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Simple Summary: NRDP1 is an E3 ubiquitin ligase that has been shown by our group and others to
target ErbB3 for proteasomal degradation in prostate and breast cancer cells and thereby decrease the
likelihood cancer progression. Our group has found that NRDP1 can be located in the nucleus as
well as the cytoplasm of prostate cancer (CaP) cells, which is unexpected as NRDP1 lacks a nuclear
localization signal. Here we elucidate the mechanism by which nuclear translocation of NRDP1 can
occur and demonstrate that nuclear NRDP1 retains its ubiquitin ligase activity. Our patient data
and cell line studies indicate that increased levels of nuclear NRDP1 contributes CaP progression,
thereby underscoring the clinical relevance of our findings and supporting continued investigation
and elucidation of the specific role(s) played by NRDP1 in the nucleus of CaP cells.

Abstract: To our knowledge, our group is the first to demonstrate that NRDP1 is located in the
nucleus as well as the cytoplasm of CaP cells. Subcellular fractionation, immunohistochemistry, and
immunofluorescence analysis combined with confocal microscopy were used to validate this finding.
Subcellular fractionation followed by western blot analysis revealed a strong association between
AR and NRDP1 localization when AR expression and/or cellular localization was manipulated via
treatment with R1881, AR-specific siRNA, or enzalutamide. Transfection of LNCaP with various
NRDP1 and AR constructs followed by immunoprecipitation confirmed binding of NRDP1 to AR is
possible and determined that binding requires the hinge region of AR. Co-transfection with NRDP1
constructs and HA-ubiquitin followed by subcellular fractionation confirmed that nuclear NRDP1
retains its ubiquitin ligase activity. We also show that increased nuclear NRDP1 is associated with
PSA recurrence in CaP patients (n = 162, odds ratio; 1.238, p = 0.007) and that higher levels of nuclear
NRDP1 are found in castration resistant cell lines (CWR22Rv1 and PC3) compared to androgen
sensitive cell lines (LNCaP and MDA-PCa-3B). The combined data indicate that NRDP1 plays a role
in mediating CaP progression and supports further investigation of both the mechanism by which
nuclear transport occurs and the identification of specific nuclear targets.
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1. Introduction

Ubiquitin ligases play a key role in the post-translational regulation of cellular protein
levels and their dysregulation has been shown to contribute to the development and/or
progression of several cancer types including gliomas and breast and prostate cancers [1,2].
Ubiquitin ligases make attractive drug targets since they can regulate expression of several
tumor suppressors and oncogenes which drive carcinogenesis. For example, expression
levels of PTEN, AKT, mTOR, c-Myc and p53 can all be regulated via ubiquitination [3,4].
NRDP1 is an E3 ubiquitin ligase which has been implicated in the progression of gliomas
and prostate, breast, and liver cancers [5–8]. Our group and others have shown that ErbB3,
a tyrosine kinase receptor which can drive prostate and breast cell proliferation, is key
target of NRDP1; decreased NRDP1 expression causes elevation of ErbB3 levels and can
thereby increase prostate and breast cancer cell proliferation and survival [7,9,10]. It is
noteworthy that NRDP1 also plays a key role in the development and progression of
several neurological diseases including Alzheimer’s and Parkinson’s disease [11,12] by
promoting neuronal cell apoptosis [13,14]. An increased understanding of NRDP1 biology
has the potential to improve our understanding of disease pathogenesis and support the
development of new treatments for these neurological diseases as well as for prostate
cancers and other cancer types.

Our group has previously demonstrated that NRDP1 can be transcriptionally regu-
lated by AR in CaP cells; activated AR is able to bind to the NRDP1 promoter region and
drive NRDP1 expression [7,15]. This was observed in androgen sensitive but not castration
resistant CaP (CRPC) cell lines indicating that dysregulation of NRDP1 expression may
contribute to disease progression. We also found a strong association between NRDP1
and AR expression levels in biopsies from patients with localized disease. Unexpectedly,
NRDP1 staining was detected in the nucleus of CaP biopsy cells as well as in the cytoplasm;
nuclear localization was unexpected since NRDP1 does not have a nuclear localization sig-
nal. To our knowledge, expression of NRDP1 in the nucleus of CaP cells has not previously
been reported and the mechanism(s) by which nuclear translocation occurs, the function of
nuclear NRDP1, and its clinical relevance remain completely unknown.

The main goals of the current study were to validate our finding that NRDP1 can be
located in the nucleus of CaP cells, to elucidate the mechanism by which nuclear transloca-
tion occurs, and to determine whether nuclear NRDP1 retains its ubiquitin ligase activity.
We also conducted experiments to determine how nuclear NRDP1 levels are regulated and
conducted patient studies to establish whether levels of nuclear NRDP1 in biopsy samples
from CaP patients with localized disease are associated with disease progression.

2. Materials and Methods
2.1. Patient Characteristics

All data were collected with approval from the VA Northern California Health Care
System (VANCHCS) Institutional Review Board. Sections from formalin fixed paraffin-
embedded prostate tumors of 162 patients who underwent prostatectomy at VANCHCS
were analyzed for these studies. Patient characteristics are described in Table 1. Tumor areas
were identified by a pathologist and 60 µm core samples were extracted. Specimens were
arranged in triplicate in a tissue microarray (TMA) using a Beecher Instruments Manual
Tissue Arrayer (Sun Prairie, WI, USA). Hematoxylin-eosin staining was used as a reference
for interpreting the additional sections of the TMA. Immunohistochemical analyses using
Ki67, NRDP1, and AR antibodies was performed as previously described [16].

