general, e will not be known
a priori. In his initial formulation of the disturbances model Ord (1975)
proposed an iterative procedure which begins by estimating Q using the OLS
residuals from equation 4.1 as input to the ML procedure described in
section 3.0 above. This estimate is then used to form new variables Y* and
X* as just described. The residuals from OLS applied to these new variables
are then used to find a second estimate of Q. The procedure iterates until
successive values of e converge to within some prespecified decimal place.
Although Ord’s procedure is simply an estimating routine devised to

locate consistent parameter estimates, it does suggest that the disturbances
model may be appropriate if one suspects that the underlying network
somehow interacts with the measured variables. At each iteration a

common transformation is applied to all of the variables even though they
may be differentially affected by the network structure. A common trans-
formation is all that is required to produce well-behaved errors and thus
permit efficient estimates to be found.’

It is possible that the disturbances model will suggest significant auto-
correlation among the regression residuals when there is &dquo;really&dquo; no auto-
correlation present. This can be caused by either of two types of model
misspecification: (1) nonlinear relationships between the dependent and in-
dependent variables which are not included in the model, and (2) the
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omission of important explanatory variables. The first problem is easily
handled by employing simple nonlinear variable transformations or by
adding interaction terms. However, if these procedures do not remove the
autocorrelation among the residuals, then additional explanatory variables
may have to be introduced. In time series analysis, it is common to intro-

duce a &dquo;lagged&dquo; dependent variable as a new independent variable in this
situation. We now consider the more general case where network effects are
introduced into the model as an independent variable.

ii) Network Effects Model. This model is formally specified as:

For this model, then, only the dependent variable is assumed to be auto-
correlated with respect to the W network. The independent X variables are
unaffected by the network, and the errors are also unaffected. WY is not
the same as the other independent variables here, since it is by definition
correlated with the error terms. OLS regression procedures are invalid in
this situation and cannot be used to estimate the model parameters, since
violation of the assumption of independence between &dquo;lagged&dquo; dependent
variables and errors throws OLS off the beam and produces biased and
inconsistent estimates (Johnston 1972)’. Maximum likelihood procedures
are available (Ord 1975) to estimate the parameters of this model which are
not affected by the interdependency among WY and the error terms.
The nature of the feedback process implied by equation 4.6 is again easily

grasped from inspection of a corresponding structural diagram. Again, we
consider only three related network nodes and a single independent vari-
able. Figure 5 shows the interrelationships among the variables specified by
the network effects model.

It is possible to introduce the WY variable into this model simply to
&dquo;control&dquo; for its effects and thus obtain efficient regression estimates.
However, Figure 5 strongly suggests that the feedback process among the
sample units with respect to the dependent variable may also be of consider-
able interest. That is, one may also be interested in the effects of the
network (WY) on the dependent variable (Y) while holding constant

individual unit attributes (Xs). And, again, row scaling W to unity has the
advantage of allowing comparisons of different network schemes on the
dependent variable.
While Figure 5 appears to suggest direct feedback effects it should be

recalled that the W matrices need not express any kind of contiguity, spatial
or otherwise. In a cross-cultural sample, for example, two societies could be
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Figure 5. Structural Diagram for the Network Effects Model

classified as similar on the basis of subsistence type and yet have no known

relationship with one another. Interpretation of the feedback parameter Q in
this model is thus dependent on the network problem at hand.

4.2 Multiple Network Models

Previously we mentioned how rather complex hypotheses concerning the
structure of a connectivity matrix W could be combined to produce a single
W. Thus, Cliff and Ord (1973) combined both distance and proportion of
common boundary of counties to produce a single connectivity matrix. In
some situations, however, it may be more desirable to separate the effects of
distinct underlying processes which are presumed to be operating simul-
taneously with respect to the variables of interest. In cross-cultural studies,
for example, it may be of interest to examine the effects of both geograph-
ical and linguistic effects within the same model. Or, we may be interested
not only in the effects of immediately contiguous societies, but also the
effects of more distant, not necessarily contiguous, societies, and so on.



