
Lawrence Berkeley National Laboratory
Recent Work

Title
BIT TRANSPOSED FILES

Permalink
https://escholarship.org/uc/item/6pg9b0br

Author
Wong, H.K.T.

Publication Date
1985-02-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6pg9b0br
https://escholarship.org
http://www.cdlib.org/

f

r
~,
4.

'" .-,
J .

LBL-19149
<:.~

ITtI Lawrence Berkeley Laboratory
11:1 UNIVERSITY OF CALIFORNIA, BERKELEY

Information and Computing
Sciences Division

Presented at the Very Large Data Bases Conference,
Stockholm, Sweden, September 26-29, 1985

BIT TRANSPOSED FILES

H.K.T. Wong, F. Liu, F. Olken,
D. Rotem, and L. Wong

(

"

~
(

,,,:"; :: ;; ,~: ; 'l E {J

8,:7"-·; - .- " i ., ·~~~9 .. !:~_
. ' ~y

" J U;!j 2 G 1.987

February 1,985
TWO-WEEK LOAN C

'"
, This is a Library Circulating Copy'

....... ________ . _" ____ ' ~ which may be .borrowed for two.'- "

Prepared for the U,S, Department of Energy under Contract DE-AC03-76SF00098

.. .
I)..J

r
V0
~ -~
,.f-
~

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty. express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

•

LBL-lg14g

Bit Transposed Files

H.K.T.Wong, F. Liu, F.Olken, D.Rotem, and L.Wong

Computer Science Research Department
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

February, 1985

This research was supported by the Applied Mathematics Sciences Research Pro­
gram of the Office of Energy Research, U.S. Department of Energy under contract
D E-AC03-7 6SF00098.

Bit Transposed Files

Harry K.T. Wong, Fanny Uu, Frank Olken, Doron Rotem-, Unda Wong

Lawrence Berkeley Laboratory,

University of California

Abstract

This paper first examines the reasons why sophisticated access methods are

often not used in large Scientific/Statistical Database (SSDB) applications. A file

str.Jcture (called bit transposed file) is proposed which offers several attractive

features that are better suited for the special characteristics that SSDBs exhibit.

This file structure is an extreme version of the transposed file where the data is

stored by vertical bitwise partitions (rather than by attributewise). The bit patterns

of attributes are assigned using one of several index encoding methods. Each of

these encoding methods is appropriate for different query types and access require-

rnents. The bit partitions can also be compressed using a version of the run length

encoding scheme. Efficient operators on compressed bit vectors are available to

form the backbone of a query language. In addition to selective power with low over-

head for SSDBs, the bit transposed file also is amenable to special parallel hardware.

Results from experiments with the file structure suggest that this may be a reason-

able alternative file structure for large SSDBs.

Supported by the OffIce of Energy Research, U.S. DOE under Contract No. DE-AC03-76SF00098.

• Dept. of Computer SCience, Unlv. of Waterloo, Canada

1. Motivation and Overview

Scientific/Statistical Databases (SSDBs) exhibit many distinctive types of

characteristics and usage [Shoshani,Olken,Wong84]. [Wong84]. With the advent of

many advanced access methods, the dominant file structure for very large SSDBs is

still the simple sequential file. The major reason is that there is a "mismatch"

between conventional access methods such as inverted files, B-trees, hashing, etc.

and the characteristics of SSDBs. First, because the cardinality of SSDBs attributes

is typically small, most access methods simply partition the database into a small

number of still very large files, with prohibitively expensive overhead for the pointers,

structures, tables, etc., with only limited selective power added. Second, since

SSDBs are largely static, the expensive overhead associated with the dynamic facili­

ties of most access methods is not justified. Third, the values of SSDBs attributes

tend to cluster, and current access methods often do not take advantage of this

opportunity for compression. Fourth, the access to SSDBs is typically long "sweep"

in that a long sequence of individual records is fetched and a small number of attri­

butes extracted, this kind of range access is not supported well by most access

methods.

The search for an appropriate file structure begins with the fourth point men­

tioned above, which is the motivation for transposed files ([Wiederhold 83], [Batory

79]). The file structure we propose is an extreme form of the transposed file and we

call it the Bit Transposed File (BTF).