2.2. Reagents

Primary antibodies; Androgen receptor (AR, cat#3202S), tubulin (cat#9F3), Lamin
A/C (cat#2032), and HA-TAG (cat#3724S) primary antibodies (Cell Signaling Technology,
Danvers, MA, USA), NRDP1 (Santa Cruz Biotechnology, Dallas, TX, USA, cat#sc-365622),
GAPDH (Sigma-Aldrich, St. Louis, MO, USA, cat#39-8600), FLAG (Genscript, Piscataway,
NJ, USA, cat#A00187-200). Secondary antibodies; HRP-linked anti-mouse IgG (Cell Sig-
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naling Technology, Danvers, MA, USA, cat#7076), HRP-linked goat anti-rabbit secondary
(Jackson Immunoresearch, West Grove, PA, USA, cat#111-035-144). siRNA; AR siRNA was a
pool of 4 duplexes with the following sequences; #1: 5′-CAGUCCCACUUGUGUCAAATT-
3′, #2: 5′-CUGAUCUGUGGAGAUGAATT-3′, #3: 5′-GUCGUCUUCGGAAAUGUUATT-
3′, #4: 5′-GACAGUGUCACACAUUGAATT-3′ (Santa Cruz Biotechnology, Dallas, TX,
USA). Control siRNA was a pool of 4 scrambled non-specific siRNA duplexes (Santa Cruz
Biotechnology, Dallas, TX, USA). Drugs; R1881 (Sigma-Aldrich, St. Louis, MO, USA),
Enzalutamide, Cycloheximide, MG132 (Selleckchem, Houston, TX, USA).

Table 1. Patient characteristics.

Characteristics Number

Age
N 162

Mean (SD) 69.7 (8.2)
Median (Range) 69 (49–91)

Weight (lbs)
N 160

Mean (SD) 181.6 (47.5)
Median (Range) 185.9 (64.9–284)

Race
White 102 (63%)

Black/African-American 31 (19.1%)
American Indian/AK Native 3 (1.9%)

Asian 1 (0.6%)
Unknown 25 (15.4%)

Ethnicity
Not Hispanic or Latino 138 (85.2%)

Hispanic or Latino 4 (2.5%)
Unknown 20 (12.3%)

Smoking
Current/Former Smoker 95 (58.6%)

Never Smoker 67 (41.4%)

2.3. Cell Lines and Culture

The following CaP cell lines were used; LNCaP, 22Rv1, MDA-PCa-2B and PC3 (ATCC,
Manassas, VA, USA). LNCaP, 22Rv1, and PC3 were cultured in RPMI1640 media (Invitro-
gen/GIBCO, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS, Omega
Scientific, Inc., Tarzana, CA, USA), 2 mM L-glutamine, and 100 U/mL penicillin-100 µg/mL
streptomycin (Invitrogen/GIBCO, Carlsbad, CA, USA). MDA-PCa-2B were cultured in
F-12K media supplemented with 20% FBS (Omega Scientific, Inc., Tarzana, CA, USA),
2 mM L-glutamine, and 100 U/mL penicillin-100 µg/mL streptomycin (Invitrogen/GIBCO,
Carlsbad, CA, USA), 25 ng/mL cholera toxin, 100 pg/mL hydrocortisone (Sigma-Aldrich,
St. Louis, MO, USA), 10 ng/mL mouse Epidermal Growth Factor, 0.005 mM phospho-
ethanolamine, 45 nM sodium selenite, and 0.005 mg/mL human recombinant insulin
(Thermofisher, Waltham, MA, USA). Cells were kept at 37 ◦C in a humidified environment
of 5% CO2 in air.

2.4. Immunofluorescence and Confocal Microscopy

Cells were fixed in ice cold methanol for 10 min then washed with PBST and blocked
using 10% BSA in PBST prior to being incubated with primary antibodies overnight at
4 ◦C. Cells were then washed and incubated with either Alexa Fluor 488 conjugated goat
anti-rabbit IgG secondary antibody or Alexa Fluor 555 conjugated goat anti-rabbit IgG
secondary antibody (Thermofisher, Waltham, MA, USA) for 1.5 h before being washed
again and mounted using Ultra Cruz hard-set mounting medium with DAPI (Santa Cruz
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Biotechnology, Dallas, TX, USA). Representative fluorescence images were taken on a Leica
DMR. Confocal images were taken on an Olympus FluoView FV1000 confocal microscope
(Olympus Scientific Solutions, Waltham, MA, USA).

2.5. Subcellular Fractionation

Subcellular fractionation was performed as previously described [17]. Briefly, cell
culture dishes were washed with two to three times with PBS and lysed in cytoplasmic
lysis buffer before being spun at 16,000× g for 5 min to isolate the cytoplasmic fraction.
The remaining nuclear pellet was washed three times in cytoplasmic lysis buffer before
being lysed in 1× SDS sample buffer.

2.6. Transfections and Plasmids

Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) was used for all transfections
as per manufacturer’s instructions. Cells were plated in 100 mm or 150 mm dishes and
allowed to attach overnight prior to transfection with siRNA or plasmid constructs. Plas-
mid constructs; pcDNA3, Wt-NRDP1-FLAG, CSHQ-NRDP1-FLAG, ∆CC-NRDP1-FLAG,
Ubiquitin-HA-TAG, Wt-AR, AR-V7 (missing the ligand binding domain), AR-∆DBD (miss-
ing residues 538–614 of the DNA binding domain (‘DBD’)), AR-NTD, pEL 77 AR (missing
residues 647–670 of the hinge domain (‘Hinge 1’)), and AR w/o (missing residues 628–646
of the hinge domain). Cells were transfected with a total of 3.0 µg of plasmid per 100 mm
or 150 mm dish. Wt-NRDP1-FLAG, CSHQ-NRDP1-FLAG (harbors two-point mutations
(C34S, H36Q) in the receptor binding region (RING finger domain), ∆CC-NRDP1-FLAG
(missing the coiled coil domain), and Ubiquitin-HA-TAG were kindly provided by Dr. Ker-
mit Carraway III. AR-V7 was kindly provided by Dr. Allen Gao. Wt-AR, AR-∆DBD, and
AR-∆NTD were from Addgene (Addgene, Watertown, MA, USA).