236

i) Multiple Network Disturbances. In this situation the general autore-
gressive model is:

These equations may be rearranged and combined as before to give

Again, a common transformation results in a well-behaved error term in
this equation, and again OLS can be applied to the transformed variable to
yield satisfactory estimates of the population parameters. In the case that
the W, and W, matrices are systematically related, as they are, for example,
when they represent contiguous societies and those at further lags, the
maximum likelihood estimating equations can again be simplified using a
slight extension of Ord’s (1975) previously discussed procedure. In the more
general case, though, Ord’s results do not apply and more complex estima-
tion procedures are required (Brandsma and Ketellapper 1979). Although
we are not concerned here with estimating equations and the various
computational problems involved in obtaining valid and efficient estimates,
it is of interest to note that both negative and positive autocorrelation
processes may simultaneously occur, and that this event presents no partic-
ular estimation problems. However, the substantive conclusion here is that
the occurrence of a negative spatial or other network autocorrelation co-
efficient should not be regarded as a solution to the problem of cultural
diffusion in and of itself, as Naroll (1976) has suggested. Rather, the occur-
rence of a negative coefficient should be interpreted as an indication that
other processes may also be operative, and that a fuller understanding of
the diffusion process requires critical examination of negative and positive
autocorrelation processes.
The structural diagram for this simultaneous equation model is essen-

tially the same as for the single disturbance model shown in Figure 1, where
we now replace each Qw,, with QIW1 + Q2W2 .

For this model, row scaling both W, and W2 to unity again permits a
direct comparison of the Q, and Q2 estimates by removing the confounding
effects of differences in measurement scales used to construct W, and W2.

ii) Joint Network Effects-Network Disturbances Model. This model
combines two previous models into the following two simultaneous equa-
tions : (Doreian 1980b)
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As with the multiple disturbances model, the W, and W2 network matri-
ces can either bear some intrinsic relationship to one another (contiguous,
lag one), or they may represent quite distinct types of networks (language,
distance). In the case of the multiple disturbances, however, it makes no
difference which matrix is labeled W, and which W2. That is, both matrices
are treated &dquo;equally&dquo; in the estimation procedure. This is not the case with
the above joint network effects-network disturbances model. Only in the
case that the two matrices are identical (as they may be) will it not matter
how they are labeled. Otherwise, the coefficient associated with a particular
network matrix will be different depending on whether it is entered into the
estimating procedures as the W, and W2 matrix. In general, then, the joint
model requires some additional understanding of the impact of network
structures and processes on the dependent variable of interest.
The structural diagram corresponding to this rather complex joint

effects-disturbances model is shown in Figure 6. (For clarity, we omit most
of the feedback terms from the diagram.)

Interpretation of the Q, feedback parameter again must be made with
reference to the nature of the network relationship operationalized by the
W, matrix.
The above four models clearly do not exhaust the possibilities for exten-

ding the regression model to deal with the network autocorrelation

problems. But, though it is easy to see how to state more complex models, it
is considerably more difficult to identify substantive issues which are

sufficiently well developed to require even the two multiple network models
discussed here.

4.3 The Choice of Model

The effects model assumes that only the dependent variable is auto-

correlated, whereas the disturbances model assumes that the same autocor-
relation process operates on all of the variables. The effects model is clearly
the appropriate model for the diffusion of a single variable by contagion. A
good example of this would be the adoption of innovations (Rogers 1971).
In models of adoption of innovations it is usually assumed that the innova-
tions diffuse through social networks, so that position in the network has an
important effect on an individual’s adoption of the innovation. This is a
good example of network autocorrelation where the variable to be

explained (adoption of the innovation) is autocorrelated. It is often safe to
assume that other variables which affect the propensity to innovate, such as
social status (Cancian 1979) or ethnicity, are subject to much less auto-
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Figure 6. Structural Diagram for the Joint Network Effects-Network

