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ABSTRACT OF THE DISSERTATION

Classification of a Family of Free Bogoliubov Actions of R on L(F∞) up to

Cocycle Conjugacy

by

Joshua Keneda

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2019

Professor Dimitri Shlyakhtenko, Chair

Much of the research into operator algebras concerns the classification problem for von

Neumann algebras, where one hopes to find useful invariants to categorize von Neumann

algebras up to isomorphism. Murray and von Neumann initiated the study of these objects

and reduced the classification problem to that of classifying the so-called factors. And while

Type I factors are fully understood, the Type II and Type III cases are still active areas of

research. Relatedly, one can attempt to classify group actions on von Neumann algebras up

to a suitable notion of equivalence, for example unitary or cocycle conjugacy.

The aim of this dissertation is to classify a family of free Bogoliubov actions of R on the

Type II1 free group factor L(F∞) up to cocycle conjugacy. We consider a certain collection

C of measure classes on R, corresponding to the spectral measure classes of the infinitesimal

generators for orthogonal representations α : R → O(H), with H separable and infinite-

dimensional. Such representations give rise to a free Bogoliubov action σα of R on L(F∞)

and an associated von Neumann algebra: the crossed product L(F∞) oσα R. Note that

the cocycle conjugacy of two actions gives an isomorphism between their crossed product

von Neumann algebras. We show that our family of free Bogoliubov actions are completely

classified up to cocycle conjugacy by their associated spectral measure class [α] ∈ C.

Our main technical tool for this result mirrors a recent result of Houdayer, Shlyakhtenko,

and Vaes and relates the equality of the spectral measure classes [α], [β] to the embeddability
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(in the sense of Popa’s intertwining-by-bimodules) of the group algebra Lα(R) into Lβ(R)

inside of their shared crossed product M ' L(F∞) oσα R ' L(F∞) oσβ R.

By restricting to representations α of R which act trivially on a large subspace of H,

we force Lα(R) to have large (non-amenable) relative commutant in L(F∞) oσα R. This

allows us to use solidity arguments and a rigidity result of Houdayer and Ueda to “trap”

Lα(R) inside of Lβ(R) within the crossed product (i.e. Lα(R) �M Lβ(R)). Applying the

technical tool of the previous paragraph, we obtain that [α] = [β], which establishes the

desired cocycle conjugacy invariant.
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CHAPTER 1

von Neumann Algebra Preliminaries and Constructions

1.1 Topologies on B(H), von Neumann algebras, and the Bicom-

mutant Theorem

Let H be a complex Hilbert space. We will usually be interested in the case where H is

separable and infinite dimensional, in which case H has a countable orthonormal basis. For

T : H → H a linear operator, we define the operator norm of T to be:

‖T‖∞ = sup
{ξ∈H:‖ξ‖=1}

‖Tξ‖.

We say that a linear operator T : H → H is bounded if the supremum in the above definition

is finite and denote by B(H) the set of bounded linear operators on H. One can check that

B(H) is precisely the set of continuous linear operators T : H → H when H is equipped

with the norm induced by its inner product. Note that B(H) forms an algebra over C

whose multiplication operation is given by composition of operators: TS := T ◦ S. We note

that the operator norm satisfies ‖TS‖ ≤ ‖T‖‖S‖ for all T, S ∈ B(H). (Remark: We will

suppress the ∞ from the notation for the operator norm if there’s no chance of confusion.)

The algebra B(H) comes equipped with a natural conjugate-linear involution ∗ given by the

adjoint. Recall that the adjoint T ∗ of an operator T ∈ B(H) is the unique bounded linear

operator satisfying for all ξ, η ∈ H:

〈ξ, Tη〉 = 〈T ∗ξ, η〉.

We remark that the adjoint is an anti-homomorphism of rings (i.e. (TS)∗ = S∗T ∗) and that

the operator norm satisfies ‖T‖2 = ‖T ∗‖2 = ‖T ∗T‖ for all T ∈ B(H).
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There are several natural topologies we can consider on B(H) which are weaker than

the operator norm topology. For all of the following topologies and for Λ a directed set, we

have that a net {Tλ ∈ B(H) : λ ∈ Λ} converges to an operator T if and only if the net

{Tλ − T : λ ∈ Λ} converges to zero. So it suffices to describe which nets of operators go to

zero.

Definition 1.1.1 (Strong Operator Topology) We have Tλ → 0 in the strong operator

topology if and only if for all ξ ∈ H,

‖Tλξ‖ → 0.

In other words, the strong operator topology corresponds to pointwise convergence in norm.

If a set is closed in the strong operator topology, we will sometimes call it strongly closed.

Definition 1.1.2 (Weak Operator Topology) We have Tλ → 0 in the weak operator topol-

ogy if and only if for all ξ, η ∈ H,

〈Tλξ, η〉 → 0.

A closed set in this topology will sometimes be called weakly closed when there is no chance

of confusion.

Definition 1.1.3 (Ultraweak Topology) We have Tλ → 0 in the ultraweak (or σ-weak)

topology if and only if for all (ξn)n∈N, (ηn)n∈N ∈ l2(N)⊗H,∑
n∈N

〈Tλξn, ηn〉 → 0.

We note that the ultraweak topology is also the weak-* topology induced by the Banach

space predual of B(H), which is usually represented as the set of trace-class operators on

B(H). See [Hou11] for a more operator topologies on B(H).

From the above definitions, it’s clear that the operator norm topology is stronger than

both the strong operator and ultraweak topologies, which are both stronger than the weak

operator topology. We will use the above topologies to distinguish two important types of

subalgebras of B(H).
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Definition 1.1.4 (C∗-algebra) A ∗-subalgebra A of B(H) is called a (concrete) C∗-algebra

if it is closed under the operator norm topology.

Definition 1.1.5 (von Neumann Algebra) A ∗-subalgebra M of B(H) is called a (concrete)

von Neumann algebra if it is closed under the weak operator topology.

Clearly, every von Neumann algebra is also a C∗-algebra. We remark that all von Neum-

bann algebras are in fact unital (in the sense of a unital ring). The unit 1M of a von Neumann

algebra M will usually be denoted by 1. In B(H), for example, we write C1 (or just C)

to refer to the scalar multiples of the identity operator, otherwise denoted idH or id, on H.

Mirroring the terminology used for operators in B(H), we will say the following for elements

a, p, v, u of a von Neumann algebra (or C∗-algebra) M :

Definition 1.1.6 (C∗-algebra/von Neumann Algebra Terminology)

1.) a is called self-adjoint if a∗ = a.

2.) a is called positive (written a ≥ 0) if a = b∗b for some b ∈M .

3.) p is called a projection if p = p∗ = p2.

4.) v is called a partial isometry if both vv∗ and v∗v are projections.

5.) v is called an isometry if v∗v = 1.

6.) u is called a unitary if u∗u = uu∗ = 1.

(Note: we may call v∗v the initial/source projection of v and vv∗ the final/range projection

of v. These correspond to the orthogonal projections in B(H) onto the orthocomplement of

the kernel of v and onto the image of v, respectively.)

These algebras were first studied by von Neumann and Murray in their series of papers

“On Rings of Operators.” von Neumann noticed that the above topological/analytic charac-

terization of von Neumann algebras could be replaced with an equivalent algebraic condition.

To state his theorem, we define the commutant of a collection of operators S ⊂ B(H) as

follows:

S ′ := {T ∈ B(H) : TS = ST ∀S ∈ S}.
3



Similarly, we can define the bicommutant S ′′ := (S ′)′. We note that clearly S ⊂ S ′′.

Furthermore, as long as S is closed under taking adjoints, the following theorem guarantees

that S ′′ is the von Neumann algebra generated by S, i.e. the weak operator closure of the

∗-algebra generated by S.

Theorem 1.1.7 (von Neumann’s Bicommutant Theorem) For a ∗-subalgebra M of B(H),

the following are equivalent:

1.) M = M ′′.

2.) M is strongly closed.

3.) M is ultraweakly closed.

4.) M is weakly closed.

We remark that an (abstract) von Neumann algebra could be defined as a ∗-algebra M

which admits a faithful representation on some Hilbert space H and satisfies any of the

above equivalent conditions. Although the weak and strong operator topologies on M may

depend on the choice of representation, Sakai showed that the ultraweak topology is in fact

independent of this choice (he showed that any von Neumann algebra, viewed as a Banach

space, has a unique Banach space predual up to isomorphism), and combining his result

with the above theorem guarantees that restricting our attention to concrete von Neumann

algebras won’t cause any loss of generality in practice. To conclude this section, we give a

few examples of von Neumann algebras.

Example 1.1.8 (Abelian von Neumann Algebras) Let (X,µ) be a probability measure

space. We can consider L∞(X,µ) ⊂ B(L2(X,µ)) by letting L∞(X,µ) act by pointwise

multiplication. I.e. if f ∈ L∞(X,µ) and g ∈ L2(X,µ), we let

f(g) = f(x)g(x).

Under this embedding, we have ‖f‖∞ = ‖f‖, i.e. the L∞ norm corresponds to the operator

norm on B(L2(X)).

One can check that L∞(X)′ = L∞(X), (in other words, L∞(X) is maximal abelian in

B(L2(X))), so, in particular, L∞(X)′′ = L∞(X), and L∞(X) is a von Neumann algebra.
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If µ is localizable (e.g. if it is σ-finite), then L1(X,µ) is the predual fo L∞(X), and the

corresponding weak-∗ topology on L∞(X) is the (unique, by Sakai) ultraweak topology on

L∞(X). It can be shown that every abelian von Neumann algebra is isomorphic to L∞(X,µ)

for some (X,µ).

Example 1.1.9 (Matrices) Of course, B(H) itself is a von Neumann algebra. In particular,

when H is finite dimensional with dimension n, we see that Mn(C) is a von Neumann algebra.

We remark that the only operators which commute with all of B(H) are constant multiples

of the identity operator, so that B(H) ∩ B(H)′ = C1. Thus, B(H) (and therefore Mn(C))

is a factor in the terminology of the next section.

Example 1.1.10 (Opposite Algebra) Let M ⊂ B(H) be a von Neumann algebra (or a C∗-

algebra). Define M op to be the algebra with the same underlying set and addition as M but

with multiplication reversed, i.e. xop = x, and xopyop = (yx)op = yx for all x, y ∈ M . Then

M op is in fact a von Neumann algebra. To see this, it’s easiest to first define M . Given

x ∈M , we define x on the conjugate Hilbert space H via xξ = xξ and set M = {x : x ∈M}.

Clearly M is a von Neumann algebra, and the map xop 7→ x∗ provides an isomorphism

between M op and M .

Example 1.1.11 (Direct Sum) If M ⊂ B(H) and N ⊂ B(K) are von Neumann algebras,

then M ⊕N ⊂ B(H ⊕K) is again a von Neumann algebra.

1.2 Type Classification of Factors

Now that we’ve defined von Neumann algebras, we can begin the project of classifying them

up to isomorphism. Define a factor to be a von Neumann algebra M with trivial center, i.e.

Z(M) = M ∩M ′ = C1. In their original series of papers, Murray and von Neumann showed

that every von Neumann algebra on a (separable) Hilbert space admits a decomposition

into a direct integral of factors. We won’t use or describe the direct integral decomposition

here, but we note that, in some sense, they reduced the classification question to that of the

classification of these so-called factors. These factors have been further classified into three

5



‘types,’ which we describe below.

First, we need some terminology. It can be shown that every von Neumann algebra

is generated by its projections, so we will categorize the factors based on the behavior of

their projections. For this, we first need to describe Murray and von Neumann’s comparison

theory for projections in M . Suppose that p, q ∈ M are projections. We say that p is a

sub-projection of q (written p ≤ q) if pq = qp = p. In terms of an underlying Hilbert

space, this corresponds to the situation where p is the projection onto a subspace V ⊂ H,

q is the projection onto a subspace W ⊂ H, and we have V ⊂ W . In this way, we get a

partial ordering on the set of projections in our von Neumann algebra. Unfortunately for our

purposes, this partial ordering is too restrictive, so Murray and von Neumann introduced

another way of comparing projections as follows.

We say that p and q are (Murray-von Neumann) equivalent (written p ∼ q) if there exists

a partial isometry v ∈ M such that p = v∗v and q = vv∗. We also write p . q if there’s a

partial isometry v ∈ M such that p = v∗v and vv∗ ≤ q. We note that . induces a partial

ordering on the ∼-equivalence classes of projections of M , and this is the ordering that will

prove useful for type classification of factors, being more flexible than the partial ordering

that comes from subspace containment (above).