2.7. Protein Extraction and Western Blot

Protein extraction and western blot analyses were performed as previously described [18].
Briefly, whole cell lysates were collected on ice and washed three times with PBS and lysed
with SDS sample buffer for 15 min. Protein content was quantified with a BCA Protein
assay kit from Pierce (Pierce Biotechnology, Waltham, MA, USA). SDS-PAGE gels were run
and transferred with Bio-Rad apparatus (Bio-Rad, Hercules, CA, USA) onto 0.2 micron-pore
Millipore Sigma PVDF membranes (Sigma-Aldrich, St. Louis, MO, USA). Membranes were
blocked with 5% milk, incubated with primary antibody overnight at 4 ◦C, incubated with
secondary for 1.5 h, and washed in TBST between each step. Membranes were developed
by incubating in Pierce Supersignal West Femto Maximum Sensitivity Substrate (Pierce
Biotechnology, Waltham, MA, USA) and developed with x-ray film or a GE Amersham
680 Imager (GE Healthcare, Chicago, IL, USA).

2.8. Immunoprecipitation

Cells were plated in 100 mm or 150 mm dishes and lysed in ice cold IP lysis buffer
(Pierce Biotechnology, Waltham, MA, USA). Protein was quantified with BCA protein assay
(Pierce Biotechnology, Waltham, MA, USA). One milligram of protein was incubated with
4 ug of each primary antibody overnight at 4 ◦C followed by incubation with protein
A agarose beads (Cell Signaling Technology, Danvers, MA, USA) overnight at 4 ◦C. The
complex was pelleted and washed three to five times with IP lysis buffer and then eluted
with SDS-sample buffer with BME and run on SDS-PAGE gels.

2.9. Statistical Analyses

Cell line data; at least three independent experiments were completed for each analysis
described in this article. Patient data; correlations between markers were calculated using
the Spearman correlation. Recurrence-free percentages at five years for low and high
marker expression were calculated from Kaplan-Meier curves. The association between
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marker expression and PSA failure was analyzed using logistic regression models. Analyses
of patient data were conducted using R version 3.6.0 (accessed on 24 April 2019).

3. Results
3.1. NRDP1 Protein Is Expressed in the Nucleus as Well as the Cytosol in Prostate Cancer Cell Lines

We previously demonstrated androgen receptor (AR) regulation of NRDP1 in hormone-
naïve CaP [7], and that NRDP1 levels correlated with AR in localized human prostatectomy
specimens [15]. NRDP1 was observed in the nucleus of some CaP cells in the patient
prostatectomy specimens. This was completely unexpected as NRDP1 does not have a
nuclear localization signal and the presence of NRDP1 in the nucleus of CaP cells had not
previously been reported. To confirm this observation, we conducted immunofluorescent
analysis of two cell lines–LNCaP (mutant AR T877A) and MDA-PCa-2b (mutant AR
T877A, L701H) [19], using an anti-NRDP1 antibody (Figure 1A). NRDP1 was observed in
both the cytoplasm and in the nucleus of these cells. Confocal microscopy revealed that
NRDP1 localizes in puncta distributed throughout the cytoplasm and nucleoplasm in both
LNCaP and MDA-PCa-2b cells (Figure 1A). Nuclear NRDP1 did not appear to be located
within nucleoli.

To determine whether NRDP1 is also expressed in the nuclei of castration resistant
CaP (CRPC), we broadened our investigation to two CRPC cell lines-PC3 (AR null), and
CWR22Rv1 (mutant AR H874Y; exon 3 duplication; splice variants). The presence of
NRDP1 in the nucleus of all four CaP cells was validated by subcellular fractionation
studies (Figure 1B, full blot; Figure S6), which revealed that CRPC cell lines (PC3 and
CWR22Rv1) express higher levels of nuclear NRDP1 compared to androgen sensitive
cell lines (LNCaP and MDA-PCa-2b); cytoplasmic to nuclear ratio of NRDP1 was 1:0.57
in MDA-PCa-2b cells and 1:1.23 in LNCaP cells compared to 1:10.05 in CWR22Rv1 cells
and 1:3.28 in PC3 cells (Figure 1B). Taken together, these data demonstrate that NRDP1
is expressed in both the nucleus and the cytoplasm of CaP cell lines and that CRPC cell
lines express relatively higher levels of nuclear NRDP1 compared to androgen sensitive
cell lines. Again, nuclear localization of NRDP1 in CaP has not previously been reported.

3.2. Increased Levels of Nuclear NRDP1 in Patient Tumors from Prostatectomy Samples Are
Associated with Worse Patient Outcome

Nuclear localization of NRDP1 was also observed in patient prostatectomy sample
tumor cells confirming our in vitro findings and indicating potential clinical relevance
(Figure 2A,B). Table 1 shows patient characteristics. Significantly, high magnification pic-
tures (Figure 2B) demonstrated similar punctate localization of NRDP1 in the nucleus
as seen in the confocal microscopy pictures (Figure 1A). Additionally, we analyzed the
expression of AR and the proliferation index Ki67 in the same tissues. Logistic regression
analysis determined that in this patient cohort, higher levels of nuclear NRDP1 are associ-
ated with significantly higher odds of PSA failure; odds ratio of 1.238 (95% CI: 1.063, 1.443),
p = 0.007 (Table 2). Kaplan-Meier analysis further determined that the recurrence-free
percentage at five years following diagnosis for patients whose nuclear NRDP1 levels
were below the median level versus above the median level was 73.5% versus 92%, a
difference of −18.5% (p = 0.003), demonstrating that higher nuclear NRDP1 levels predict
worse outcome (Table 3). An association between Nrdp1 (nuclear or cytoplasmic) was not
observed, however, as would be expected increased levels of nuclear AR and increased
Ki67 expression did correlate with increased Gleason score (Figure S1). Our finding that
increased nuclear NRDP1 levels is associated with worse disease outcomes aligns with
our in vitro observation that castration resistant cell lines express higher levels of nuclear
NRDP1 compared to androgen sensitive cell lines (Figure 1B).
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cating higher levels of expression in LNCaP. Subcellular fractionation followed by western blot (B) confirmed that NRDP1 
is located in the nucleus of LNCaP and MDA-Pca-2b cells as well as CWR22Rv1 and PC3 cells. Higher levels of nuclear 
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cytoplasmic:nuclear NRDP1 ratios were 1:10.05 and 1:3.28, respectively) compared to LNCaP and MDA-Pca-2b cell lines 
(both androgen sensitive cell lines, 1:1.23 and 1:0.57, respectively). Detailed information about Western Blot can be found 
at supplementary materials. Green = NRDP1, Red = nuclear lamin, Blue = DAPI (nucleus) scale bar = 10 µm. 
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Figure 1. NRDP1 protein is expressed in the nucleus as well as the cytoplasm in prostate cancer cell
lines. Confocal microscopy analysis of NRDP1 immunofluorescence staining in LNCaP and MDA-
Pca-2b cell lines (A) revealed that NRDP1 is located in both the nucleus and cytoplasm of prostate
cancer cells. Localization of NRDP1 in the nucleus of prostate cancer cells has not previously been
reported. NRDP1 appeared as distinct puncta in the cytoplasm and nucleus. In LNCaP cell (i–iv),
more puncta were observed and were brighter compared to those observed in MDA-Pca-2b cells
(v–viii) indicating higher levels of expression in LNCaP. Subcellular fractionation followed by western
blot (B) confirmed that NRDP1 is located in the nucleus of LNCaP and MDA-Pca-2b cells as well
as CWR22Rv1 and PC3 cells. Higher levels of nuclear NRDP1 relative to cytoplasmic NRDP1 were
observed in CWR22Rv1 and PC3 cell lines (both castration resistant cell lines, cytoplasmic:nuclear
NRDP1 ratios were 1:10.05 and 1:3.28, respectively) compared to LNCaP and MDA-Pca-2b cell
lines (both androgen sensitive cell lines, 1:1.23 and 1:0.57, respectively). Detailed information about
Western Blot can be found at supplementary materials. Green = NRDP1, Red = nuclear lamin,
Blue = DAPI (nucleus) scale bar = 10 µm.