Disturbances Model

correlation than the dependent variable, so that they can be safely assumed
for all practical purposes not to be autocorrelated. They would occur in a
regression equation as non-autocorrelated independent variables.
Two examples of studies where the effects model seems the appropriate

model are Doreian’s studies of the Huk rebellion and of voting patterns in a
Southern state (Doreian 1980a,b). In both cases, we can assume rather high
contagion effects. An important feature of both of these situations is that
the dependent variable, participation in the rebellion in one case, or voting
Democratic in the other, fluctuate rather rapidly, whereas the independent
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variables, which pertain to socioeconomic features such as urbanization and
land ownership, tend to change slowly over time. Much of the short-run
fluctuation, then, can be modeled simply by autocorrelation in the depen-
dent variable.
The disturbance model seems to us to be the appropriate model for much

of holistic cross-societal research. Here it is often realistic to assume that
entire systems of traits diffuse together. This would especially be the case
with migration or fissioning of entire societies, as, for example, with the
Athapaskan, Bantu, Malayo-Polynesian, Indo-European, and Nilotic mi-
grations. Because the disturbances model provides an appropriate model
for this kind of diffusion, which has been of considerable interest to anthro-
pologists, we think it will be the best model for much cross-cultural re-
search. We should add that there are other situations than the migrations of
entire societies, where several traits diffuse together. In East Africa, for
example, societies from different language families share such traits as age
set systems, female circumcision, removal of the incisor teeth of children,
the presence of subcastes of blacksmiths and of hunters who are also ritual
circumcision specialists, and female husbands. Examples of such diffusion
of trait clusters can be found in most regions of the world.
The mixed model is intriguing because it provides for a combination of

joint diffusion of most traits with a different form of diffusion of the
dependent variable. It seems likely to us that many situations will be found
where this is the appropriate model. We do not yet have a computational
algorithm for this model, so do not have the direct experience with it that we
have with the disturbances and effects models. In the example which fol-
lows, all tests were done with both the disturbances model and the effects
model. In all cases, the effects model produced unsatisfactory results, with
high autocorrelation coefficients and negligible regression coefficients. The
disturbances model, on the other hand, showed interpretable evidence of
autocorrelation, but also produced meaningful regression coefficents that
were similar in sign but different in magnitude to regression coefficients
from OLS analysis of the same data.

S.OAn Empirical Example

Space limitations do not allow us to include an elaborate empirical exam-
ple here. To give a feel for the workings of the autocorrelation analysis we
present part of the results from a study of variation in the sexual division of
labor in African agriculture (Burton, White and Dow 1981). The sample
consists of the 34 societies of the standard cross-cultural sample (Murdock
and White 1969) that are in Africa and also have agriculture.
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The dependent variable in this study is the degree of female participation
in agriculture. This is computed as the sum of the sexual division of labor
codes for three tasks: soil preparation, crop tending, and harvesting. The
variable is coded from 3 to 15; higher values correspond to greater female
participation in agriculture. We use two variables to predict female partici-
pation in agriculture. From reasoning about ecological circumstances of
food production, we have predicted that there will be greater female partici-
pation in root crop agriculture than in cereal crop agriculture. This variable
is labeled C, for crop type. From an argument about the organization of
work, we have predicted that there will be less female agricultural partici-
pation in societies that have slavery. This variable is labeled S.
The ordinary least squares equation shows significant coefficients for

both variables:

In this study we used two different W matrices. The first, WL, is based on
genetic relations among languages. The second, Wv, is based on an

exponentially decreasing function of geographical distances. In equation
5.2 below we see that the distance W,, matrix provides clear evidence for
spatial autocorrelation. The regression coefficients, are still significant, but
of slightly different magnitude than before, and the measure of goodness of
fit,8 R 2, has increased over the OLS measure, as it should, since there is
significant autocorrelation:

Using the language-based W~ matrix, equation 5.3 shows significant auto-
correlation and an even stronger measure of fit. The regression coefficients
are still significant, and the standard errors of the estimates have decreased,
which is what we would expect when there is autocorrelation.
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One may now ask whether these two matrices are not just somewhat
different measures of the same diffusion process. To test that possibility, we
reasoned that a plausible source of language-related diffusion could be the
well-known historical migration of the Bantu peoples. We constructed a
dichotomous variable, B, that takes the values of 1 for Bantu societies and 0
for all others. When we entered this into the OLS regression equation it
showed a significant coefficient for Bantuness:

Finally, we added the Bantu variable to the spatial autocorrelation analysis.

The spatial autocorrelation term is no longer significant. Once we have
taken account of the spatial clustering of Bantu societies, there is no longer
spatial autocorrelation in the system of variables which is to say that there is
no other significant spatial autocorrelation than that which can be accoun-
ted for by the Bantu migration. This is a desirable end result for an
autocorrelational analysis because we are able to provide a meaningful
description of the process that produced the observed autocorrelation.