Definition 1.2.1 We say that a projection p is:

1.) ...minimal if for all projections q ∈M ,

q . p =⇒ q = p.

2.) ...finite if p is not equivalent to any strict sub-projection, i.e.

p ∼ q, p ≥ q =⇒ p = q.

3.) ...infinite if p is equivalent to some strict sub-projection.

4.) ...purely infinite if p has no finite sub-projections.

5.) ...semifinite if p is infinite and the supremum of an increasing family of finite sub-

projections.

6



Note that a minimal projection is necessarily finite.

We will call a von Neumann algebra M diffuse if it has no minimal projections. We will

also call M finite or (purely) infinite if its unit is finite or (purely) infinite, respectively.

Our first step in trying to classify these factors will be to divide them into three ‘types,’

depending on the behavior of their projections.

Definition 1.2.2 (Type I) A factor M is of Type I if M has a minimal projection.

Type I factors are completely understood. It can be shown that such a factor is neces-

sarily isomorphic to B(H) for some Hilbert space H, so these factors are determined up to

isomorphism by the cardinality of any orthonormal basis for H. If H is finite-dimensional

with dimension n, then the corresponding Type I factor is isomorphic to Mn(C), the ∗-

algebra of n×n matrices over C. This factor is sometimes called the Type In factor. This is

in contrast to their infinite-dimensional counterparts, sometimes denoted Type I∞ factors.

We note that these finite-dimensional Type I factors possess a unique faithful normal tracial

state (terminology defined in the next section) given by the usual (normalized) trace on

matrices. This distinguishes these factors from the infinite-dimensional Type I factors, but

it also hints at a tool we can use to further classify Type II factors, i.e. whether they support

such a trace.

We remark that if H is infinite-dimensional, then B(H) is necessarily an infinite factor.

For example, if H has orthonormal basis {ξ1, ξ2, ..., ξn, ... : n ∈ N}, then the shift operator

defined by

L(ξn) = ξn+1

is an isometry that witnesses the equivalence of the projections onto H and the closed

span of {ξ2, ..., ξn, ... : n ∈ N \ {1}}. So 1 is equivalent to a strict sub-projection in this

case. Conversely, if H is finite-dimensional, then any isometry is necessarily a unitary, and

B(H) ' Mn(C) is therefore a finite factor. So the finiteness of B(H) corresponds precisely

to the finiteness of the dimension of H.

We now sort the remaining (non-Type I) factors into two classes based on whether they

have any finite projections.

7



Definition 1.2.3 (Type II) A factor M is of Type II if it has no minimal projection but

does have finite projections.

Definition 1.2.4 (Type III) A factor M is of Type III if it has no finite projections (i.e. M

is purely infinite).

Clearly, all factors belong to exactly one of these types. Much of the research into von

Neumann algebras has been focused on obtaining a better understanding of Type II and

Type III factors. We introduce some tools for distinguishing these factors in the following

section.

1.3 States and the Gelfand-Naimark-Segal Construction

Throughout this section, let M be a von Neumann algebra, and let φ : M → C be a linear

functional.

Definition 1.3.1 We say that φ is:

1.) ...unital if φ(1) = 1.

2.) ...positive if φ(x∗x) ≥ 0 for all x ∈M .

3.) ...a state if φ is positive and φ(1) = 1.

4.) ...faithful if φ(x∗x) > 0 for all 0 6= x ∈M .

5.) ...tracial if φ(xy) = φ(yx) for all x, y ∈M .

6.) ...normal if φ is continuous for the ultraweak (i.e. weak-∗) topology on M .

We note that positive linear functionals are necessarily bounded, with ‖φ‖ = φ(1).

Given M ⊂ B(H), there is a natural way to produce normal states on M by considering

the so-called “vector states,” given by taking a unit vector ξ ∈ H and defining

φξ(x) = 〈ξ, xξ〉.

(Remark: here, we assume that the inner product on H is complex linear in the second

variable.)

8



The Gelfand-Naimark-Segal (GNS) construction will give us a converse to the above,

allowing us to produce Hilbert spaces on which our algebra acts, given a normal state on M .

Suppose φ is a normal state on M . The GNS construction is as follows:

First, we equip M with the following semi-definite sesquilinear form:

〈x, y〉φ := φ(x∗y).

Quotienting by the ideal of zero-length vectors I = {x ∈ M : φ(x∗x) = 0} and then

completing with respect to the pre-inner product 〈·, ·〉φ on M/I yields a Hilbert space Hφ.

The left multiplication action of M on itself descends to a represenation πφ of M on Hφ

satisfying

πφ(x)ŷ = x̂y

for all x, y ∈ M , where we define ŷ := y + I ∈ M/I ⊂ Hφ. Note that in the event that φ is

faithful, we may identify M with its isomorphic image πφ(M) ⊂ B(Hφ), so we may suppress

πφ from our notation and write x instead of πφ(x) when there is no chance of confusion.

In this way, we obtain a representation of M on Hφ where the original state φ can be

realized, through this construction, as a vector state corresponding to the vector 1̂ ∈ Hφ.

That is,

φ(x) = 〈1̂, x1̂〉φ.

So the GNS construction gives us a correspondence between normal states and cyclic

vectors for cyclic representations of M .

Example 1.3.2 Consider M = L∞(X,µ) where µ is a probability measure. Integration

against the probability measure µ gives us a faithful, normal trace state τµ on M . The

GNS construction with respect to this state recovers the natural representation of L∞(X)

on L2(X) defined in 1.1.8, with cyclic vector 1X .

Example 1.3.3 (Enveloping von Neumann Algebra) Let A be a C∗-algebra, and let S(A) ⊂

A∗ denote the state space of A (a subset of the Banach space dual of A). The representation

π =
⊕

φ∈S(A) πφ of A is called the universal representation of A. By the above, it contains

9



every cyclic representation of A as a subrepresentation. Since arbitrary representations are

direct sums of cyclic representations, every representation is a multiple of subrepresentations

of π. We define the enveloping von Neumann algebra of A to be π(A)′′, i.e. the von Neumann

algebra generated by A in the universal representation. The Sherman-Takeda theorem gives

a canonical identification between π(A)′′ and A∗∗, the Banach space double dual of A, so we

may simply denote the enveloping algebra by A∗∗.

Remark 1.3.4 More generally, the above notions of positivity and normality can be ex-

tended to maps ϕ : M → N between von Neumann algebras M and N . For a certain

class of such maps, there is a construction analogous to the GNS construction called the

Stinespring dilation. These maps are called completely positive. We’ll defer the discussion of

complete positivity and the Stinespring dilation to 3.1, but we can give the general definition

of positivity and normality of ϕ below.

Definition 1.3.5 (Normality) We will call a map ϕ : M → N between von Neumann

algebras M and N normal if it is continuous with respect to the ultraweak topologies on M

and N .

Definition 1.3.6 (Positivity) A map ϕ : M → N is called positive if ϕ(x∗x) is positive for

all x ∈M . In other words, ϕ takes positive elements of M to positive elements of N .

Definition 1.3.7 (Homomorphism) Let M,N be von Neumann algebras. A homomorphism

ϕ : M → N is a normal, C-linear ring ∗-homomorphism. That is, ϕ is a normal map

satisfying

ϕ(λx+ y) = λϕ(x) + ϕ(y)

ϕ(x∗y) = ϕ(x)∗ϕ(y)

for all λ ∈ C, x, y ∈M .

The above definition also applies to maps between C∗-algebras with the normality condi-

tion dropped. We remark that a homomorphism is automatically positive, since ϕ(x∗x) =
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ϕ(x)∗ϕ(x) ≥ 0. Additionally, one can check that a normal state φ on M gives rise to a

normal representation πφ : M → B(Hφ).

There are other natural choices of morphisms between von Neumann algebras, notably

the normal, completely positive maps. We’ll consider this choice of morphism in a later

section, once we’ve seen the definitions of complete positivity and injectivity. For now, we

move on to the discussion of factors of Type II.

1.4 Type II Factors

Type II factors possess non-trivial finite projections. We’ll separate these factors into two

further sub-classes depending on whether or not they are finite, i.e. whether their unit is a

finite projection. We discuss the case where 1 ∈ M is finite in this section. We’ll postpone

the discussion of the case where 1 is infinite until we’ve covered semifiniteness (see 1.6).

1.4.1 Type II1

Let M be a factor not of Type I. If 1 ∈M is a finite projection, we will call M a II1 factor.

Murray and von Neumann showed that a II1 factor has a unique tracial state, which we will

usually denote by τ . (In fact, this unique tracial state characterizes Type II1 factors among

factors of Type II and III and is automatically faithful. Of course, finite Type I factors also

have unique faithful tracial states.)

For these algebras, the GNS construction from the previous section applied to this canoni-

cal tracial state τ yields a Hilbert space L2(M, τ), which we may sometimes denote by L2(M).

We again write x̂ for the image of x ∈M after separation and completion in L2(M). There

is a canonical anti-unitary operator J : L2(M) → L2(M) satisfying J(x̂) = x̂∗ and the

following relations:

J2 = 1

JMJ = M ′

where, again, we use the faithfulness of τ to identify M with the corresponding left multi-
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plication operators in B(L2(M)). Given a tracial von Neumann algebra (M, τ) with faithful

trace τ , we call this inclusion M ⊂ B(L2(M)) the standard representation of M . The rela-

tion JMJ = M ′ implies that M ′ is precisely the algebra of right multiplication operators on

B(L2(M)) defined by ρ(x)ŷ = ŷx for all x ∈M , ŷ ∈ L2(M). This is an easy consequence of

the fact that

JxJŷ = Jxŷ∗ = Jx̂y∗ = ŷx∗ = ρ(x∗)ŷ.

Because ρ is an anti-isomorphism of M (i.e. it reverses the order of multiplication), we get

that M ′ is naturally isomorphic to Mop in this case. In what follows, we will often simply

write ŷx instead of ρ(x)ŷ. The left (respectively, right) multiplication operation of M on

L2(M) makes L2(M) a left (resp. right) M -module, which we will define more carefully

later. Note that ξ = 1̂ ∈ L2(M) is cyclic and separating for M (and therefore also for M ′).

Recall that for a convex cone B ⊂ H in a Hilbert space H, we define the dual cone

B◦ := {η ∈ H : 〈ξ, η〉 ≥ 0 for all ξ ∈ B}. A cone is called self-dual if B = B◦.

Remark 1.4.1 (Standard Form) Let M ⊂ B(H) be a von Neumann algebra. We say that

M is in standard form on H if there is an anti-unitary involution (i.e. an anti-linear isometry

J : H → H satisfying J2 = 1, typically called the modular conjugation) and a self-dual cone

P in H satisfying the following relations:

1.) JMJ = M ′

2.) JxJ = x∗ for all x ∈ Z(M)

3.) Jξ = ξ for all ξ ∈ P

4.) xJxJP ⊂ P for all x ∈M.

The following uniqueness theorem justifies the terminology “standard form”:

Theorem 1.4.2 (Thm IX.1.14, [Tak13]) Suppose that {M1, H1, J1, P1} and {M2, H2, J2, P2}

are both standard forms and π : M1 → M2 is an isomophism. Then there exists a unique

unitary operator u : H1 → H2 such that

1.) π(x) = uxu∗ for all x ∈M1
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2.) J2 = uJ1u
∗

3.) P2 = uP1.

One can define a canonical positive cone in L2(M), and the above theorem guarantees

that any standard form of M is unitarily equivalent to the standard representation. We

remark that the above theorem was proven by Haagerup in the stated generality [Haa76],

but a similar uniqueness statement was already known in the case that M admits a cyclic

and separating vector. In particular, if M admits a cyclic and separating vector in H, then

the representation of M on H is unitarily equivalent to the standard representation.

1.5 Constructions

The purpose of this section is to describe the construction of von Neumann algebras aris-

ing from tensor products, groups, and group actions. We start with the tensor product

construction.

1.5.1 Tensor Products of von Neumann Algebras

We begin by describing finite tensor products, since the construction is elementary. Let M

and N be von Neumann algebras on Hilbert spaces H and K respectively. The algebraic

tensor product M ⊗N acts on H ⊗K by

(x⊗ y)(ξ ⊗ η) = xξ ⊗ yη

for all x ∈ M, y ∈ N, ξ ∈ H, η ∈ K. We define the von Neumann tensor product of M and

N , denoted M⊗N , to be (M ⊗N)′′ ⊂ B(H ⊗K).