Table 2. Logistic regression models of PSA failure by Marker Expression.

Marker Odds Ratio (95% CI) p-Value

AR.Cancer.N 0.935 (0.845, 1.034) 0.193
AR.Cancer.C 1.153 (0.708, 1.876) 0.568
Ki67.Cancer 0.998 (0.997, 1) 0.0477

NRDP1.Cancer.N 1.238 (1.063, 1.443) 0.00684
NRDP1.Cancer.C 1 (0.81, 1.235) 1

Odds ratio = change in odds of PSA failure for unit increase in marker. N, nuclear localization; C, cytoplasmic localization.
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Figure 2. NRDP1 protein is also expressed in the nucleus of prostate cancer patient tumor cells. Immunohistochemical
(IHC) analysis determined that NRDP1 is also located in the nucleus in prostate cancer patient cells (A,B). Patient samples
varied in the degree of cytoplasmic:nuclear NRDP1 staining that was observed. For example, in some patients there was low
cytoplasmic/low nuclear levels (Ai), intermediate cytoplasmic/intermediate nuclear levels (Aii), high cytoplasmic/low
nuclear levels (Aiii), or high cytoplasmic/high nuclear levels (Aiv) of NRDP1. Higher magnification images (Bi,Bii)
demonstrated that nuclear NRDP1 appeared as distinct puncta in the nucleus and this aligns with what was observed in
prostate cancer cell lines. Scale bar = 50 µm. Brown = NRDP1, Blue = Hematoxylin (nucleus).
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Table 3. Recurrence Free Percentages at Five Years by Marker Expression.

Marker
5-Year Recurrence-Free

Percentage,
High Expression

5-Year Recurrence-Free
Percentage,

Low Expression

Difference
(95% CI) p-Value

AR N 74.50% 87.10% −12.7%
(−31.8%, 6.5%) 0.196

AR C 95.50% 79.10% 16.4%
(7.5%, 25.2%) <0.001

Ki67 77.40% 94.40% −17%
(−27.1%, −6.9%) 0.001

NRDP1
N 73.50% 92% −18.5%

(−30.9%, −6.1%) 0.003

NRDP1
C 85.10% 87.40% −2.3%

(−12.3%, 7.7%) 0.650

N, nuclear localization; C, cytoplasmic localization; Bolded font denotes statistically significant differences.

3.3. Strong Association between Levels of Androgen Receptor and NRDP1 in Prostate Cancer
Patient Tumor Samples

Dysregulation of AR, including by mutation and expression of splice variants, is well
known to drive CaP progression [20,21]. The AR is active in the nucleus, and therefore, AR
localization in the cytoplasm is considered to demonstrate inactive AR. We investigated
a correlation between AR and the proliferation index Ki67 with NRDP1 localization. As
expected, based on data from multiple publications, there was a strong association between
nuclear AR levels and Ki67 in all subgroups (Tables 4 and 5) [22–26]. A stronger association
was observed in patients with stage 1/2 CaP versus patients with stage 3 CaP; Spearman’s
correlation coefficients were 0.22 (p = 0.012) and 0.51 (<0.001), respectively. No associations
were found between nuclear NRDP1 and Ki67 indicating that nuclear NRDP1 does not
directly contribute to increased proliferation of CaP patient tumor cells.

Table 4. Correlations between AR, NRDP1, and Ki67 expression in prostate cancer tumor cells from
patients with stage 1/2 disease. N, nuclear localization; C, cytoplasmic localization. Bolded font
denotes statistically significant correlations.

Marker 1 Marker 2 Spearman Correlation p-Value

AR N AR C 0.32 <0.001
AR N Ki67 0.22 0.012
AR N NRDP1 N −0.11 0.216
AR C Ki67 0.06 0.525
AR C NRDP1 N −0.46 <0.001
Ki67 NRDP1 N −0.06 0.476

Table 5. Correlations between AR, NRDP1, and Ki67 expression in prostate cancer tumor cells from
patients with stage 3 disease. N, nuclear localization; C, cytoplasmic localization. Bolded font denotes
statistically significant correlations.