The BTF has three major components: an index encoder, transposed bit vector

loader, and a query processor on bit vectors.

The index encoder translates each field in each record in the database into a

series of bits based on several encoding schemes. The result is that each record of

the database is translated into a bit pattern.

2

,"

The second component, called the transposer, stores the bit patterns in a tran­

sposed manner so that for each bit position of the bit pattern, a file is produced

which contains the bit value of that bit position from all the records in the database.

The result is n BTFs where n is equal to the number of bit columns that result after

encoding. Because values in large statistical databases tend to cluster, we have

developed a compression method to compress the BTFs so that long runs of D's and

1's can be stored more efficiently.

The third component of this file structure is the query processor on BTFs. The

processor translates the retrieval requests on the database ·into a boolean expres­

sion on the BTFs. The translation algorithm takes as input the encoding schemes for

the attributes in the query and the query type in order to generate the shortest

boolean expression. The boolean expression is then evaluated by using the primitive

boolean operators AND, OR, and NOT. These operators are very efficient that can

also take advantage of the compressed BTFs.

In section 2 the various index encoding schemes are described with examples.

Section 3 gives details and examples to the transposition of records by bits. In Sec­

tion 4 the query processing aspect is examined. Section 5 formalizes the problem of

optimal index encoding assignment and experiment results with the algorithm are

included in an appendix. Section 6 describes the implementation and experimentation

of the file structure and results are listed in another appendix. Some interesting

current work is mentioned in Section 7. Section 8 contains the summary and conclu­

sion of the paper.

2. Index Encoding Schemes

In this section we will describe the available index encoding schemes in our

current BTF transposed file structure. Index encoding schemes are crucial to BTFs

because they ultimately decide how many boolean operations have to be performed

on the bit vectors. There are four basic schemes: binary, k-of-n, unary, and

3

superimposed. Each one of these schemes can have a composite version for attri-

butes with large number of values. Below we will describe each of them with exam-

pies and discuss the usage of the scheme for different kind of queries.

2.10 Binary Encoding

Given an attribute A with n possible values, the binary encoding of A is to use

login) bits for each value v and the bit pattern for v is the binary number in the

range of a and n, corresponding to the ordinal integer of v among the n values of A.

As a convention, the bit positions are labeled bO, bl, ... , bn, from the rightmost bit to

the leftmost. This scheme requires the minimum of storage but all bits have to be

examined for retrieval.

As an example throughout this paper, we will use an application of radiation

experiment on dogs. This experiment database contains information such as dog

type, weight, age, dosage, location, etc. Assume that there are 10 dog types. To

encode dog type using the binary encoding requires 4 bits and the bit patterns of

these 1 a values range from 0000 to 1 010.

2.2. K-of-N Encoding

This encoding scheme assigns bit patterns to attribute values by turning on a

distinct set of K bits from N bits. Hence it can encode up to ~) values. For example,

the 1 -of-l 0 encoding for dog type mentioned above would involve the following bit

patterns:

0000000001
0000000010
0000000100

1000000000

An 2-of-5 encoding for dog type has the following bit patterns:

00011
00101
00110

4

01001
01010
01100
10001
10010
10100
11000

Unlike binary encoding, this scheme requires examining only K bits for any value.

It also allows a time-space tradeoff in the sense that more storage space (larger N)

would mean less bits to examine (smaller K).

2.3. Unary Encoding

This scheme requires N bits to encode N values and it is useful for attributes

that are involved mostly in range or inequality queries. for example, the following is

the result of encoding dog type using the unary encoding scheme.

0000000001
0000000011
0000000111

1111111111

To retrieve aU dog types that are larger then type 3 requires to examine only bit b3

(if it is 1 or not). Similarly for all dog types that are below type 3 requires to exam-

ine only bit b2 (if it is 0 or not). Range queries in the form of (a,b) can be expressed

as two inequality queries in the form of < a and > b. for example, to find all dog

types between 3 and 8 requires examining only bits b2 (greater than 2) and b8 (less

than 9). Similarly queries such as -=a can be expressed as < a or > a. for example,

to find all dog types not equal to dog type 3 requires examining bits b2 (less than 3)

and b3 (greater than 3).