We remark that we can identify M with M⊗1N and N with 1M⊗N in M⊗N . We also

note that M⊗N does not depend on the underlying Hilbert spaces H and K in the sense that

if M and N were also faithfully represented on Hilbert spaces H ′ and K ′ respectively, then

the von Neumann algebra M⊗N on H ′ ⊗K ′ will be isomorphic to the algebra constructed

above. So we may safely omit the Hilbert spaces H and K from our notation.
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If M and N were equipped with distinguished states φ and ψ respectively, then there is

a tensor product state, denoted φ⊗ ψ on M⊗N satisfying

(φ⊗ ψ)(x⊗ y) = φ(x)ψ(y)

for all x ∈M, y ∈ N . The tensor product state is tracial if both φ and ψ are tracial.

Though special cases were already known, Tomita gave the first proof in 1967 of the

following commutation relation for von Neumann tensor products:

Theorem 1.5.1 (Tensor Product Commutants) Let M and N be as above, with M⊗N ⊂

B(H ⊗K). Then

(M⊗N)′ = M ′⊗N ′.

Example 1.5.2 Given probability measure spaces (X,µ) and (Y, ν), we can consider the

pointwise multiplication operators L∞(X,µ) ⊂ B(L2(X,µ)) and L∞(Y, ν) ⊂ B(L2(Y, ν)).

The tensor product L∞(X)⊗L∞(Y ) ⊂ B(L2(X)⊗L2(Y )) is naturally (spatially) isomorphic

to L∞(X×Y, µ×ν) ⊂ B(L2(X×Y )). In this case, the tensor product of the states given by

integration against µ and ν corresponds to integration against the product measure µ× ν.

Example 1.5.3 (Tensoring with Matrices) Let M be a von Neumann algebra and let n ∈ N.

The tensor product M⊗Mn(C) of M with n×n matrices over C is isomorphic to M⊗Mn(C)

(i.e. the algebraic tensor product), which in turn can be realized as Mn(M), the ring of n×n

matrices with entries in M with the natural matrix multiplication and adjoint operations. If

τ is a (tracial) state on M , then the tensor product state of τ with the normalized trace tr

on matrices corresponds to the (tracial) state given by 1
n

∑
τ(mii) on Mn(M). The algebra

Mn(M) is sometimes called an amplification of M and may sometimes be denoted Mn.

We now briefly describe the typical construction for infinite tensor products. Given a

family (Mi, Hi)i∈N of von Neumann algebras Mi on Hilbert spaces Hi, we could repeat the

construction above to yield a von Neumann algebra on the Hilbert space tensor product

⊗NHi. But the latter Hilbert space is rarely separable, so it is more natural to work with a

construction that gives a smaller Hilbert space. For this purpose, we restrict our attention

to families (Mi, φi)i∈N with φi a faithful state on Mi.
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Let Nj = ⊗ji=1Mi (using the tensor product defined above), which comes equipped with

the tensor product state ⊗j1φi. Note that Nj ⊂ Nk in a natural way if j ≤ k. If we let

N = ∪∞j=1Nj, then N has a state φ satisfying φ(x) = ⊗j1φi(x) if x ∈ Nj. We apply the GNS

construction to φ and define the infinite tensor product via ⊗NMi := N ′′ ⊂ B(Hφ). The

state φ is faithful for ⊗NMi and is tracial if φi is tracial for all i.

Remark 1.5.4 For simplicity and to avoid discussion of cardinality, we will often restrict our

attention (as we did above) to von Neumann algebras which admit faithful representations

on separable Hilbert spaces. We will call such a von Neumann algebra M separably acting

or simply separable. We remark that this is equivalent to the separability of the predual of

M as a Banach space.

1.5.2 Group von Neumann Algebras and Crossed Product Constructions

1.5.2.1 Group von Neumann Algebras - Discrete Case

Consider a discrete group G. We first describe the group von Neumann algebra associated

to G, which we will denote L(G) (sometimes also denoted Γ(G) in the literature). Let l2(G)

denote the Hilbert space with orthonormal basis given by {g : g ∈ G}. Note that G acts on

l2(G) by left translation. That is, there is a unique homomorphism λ : G → U(B(l2(G)))

obtained by linearly extending the following relation for all g, h ∈ G:

λg(h) = gh.

Each λg is clearly a unitary, since it acts by permuting the orthonormal basis of l2(G).

Similarly, there is a right action ρ : G→ U(B(l2(G))) satisfying

ρg(h) = hg−1.

We can now consider the group algebra C[G] := span{λg : g ∈ G} ⊂ B(l2(G)), noting

that λgλh = λgh for all g, h ∈ G. The adjoint endows C[G] with a ∗-algebra structure

with λ∗g = λg−1 . In particular, C[G] is closed under taking adjoints, and we may define

L(G) := C[G]′′. Equivalently, L(G) is the weak operator closure of, or the von Neumann

algebra generated by, C[G] ⊂ B(l2(G)).
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We remark that L(G) comes equipped with a faithful, normal trace state given by ex-

pectation onto Cλe = C1, where e denotes the identity element of G (so that λe = id). In

other words, the trace is given on linear combinations of λg with αg ∈ C by:

τ(
∑

αgλg) = αe.

The GNS representation corresponding to this trace is precisely λ : G → U(B(l2(G))). So,

in order to obtain the group von Neumann algebra, we could have equivalently started with

the initial data (C[G], τ) and obtained L(G) through the GNS representation.

It can be shown that the commutant of the left G-action is the weak operator closure of

the right G-action, i.e. λ(G)′ = L(G)′ = ρ(G)′′, and vice versa.

One can check that L(G) is a factor iff G has all conjugacy classes infinite. In this case, G

is called an ICC (infinite conjugacy class) group. If G had a finite conjugacy class {g1, ..., gn},

then the element of L(G) given by
∑
λgi would necessarily be central, since for any g ∈ G

we have

λg(
∑

λgi) =
∑

λggi =
∑

λgig = (
∑

λgi)λg,

which follows from the fact that conjugation by g merely permutes our conjugacy class, so

{ggi : i ∈ [n]} = {gig : i ∈ [n]}. Note that if G is ICC, then L(G) is a II1 factor, because

we’ve already seen that it comes equipped with a canonical faithful, normal trace state.

Examples of ICC groups include PSL(n,Z), Fn (assuming in both cases that 2 ≤ n ∈ N),

and S∞, defined below.

Example 1.5.5 Consider the groupG = Z together with the canonical group trace τ defined

above. Note that τ satisfies τ(λn) = δn=0.

Now let S1 := {eiθ : θ ∈ [0, 2π)} denote the circle group with normalized Haar measure

given by dθ/2π. If z : S1 → S1 denotes the identity function, we can consider the group

isomorphism given by n 7→ zn between Z and {zn : n ∈ Z} ⊂ C(S1).

Note that
∫
zndθ/2π =

∫
einθdθ/2π = δn=0, so this identification takes the canonical

group trace onto integration against the Haar measure of S1. Clearly, the GNS construction

on the latter will yield L2(S1, dθ/2π), and the definition of the weak operator topology
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applied to L∞(S1) ⊂ B(L2(S1) is easily seen to correspond to weak-∗ convergence in L∞(S1).

Since the span of {zn : n ∈ Z} is weak-∗ dense in L∞(S1), we must have that {zn : n ∈

Z}′′ = L∞(S1). By faithfulness of the traces involved, we can identify L(Z) ' L∞(S1) so that

the canonical trace on the former corresponds to integration against the probability Haar

measure on the latter. For this reason, if a unitary u has distribution satisfying φ(un) = δn=0

with respect to a state φ, we may call u a Haar unitary and can make the identification

({u, u∗}′′, φ) ' (L(Z), τ). Note that the spectrum of such a u is given by {z ∈ C : |z| = 1}.

Example 1.5.6 Let Fn (resp. F∞) denote the free group on n ∈ N (resp. countably many)

generators. Clearly, L(F1) = L(Z) is abelian. For all other m 6= n ∈ N ∪ {∞}, it is a major

open problem whether L(Fm) ' L(Fn). Voiculescu developed machinery for studying these

algebras and attempting to distinguish them. We’ll detail some of this machinery in the

section on Voiculescu’s Free Gaussian Functor.

To conclude this section, we mention the most important classification result concerning

II1 factors. While it is known that there are uncountably many non-isomorphic II1 factors,

Connes proved the following uniqueness result. For its statement, we first make the following

definition:

Definition 1.5.7 (Hyperfiniteness) A von Neumann algebra M is called hyperfinite if it

is generated by the countable union ∪Ai of an increasing sequence of finite-dimensional

subalgebras A1 ⊂ A2 ⊂ ...

Theorem 1.5.8 (Uniqueness of the Hyperfinite II1 Factor R) There is, up to isomorphism,

only one hyperfinite II1 factor.

We won’t prove Connes’ uniqueness theorem here, but we can use it to produce two

realizations of the hyperfinite II1 factor (usually denoted R) by considering the constructions

we’ve just defined.

Example 1.5.9 (R ' ⊗NM2(C)) Let Mi = M2(C) for all i ∈ N with the usual normalized

trace. Applying the tensor product construction to (Mi, tr)i∈N yields R := ⊗NM2(C) with
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faithful tracial state τ . Note that, by construction, R is generated by ∪j∈N⊗j1M2(C), and

⊗j1M2(C) ' M2j(C). So R is generated by an ascending sequence of finite-dimensional

subalgebras, i.e. it is hyperfinite.

Example 1.5.10 (R ' L(S∞)) Let S∞ denote the group of finitely supported permutations

on N. Clearly, S∞ is an ICC group, so L(S∞) is a II1 factor. Because S∞ is the direct limit

of the finite permutation groups (in the obvious way), L(S∞) is generated by the union of

the finite-dimensional von Neumann algebras given by L(Sn). So L(S∞) is a hyperfinite II1

factor, and therefore L(S∞) ' R.

Remark 1.5.11 We will see in Theorem 3.2.5 that hyperfiniteness of L(G) is equivalent to

the amenability of G, so we can more generally realize R as L(G) for any countable amenable

ICC group G.

1.5.2.2 Crossed Product Construction

Now that we’ve defined the group von Neumann algebra L(G) and seen some examples, we

turn our attention to developing the crossed product in the von Neumann algebraic setting.

As one might expect, the crossed product construction takes as input some action α of G on

a von Neumann algebra M and produces as output a new von Neumann algebra, denoted

M oα G.

We’ll restrict our discussion to tracial von Neumann algebras (M, τ) for simplicity. By

tracial von Neumann algebra, we mean that τ is a faithful, normal tracial state. We write

Aut(M) for the group under composition of automorphisms (normal self-*-isomorphisms)

of M . We first define a group action in our context. For more details on the following

constructions, see [Tak13] Chapter X.

Definition 1.5.12 Let G be a discrete group and (M, τ) a tracial von Neumann algebra.

An action of G on M is a group homomorphism α : G → Aut(M). We will occasionally

write α : G y (M, τ) (if α preserves the trace τ), α : G y M , or G yα M for such an

action. If α is understood, we may also suppress it from the notation and write GyM .
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Remark 1.5.13 If (M, τ) is tracial, we will assume that actions on M are trace-preserving

unless otherwise stated. We may abuse notation slightly and write Aut(M) for Aut(M, τ) if

the trace-preserving condition is clear from context.

Example 1.5.14 Let α̂ : G→ U(B(H)) be a unitary representation of G. If M ⊂ B(H) is

globally invariant under conjugation by α̂g, i.e.

α̂gMα̂∗g = M

for all g ∈ G, then αg := Ad (α̂g) defines a group action of G on M if Ad (α̂g) is τ -preserving

for all g.

Given an action α : G → Aut(M), we can define the crossed product of M ⊂ B(H) by

α as follows. Let l2(G,H) denote the Hilbert space of square-summable H-valued functions

on G, i.e. l2(G,H) = {ξ = (ξg)g∈G :
∑

g ‖ξg‖2 < ∞} with the inner product 〈(ξg), (ηg)〉 =∑
g〈ξg, ηg〉. We can define faithful representations πα : M → B(l2(G,H)) and λ : G →

B(l2(G,H)) via the following relations:

πα(x)ξg = α−1
g (x)ξg

λgξh = ξg−1h,

for all x ∈M , g, h ∈ G, and (ξg)g∈G ∈ l2(G,H).