Marker 1 Marker 2 Spearman Correlation p-Value

AR N AR C 0.03 0.790
AR N Ki67 0.51 <0.001
AR N NRDP1 N 0.07 0.564
AR C Ki67 0 0.974
AR C NRDP1 N −0.35 0.003
Ki67 NRDP1 N 0.18 0.128
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Correlation analysis revealed a strong negative association between levels of cyto-
plasmic AR and levels of nuclear NRDP1 in CaP patient samples (Tables 4 and 5). In
patients who were diagnosed with stage 1/2 (Table 4) or stage 3 (Table 5) CaP at time
of prostatectomy, the Spearman’s correlation coefficient was −0.46 (p < 0.001) and −0.35
(p = 0.003), respectively. Association between nuclear AR and nuclear NRDP1 was not
statistically significant, possibly due to NRDP-1-mediated degradation of nuclear Nrdp1.
In support of this, ubiquitination of AR by other E3 ubiquitin ligases has previously been
reported [27,28]. A negative association between cytosolic AR and nuclear NRDP1 was ob-
served and this supports our in vitro data which indicate that AR and NRDP1 co-translate
into the nucleus of CaP cells; unliganded cytosolic AR is unable to translocate to the nucleus
since HSP90 blocks its nuclear localization signal [29,30] meaning this negative association
would be expected.

3.4. Transport of NRDP1 into the Nucleus Is Associated with Nuclear Transport of the Androgen Receptor

Since NRDP1 does not contain a nuclear translocation signal, its transport into the
nucleus must be dependent on another molecule(s). As AR activity correlated with NRDP1
nuclear localization in the primary tumors, we focused on determining whether the AR
could play a role in nuclear transport of NRDP1. Binding of androgen to the AR promotes
the transport of AR into the nucleus [31] and the AR has been shown to facilitate the nuclear
transport of other molecules, for example beta-catenin [20,21]. Our data demonstrate that
manipulation of AR nuclear expression and/or activation and translocation can impact
nuclear NRDP1 levels in androgen sensitive LNCaP and MDA-PCa-2b cells. Treatment
with the synthetic androgen R1881, a strong AR ligand, caused a 1.72-fold increase in
nuclear AR levels and a 1.23-fold increase in nuclear NRDP1 levels in LNCaP cells, while
it induced a 4.44-fold increase in nuclear AR levels and a concurrent 2.06-fold increase in
nuclear NRDP1 in MDA-PCa-2b cells (Figure 3A, full blot; Figure S7). Converse results
were observed when AR expression levels were decreased; inhibition of AR expression
levels using an AR-specific siRNA caused a 4.94-fold decrease in nuclear AR levels and
a concurrent 1.81-fold decrease in nuclear NRDP1 levels in LNCaP cells (Figure 3B, full
blot; Figure S8). Inhibition of AR translocation with enzalutamide also caused reduced
levels of nuclear NRDP1; treatment with enzalutamide resulted in a 2.08-fold decrease in
nuclear levels of AR and a concurrent 1.41-fold decrease in nuclear levels of NRDP1 in
LNCaP cells; while it caused a 1.23-fold decrease in nuclear AR and a 1.47-fold decrease in
nuclear NRDP1 in MDA-PCa-2b (Figure 3C, full blot; Figure S9). Note that we confirmed
our previous finding that AR can transcriptionally regulate Nrdp1 through reporter gene
assay (Figure S2). The combined data clearly demonstrate that there is a strong correlation
between AR activity and NRDP1 nuclear translocation in hormone sensitive CaP cell lines.

3.5. The Interaction between NRDP1 and AR Is Dependent on Presence of the AR Hinge Region
but Does Not Require the NRDP1 Coiled Coil Domain

NRDP1 is an E3 ubiquitin ligase which can auto-ubiquitinate as well as ubiquitinate
several target molecules including ErbB3 [32,33]. The RING finger domain (RING) facili-
tates the transfer of ubiquitin from E2 ubiquitin-conjugating enzymes onto NRDP1 target
proteins, the coiled-coil domain allows for oligomerization and is required for NRDP1
autoubiquitination, and the receptor binding domain recruits NRDP1 targets [34]. Three
NRDP1 plasmid constructs, all of which are FLAG-tagged, were used to help further eluci-
date the mechanism by which NRDP1 can translocate to the nucleus [32]. These are shown
in Figure 4A; wildtype (WT) NRDP1, CHSQ (harbors two point mutations (C34S, H36Q) in
the receptor binding region (RING finger domain) which cause a dramatic reduction in
the ability of NRDP1 to auto-ubiquitinate and to facilitate ubiquitination of binding part-
ners) [32], and ∆CC (the coiled coil domain is missing and this prevents oligomerization,
a step that is required for efficient NRDP1 auto-ubiquitination to occur [34]. Note that
ubiquitination of other NRDP1 binding partners by ∆CC is still possible).
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Figure 3. Transport of NRDP1 into the nucleus is associated with nuclear transport of the androgen
receptor. Treatment of LNCaP and MDA-Pca-2b cells with synthetic androgen, R1881 (1 nM for 48 h)
caused an increase in levels of both nuclear androgen receptor (AR) and nuclear NRDP1 (A) Inhibition
of AR expression levels (treatment with AR siRNA, 50 nM for 48 h) (B) or inhibition of AR activity
and translocation (treatment with Enzalutamide, 10 µM for 24 h) (C) caused a decrease in nuclear
AR levels and a concurrent decrease in nuclear NRDP1 levels (B,C) The combined data demonstrate
there is a strong correlation between AR and NRDP1 nuclear expression and translocation in these
two cell lines. Detailed information about Western Blot can be found at supplementary materials.
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Figure 4. Overexpression of NRDP1 through transfection with various NRDP1 constructs caused
high levels of nuclear NRDP1 expression. Three FLAG-tagged constructs were used to allow for
manipulation of NRDP1 levels and to help determine whether interaction between AR and NRDP1
is possible; wildtype NRDP1 (Wt), NRDP1-CHSQ (CSHQ), and NRDP1-∆CC (∆CC) (A). The CSHQ
construct harbors two point mutations in the receptor binding region (RING finger domain) which
cause a dramatic reduction in the ability of NRDP1 to auto-ubiquitinate and to facilitate ubiquitination
of target proteins. The ∆CC construct is missing the coiled coil domain this prevents NRDP1
oligomerization, a step that is required for efficient NRDP1 auto-ubiquitination to occur, however,
ubiquitination of other NRDP1 target proteins by ∆CC is still possible. Transfection of LNCaP cells
with these constructs (3 µg per 100 dish, 48 h) caused a dramatic increase in NRDP1 expression and
high levels of nuclear NRDP1 were observed (B). Detailed information about Western Blot can be
found at supplementary materials.