2.4. Superimposed Encoding

Superimposed encoding scheme ([Knuth73]) is important for SSDBs which con­

tain large volume of bibliographical data or property data ([Shoshani, Olken,

Wong84]). To use superimposed encoding for an attribute, a hashing function is first

5

defined which maps each desired keyword in the attribute into a bit pattern of N bits.

Given an attribute value (text with keywords), thl? collection of bit patterns of all the

keywords are superimposed (logically ANDed together) and the resulting bit pattern is

the encoded value. This scheme supports partial match queries. Given a list of key­

words to be searched, the keywords are hashed, superimposed onto a bit vector and

the resulting bit pattern is matched against the superimposed codes of the attribute.

Because of the possible "false drops", this scheme can only be used as a "filter" in

the t:ense that only some records not qualifying are eliminated but of the selected

ones, a search for the keywords is still required to reject those that were selected

because their codes coincide with the superimposed code of the query.

2.5. Composite Encoding

Each of the four encoding schemes mentioned above can be made "composite".

Given an encoding scheme E and a bit vector with length N, a composite encoding

scheme for E of 0 fields is the concatenation of D groups of bit vectors, each of

whic:, is encoded using E and with length N. For example, suppose there are 1 000

possible values for the attribute dosage in our experiment database. An 1-of-1 000

encoding would require 1000 bits for each value. A composite 1-of-1 0 encoding with

3 fields, which involves the concatenation of three '-of-1 0 fields together, can be

used. To find a particular dosage value, only 3 bits have to be examined, 1 from

each field. Composite k-of-n encoding with d fields can be viewed as a n-bit radix

m..:mter with d digits. It is not required for the fields of a composite encoding scheme

to have the same length. For the example above, we could have the first field .

encoded as 2-of-5 and the last two as 1-of-1 0 ..

Given an attribute encoded in a particular scheme, to find the correspondence

between a value of the attribute and its bit pattern is done by a code table lookup.

The ,najor advantage of the composite encoding scheme is the reduction of the code

table size. The reason is that the number of possible encoded values of a composite

6

encoding scheme is the product of the number of possible encoded values of its

fields, but the size of its code table is just the sum of the size of the code tables of

its fields. In fact, in the case that .all fields have the same encoding, then the same

code table can be used. Another advantage of composite encoding Is that for attri-

butes with large number of possible values, multiple levels of grouping can be made

so that selection can be performed based on the desired level. For example, in the

composite encoding of dosage above (three 1-of-1 0 fields). there are three levels of

grouping of values, one at the hundreds, one at the tens, and one at the ones level.

Selection performed at the hundreds, tens, or ones level involves respectively one,

two, or three bits. For large SSDBs, having multiple levels of grouping of values is

very important and composite encoding scheme is invaluable.

The following table summarizes the properties of the encoding schemes. The

formulas are expressed in terms of d (the number of fields, in the case of non-

composite encoding, d= 1), n (the width of each field), and k (the number of bits to

turn on in the CGse of k-of-n encoding).

values exact match > partial match

2n.d nd I nd
I No binary

I I d
(~)

I

k of n kd nd I No

I
binary (n + l)d d 2d-l I No I

I
I

I O(2nd) I superimposed no no
I

* I

I

• depends on code density. typically is 1/2nd.

7

3. Bit Transposition

In this section we will describe the file structure using some examples. The

steps in obtaining the BTFs involve the following: first, the encoding schemes are

decided for selected attributes; then the attributes are encoded for all records in

the database; for each bit position of the encoded record, a file consisting of all the

bits across the whole database is generated and stored; finally, the files are

compressed.

The database of radiation experiment on dogs is used again here to illustrate

these steps. The attributes of the database include the dog type, weight, age,

dosage, location, observation, etc. Assume the following encoding schemes

attribute # values scheme

dog type 10 2-of-5
weight 8 unary (8 bits)
age 20 binary (5 bits)
dosage 200 composite unary

(3 fields of 6 bits)
location 10 1-of-10
observation 1000 keywords superimposed on 10 bits

Using these encoding schemes. the database is transformed into bit patterns.
For each bit position, a bit vector is stored as a file. For the example above, the
number of bit vectors files is as follows:

attribute

dog type
weight
age
dosage
location
observation

#bit vectors

5
8
5
18
10
10

These bit vectors are then subject to compression. The compression method we

use is a variation of the header compression scheme proposed by [Eggers, Olken,

Shoshani81], which In turn is a variation of the run length encoding scheme with effi-

cient access to the compressed data. Because of space limitation, the reader is

referred to the above paper for the details of the compression method. The BTF

8

compression scheme has the additionai capability of suppressing the compression in

the case where the overhead exceeds the gain of compression. This happens when

there are a large number of short runs of 1's and O's. The suppression algorithm

involves look ahead and constant evaluation and balance of the cost of the overhead

vs t:,e storage gain from the compression.