We remark that, in the case where (M, τ) = (C, id) and α is trivial, the above construction

coincides with that of L(G) at the beginning of the section. Indeed, if we identify h ∈ l2(G)

with δg=h ∈ l2(G,C) (i.e. the characteristic function of {h}), we see that the λg here

corresponds precisely to the λg defined before. For general (M, τ), it is easy to see that we

still have L(G) = λ(G)′′ in the context of this construction.

Definition 1.5.15 We define the crossed product of M by α to be M oα G := (πα(M) ∪

λ(G))′′.

We remark that the unitaries λg in the crossed product satisfy the following imporant

covariance relation:

λgπα(x)λ∗g = πα(αg(x)).
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By the above covariance relation, we see that M oα G is generated by finite sums of

the form
∑

i πα(xi)λgi , with xi ∈ M, gi ∈ G. Due to the faithfulness of πα, we may abuse

notation slightly and identify M with its image πα(M), suppressing πα from the notation.

The covariance relation then reads

λgxλ
∗
g = λgxλg−1 = αg(x).

In the presence of τ , M oα G has a conditional expectation EG onto L(G) satisfying

EG(
∑

i xiλgi) =
∑
τ(xi)λgi for finite sums with xi ∈ M, gi ∈ G. Similarly, M oα G has

an expectation onto M determined by EM(
∑

g xgλg) = xeλe = xe for finite sums
∑

g xgλg,

where e again denotes the neutral element of G. The composition of these expectations (in

either order) gives a faithful normal trace state τ̂ on M oα G satisfying τ̂(
∑
xgλg) = τ(xe).

Example 1.5.16 (Trivial Actions) Let (M, τ) be a tracial von Neumann algebra and G a

discrete group. If we let α : G → Aut(M) be the trivial action, so that αg(x) = x for all

g ∈ G, x ∈ M , then M oα G is easily seen to be (spatially, in terms of our constructions)

isomorphic to M⊗L(G).

We now discuss some conditions we can place on the action α to produce corresponding

structural properties of M oα G. In particular, we discuss what conditions are necessary to

ensure that M oα G is a II1 factor.

1.5.2.3 Factoriality for the Crossed Product

First, a few definitions concerning automorphisms and the action α:

Definition 1.5.17 An automorphism σ of M is called inner if there exists a unitary u ∈M

such that σ(x) = uxu∗ for all x ∈ M . The subgroup of Aut(M) of inner automorphisms of

M is denoted Inn(M). An automorphism is called outer if it is not inner.

Definition 1.5.18 An automorphism is σ of M is called properly outer if there is no nonzero

v ∈M satisfying σ(x)v = vx for all x ∈M .
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Remark 1.5.19 Clearly any properly outer automorphism is outer. The converse holds ifM

is a factor. To see this, note that if 0 6= v satisfies σ(x)v = vx for all x, then v∗v and vv∗ are

central in M . Thus, by positivity of v∗v and factoriality of M , v∗v = ‖v∗v‖ = ‖vv∗‖ = vv∗.

Rescaling v therefore gives a unitary u such that σ = Ad u, a contradiction.

Given an automorphism σ, we write Mσ for the fixed point algebra {x ∈M : σ(x) = x}.

It is a von Neuman subalgebra of M . Similarly, if α is an action, we write Mα for the fixed

point algebra of the action, i.e. {x ∈M : αg(x) = x ∀g ∈ G}.

Definition 1.5.20 (Freeness and Ergodicity of an Action)

Let α be an action of G on M . We say that α is:

1.) ...free (or properly outer) if αg is properly outer for all g ∈ G\{e}.

2.) ...ergodic if Mα = C (i.e. the fixed point algebra of the action α is trivial).

We now give the example of the group measure space construction and its connection to

the definitions above.

Example 1.5.21 (Group Measure Space Construction) Let G be a countable discrete group,

and let (X,µ) be a probability measure space. A probability measure preserving (or p.m.p.)

action of G on X is a group homomorphism α : G → Aut(X,µ), where Aut(X,µ) is the

group under composition of (almost-everywhere defined) automorphisms of X which preserve

µ. Such an action induces an action α : G y L∞(X,µ) via the relation αg(f)(x) = f(αgx).

Note that because the action α is measure preserving, the induced action α preserves the

natural trace τ(f) =
∫
f dµ on L∞(X,µ).

We define the group measure space algebra for α to be the crossed product L∞(X,µ)oαG

by the corresponding induced action α on L∞(X,µ).

We say that the action α on (X,µ) is free if {x ∈ X : αg(x) = x} (i.e. the set of fixed

points for αg) is null for all e 6= g ∈ G. We say that α is ergodic if the only measurable

subsets E for which the symmetric difference αg(E)∆E is null for all g ∈ G are either null

or co-null. This is the same as saying that there are no non-trivial subsets that are invariant

under the G-action.

21



Under some mild assumptions on (X,µ) (e.g. (X,µ) is standard or countably separated),

one can check that α on (X,µ) is free (resp. ergodic) if and only if the induced action α is

free (resp. ergodic) on L∞(X,µ), which motivates the terminology.

The following lemma combines the above conditions to guarantee factoriality for the

crossed product.

Lemma 1.5.22 Let α : G→ Aut(M, τ) be a free and ergodic (trace-preserving) action of a

discrete group G on a tracial von Neumann algebra M . Then M oα G is a factor.

Proof. Suppose x ∈ M ′ ∩ (M oα G). Write x =
∑
xgλg with xg ∈ M . (Note: This can

be done uniquely for any x ∈ M oα G, with xg = EM(xλ∗g). We may not have strong

convergence of this sum, but we can still write x in this form with convergence in the L2

sense.) We have that for any y ∈M :

∑
yxgλg = yx = xy =

∑
xgαg(y)λg.

So we must have that yxg = xgαg(y) for all g ∈ G, y ∈ M . From this, we see that if the

action is free, we must have xg = 0 for all g 6= e, so that x = xe and M ′ ∩ (M oα G) ⊂ M .

So, in particular, freeness of the action implies that the center Z(M oα G) of M oα G is

contained in M . Furthermore, by combining this with the ergodicity of the action, we have

Z(M oα G) ⊂ L(G)′ ∩M = Mα = C, so that the M oα G is a factor.

Remark 1.5.23 As we’ve seen, M oα G possesses a faithful normal trace. So, if it is a

factor, it is necessarily of Type II1 (assuming it’s not finite-dimensional). Therefore, free

and ergodic actions give us a source of examples for II1 factors. We give a few examples of

such actions below.

Example 1.5.24 (Irrational Rotation) Let α be irrational and let Z act on T via n.z :=

e2πiαnz. More generally, if G is a countable, dense subgroup of some compact group (X,µ)

equipped with its Haar measure, then the natural action of G on X is both free and ergodic.
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Example 1.5.25 (Bernoulli Shift) Let G be a countable group and let (Y, ν) be a probability

measure space such that ν is not a Dirac mass at a point. Then the Bernoulli shift action

of G on (Y G, ν⊗G) is given by g(yh)h∈G = (yg−1h)h∈G. It can be shown that Bernoulli shifts

of this type are always free and ergodic.

1.6 Semifinite Algebras

1.6.1 Weights and Traces

We will occasionally need to consider semifinite algebras in what follows, so we briefly de-

scribe the notions generalizing states/traces for these algebras. We write M+ for the cone of

positive elements of a von Neumann algebra M .

Definition 1.6.1 Let M be a von Neumann algebra. A weight on M is an R≥0-linear map

ω from M+ to R≥0 ∪ {∞}.

If a weight ω satisfies ω(1) <∞, then it extends by linearity to a positive linear functional

(still denoted ω) on the full algebra M . A weight with ω(1) = 1 is, in this way, a state. We

say that a weight is tracial or a trace if ω(x∗x) = ω(xx∗) for all x ∈ M . For weights with

ω(1) finite, this tracial condition is equivalent to the usual one with ω(xy) = ω(yx) for all

x, y ∈M .

We’ll mostly be concerned with tracial weights. In particular, we’ll want our weights to

be semifinite, as defined below:

Definition 1.6.2 We say that ω is:

1.) ...faithful if ω(x∗x) > 0 for all 0 6= x ∈M .

2.) ...normal if ω(supλ xλ) = supλ ω(xλ).

3.) ...semifinite if for all x ∈M+, there exists a y ∈M+ such that y ≤ x and ω(y) <∞.

Remark 1.6.3 We remark that condition 2 above is equivalent to ω being lower semi-

continuous with respect to the restriction of the ultraweak topology to M+. If ω(1) < ∞,
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these conditions are equivalent to normality in the previously defined sense (i.e. ultraweak

continuity).

Definition 1.6.4 (Semifiniteness) We say that M is semifinite if there is a faithful, normal,

semifinite trace on M+.

It can be shown that M is finite if and only if it has a faithful, normal tracial state, so

all finite von Neumann algebras are semifinite. Semifinite algebras are strictly more general,

though, as the following example shows.

Example 1.6.5 Let H be a Hilbert space of countably infinite dimension. If {ξ1, ξ2, ...} is

an orthonormal basis for H, we can define Tr(x) =
∑

i∈N〈ξi, xξi〉 for x ∈ B(H). Then Tr is

a faithful, normal semifinite trace on B(H). So B(H) is a semifinite (but not finite) factor

of type I. Furthermore, Tr is independent of the choice of orthonormal basis.

Recall that finite factors have a unique faithful normal tracial state. Similarly, it can

be shown that semifinite factors possess a unique faithful, normal semifinite weight up to

rescaling by λ ∈ R>0. (One way of showing this is to use the fact that if M is semifinite,

we can write 1M as a strong limit of an increasing family of finite projections pn → 1M and

leverage the uniqueness of the trace on the II1 factor pnMpn.) In the presence of minimal

projections (i.e. the type I case), the natural choice of scaling satisfies Tr(p) = 1 for a minimal

projection p, as above. In the absence of such projections, there is no such canonical choice.

Motivated by the above example, we will often denote a faithful, normal tracial weight

by Tr.

1.6.2 Type II∞ von Neumann algebras

We have already considered the Type II algebras whose unit is a finite projection. In this

subsection, we consider the other Type II von Neumann algebras. Such algebras possess

finite projections, but their unit is an infinite projection. Using the constructions of the

previous sections, it’s easy to produce examples of factors of this type.
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Example 1.6.6 (Tensoring with B(H))

Let (M, τ) be a II1 factor, and consider the tensor product N = M⊗B(H), where H

is a separable, infinite-dimensional Hilbert space. As we saw in the previous section, B(H)

comes equipped with a faithful, normal semifinite trace Tr. If we let τ = τ ⊗Tr on N , then

τ is again a faithful, normal semifinite trace. Note that N is a factor since

Z(N) = (M⊗B(H)) ∩ (M⊗B(H))′ = (M⊗B(H)) ∩ (M ′ ⊗ C1H) = (M ∩M ′)⊗ C1H = C.

If B(H) 3 p < 1H is a strict subprojection of the identity on H such that p 1H , then 1⊗ p is

a strict subprojection equivalent to 1N . Thus, 1N is an infinite projection, and N is a factor

of type II∞.

Remark 1.6.7 In fact, the above is the most general example of a II∞ factor: every II∞

factor can be written as a tensor product of a II1 factor with B(H), albeit non-canonically.

In an earlier section, we defined group measure space actions of discrete groups and

studied when they produced II1 factors. We can make an analogous study in the case of

locally compact groups. First, we will need to extend the earlier definitions in the discrete

case to the more general case of locally compact groups, which we do in the next section.

1.7 Crossed Products and Actions of Locally Compact Groups

For a discrete group, all actions GyM are obviously continuous, so we avoided discussion

of the topology on Aut(M). But in the general case, we need the following:

Let α ∈ Aut(M), and let φ1, ..., φn be normal linear functionals on M (equivalently,

φi ∈M∗ for all i, where M∗ denotes the Banach space predual of M). Note that φi◦α is again

a normal linear functional on M . Following the exposition by Takesaki in [Tak13], we denote

by Uα(φ1, ..., φn) the collection {β ∈ Aut(M) : max{‖φi◦β−φi◦α‖, ‖φi◦β−1−φi◦α−1‖} < 1}.

Then the collection {Uα(φ1, ..., φn) : n ∈ N, α ∈ Aut(M), φi ∈ M∗(1 ≤ i ≤ n)} forms a

neighborhood basis for a topology on Aut(M) that makes it a topological group. Unless

otherwise stated, we’ll topologize Aut(M) in this way. Equipped with this topology, we can

now define continuous actions of locally compact groups on M .
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Definition 1.7.1 (Action)

Let G be a locally compact group. We define an action of G on a von Neumann algebra

M to be a continuous group homomorphism α : G → Aut(M). If M is tracial, we will

assume that G takes its image in the trace-preserving automorphisms of M . We use the

same notation introduced for the discrete case for such actions (Gyα M , etc.).