We demonstrate that all three NRDP1 constructs can translocate to the nucleus in
LNCaP cells (Figure 4B, full blot; Figure S10). It is noteworthy that for this and other
experiments, endogenous NRDP1 is barely detectable and the WT NRDP1 construct is
often expressed at lower levels compared to the CHSQ and ∆CC constructs. This is
due to the fact that wildtype NRDP1 can very efficiently auto-ubiquitinate and thereby
rapidly reduce WT NRDP1 expression levels, while NRDP1-CHSQ and NRDP1-∆CC
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cannot efficiently auto-ubiquitinate due to point mutations in the receptor binding domain
and removal of the coiled coil domain, respectively, and hence their levels remain high [34].
Immunoprecipitation studies using the NRDP1 constructs determined that NRDP1 can
bind to AR in LNCaP cells and that this interaction does not require the coiled coil region
of NRDP1 (Figure 5, full blot; Figure S11). All three constructs, including ∆CC which
is missing the coiled coil domain, were able to mediate pulldown of AR in LNCaP cells,
indicating that the coiled coil domain is not required for interaction of NRDP1 with AR.
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Figure 5. The interaction between NRDP1 and the androgen receptor does not require the NRDP1
coiled coil domain. Transfection with the Wt, CSHQ, or ∆CC FLAG-tagged NRDP1 constructs (3 µg
per 100 mm dish, 72 h) followed by FLAG immunoprecipitation and western blot demonstrated that
NRDP1 can bind to the androgen receptor (AR) in LNCaP cells. The ability of the ∆CC construct,
which is missing the NRDP1 coiled coil domain, to mediate AR pulldown indicates that the coiled
coil domain is not required for interaction between AR and NRDP1. Detailed information about
Western Blot can be found at supplementary materials.

Immunoprecipitation studies were also conducted using the CHSQ construct and
various AR constructs to determine which region of AR is required for the NRDP1-AR
interaction in LNCaP cells. AR has four major domains (Figure 6A): The N-terminal
domain (NTD, required for regulation of AR transcriptional activity and mediates many
protein-protein interactions), the DNA binding domain (DBD, directly binds to AR response
elements), and the hinge region (modifications to this region allow for integration of signals
from various pathways and it thereby regulates transcriptional targets and activity; the
hinge region can be acetylated, phosphorylated, and/or methylated) [29]. The following
AR constructs were used; AR V7 (lacks the LBD), ∆DBD (lacks the DBD), ∆Hinge 1 and
∆Hinge 2 (both constructs lack the hinge region). CHSQ FLAG-mediated pull-down of
AR was observed when LNCaP cells were co-transfected with CHSQ-FLAG and either
the wildtype AR, AR V7, or DBD constructs (Figure 6B, full blot; Figure S12). Note that
a blot showing levels of AR in the pre-IP lysate is provided as Figure S13. Pull-down
was not observed for the Hinge constructs indicating that the Hinge region is required
for interaction between NRDP1 and AR in LNCaP cells. Taken together the above data
demonstrated that in LNCaP cells, but not in MDA-PCa-2b, NRDP1 translocation to the
nucleus is mediated by binding of NRDP1 to the AR hinge domain.
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Figure 6. The interaction between NRDP1 and the androgen receptor is dependent on the hinge
domain of the androgen receptor. Four androgen receptor (AR) constructs were used to validate
the interaction between AR and NRDP1 and to help determine which regions of AR are involved in
mediating the interaction; AR V7 (lacks the ligand binding domain (LBD)), ∆DBD (lacks the DNA
binding domain (DBD)), ∆Hinge 1 and ∆Hinge 2 (both constructs lack the hinge region) (A). Co-
transfection of PC-3 cells (which lack endogenous AR) with the AR constructs and the FLAG-tagged
NRDP1-CSHQ construct (3 µg per 100 mm dish, 72 h) followed by FLAG immunoprecipitation and
western blot confirmed that interaction between AR and NRDP1 is possible (B) pulldown of both the
ARV7 and DBD AR constructs was observed. Pulldown of the Hinge constructs was not observed
indicating that interaction between AR and NRDP1 may occur via the AR Hinge domain. Detailed
information about Western Blot can be found at supplementary materials.

3.6. NRDP1 Can Act as a Ubiquitin Ligase in Both the Cytosol and the Nucleus of CaP Cells

To determine if NRDP1 retains its ubiquitin ligase activity in the nucleus, LNCaP cells
were co-transfected with wildtype NRDP1, NRDP1-CSHQ, or the NRDP1-∆CC constructs
and HA-tagged ubiquitin (HA-Ub) and separated into nuclear and cytoplasmic fractions
(Figure 7, full blot; Figure S14). As would be expected, transfection with the NRDP1-CHSQ
construct, which is unable to efficiently ubiquitinate binding partners, did not result in a
significant increase in the level of ubiquitinated proteins in the cytosolic or nuclear frac-
tions compared to wildtype NRDP1; normalization of nuclear ubiquitinated protein levels
based on NRDP1 construct level shows that transfection with NRDP1-CSHQ resulted
in a 6.25-fold decrease in nuclear ubiquitinated protein levels compared to transfection
with NRDP1-WT. In contrast, transfection with the NRDP1-∆CC construct, which can
ubiquitinate target proteins but cannot auto-ubiquitinate, resulted in a 1.24-fold increase
in nuclear ubiquitinated protein levels compared to transfection with NRDP1-WT. Note
that the ability of Nrdp-WT and NRDP1-∆CC to bind to and ubiquitinate proteins was
confirmed by co-transfection of NRDP1 constructs and HA-ubiquitin followed by immuno-
precipitation (Figure S3); Nrdp-WT and NRDP1-∆CC both pulled down ubiquitinated
proteins while NRDP1-CHSQ did not. The combined data indicate that NRDP1 can act as
a ubiquitin ligase in the nucleus as well as the cytosol of CaP cells.
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Figure 7. NRDP1 can act as a ubiquitin ligase within the nucleus of prostate cancer cells. Co-
transfection of LNCaP with the Wt, CSHQ, or ∆CC NRDP1 constructs with an HA-tagged ubiquitin
construct (HA-TAG)(3 ug per 100 mm dish, 72 h) followed by subcellular fractionation and western
analyses confirmed that NRDP1 retains its ability to function as a ubiquitin ligase when located in
the nucleus; transfection with ∆CC, which retains its ability to ubiquitinate target proteins, caused a
1.24-fold increase in levels of ubiquitinated nuclear proteins compared to Wt NRDP1 (HA-Ub densit-
ometry scores were normalized based on NRDP1-FLAG expression, higher levels of ∆CC NRDP1
were expressed compared to Wt NRDP1 since ∆CC cannot mediate oligomerization/degradation
of NRDP1 by auto-ubiquitination). Transfection with CSHQ, caused a 5-fold decrease in levels of
ubiquitinated nuclear proteins compared to Wt NRDP1, this is expected as the CSHQ construct
cannot ubiquitinate target proteins and would compete with endogenous NRDP1 for target binding.
Detailed information about Western Blot can be found at supplementary materials.