4. Query Processing

4.1. Soolean Operators on Bit Vectors The primitive operators on bit vectors are

the boolean operators AND, OR, and NOT. These operators can be efficiently imple­

mented by breaking up the bit vectors into words and feed to the boolean operators

of tha CPU. More efficiency is gained when the compression rate of the bit vectors

is large. In the case of computing the AND operator between two bit vectors, for·

example, the runs of O's in one of the bit vectors can be "skipped", and the

corresponding part of the other bit vector can also be skipped. For bit vectors with

large compression rate (which is one of the dominant characteristics of SSDBs), this

skipping action can be used to produce very fast boolean operators over bit vectors.

4.2. Cuery Language

The current BTF query language is a simple boolean expression language which

allows range, exclusion, and set conditions. For example, to retrieve all female dog

records between age 3 to 5 and weigh more than 10 Ibs, the following query can be

used.

sex[1] & age[3:5] & weight[>1 0]

The query "retrieve all dogs except German Sheppards (which has value 105)and

dogs that have developed cancer in the brain", can be expressed as

dogtype[-105] & observation["cancer","brain"]

9

(Note that in the current implementation of the BTF there is actually a menu-driven

user interface which alleviates the user from having to memorize the internal codes

of the attributes.)

4.3. Decoding of queries

Given a query, a series of table lookup has to be performed to translate the

query into boolean expression of bit vectors. The first table is the attribute index

encoding table which records the encoding scheme for each attribute and contains

. pointer to the attribute's bit assignment table. The bit assignment table records the

bit pattern for each attribute value. In the case of composite encoding, there can be

up to d value decode tables where d is the number of fields of the composite encod­

ing scheme.

Given the bit assignments for each attribute in the query, the next step is to

generate boolean expression on bit vectors. The generation procedure examines

both the encoding scheme and the condition in the query for each attribute in order

to generate the shortest boolean expression. Below, we will illustrate this step by

some examples.

1. Simple exact match queries.

(a) find all German Shepherds

From table lookup. value 1 05 is found to have bit assignment

01100. The query

dogtype[1 01]

is translated to

dogtype (b3 & b2).

and can now be evaluated. (Remember that the bits are named

from right to left.)

(b) find all 5-year-old dogs.

10

-~-

Age 5 is encoded as 00101 in a binary encoding scheme, so the

following ~xpression is generated

age (.... b4 & "'b3 & b2 & "'b1 & bO)

(c) find all 5-year-old German Shepherds.

is translat€d to

dogt:ype(b3 & b2) & age (-b4 & b3 & b2 & b1 & bOlo

2. Queries with set conditions

find all dogs that have been radiated on locations 1, 4, or 7.

The query is expressed as

loc3 tion[1 ,4,7]

Since location is encoded as a 1-of-10, the query is translated

to

location (bO I b3 I b6).

3. Queries with range conditions

(a) find all dogs lighter than weight class 7.

Recall that attribute weight is encoded as unary, the above query

is translated simply to

weiuht (-b6).

(b) find ail dogs recf!iving more than 30 dosage units.

Attribute d'Jsage is encoded as a Composite unary with 3 fields

of 6 bits. Assume dosage 30 is encoJed as

000111,000011,011111. The query can be translated to

dosage «b14 & b7 & b4) I (b14 & b8) I b15)

11

4.4. Order of Evaluating Bit Vectoi·S

After the boolean expression on bit vectors is obtained, an order of execution is

determined which will minimize the running time. The optimal order of execution is to

evaluate the bit vectors in the descending order of thEir compression rates. This is

because the skipping action mentioned earlier is maximized. The rearrangement is

pe!formed by an algorithm that walks through the boolean expression to produce a

new (but equivalent) expression where the order of the bit vectors appearance

correspond to the descending order of their compression rates. The new expression

is then evaluated from left to right.