Example 1.7.2 (Unitary Representations) Let λ : G → U(B(H)) be a unitary represen-

tation of G (always assumed continuous with respect to the strong operator topology on

B(H)). If M ⊂ B(H) is a von Neumann algebra that is globally invariant under conjugation

by λg, i.e. λgMλ∗g = M for all g ∈ G, then αg = Ad λg defines an action of G on M .

In fact, every action can be realized in the above way using the standard implementation,

which relies in part on the (essential) uniqueness of the standard representation.

Theorem 1.7.3 (Standard Unitary Implementation, see Thm IX.1.15 [Tak13])

Suppose {M,H, J, P} is a standard form. Then the subgroup Γ ⊂ U(B(H)) of unitaries

u that satisfy uMu∗ = M , uJu∗ = J , and uP = P is isomorphic to Aut(M) via the map

u 7→ Ad u. Furthermore, this map is a homeomorphism from Γ, equipped with the strong-

operator topology, to Aut(M) with the topology defined above.

Using this isomorphism (or, rather, its inverse), we can take an automorphism α of M

and produce a unitary uα ∈ B(L2(M)), conjugation by which implements α. We’ll call uα

the standard (unitary) implementation of α. Similarly, given an action G yα M , there’s a

unique unitary representation u : G → U(B(L2(M))) satisfying the following for all g ∈ G,

x ∈M :

αg(x) = ugxu
∗
g

Jug = ugJ

ugP = P,

where P is the canonical positive cone. We call u the standard implementation (or standard

form) of the action.

26



We can now mimic our construction of the crossed product by a discrete group in the

present setting. Given G yα M with M ⊂ B(H), let L2(G,H) denote the Hilbert space

of square-integrable H-valued functions on G (modulo almost-everywhere equivalence) with

respect to a left Haar measure µ on G, so that L2(G,H) = {ξ :
∫
G
‖ξg‖2 dµ <∞}, equipped

with the inner product 〈ξ, η〉L2(G,H) =
∫
G
〈ξg, ηg〉H dµ.

We can again define faithful representations πα : M → B(L2(G,H)) and λ : G →

B(L2(G,H)) via the following relations:

(πα(x)ξ)g = α−1
g (x)ξg

(λgξ)h = ξg−1h,

for all x ∈M, g, h ∈ G, and ξ ∈ L2(G,H).

Definition 1.7.4 (Crossed Product of M by α) We define the crossed product of M by α,

denoted M oα G, by M oα G := (πα(M) ∪ λ(G))′′.

It’s easy to check that the definition given here extends the previous definition in the

discrete case, and, furthermore, the unitaries λg in the crossed product algebra still satisfy

the important covariance relation:

λgπα(x)λ∗g = πα(αg(x)).

We will again abuse notation slightly and use the faithfulness of πα to identify M with

πα(M), suppressing πα from the notation. So, for example, we see that the covariance

relation can be written λgxλ
∗
g = αg(x) (conjugation by λg implements the action α), and

this relation implies that M oα G is generated by finite sums of the form
∑
xiλgi , with

xi ∈M , gi ∈ G.

Remark 1.7.5 We mention that the above construction is independent of the representing

Hilbert space H in the following sense: if M ⊂ B(H) has a faithful representation ρ :

M → B(K) for some Hilbert space K, then there’s a unique isomorphism from M oα G to
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ρ(M) oρ◦α G taking x ∈ M (technically, πα(x)) to ρ(x) and λg to λKg , the corresponding

canonical unitary in ρ(M) oρ◦α G. See Thm. X.1.7.(i) in [Tak13] for details.

Now that we’ve seen locally compact group actions and their associated crossed product

construction, we will use the next section to give us a helpful equivalence relation on such

actions.

1.7.1 Cocycle Conjugacy

Throughout this section, let G be a locally compact group, and let α : G→ Aut(M) be an

action of G (as defined in the previous section).

Definition 1.7.6 (Cocycle) Given an action α of G on M , we define an α-cocycle (or α-one

cocycle) to be a function u : G → U(M), continuous with respect to the strong operator

topology on U(M), which satisfies the following cocycle condition for all g, h ∈ G:

ugh = ugαg(uh).

The collection of all α-cocycles will be denoted Z1(α). Cocycles are of interest, in part,

because we can use them to perturb an action α by a cocycle u into a new action αu by

defining

αug (x) := ugαg(x)u∗g.

In other words, αug = Ad ug ◦ αg. We see that αu is indeed an action:

αug (αuh(x)) = αug (uhαh(x)u∗h)

= ug(αg(uhαh(x)u∗h))u
∗
g

= (ugαg(uh))αgh(x)(αg(uh)
∗u∗g)

= ughαgh(x)u∗gh = αugh(x),

where the first equality of the last line follows from the cocycle condition. We call αu the

perturbation of α by u.
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Given an α-cocycle u : G → U(M) and a unitary w ∈ U(M), we can produce a new

α-cocycle uw by setting uwg := wugαg(w
∗). If u and v are α-cocycles such that v = uw for

some w ∈ U(M), then we say that u and v are equivalent and write u ∼ v. One easily checks

that this is indeed an equivalence relation on Z1(α), and the quotient Z1(α)/ ∼ of Z1(α) by

this equivalence relation is denoted H1(α) (the one-cohomology space).

Given two actions α and β of G on M , we will say that α and β are equivalent (written

α ' β) if there exists an automorphism Φ of M such that Φ(αg(x)) = βg(Φ(x)) for all g ∈ G,

x ∈M . In view of the standard implementation, in the tracial case this is the same as saying

that there is a unitary operator on L2(M) which intertwines the actions. This is a strict

equivalence relation on our actions, requiring them to be the same up to an automorphism

of M . But the use of cocycle perturbations will allow us to consider a less rigid notion of

equivalence between our actions.

Definition 1.7.7 (Cocycle Conjugacy) Let α and β be actions of G on M . We say that α

and β are cocycle conjugate (written α ∼ β) if αu ' β for some u ∈ Z1(α).

So two actions are cocycle conjugate if we can perturb one of them by a cocycle in such a

way that it becomes equivalent to the other up to an automorphism of M . Our main reason

for concerning ourselves with cocycle conjugacy is the following theorem, which guarantees

that if α ∼ β, then M oα G ' M oβ G. For completeness, we’ll reproduce the proof given

in [Tak13]:

Theorem 1.7.8 (Thm X.1.7.ii, [Tak13]) Let u ∈ Z1(α). If we define U ∈ U(B(L2(G,H)))

by:

(Uξ)g = ug−1ξg

for ξ ∈ L2(G,H), then

U(M oα G)U∗ = M oαu G.

In particular, the crossed product is stable (up to isomorphism) under cocyclic perturbations.
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Proof. Set β = αu. Since we’re working with both M oα G,M oβ G ⊂ B(L2(G,H)), we’ll

avoid our usual suppression of πα and πβ from the notation. We compute:

(Uπα(x)U∗ξ)g = (ug−1α−1
g (x)u∗g−1)ξg = β−1

g (x)ξg = (πβ(x)ξ)g,

so that Uπα(x)U∗ = πβ(x), and, similarly,

(UλgU
∗ξ)h = uh−1u∗h−1gξg−1h = uh−1(uh−1αh−1(ug))

∗ξg−1h

= uh−1αh−1(u∗g)u
∗
h−1ξg−1h = (πβ(u∗g)λgξ)h,

which implies that UλgU
∗ = πβ(u∗g)λg. Therefore, U(M oα G)U∗ ⊂ M oβ G. Finally, we

note that u∗gh = u∗gβg(u
∗
h), which means that u∗ is a β-cocycle, and α = βu

∗
. Therefore, a

similar computation implies that U∗(M oβG)U ⊂M oαG, so that Ad U is an isomorphism

from M oα G to M oβ G.

1.7.2 The Modular Automorphism Group and Type III Factors

In this section, we describe another example of a locally compact group action, which arises

naturally from a state on our von Neumann algebra. First, we make some definitions and

mimic the construction of the modular conjugation J from the Type II1 case. See [Bla06]

III.4 or [Tak13] Chapter VII for more details on these constructions.

Definition 1.7.9 (One Parameter Automorphism Group) Let M be a von Neumann alge-

bra. A one parameter automorphism group of M is a continuous homomorphism σ : R →

Aut(M).

Equivalently, a one parameter automorphism group is an action by R on M . In what

follows, we will see how to produce a one parameter automorphism group from a state on M .

One can make a similar construction given an arbitrary semifinite weight, but we’ll restrict

to (faithful) states for simplicity.

Let φ be a faithful, normal state on M , and let ξ denote the usual cyclic vector (i.e. 1̂)

in the GNS representation Hφ for φ. Then xξ 7→ x∗ξ is a densely-defined conjugate-linear

operator on Hφ. It is easily seen to be closeable, so we let S denote its closure.

30



Taking the polar decomposition of S, we have:

S = J∆1/2,

where J is an involutive anti-unitary (i.e. J2 = 1), as in the Type II1 case, and ∆ = S∗S

is an invertible (unbounded) densely defined positive operator. As before, we call J the

modular conjugation, and we will call ∆ the modular operator associated with φ. We may

write Jφ or ∆φ if we need to emphasize their dependence on φ. We also have that ξ is fixed

by S, J , and ∆, and J∆ = ∆−1J .

Example 1.7.10 Let G be a locally compact group with left Haar measure µ. If we consider

the left regular representation of G on L2(G, µ), then ∆φ is simply multiplication by the usual

modular function ∆G on L2(G, µ), where φ is the canonical Plancherel weight on L(G). This

motivates the choice of the term “modular operator.” For details, see [Bla06] III.4.1.4 and

III.3.3.1 (for the definition of the Plancherel weight).

Note that since ξ is cyclic and separating for M , it is also cyclic and separating for M ′.

One can similarly define F as the closure of the map yξ 7→ y∗ξ for y ∈ M ′, which makes F

another densely-defined conjugate-linear operator. A computation verifies that F = S∗ in

this case, so we will neglect further mention of F .

Now, since ∆ is a positive (unbounded) operator, for any t ∈ R, we have that ∆it ∈

U(Hφ). Furthermore, t 7→ ∆it is strongly continuous, so we can define a one parameter

automorphism group σ : R→ Aut(B(Hφ)) via:

σt(x) := Ad (∆it)x = ∆itx∆−it.

Since J∆ = ∆−1J with J anti-linear, we have J∆it = ∆itJ . In particular, conjugation by

J commutes with σ. The central theorem for these modular automorphisms can be stated

as follows:

Theorem 1.7.11 (Tomita-Takesaki) With M , φ as above, we have JMJ = M ′ and σt(M) =

M for all t. Furthermore, for x ∈M ∩M ′, we have JxJ = x∗ and σt(x) = x.
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In particular, by the comment before the theorem, the same statement holds with M ′ instead

of M . By the global invariance of M (or M ′) under the modular action, we have produced

a one parameter automorphism group σφt of M from the state φ.

Remark 1.7.12 (φ is tracial iff ∆ = 1) If φ is a tracial state (or more generally, tracial

weight), then it’s easy to see that S = F = J , so the modular operator and its corresponding

action are trivial. Conversely, if ∆φ = 1, then a quick computation verifies that the vector

state 〈ξφ, ·ξφ〉 = φ is tracial. Since we presently want to use the modular operator to construct

interesting one parameter subgroups, we will now restrict to the Type III case, where our

algebras don’t have traces and modular theory is especially useful for classification.

The following example gives a simple relation between modular automorphism groups in

the case that ψ = φ(h·) for some positive h.

Example 1.7.13 Let φ be a state on M . We write Mφ for Mσφ , the fixed point algebra for

the modular action. If h is a positive operator affiliated with Mφ, then setting ψ := φ(h·),

we have

σψt (x) = hitσφt (x)h−it.

Connes proved the following theorem, which fully describes the relationship between

modular automorphism groups for two faithful states.

Theorem 1.7.14 ([Tak13] Thm. 3.3, Connes Cocycle Derivative) Let φ and ψ be faithful

semifinite normal weights on M . There exists a strongly continuous map u : R → U(M)

such that:

us+t = usσ
φ
s (ut)

(that is, u is a σφ-cocycle) and

σψt (x) = utσ
φ
t (x)u∗t .