3.7. Nuclear NRDP1 Levels Are Regulated by Proteasomal Degradation in Some but Not All
Prostate Cancer Cells

Wildtype NRDP1 is known to auto-ubiquitinate and can then undergo proteasomal
degradation [32]. Inhibition of proteasome function using MG-132 resulted in accumulation
of endogenous NRDP1 in LNCaP and CWR22Rv1 cells (1.85, 1.76, and 2.12-fold increase
(normalized to actin), respectively) but not in PC3 cells (Figure 8A, full blot; Figure S15),
indicating that proteasomal degradation may be a mechanism by which NRDP1 protein
levels may be regulated in some but not all CaP cells. To further understand the role of
protein degradation in regulating NRDP1 levels we treated LNCaP and MDA-PCa-2b cells
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with the protein synthesis inhibitor cycloheximide which prevents de novo protein synthe-
sis. Half-life of endogenous cytosolic and nuclear NRDP1 in these cells was calculated
based on the changing levels of the protein over time following cycloheximide treatment
(Figure 8B, full blots; Figures S16 and S17). In LNCaP cells, the half-life of cytosolic NRDP1
was approximately 5 h, whereas the half-life of nuclear NRDP1 was less than 1 h. In MDA-
PCa-2b cells, we determined that cytosolic NRDP1 was very stable (half-life > 24 h). It is
noteworthy that we also observed stabilization of Nrdp1 in CWR22Rv1 cells, a castration
resistant cell line (Figure S4). In alignment with our previous experiments, very low levels
of endogenous nuclear NRDP1 were observed and there appeared to be little or no decrease
in nuclear NRDP1 levels over the 24-h time course. These data indicate that increased
rate of degradation via the proteasome is unlikely to be responsible for the lower level of
nuclear NRDP1 that is observed in MDA-PCa-2b cells compared to LNCaP cells.
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Figure 8. Nuclear NRDP1 levels are regulated by proteasomal degradation in some but not all prostate
cancer cells. Treatment of LNCaP, MDA-Pca-2b, and CWR22Rv1 cells with a proteasome inhibitor,
MG-132 (2 µM, 16 h), resulted in accumulation of NRDP1 indicating that proteasomal degradation
can regulate NRDP1 levels in these cell lines (A); 1.85, 1.76, and 2.52-fold increases in NRDP1
levels following MG-132 treatment (normalized to actin). Treatment with cycloheximide, which
inhibits protein synthesis (100 µg/mL), over a 24-h period followed by subcellular fractionation and
western analyses revealed that nuclear NRDP1 has a much shorter half-life compared to cytoplasmic
NRDP1 in LNCaP cells (B); the nuclear half-life of NRDP1 was approximately 0.75 h compared to a
cytoplasmic half-life of approximately 5 h. In MDA-Pca-2b, there was little or no decrease in nuclear
or cytoplasmic NRDP1 levels over the 24-h time period indicating that stabilization is occurring.
Detailed information about Western Blot can be found at supplementary materials.
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4. Discussion

Our data confirm that NRDP1 can be found in both the nucleus and cytoplasm of
prostate cancer cells. We show that NRDP1 retains its ability to function as a ubiquitin
ligase within the nucleus and that AR appears to play a key role in mediating nuclear
translocation of NRDP1. The association between nuclear NRDP1 levels and PSA recur-
rence in prostate cancer patients indicates that nuclear NRDP1 has clinical relevance and
that further investigation of how NRDP1 translocation occurs and how nuclear NRDP1
levels are regulated as well as the identification of specific nuclear targets of nuclear NRDP1
is warranted.

While nuclear localization of NRDP1 in patient CaP cells has not been reported by
other groups, this finding aligns with the TCGA data which shows increased NRDP1
mRNA levels are associated with decreased survival rates for CaP patients (Figure S5) [35].
Our in vitro data also support a link between increased nuclear NRDP1 expression and
CaP disease progression; CRPC cell lines expressed much higher levels of nuclear NRDP1
compared to androgen sensitive cell lines. Nuclear NRDP1 has been reported in invasive
breast cancer biopsy cells indicating that nuclear NRDP1 may play a role in other cancer
types [6]. An association between NRDP1 levels and recurrence-free progression was not
observed in the breast cancer study, however, total NRDP1 levels not nuclear NRDP1 levels
were assessed meaning it is still possible that an association between nuclear NRDP1 and
patient outcomes exists in this setting.