5. Index Encoding Optimization

In this section, we would like to consider automating the optimal index encoding

for one encoding scheme, the k-of-n. Future work will attempt to extend this

approach to incorporate the rest of the encoding schemes.

Given an attribute A with v possible values, the k-of-x encoding method stores

each value as a binary number with x digits. Exactly k digits are 1's and the other

x -k. are O's. Clearly we can represent at most ~) (the number of combinations of x

ob jects taken I< at a time) different values for the attribute using this method and

tl1erefcre we have the constraint that ~) must be at least v. To meet this constraint

we can choose to increase both x and I< ,increase only x while keeping I< small, or

increase only }t. • In any case I< will not exceed ~ since ~] is maximized at either

I< = 1 or I< = x ;
1

and we will show that increasing I< means more boolean operations

to answer a query. On the other hand ,a large x means that more storage will be

required to store the bit vectors. Hence we have a time space tradeoff problem. In

this section we address the following problem: Given a certain amount of space to

store the bit vectors, what is the optimal partitioning of this space among m attri­

butes such that the expected query processing time is minimized. A more formal

12

definit:on of '!:he model and a dynamic programming solution to this problem is now

given.

Given a database of N records on m attributes A 1,A 2 .• ,Am , we would like to

store the records as a set of bit vectors. The total number of bits reserved for

encoding all attributes is C , so that the total storage requirement is C'lfN . We

assl!me t!lat attribute Ai 'las Vi possible values and appears in a query with probabil-

ity ,';. OUf I:)roblem is to find for each attribute A; , a :<.; and a x; such that the values

for Ai will be encoded in a Ki-of-Xi encoding. We assume that when a value for attri-

buta A; is mentioned in a query, the amount of boolean operations required to find

the apjJmpriate records will be proportional to Ki because this is the number of

columns we have to AND / OR in this case. Therefore, minimizing the expected time

to answer a query amounts to minimizing

m
L: P;Ki·
1=1

The cons traints are

1./

2: xi ~ C.
1=1

We obse"Ve that the minimum value for any Xi is logivi) , by information theoretic

arguments and also the maximum value for 1<; that we will consider is logivi)

because otherwise we Can use the usual binary encoding with this cost for query

processing. The above optimization problem can be solved by dynamiC programming

techniques by using the following principal of optimality. Let us denote by

OPT:/1 ,2, .. ,j) the optimal expected query cost for the above problem where we only

consider .lttributes A 1,A 2 .. ,A j and allow these attributes to use a total of y bits. We

observe ':ha t

OPT w,..1.2 j + 1) = m;nimumy!OPT y<.1.2 ... ,j hOPT w-yU + 1)l.

!n v.lords .every partitioning of w bits for the first j + 1 attributes is achieved by

13

finding some y where y <w such that the first j attributes use y bits and the attri­

bute A j + 1 uses the remaining w -y bits. Among all such feasible partitionings ,we

have to find the value for y which minimizes the sum of these costs. This provides us

with an iterative approach where at each iteration we add one more attribute into

consideration until we finally find OPT c< 1 ,2, .. ,m) which is the optimal way of partition­

ing C bits among m attributes. A program which implements this idea was written in

PASCAL and it took a very short time to compute optimal allocations for all practical

size databases that we are currently using in our experiments. The details of the

test:ng of the algorithm appear in Appendix A.

6. Implementation

A prototype of the BTF structure has been implemented in a VAX/VMS environ- .

men~ using mainly C with some assembler coding. The physical level of the prototype

includes a compression package, an index encoder, a bit vector bulk loader, a set of

boolean operators on compressed bit vectors. At the logical level, we have an user

inte:rface module, and a query processer. The user interface component is part of

another experimental system called MICSUM, which uses the BTF structure and will

be presented in a separate paper.