Proof. (Sketch) Let φ and ψ be as above, and define the balanced weight θ on N = M2(M)

by:

θ

x11 x12

x21 x22

 = φ(x11) + ψ(x22).
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The faithfulness of φ and ψ implies the faithfulness of θ. Now let (eij) denote the usual

matrix units, and let u = e11 − e22. Note that u = u∗ is a unitary such that

u

x11 x12

x21 x22

u =

 x11 −x12

−x21 x22

 .

Therefore, θ((Ad u)(x)) = θ(x) for all x ∈ N , which implies that u is fixed by the modular

action for θ (i.e. u ∈ N θ). In particular, it follows that 1+u
2

= e11 and 1−u
2

= e22 are in N θ.

Therefore, for any t ∈ R, we have:

e11σ
θ
t

x11 0

0 0

 e11 = σθt

e11

x11 0

0 0

 e11

 = σθt

x11 0

0 0

 ,

so that

σθt

x 0

0 0

 =

αt(x) 0

0 0


for some action α on M . But, since θ|e11Ne11 = φ, we must have αt = σφt . We similarly have

σθt

0 0

0 x

 =

0 0

0 σψt (x)

 .

Furthermore, we have e11σ
θ
t (e21) = σθt (e11e21) = 0 = σθt (e21e22) = σθt (e21)e22, so that

σθt (e21) =

 0 0

ut 0


for some ut ∈M . Note that σθt (e21) is a partial isometry from e11 to e22, which implies that

ut is a unitary.

Now we need only check that u is the desired cocycle. First, we have0 0

0 σψt (x)

 = σθt

e21

x 0

0 0

 e12

 = σθt (e21)

σφt (x) 0

0 0

σθt (e21)∗ =

0 0

0 utσ
φ
t (x)u∗t


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which verifies one of the desired relations. To see that u is a σφ-cocycle, we check: 0 0

us+t 0

 = σθs

 0 0

ut 0


= σθs

e21

ut 0

0 0

 =

 0 0

ut 0

σφs (ut) 0

0 0


=

 0 0

usσ
φ
s (ut) 0

 ,

which concludes the proof.

The above proof is more carefully given in [SZ79] Theorem 10.28. For a proof that

doesn’t require ψ to be faithful, see e.g. [Str81] Chapter 1.3. The cocycle u of the above

theorem is called the cocycle derivative of φ with respect to ψ. It is sometimes denoted

(Dφ : Dψ)t := ut. The cocycle u is unique if we additionally impose a certain analytic

condition, related to the so-called KMS condition, but we won’t need this uniqueness here.

There is also a converse to this theorem (see [Tak13] 3.8):

Theorem 1.7.15 Let ψ be a faithful semifinite normal weight on M . If u is a σψ-cocycle,

then there exists a semifinite normal weight φ such that u = (Dφ : Dψ).

Connes’ cocycle theorem gives the following characterization of semifiniteness:

Lemma 1.7.16 Let φ be a faithful weight on M . Then M is semifinite if and only if the

modular action of φ is inner (i.e. σφt = Ad ut for some u : R→ U(M)).

Proof. (Sketch) By Connes’ theorem, the innerness of the modular action for some φ implies

the innerness of the action for all other faithful weights. So it suffices to show that M is

semifinite if and only if there exists a weight whose modular action is inner.

If M is semifinite, then take φ to be a faithful tracial weight on M . By Remark 1.7.12,

σφ = id, so that the modular action is trivially inner.

Conversely, if φ’s modular action is inner, then Stone’s theorem guarantees that we can

find a (possibly unbounded) self-adjoint h affiliated with M such that σφt = Ad hit. An
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application of Example 1.7.13 to the weight ψ := φ(h−1·) shows that σψ is trivial, so that ψ

is tracial, which implies that M is semifinite.

Example 1.7.17 (Crossed Product of Type III Factor by its Modular Automorphism Group)

Let M be a Type III factor, and take φ any faithful state on M . Because the modular action

for φ is cocycle conjugate (by the preceding theorem) to the modular action for any faithful

ψ, the crossed product M oσφ R is canonically determined by M up to isomorphism. For

this reason, we call M oσφ R “the” (continuous) core of M .

From φ, one can naturally construct a weight φ̂ on N = M oσφ R, called the dual weight.

The modular action for φ̂ is necessarily inner on N (and corresponds to the dual action of

σφ), which implies by the preceding lemma that N is semifinite. So the continuous core of

a Type III von Neumann algebra is semifinite. Furthermore, a duality theorem of Takesaki

guarantees that M ' N o
σφ̂

R, which gives a canonical way of writing any Type III factor

as a crossed product of a Type II∞ factor (its core) by this dual action. We won’t need this

decomposition in what follows, so we omit further discussion of this duality. For details, see

e.g. [Tak13] Chapter XII or [Bla06] III.4.8.

Remark 1.7.18 The statements of the previous example are still true when M is semifinite,

but because semifinite algebras possess traces (whose modular actions are trivial), the core

is only interesting in the Type III case.

It follows from Connes’ cocycle derivative theorem that there is a canonical homomor-

phism δ : R → Out(M), where Out(M) := Aut(M)/Inn(M), the quotient of the au-

tomorphism group by the inner automorphisms. Connes used δ to define his invariant

T (M) = ker δ, a subgroup of R, which is important in distinguishing factors. It can be

shown that T (M) = R if and only if the factor is semifinite (i.e. Type I or Type II). In

particular, every Type III factor has an outer automorphism. If T (M) is trivial, we call M

a Type III1 factor. If T (M) is a proper dense subgroup, M is a Type III0 factor. If T (M)

is discrete, then it has a generator t > 0. In this case, we call M a Type IIIλ factor, where

λ = e−2π/x.
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CHAPTER 2

Free Products and Voiculescu’s Free Gaussian Functor

2.1 The Full Fock Space, Free Product Construction, and Freeness

The goal of this section is to describe various free product constructions. Ultimately, the

goal is to make sense of ∗i∈I(Mi, φi), the free product of the von Neumann algebras Mi with

normal states φi. To do this, we first define the full Fock space of a Hilbert space H and

the free product of a family of Hilbert spaces with distinguished unit vectors. For a more

detailed exposition of these constructions, see [VDN92]. We will try to match the notation

used there whenever it’s convenient.

The full Fock space construction is as follows:

Definition 2.1.1 Let H be a Hilbert space. We define the full Fock space of H, denoted

F(H), via:

F(H) := CΩ
⊕
j≥1

H⊗j.

We remark that the unit vector Ω ∈ F(H) is called the vacuum vector, and its corre-

sponding vector state ω will be called the vacuum state or vacuum expectation.

We can define in a similar way the Hilbert space free product of a family of Hilbert

spaces with distinguished unit vectors. We note that this construction is not a categorical

coproduct. Instead, it will serve as the underlying space for the free product von Neumann

algebra ∗i∈IMi.

Definition 2.1.2 Let {(Hi, ξi) : i ∈ I} be a collection of Hilbert spaces with distinguished

unit vectors ξi ∈ Hi, and define H◦i := Hi 	 Cξi (i.e. H◦i is the orthocomplement of the
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distinguished unit vector ξi in Hi. We define the Hilbert space free product ∗i∈I(Hi, ξi) to

be (H, ξ), where

H := Cξ
⊕
j≥1

 ⊕
i1,...,ij∈I

i1 6=i2 6=... 6=ij

H◦i1 ⊗H
◦
i2
⊗ ...⊗H◦ij

 .

We note that the restriction i1 6= i2 6= ... 6= ij is shorthand for i1 6= i2, i2 6= i3, etc. In

other words, an index is allowed to appear multiple times, but adjacent indices cannot be

the same.

Remark 2.1.3 Let {Hi}i∈I be a family of Hilbert spaces with distinguished unit vectors.

Note that we can identify (F(⊕iHi),Ω) with ∗i(F(Hi),Ωi) in a natural way by using the

identification: (⊕iHi)
⊗n = ⊕i1,...,inHi1 ⊗ ...⊗Hin .

Now we move toward defining the free product of a family of von Neumann subalgebras

Mi ⊂ B(Hi) on (Hi, ξi). If (H, ξ) is the Hilbert space free product of {(Hi, ξi) : i ∈ I}, we

define

H(i) := Cξ
⊕
j≥1

 ⊕
i1 6=i2 6=... 6=ij

i1 6=i

H◦i1 ⊗H
◦
i2
⊗ ...⊗H◦ij

 ⊂ H.

Recall that ξi is the distinguished unit vector in Hi. We note that Hi ⊗ H(i) ' H via

the unitary operator Ui which satisfies:

Ui(ξi ⊗ ξ) = ξ

Ui(ξi ⊗ (η1 ⊗ η2 ⊗ ...⊗ ηj)) = η1 ⊗ η2 ⊗ ...⊗ ηj for ηk ∈ H◦ik , i1 6= i

Ui(η ⊗ ξ) = η for η ∈ H◦i

Ui(η ⊗ (η1 ⊗ η2 ⊗ ...⊗ ηj)) = η ⊗ η1 ⊗ η2 ⊗ ...⊗ ηj for η ∈ H◦i , ηk ∈ H◦ik , i1 6= i.

Now suppose T ∈ B(Hi). We can “amplify” T to an operator on Hi ⊗ H(i) by simply

tensoring with the identity operator, i.e. by considering T ⊗ idH(i) ∈ B(Hi ⊗H(i)). Then,

conjugating by the unitary defined above, we get a faithful representation λi : B(Hi)→ B(H)

via:

λi(T ) := Ui(T ⊗ idH(i))U
∗
i .
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Now we define ∗i∈I(Mi, ξi) := (∪i∈Iλi(Mi))
′′, i.e. the von Neumann algebra generated by

the images of Mi under their respective representations on the Hilbert space free product.

[Note: we may abbreviate ∗i∈I(Mi, ξi) to ∗i∈IMi if the vectors ξi are understood. See the

following remark for the connection to the GNS representation.]

A straightforward computation (using the fact that U∗i (ξ) = ξi⊗ξ) shows that 〈ξ, λi(T )ξ〉 =

〈ξi, T ξi〉 for all T ∈Mi. Furthermore, if ξi is cyclic for Mi for all i, then ξ is cyclic for ∗i∈IMi.

Remark 2.1.4 We chose to define Ui : Hi ⊗ H(i) → H with Hi on the left, as above,

but we could have repeated the above construction with Hi on the “right” instead, defining

a unitary Vi : H(i) ⊗ Hi → H analogously. If we then defined ρi : B(Hi) → B(H) via

ρi(T ) = Vi(idH(i) ⊗ T )V ∗i , then one can check that λi and ρj have commuting images. In

fact, assuming each ξi is cyclic for Mi, it can be shown that (∪λi(Mi))
′ = (∪ρi(Mi))

′′.

Remark 2.1.5 Suppose ξi is cyclic for Mi for all i. Because the GNS construction gives a

correspondence between normal states φ : M → C and normal representations πφ : M →

B(Hφ) with distinguished cyclic unit vector ξφ, we could have equivalently started with a

family {(Mi, φi) : i ∈ I} of von Neumann algebras equipped with (faithful) normal states and

used the GNS representations to build (Hφi , ξφi) before proceeding with the above construc-

tion. In this case, if we identify Mi with its image under λi : B(Hi)→ B(H), we remark that

the vector state φ(x) = 〈ξ, xξ〉 satisfies φ|Mi
= φi by the comment preceding this remark.

Moreover, if xj ∈ Mij satisfies φij(xj) = 0 and ij 6= ij+1 for all j, then φ(x1...xk) = 0, and

this uniquely determines φ. We call φ the free product state of {φi : i ∈ I}, and sometimes

denote it by ∗i∈Iφi. The free product state can be shown to be faithful if φi is faithful for

all i. This discussion motivates the following definition.

Definition 2.1.6 Let (M,φ) be a von Neumann algebra equipped with a normal state φ. We

say that a family {Ai : i ∈ I} of subalgebras of M is free with respect to φ if φ(x1x2...xk) = 0

whenever xj ∈ Aij satisfies φ(xj) = 0 and ij 6= ij+1 for all j (that is, adjacent elements of

x1...xk come from different subalgebras). We say that the family is ∗-free with respect to φ

if the same condition holds when xj ∈ Aij is replaced with xj ∈ Aij ∪A∗ij . Note that if each

Ai is already ∗-closed, then these notions are equivalent.
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Remark 2.1.7 If the family {Ai : i ∈ I} is free with respect to φ and each Ai is ∗-closed,

then the normality of φ implies that the same is true of the family of von Neumann algebras

they generate, {(Ai)′′ : i ∈ I}.