To our knowledge, no other study has focused on determining how nuclear translo-
cation of NRDP1 occurs, how nuclear NRDP1 levels are regulated, or whether nuclear
NRDP1 retains its ubiquitin ligase activity. NRDP1 does not have a nuclear localization
signal (NLS) and therefore must be dependent on another molecule for entry into the
nucleus. Our patient and in vitro data indicate that the AR plays a key role in mediating
NRDP1 nuclear translocation; a statistically significant correlation between AR and NRDP1
localization was found in patient biopsy samples, and our in vitro studies demonstrate that
AR can bind to NRDP1 and that manipulation of AR expression and activity can impact
NRDP1 cellular localization. In further support of AR playing a role, AR has been shown to
mediate the nuclear transport of other molecules which lack a nuclear transport signal, for
example beta-catenin [21]. Beta-catenin binds to the ligand binding domain (LBD) of AR
and once co-translocated into the nucleus it can serve as a co-factor and regulate AR tran-
scriptional activity [36–38]. We demonstrate that binding of AR to NRDP1 does not require
the coiled coil domain of NRDP1, the domain which allows for NRDP1 oligomerization
and auto-ubiquitination, and does require the hinge domain of AR. Modifications to the
hinge region of AR (e.g., acytylation, phosphorylation, methylation) are known to regulate
binding of AR to transcriptional targets [39], and along with the AR DBD it also houses
the bipartite NLS which is required for AR translocation [39,40]. Goals for future studies
include determination of the exact sites required for binding between NRDP1 and AR as
well as to determine whether inhibition of binding impacts AR transcriptional activity
and/or the ability of NRDP1 and/or AR to translocate to the nucleus. Inhibiting AR
translocation and/or transcriptional activity are key therapeutic strategies for the treatment
of recurrent CaP [41–43].

Our finding that NRDP1 can act as an E3 ubiquitin ligase within the nucleus is
somewhat expected based on the fact that many other types of nuclear ubiquitin ligases play
a key role in the regulation of nuclear protein levels [44]. For example, MDM2 can cause
ubiquitination and degradation of nuclear p53 [45]. The specific targets of nuclear NRDP1
remain to be identified and this will be a key focus of future studies. Potential targets
which are known to be regulated by ubiquitination and play a key role in driving CaP
progression include PTEN and AR [27,28,46]. Nrdp1-mediated degradation of AR would
help explain why a correlation between nuclear AR and Nrdp1 was not observed in our
patient study. As with many other ubiquitin ligases, NRDP1 is able to autoubiquitinate and
this is a key mechanism by which NRDP1 levels are regulated [34]. USP8, a deubiquitinase,
counters NRDP1 autoubiquitination and thereby increases NRDP1 levels [32]. Inhibition of
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USP8 has been shown to decrease NRDP1 levels and decrease cell proliferation and drug
resistance in several cancers including breast, lung, and cervical cancer [47]. For example,
knockdown of USP8 in lung cancer cells inhibited the proliferation of lung cancer cells
by regulating several cell cycle and apoptosis-related proteins [48]. BRUCE (also known
as BIRC6), an IAP, is a key regulator of USP8 activity. While the relationship between
BRUCE, USP8, and NRDP1 has not been established in cancer cells, it is noteworthy that
elevated levels of BRUCE are associated with worse outcomes in CaP patients [49]. If
the relationship between BRUCE, USP8, and NRDP1 which has been reported in other
cell types exists in CaP cells then elevated levels of BRUCE would potentially result in
increased levels of NRDP1 and thereby align with our patient data.

In our previous studies, we found an association between overall levels of Nrdp1 and
levels of ErbB3; decreased expression of total levels of Nrdp1 resulted in increased levels of
ErbB3 and increased CaP cell proliferation [7]. We now show that an increase in nuclear
Nrdp1 is associated with worse patient outcome. Based on our finding that nuclear Nrdp1
retains its ubiquitin ligase activity, it is possible that nuclear Nrdp1 targets nuclear tumor
suppressors for degradation thereby driving disease progression. Our on-going studies are
focused on identifying and validating nuclear targets to further investigate this possibility.

Our cell line data indicate that NRDP1 levels are regulated by proteasomal degrada-
tion in some but not all CaP cell lines. We also found a difference between the half-life of
cytoplasmic and nuclear NRDP1 with the latter being much longer. In addition to identify-
ing the targets of nuclear NRDP1 and determining the precise mechanism by which NRDP1
nuclear translocation occurs in CaP cells, we also plan to further elucidate the mechanisms
by which nuclear NRDP1 levels are regulated. While the degree of nuclear translocation
will contribute to this, we hypothesize that molecules such as USP8 and BRUCE also play a
role. It is noteworthy that BRUCE plays a key role in autophagy regulation and as such can
direct degradation of NRDP1 via lysosomes [50,51]. This may help explain why we do not
see proteasomal degradation of NRDP1 occurring in some CaP cell lines.

5. Conclusions

The combined data support a role for nuclear NRDP1 in mediating CaP progression.
Further understanding of the mechanism by which nuclear translocation occurs and how
nuclear NRDP1 levels are regulated as well as identification of targets of nuclear NRDP1
could improve our understanding of CaP pathogenesis and support the development of
drugs for the treatment of CaP and other cancers and disease states for which dysregulation
of NRDP1 plays a role.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13174425/s1. Figure S1: Table showing the relationship between Nrdp1 and Gleason
score; Figure S2: Nrdp1 and PSA reporter gene assay showing that Nrdp1 expression is associated
with AR activity; Figure S3: Co-transfection with various NRDP1-FLAG construct and HA-Ubiquitin
followed by pulldown with FLAG; Figure S4: Cyclohexamide experiment data comparing Nrdp1
half-life in CWR22Rv1, LNCaP, and MDA-PCa-2b cells; Figure S5:TCGA data show that higher levels
of NRDP1 expression are associated with worse outcomes for prostate cancer patients; Figure S6: Full
blots corresponding to Figure 1B; Figure S7: Full blots corresponding to Figure 3A; Figure S8: Full
blots corresponding to Figure 3B; Figure S9: Full blots corresponding to Figure 3C; Figure S10: Full
blots corresponding to Figure 4B; Figure S11: Full blots corresponding to Figure 5; Figure S12: Full
blots corresponding to Figure 6B; Figure S13: Western blot showing levels of AR in the lysate prior to
immunoprecipitation for Figure 6B; Figure S14: Full blots corresponding to Figure 7 (with HA-TAG full
blot which is already shown in Figure 7); Figure S15: Full blots corresponding to Figure 8A; Figure S16:
Full blots corresponding to Figure 8B, upper panel. Figure S17: Full blots corresponding to Figure 8B,
lower panel.
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