For the above example, comparison of the OLS and ML procedures
would not lead us to draw any conflicting inferences concerning the impor-
tance of particular independent variables: all of the regression coefficients
were highly significant using both procedures. However, the observed
variations in the magnitudes of the coefficients and their standard errors
clearly indicates that such conflicting inferences could easily arise (see
Doreian 1980a; Hepple 1976).

Conclusion

The above examination of the spatial autocorrelation approach in the
comparative literature has led to some interesting conclusions. First, the
currently proposed multivariate techniques fail to deal adequately with the
problem of sample unit interdependence. Artificially constructed one-di-
mensional alignments are a fundamental source of measurement error, and
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in failing to model any real underlying process they introduce the possibility
of spurious results. Second, the various correlational and regression
procedures proposed to model the associations among traits are not

analytically generalizable to the more realistic situation of several variables
and multilateral dependencies among sample units. Moreover, if the usual
multivariate correlation or regression procedures are applied without

modification to interdependent data, they yield inconsistent or inefficient
estimates.

While the notion of multilateral dependencies is attractive theoretically, it
introduces new analytical and computational difficulties. Recent results

have brought some of these more complex models well within computation-
al reach, however. Four multivariate regression models which explicitly
hypothesize spatial or other networks of relationships among the sample
units were presented and discussed here. The emphasis in this type of

modeling shifts from attempting somehow to restore independence to

describing realistically the underlying structure of interdependencies in a
connectivity matrix, and then incorporating this structure into the estima-
ting procedures. Although these models are certainly complex conceptually
and computationally, they constitute a more powerful formal

characterization of Galton’s Problem than previous approaches.

REFERENCE NOTES

1. In a footnote to his next Galton Problem paper Wirsing (1975) observes that the Geary
statistic may be used to test for autocorrelation among regression residuals. However, he
offers no further suggstions as to how such two dimensional autocorrelation might be
incorporated into the regression model.

While it is true that the Geary contiguity ratio is a valid test for autocorrelation among

regression residuals, it is not the most powerful test available. A test initially proposed by
Moran, modified by Dacey and generalized by Cliff and Ord (1973), was shown by Cliff
and Ord and independently by Hepple (1974) to be statistically more powerful.
Computational details for this I statistic are provided by Cliff and Ord (1973), although
Hepple (1976) has provided a matrix formulation which considerably simplifies the algebra.

2. Pryor’s claim that his procedures have "greater statistical power" than previous methods,
is clearly an overstatement. Since the true degrees of freedom are unknown it is obviously
impossible to make any determination of the type II error rates, hence it is impossible to
construct a power function for any of his tests. Given that Pryor nowhere refers to type II
error rates, it seems likely that he does not actually intend to claim greater "statistical"
power for his tests. Aside from drawing attention to the need for more realistic measures of
effects between societies (i.e., Diffusion Possibility Indices), it is doubtful that any of

Pryor’s procedures are statistically more powerful than the clustering tests based on
zero/one diffusion effects discussed by Wirsing (1974b).

3. For simplicity, we assume that the Y variable is centered about its mean. Thus the intercept
term may be ignored.

4. See Dhrymes (1970:10) for a discussion of Jacobians.
5. We assume (I-&rho;W) is invertible. This will almost always be the case in practice.
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6. Doreian (1980a) has developed full ML procedures for this model which simultaneously
solve for &rho; and &beta;. However, the relative merits of Doreian’s and Ord’s procedures are not
known. We mention both only to indicate that each appears to carry different implications
concerning autocorrelation in the measured variables, though both are basically concerned
with locating valid and efficient regression estimates.

7. A "lag one" matrix W may be constructed by setting wij = 1 if there exists a society k such
that i and k are contiguous and k and j are contiguous, otherwise wij = 0. Generalization of
this notion to higher order "lags" is immediate.

8. The R2s reported here are simply the squared correlations between the dependent y
variables and the predicted y variables. Because of interdependence, these R2s cannot
strictly be given the usual variance explained interpretation. They do give an approximate
indication of the degree of fit of the model, however.
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