Definition 2.1.8 (Freeness) Let (M,φ) be a von Neumann algebra equipped with a normal

state φ. We say that a family {Si : i ∈ I} of subsets of M is free (or freely independent) (resp.

∗-free or ∗-freely independent) with respect to φ if the family of algebras (resp. ∗-algebras)

generated by Si are free (resp. ∗-free). We may omit the “with respect to φ” if φ is clear

from context.

Example 2.1.9 Let {Gi}i∈I be a family of discrete groups, and write G = ∗i∈IGi for their

free product. We’ll write (L(Gi), δei) to denote the group von Neumann algebra ofGi together

with the vector δei ∈ l2(Gi) associated with the neutral element ei of Gi. Recall that δei

implements the canonical trace on L(Gi). Let λi : Gi → B(l2(Gi)), λ : G → B(l2(G))

denote the left regular representations of Gi and G respectively. We identify (l2(G), δe) with

∗i∈I(l2(Gi), δei) in the natural way, so that δg1...gn is identified with δg1⊗...⊗δgn . If w = g1...gn

is a word in G, then for any g ∈ Gi, one verifies that λ(g)δw = δgw = Ui(λi(g)⊗idl2(G)(i))U
∗
i δw

(using the notation above), so that the left regular representation of G is the free product

of the left regular representations of {Gi}. In other words, we have a spatial isomorphism

for the left regular representations that gives (L(∗iGi), δe) = ∗i(L(Gi), δei). Furthermore,

this isomorphism shows that δe implements the free product of the canonical trace states on

{Gi}.

Example 2.1.10 (Free Groups) The previous example implies in particular that LFn '

∗n1LZ in such a way that the canonical group trace on the former corresponds to the free

product of the group traces on the latter.

2.2 Freeness with Amalgamation

In this section, we discuss a generalization of the freeness of the previous section, where we

replace the state φ with a more general conditional expectation.
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Definition 2.2.1 Let E : M → A be a conditional expectation. Write 〈A, S〉 for the von

Neumann algebra generated by A and a subset S ⊂M . We say that a family {Si : i ∈ I} of

subsets of M is free with amalgamation over A if

E(x1...xk) = 0

whenever xj ∈ 〈A, Sij〉 with i1 6= i2 6= ... 6= ik and E(xj) = 0 for all j.

Remark 2.2.2 Note that a normal state is a conditional expectation onto C, so that this

definition extends the previous definition of freeness, which corresponds to freeness with

amalgamation over the scalars.

Now suppose that M is generated by {xi : i ∈ I} and A, and E : M → A is a faithful

normal conditional expectation. Let A〈Xi : i ∈ I〉 denote the ∗-algebra generated by A

and {Xi}, where {Xi} are non-commuting indeterminates. Then consider the A-linear map

µA : A〈Xi : i ∈ I〉 → A determined by

µA(P (Xi1 , ..., Xik) = E(P (xi1 , ..., xik)),

where P is a non-commutative ∗-polynomial in Xi1 , ..., Xik with A-coefficients. We call µA

the A-valued joint law (or joint distribution) of {xi}.

We will often implicitly make use of the following theorem, which guarantees that M is

determined up to isomorphism by the A-valued distribution of its generators.

Theorem 2.2.3 Let EM
A : M → A, EN

A : N → A be faithful normal conditional expectations,

and suppose that M (respectively N) is generated by A ∪ {xi}i∈I (resp. A ∪ {yi}i∈I). If the

A-valued joint law of {xi} is the same as the A-valued joint law of {yi}, then there exists a

unique ∗-isomorphism Φ : M → N such that Φ(xi) = yi for all i and Φ ◦ EM
A = EN

A ◦ Φ.

For details on the proof, see e.g. [NS06] Theorems 4.10 and 4.11.
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2.3 Free Creation/Annihilation Operators

Now that we’ve defined freeness of a family of subsets/subalgebras of a von Neumann algebra

with fixed reference state, we return to the full Fock space, which gives a natural source of

freely independent subalgebras.

Let H be a Hilbert space. For ξ ∈ H, we define the left creation operator l(ξ) ∈ B(F(H))

as follows:

l(ξ)Ω = ξ

l(ξ)(ξ1 ⊗ ...⊗ ξn) = ξ ⊗ ξ1 ⊗ ...⊗ ξn.

Its adjoint l∗(ξ) is the corresponding left annihilation operator and satisfies:

l∗(ξ)Ω = 0

l∗(ξ)η = 〈ξ, η〉Ω

l∗(ξ)(ξ1 ⊗ ...⊗ ξn) = 〈ξ, ξ1〉(ξ2 ⊗ ...⊗ ξn)

One can analogously define the right creation/annihilation operators, r(ξ) and r∗(ξ). If

‖ξ‖ = 1, it is easily verified that l(ξ) is a non-unitary isometry satisfying l∗(ξ)l(ξ) = 1. If

(ξi)i∈N is an orthonormal basis for H, then
∑

i l(ξi)l
∗(ξi) = 1 − PΩ, where PΩ is the rank 1

projection onto CΩ and the sum is convergent in the strong operator topology.

Now let φ be the vector state corresponding to the vacuum vector, i.e. φ(x) = 〈Ω, xΩ〉.

Our next goal is to understand the distribution of l(ξ) (and that of its real part) with

respect to the vacuum state φ. For this, we briefly describe the notion of Dyck paths and

their connection to Catalan numbers.

2.3.1 Dyck Paths

Consider a walk γ on Z2 beginning at the origin and taking steps of type (1,±1). If we write

λi for the ith step’s y-coordinate, so that λi ∈ {1,−1}, we will say that γ is a Dyck path of
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length k if we have:

j∑
i=1

λi ≥ 0 ∀1 ≤ j ≤ k

k∑
i=1

λi = 0.

This corresponds to a walk which moves right from the origin and stays above or touches

the x-axis without ever dipping beneath it. In other words, the y-coordinates of the walk

remain nonnegative. Note that if γ is a Dyck path of length k, then k is necessarily even,

since |{i : λi = 1}| = |{i : λi = −1}|. We will abuse the terminology slightly and identify a

Dyck path with the corresponding tuple of its λi’s in {−1, 1}k.

Now we want to count the number of Dyck paths of a fixed length. Let D2k denote the

number of Dyck paths of length 2k (we set D2k+1 = 0 since there are no Dyck paths of odd

length). We’ll determine D2k by using a recurrence relation. First, let’s define D0 = 1, and

note that (λ1, λ2) = (1,−1) is the only Dyck path of length 2. So D0 = D2 = 1. Now let’s

subdivide D2k into a sum

D2k =
k∑
j=1

D2k(2j),

where D2k(2j) is the number of Dyck paths of length 2k whose first return to the x-axis

occurs at position 2j. Thus,
∑2j

i=1 λi = 0 and
∑n

i=1 λi > 0 if 1 ≤ n < 2j.

Now note that D2k(2k) counts the number of Dyck paths whose only zeros are at the

endpoints of the path. We will call these paths positive Dyck paths. Such a path must be of

the form (λ1, λ2, ..., λ2k−1, λ2k) = (1, λ2, ..., λ2k−1,−1), where (λ2, ..., λ2k−1) is a Dyck path of

length 2(k − 1). So we have D2k(2k) = D2(k−1). Similarly, since a path that contributes to

D2k(2j) has its first zero at position 2j, by considering these paths to be a concatenation of

a positive Dyck path of length 2j with an arbitrary Dyck path of length 2(k − j), we have

D2k(2j) = D2j(2j)D2(k−j) = D2(j−1)D2(k−j). So we may rewrite the sum above as follows:

D2k =
k∑
j=1

D2k(2j) =
k∑
j=1

D2(j−1)D2(k−j).

This recurrence relation determines D2k in terms of D2j with j < k.
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Reindexing, we see that the numbers D2k are determined by D0 = 1 and D2(k+1) =∑k
j=0 D2jD2(k−j). If we let Cn := (2n)!

n!(n+1)!
denote the nth Catalan number, then an easy

inductive argument verifies that C0 = 1, Ck+1 =
∑k

j=0CjCk−j, so that Ck satisfies the same

recurrence relation as D2k. Therefore, D2n = Cn for all n.

2.3.2 Distribution of l(ξ) and l(ξ) + l∗(ξ)

We now have the tools to determine the distribution of l and l + l∗ with respect to the

vacuum expectation. Suppose ξ ∈ H with ‖ξ‖ = 1 and denote its corresponding left cre-

ation/annihilation operators by l and l∗ respectively. Let ω denote the vacuum expectation

on B(F(H)). For the purpose of determining the distribution of l (resp. l + l∗), we may

without loss of generality assume that H = Cξ, and we note that ξ⊗n is orthogonal to the

vacuum vector for all n ≥ 1. If we let σ(1) = ∗ and σ(−1) = 1, then, using the relations

l∗l = 1 and ll∗ = 1− PΩ, we have:

ω(lσ(λ1)lσ(λ2)...lσ(λk)) =


1 if (λ1, ..., λk) is a Dyck path

0 otherwise.

This determines the ∗-distribution of l with respect to the vacuum state. We can use

this information to get the distribution of the self-adjoint element corresponding to its real

part as follows:

ω((l + l∗)k) =
∑

(λ1,...,λk)∈{−1,1}k
ω(lσ(λ1)...lσ(λk))

=
∑

Dyck paths (λ1,...,λk)

1

= Dk.

To conclude this section, we describe the distribution of l + l∗ as a measure on R. That

is, we describe the measure µ on R whose moments agree with the moments of l + l∗ with

respect to the vacuum expectation: ω((l + l∗)k) =
∫
xk dµ.

Lemma 2.3.1 The distribution of l+ l∗ with respect to the vacuum expectation is supported
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on [−2, 2] and is given by

dµ(x) =
1

2π

√
4− x2dx.

More generally, if we let µc,r denote the measure supported on [c− r, c+ r] satsfying

dµc,r(x) =
2

πr2

√
r2 − (x− c)2dx,

then for any η ∈ H, the distribution of l(η) + l∗(η) is given by µ0,2‖η‖. We call µc,r the

semicircular law centered at c of radius r.

Proof. Renormalizing, it clearly suffices to prove the claim when ‖η‖ = 1, in which case an

easy computation verifies that
∫
xk dµ = Dk = ω((l + l∗)k), by the preceding discussion.

Remark 2.3.2 We note that, like Gaussian distributions, semicircular laws are completely

determined by knowledge of their first and second moments, which satisfy:
∫
x dµc,r = c,∫

x2 dµc,r = c2 + r2

4
. Equivalently, a semicircular element (i.e. a self-adjoint element x of

some C∗/W ∗-algebra whose law with respect to a reference state is the semicircular law) has

its law µc,r determined by its mean c and variance r2

4
.

Now that we’ve established the semicircular distribution of l(ξ) + l∗(ξ), we may use the

following notation for convenience: for ξ ∈ H, we write s(ξ) := <(l(ξ)) = l(ξ)+l∗(ξ)
2

for the

associated semicircular element (with respect to the vacuum state) on the full Fock space

of H. Note that ‖s(ξ)‖ = ‖ξ‖ and that the distribution of s(ξ) is µ0,‖ξ‖, the centered

semicircular distribution of radius ‖ξ‖.

We conclude this section with the following lemma, which characterizes the algebra gen-

erated by a single semicircular element.

Lemma 2.3.3 Let ξ ∈ H. Then s(ξ)′′ ' L(Z). Furthermore, this isomorphism can be

chosen so that ω on the former algebra corresponds to the canonical group trace on the

latter.

Proof. (See [VDN92], Lemma 2.6.5) Without loss of generality, if we let H = Cξ with

‖ξ‖ = 1, then Ω is cyclic and separating for s(ξ)′′ (see the next section for a proof).
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Therefore Ω induces a unitary U : F(H) → L2([−1, 1], µ0,1) such that U(Ω) = 1 and

Us(ξ)U∗ = x ∈ L∞([−1, 1], µ0,1) ⊂ B(L2([−1, 1], µ0,1)). Conjugation by U thus gives an

isomorphism between s(ξ)′′ and L∞([−1, 1], µ0,1) which takes the vacuum expectation to

integration against µ0,1.