The largest database we have running using the bit transposed file is a

110,000 records cancer incidents database available from the National Institute of

Health. Some performance experiments were performed comparing the retrieval time

of the BTF with Datatrieve, a DEC relational DBMS, against the cancer data. The

result is that BTF incur much smaller overhead (up to 10 times) and the retrieval time

is consistently 10 times or more faster than Datatrieve. More details of some of

experiments can be found in Appendix B. Besides the space and retrieval time, the

loading time of the data is also of interest. We selected four attributes of the

cancer database to have transposed bit vectors. Indices for the same attributes

were generated in Datatrieve for a fair comparison. The transposition of the records

14

'-I

into bit vectors took abo:.lt half an hour on our VAX, but it took Datatrieve 5 days to

create two indices and 9 days for 4 indices. In fact, only about 75% of the database

was loaded because of the excessive CPU time.

7. Related Work

As we mentioned in the Motivation Section, the basis of our approach is the

transposed file, which is popular among SSDB implementors ([Turner et aI79]). The

BlF can be thought of as an extreme version of the transposed file. In audition to the

advantages associatod with the transposed file for SSDBs, the bit transposed file

offers three potential benefits: indexing capability with minimum of overhead

because bit vectors are data and indices; better compression rate because of the

front compression opport:..anity (such as a telephone book) and the lack of word, or

even byte boundary; and the inherent parallelism (and hence efficiency) associated

with the boolean logic on bit vectors.

Two early versions cf the BTF appear in [Brill & Tolken 77] and [Kiyoki, Tanaka,

Aiso81]. The former c.,ly has the binary encoding scheme whereas the latter only the

1-of-n scheme. Neither c:onsider other encoding schemes for different query types,

compression of bit vectors, or optimization problems.

8. Current Work

We are concentrating our effort on three major areas: experimentation and

development; optimi-::ation problems; and speCial parallel hardware.

Our current development on BTF includes the aggregation operators as well as

other relational operators such as jOin. The aggregation operators will allow summary

databases to be generated from BTFs, which in turn can be subject to further mani­

pulation. We are also planning to experiment with more large SSDBs.

The first optirnization problem we are working on is the generalization of the

optimal index encoding a:gorithm presented earlier. We are interested in the optimal

15

index encod',ng assignment for attribute values considering any of the encoding

schemes or their combinations and the values of an attribute may be encoded using

more than one encoding scheme to optimize the access requirements. The second

optimization problem is the aggregation operation. The problem is to find an optimal

order to perfvrm the aggregation among the attributes so that the number of passes

over the bit vectors is minimized and the different compression rates associated with

the attributes are exploited.

From CU" experience of implementing the BTF, it is apparent that simple yet

powerful multiprocessor hardware can be built to support the file structure. We have

a preliminary design for a transposer and a vlsi design for a boolean logic machine.

The trans poser consists of a 32 by 32 register matrix. 32 words (32 bits each) are

read in at a time and the bits are slices into the matrix horizontally. The transposition

is done by re3ding the data vertically from the top 32 registers. The entire database

can be trans~osed using this matrix. The same trans poser can also be used to con­

vert from tile bit transposed form to record format. The boolean logic machine is

organized as a tree where eac~ node is a simple processor with only AND, OR, and

NOT cperations built in. Given a query, the "tr'ee machine" is dynamically reconfigured

to correspond to the parse tree of the query. The data, which is in the form of bit

vectors, is fed to the tree machine from the leafs. The result is propagated upward

in a pipeline manner towards the root, which produces the result. A prototype 8-

processor chip has been designed. The processors are connected in a full crossbar

which has the necessary logic to make it dynamically reconfigurable.

9. Summary and Conclusion

The motivation of our research began with the examination of why current

access methJds are not in use for large SSOB processing. We will review our obser­

vations and examine whether our proposal provides part of the solution.

16

J

The first characteristic of SSDBs is that attributes tend to have small cardinal­

ity. As a result, most current access methods would add Iimit9d selective power yet

incur large overhead. The BTF takes advantage of this property because small cardi­

nality of attributes implies that it is possible to have small number of bit vectors,

hence values can be efficiently retrieved. Also, there is minimal overhead associated

with bit vectors because bit vectors are data and indices.

The second characteristic of SSDBs is the clustering effect of attribute values.

The BTF takes advantage of this property by compressing the bit vectors. Unlike

traditional compressed data, however, there is no need to uncompresss in order to

use the data. Instead the compressed bit vectors are used to implement efficient

boolean operators.

The third characteristic is the static (or append only) property of SSDBs that

tend to underuse the dynamic mechanism of most access methods. This property

justifies the lack of update facilities of the BTF which only has the append operation.

The fourth characteristic of SSDBs is that queries tend to access many records

but only on a few attributes. This property is the basic motivation of the transposed

files. The BTF can be thought of as a transposed file with a built-in "generalized"

indexing mechanism which Incurs minimal overhead. Generalized indices because the

elaborate index encoding schemes provide a continuum of indexing levels based on

access requirements and storage considerations.

We envision the BTF to be used in coexistence with other access methods,

especially in situations where efficient index encoding is difficult to obtain. Exam­

pl9S include attributes with continuous domains and very large cardinality. Our

current implementation of the BTF, in fact, accommodates other file structures such

as sequential files, and transposed files.

In conclusion, we believe that the BTF offers an interesting approach to SSDBs

because of its simplicity, low overhead, inherent efficiency due to the parallel bit

11

operations in computers, the optimization opportunities, and amenability to parallel

hardware implementation.

Acknowledgements

We would like to thank Arie Shoshani for his valuable comments. Credits are to

Michael Ger for implementing the index .encoding algorithm and providing the test

data. We would also like to acknowledge the text editing help from Carole Agazzi.

Appendix A Index Encoding Optimization Algorithm Result

This appendix lists the test runs and the CPU time it took the optimization algo-

rithm to obtain the optimal results. The first table contains the input and output of

the test runs. For each test run, each attribute has two pairs of numbers. The left

number of the upper pair represents the number of possible values for the attributes

and the right number is the frequency of the attribute being accessed. The lower

pair of humbers (a, b) represents the result of the optimal bit assignment.

The second table lists the CPU time comparison of the exhaustive search

method and our dynamic programming method. In some instances, the latter'S running

time is less than 1 % of the brute force method. As can be seen, this method is effi-

~m I ~J' 1
A~t.r. I Al.tl'. A~t.r. Att.r. A~tl': Attl'. Al.u-. Att.r. A~tl'. AI.~r.

I 2 3 4 S 5 7 8 9 10

110
I 89000.30 ; 0!567.20 ! 780.30 I 1000.2 I 5.6000 ; 40.60

(19.9) I (14.61 ' (12.5) : 10.16) I (5.1) I (10.2)

1
800.21:1 1 55.400 I 70.3000 i 687.30 i 20.400 I 769.90 I ~ 1000 ! 3 !I. SOO i 50.300 I 4.200

2 so . (10.10) (8.3) : (13.2) i 10.10) I (6.3) i (12.5) I (1.1) ! (to.2) (8.3) . (2.2)

110
. :>670.:.10 I 4:.o.~0 . 900.70 i 890.2:Jl i 4:>6.30 090.20 ,

3 I (15.7) I (9.9) I (13.5) : (14.4) I (9.9) (10.10) ,

I i 9400.30 : 600.60 i 56.400
1

70
.
20 ' 700.1000 I 60.800 i 9.100 ' I

!SO
I I (8.3) I (13.4) I (1~.2) ! (4.4)

I 567.30 ,
4 (14.14) : (1~51 (7.7) . (10.10) I

Iso
I 6790.:J0 69000.200 I :J4567.90 I ~3,IOOO i 560.~0 ! 90.30

1 I ' , ! (7.7) 5 : (13.13) I (23.6) (19.7)! (8.7) : (10.10)

i i 500.21:1 . 600.30 i 700.10 ; 60.100 i 30.200 : 6.100 I 36.9 i ~5.10 i 46.100 3.1000

6 ,90 : (13.4) ! (13.4) ! (12.5) I (12.2) I (9.2) I (5.1) I (M) (5.~) I (tI.2) (3.1)

18

cient enough for most practical databases.

Exhaustive
*

Dynamic Progr~ming
Run Search Method Method

1 1335 172
2 39603 411
3 3318 176
4 19643 320
5 2138 195
6 250576 595 !

* measured in CPU milliseconds in a CDC CYBER-170/730

Appendix B Performance Comparison

The database is a real cancer incidents records. It contains information such as

the patient's sex, age, cancer site, type of cancer cells, year, etc.

The first table lists the size of the test database in Datatrieve and BTF. The

overhead column of BTF is the size (in number of 512-byte pages) of the bit vectors.

The overhead for Datatrieve is the size of the indices.

19

The list of queries contains twenty queries, ten in BTF syntax, and ten in Data-

trieve syntax.

The second table lists the running time of the listed queries (in terms of minutes,

seconds ~nd fractions of seconds).

#- records DB size (in Pae:es) Overhead (in pages'

BTF 110 000 6974+ I 1 332

• I DATATRIEVE 83729 8 100 10 134

DB Sizes

+ The size of the DB after four attributes are index encoded.

• Only about 75% of the original DB is loaded because of excessive CPU time.

QUERY BTF DATATRlEVE

1 00:04.03 00:43.06
2 00:24.92 05:22.03
3 00: 10.84 04:43.45
4 00:06.96 I 02:11.59 I
5 00:26.98 i 06:50.20
6 00:02.18

I

00:56.60

I 7 00:07.24 00: 19.47
8

I
00: 11. 77

i
03: 18.08

9 00:02.68 03: 12.91 I
10 I 00:02.35 I 02:22.01 I

20

List of Queries

1. B: year(75]
D: find rO 1 key4 with year = 75

2. B: year[73:78]
D: find rO 1 key4 with year bt 73 and 78

3. B: vear[73:77] & racerea[2]
D: find rO 1 key4 with year bt 73 and 77 and racere = 2

4. B: year[75.77] & sexre[1]
D: find rO 1 key4 with (year = 75,77) and (sexre = 1)

5. B: sexre[1] & racerea[1]
D: find rO 1 key4 with sexre = 1 and racere = 1

6. B: year[74] & agere[10:12]
D: find r01 key4 with year = 74 and agere bt 10 and 12

7. B: site[570:579] & sexre[1]
D: find r01 key4 with site bt 570 and 579 and sexre = 1

8. B: year[76:78] & sexre[2]
D: find r01 key4 with (year bt 76 and 78) and sexre = 2

9. B: year(73,75,77] & site(859]
D: find r01 key4 with year = 73. 75, 77 and site = 859

10.B: year[76,78] & histolog[9730,9731]
D: find rO 1 key4 with (year = 76,78) and (site = 9730, 9731)

References

[Shoshani,Olken,Wong 84]
Shoshani, A., Olken, F., Wong, H.K.T., "Characteristics of Scientific Data­
bases", Proc. 1984 VLDB, Singapore, 1984.

(Wun~84]
Wong, H.K.T., "Micro/Macro Statistical/Scientific Database Management",
The First IEEE International Conference on Data Engineering, Los Ange:es,
March, 1984.

[Eggers, Olken, Shoshani 81]
Eggers, S., Olken, F., Shoshani, A., "A Compression Technique for Large Sta­
tistical Databases", in Proc. 1981 VLDB, Cannes, France, Sept, 1981.

[Turner et a179]
Turner, M., Hammond, R., Cotton, F., "A DBMS for Large Statistical Data­
bases," Proc. 1979 VLDB, Rio de Janeiro, 1979.

21

[Brill & Tolken 77]
Brill, R.C, Tolken, S.E., "Subset Selection by Boolean Calculation", Unpub­
lished memo, 1977.

[Knuth 73]
Knuth, D.E., The Art of Computer Programming, Volume 3, Addison Wesley,
1983.

[Batory79]
Batory, D.S., "On Searching Transposed Files," ACM TODS, Vol. 4, no. 4,
Dec., 1979, 531-544.

[Wiederhold 83]
Wiederhold, G., Database Design, McGraw-Hili, 2nd Edition, 1983.

[Kiyoki, Tanaka, Aiso 81] Kiyoki, Y., Tanaka, K., and Aiso, H., "Design and Evaluation of
a Relational Data Base Machine Employing Advanced Data Structures and
Algorithms", in The 8th Annual Symposium on Computer Architecture, MAy
1 2-14, 1 981, Minneapolis, Minn.

22

....... a.-. -i!..

LA WRENCE BERKELEY LABORA TORY
TECHNICAL INFORMATION DEPARTMENT

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

YiI> _. __ _