Finally, if we let φ : [−1, 1]→ S1 denote the map x 7→ exp(2i(arcsinx+ x
√

1− x2)), one

can check that pre-composition with φ gives an unitary V from L2(S1) to L2([−1, 1], µ0,1) that

takes integration against the Haar measure to integration against µ0,1. Therefore conjugation

by V ∗U is a spatial isomorphism between s(ξ)′′ ⊂ B(F(H)) and L∞(S1) ⊂ L2(S1) which

takes the vacuum expectation to integration against the Haar measure on S1. Since we’ve

already seen that the latter corresponds to L(Z) with its canonical trace, this concludes the

proof.

This lemma guarantees, for example, that we can find a Haar unitary (with respect to

ω) that generates s(ξ)′′.

2.4 The Free Gaussian Functor

We’ve now built up enought machinery to discuss Voiculescu’s free Gaussian functor. First,

we discuss the connection between orthogonality in H and freeness in B(F(H)):

Lemma 2.4.1 (see Prop. 1.5.10 in [VDN92]) Let H = ⊕i∈IHi be a direct sum of Hilbert

spaces. Write l(H) := {l(ξ) : ξ ∈ H}′′ ⊂ B(F(H)). If ω (resp. ωi) denotes the vacuum

expectation on B(F(H)) (resp. B(F(Hi))), then l(H) ' ∗il(Hi) in such a way that ω

is identified with ∗iωi. In particular, if ξ, η are orthogonal in H, then l(ξ), l(η) are freely

independent with respect to the vacuum expectation.

Proof. (Sketch) By Remark 2.1.3, we can identify ∗i(F(Hi),Ωi) with the full Fock space

for H, (F(⊕iHi),Ω) = (F(H),Ω). Using this identification, one checks (using the earlier

notation for the free product representation) that for ξ ∈ Hi,

λi(lHi(ξ)) = l(ξ)
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as operators in B(F(H)). Furthermore, this relation clearly implies that ωi(lHi(ξ)) = ω ◦

λi(lHi(ξ). In particular, since H is spanned by such ξ, we have that ∗iλi : ∗il(Hi)→ l(H) is

an isomorphism, and the free product state on ∗il(Hi) (or, rather, its image) is implemented

by Ω, i.e. ω = ∗iωi.

We now describe Voiculescu’s free Gaussian functor and some of its properties, with the

help of the above lemma. The main properties of this functor are described by the following

theorem and remark, which are a paraphrasing of Theorem 2.6.2 in [VDN92].

Theorem 2.4.2 Let HR be a separable real Hilbert space, and let H be its complexification.

We write s(HR) for the von Neumann algebra generated by {s(ξ) : ξ ∈ HR} in B(F(H)) and

ω for the vacuum state. Then we have:

1.) The vacuum vector Ω is cyclic and separating for s(HR), so that ω is a faithful, normal

trace state.

2.) If dim(HR) = n ∈ {1, 2, ...} ∪ {∞}, then s(HR) ' LFn.

Proof. The cyclicity of Ω follows from the fact that if (ξi) is an orthonormal basis for HR,

then s(ξi1)...s(ξik)Ω = ξi1 ⊗ ... ⊗ ξik + ηk−1, where ηk−1 ∈ ⊕k−1
i=0H

⊗i. The fact that Ω is

separating for s(HR) is equivalent to its being cyclic for s(HR)′ = {r(ξ) + r∗(ξ) : ξ ∈ HR}′′,

where r(ξ) is the right creation operator corresponding to ξ, which follows similarly.

The one-dimensional case of the second claim was discussed in the previous section. For

the multi-dimensional case, note that by the preceding lemma:

s(HR) = ∗ni=1s(ξi)
′′

= ∗iL(Z)

= L(∗iZ) = LFn.

Remark 2.4.3 It follows from the faithfulness in the preceding theorem and Lemma 2.3.1

that spec(l + l∗) = supp(µ) = [−2, 2]. See, for example, Prop. 3.15 in [NS06].

Remark 2.4.4 (Functoriality) We won’t prove these properties here (see [VDN92] for a

complete discussion), but we’ll briefly describe the sense in which the map HR 7→ s(HR) is
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functorial. First, let T : H → K be a bounded operator between Hilbert spaces H and K.

Then T induces a map between the associated full Fock spaces, denoted F(T ) : F(H) →

F(K), via F(T ) := idΩ ⊕∞i=1 T
⊗i.

Now consider the category C of real Hilbert spaces with contractions as morphisms, and

let D be the category whose objects are pairs (M, τ) of von Neumann algebras with specified

faithful, normal tracial states and whose morphisms are trace-preserving, unital, completely

positive maps.

Given a contraction T : HR → KR, we still write T for its complexification T : H → K.

There is a map s(T ) : s(HR)→ s(KR) uniquely determined by:

(s(T )x)Ω = F(T )(xΩ)

for all x ∈ s(HR).

The free Gaussian functor s(·) is then a functor C s−→ D. If V : HR → KR is an isometry,

then s(V ) : s(HR)→ s(KR) is an injective homomorphism. If P : HR → HR is a projection,

then s(P ) is a conditional expectation from s(HR) onto s(P (HR)).

2.5 Free Bogoliubov Actions

2.5.1 Definitions and Outerness

Let α : G→ O(HR) be an action of a group G on a real Hilbert space HR. We’ll denote by

α the complexified action on H = HR ⊗ C given by α⊗ id : G→ U(H).

We can now define a new action of G on the full Fock space F(H), which we will denote

by F(α) : G→ U(F(H)). It is determined by the following relations:

F(α)g(Ω) = Ω

F(α)g(ξ1 ⊗ ξ2 ⊗ ...⊗ ξn) = αg(ξ1)⊗ αg(ξ2)⊗ ...⊗ αg(ξn),

for all ξi ∈ H and g ∈ G.

We can now define a new vacuum state-preserving action, called the free Bogoliubov
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action (or shift) induced by α of G on Γ(H) ⊂ B(F(H)) via:

σαg = Ad(F(α)g).

We note that the free Bogoliubov action satisfies for any ξ ∈ H:

σαg (s(ξ)) = F(α)gs(ξ)F(α)∗g = s(αg(ξ)).

Actions obtained in this way are almost guaranteed to be outer. More precisely, we have:

Theorem 2.5.1 (Thm. 5.1, [HS11]) Let α : G → O(H) be a strongly continuous repre-

sentation of a locally compact group G on a real Hilbert space H. Then σαg is an inner

automorphism of s(H) if and only if αg = 1. In particular, if α is faithful, then the free

Bogoliubov action σα is free (i.e. properly outer).

Remark 2.5.2 The last sentence of this theorem isn’t part of the statement of Theorem 5.1

in [HS11], but we include it for later reference. It follows for trivial reasons when dimH = 1

and otherwise from the factoriality of s(H), which forces any outer automorphism to be

properly outer (as we saw in Remark 1.5.19).

2.5.2 Mixing Representations and (Strong) Solidity

We now discuss some structural results about free Bogoliubov actions and their corresponding

crossed products. First, we define mixingness of a representation.

Definition 2.5.3 Let G be a countable group. Consider an orthogonal/unitary representa-

tion α : G→ O(H) (resp. α : G→ U(H)). We say that α is mixing if

lim
g→∞
〈αgξ, η〉 = 0

for all ξ, η ∈ H.

Similarly, we have mixingness for actions on von Neumann algebras.
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Definition 2.5.4 Given an action α : G → Aut(M) on a tracial von Neumann algebra

(M, τ), we say that α is mixing if

lim
g→∞

τ(αg(x)y) = 0

for all x, y ∈ M 	 C, where M 	 C denotes the set of traceless (i.e. τ(x) = 0) elements of

M .

Remark 2.5.5 (Mixing =⇒ Ergodic) It’s easy to see that mixingness of an action implies

ergodicity, because if 0 6= x ∈Mα 	 C, we have limg→∞ τ(αg(x)x∗) = τ(xx∗) > 0.

A straightforward computation using the fact that σαg (s(ξ)) = s(αg(ξ)) (see also Propo-

sition 2.8 in [HS11]) yields:

Lemma 2.5.6 The following are equivalent:

(1) The representation α : Z→ O(H) is mixing.

(2) The associated free Bogoliubov action σα : Z y s(H) is mixing.

Before describing the relevant structural result of Houdayer and Shlyakhtenko on the

crossed products associated to such actions, we need a few definitions. The following defi-

nition was given originally by Ozawa in [Oza04], in which Ozawa established the solidity of

LΓ for any hyperbolic group Γ. In particular, the free group factors are solid.

Definition 2.5.7 (Solidity) A von Neumann algebra M is called solid if for any diffuse von

Neumann subalgebra N ⊂M , the relative commutant N ′ ∩M is amenable.

Remark 2.5.8 We give Connes’ characterization of amenability in the next chapter, but for

now we’ll say that a von Neumann algebra M ⊂ B(H) is amenable if there is a conditional

expectation E : B(H) → M . We will see, by Arveson’s theorem, that this condition is

independent of the choice of representing Hilbert space H.

There is also a useful strengthening of solidity, i.e. strong solidity, first defined and used

by Ozawa and Popa in [OP10]. For the definition, we need the notion of the normalizer of

an inclusion.

49



Definition 2.5.9 (Normalizer) Let N ⊂M be a von Neumann subalgebra. The normalizer

of N in M , denoted NM(N), is the set of unitaries in M that leave N globally invariant

under conjugation. That is, NM(N) = {u ∈ U(M) : uNu∗ = N}.

Definition 2.5.10 (Strong Solidity) Let M be a diffuse von Neumann algebra. We say that

M is strongly solid if for any diffuse amenable subalgebra N ⊂ M with expectation (i.e.

such that M has a faithful, normal expectation onto N), we have NM(N)′′ is also amenable.

Remark 2.5.11 Note that if u is a unitary in N ′, then u ∈ NM(N). Since N ′ ∩ M is

generated by its unitaries, we have N ′ ∩ M ⊂ NM(A)′′ for any subalgebra A ⊂ N . In

particular, if M is tracial and strongly solid, then it is solid, because amenability passes to

subalgebras (at least in the tracial setting, as we see in the next chapter).

We can now state Houdayer and Shlyakhtenko’s result on strong solidity for free Bogoli-

ubov crossed products:

Theorem 2.5.12 (Thm. 3.10, [HS11]) Let α : G→ O(H) be faithful mixing representation.

Then the non-amenable II1 factor s(H) oσα G is strongly solid.

Remark 2.5.13 The result here is the strong solidity. It’s easy to see that M = s(H)oσαG

is a non-amenable II1 factor. Mixingness implies both ergodicity of the action and that

dimH > 1, so that s(H) ⊂ M is non-amenable (being a free group factor), and factoriality

of M then follows from 2.5.1 (outerness for Bogoliubov actions). In fact, for the groups we’ll

be interested in (G = R,Z), it’s easy to see that mixingness implies faithfulness, which makes

the assumption of faithfulness (equivalently, the assumption of outerness for the Bogoliubov

action) superfluous.

In what follows, we won’t need the full strength of this theorem. We’ll only use it to

guarantee the solidity of our Bogoliubov crossed products. But first we’ll address some

preliminaries on bimodules and completely positive maps in the next chapter.

50



CHAPTER 3

Bimodules and Completely Positive Maps

3.1 Complete Positivity and Stinespring Dilation

Let M,N be von Neumann algebras, and let ψ : M → N be a linear map. Then ψ induces

a map ψn : Mn → Nn, called the amplification of ψ, via

ψn(x⊗ A) = ψ(x)⊗ A

for all x ∈ M,A ∈ Mn(C). In other words, if we think of Mn as being n× n matrices with

entries in M , then the amplification of ψ is obtained by entry-wise application of ψ. We

note that ψn is normal if ψ is normal.

There are positive maps φ : M → N such that φn is no longer positive for some n > 1.

For example, if φ is the transpose map on M = N = M2(C), then φ is positive, but φ2 is

not. This motivates the following definitions:

Definition 3.1.1 A map ψ : M → N is called n-positive (n ∈ N) if ψi is positive for all

1 ≤ i ≤ n.

Definition 3.1.2 A map ψ : M → N is called completely positive if it is n-positive for all

n ∈ N.

In other words, a map is completely positive if all of its amplifications are positive. We

immediately have some important examples of completely positive maps.

Example 3.1.3 (Homomorphisms) Suppose π : M → N is a homomorphism of von Neu-

mann algebras (or of C∗-algebras). Then π is already positive, since π(x∗x) = π(x)∗π(x) ≥ 0
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for all x ∈M . Since πn = π⊗ id is still a homomorphism (from Mn to Nn), π is completely

positive.

Example 3.1.4 Let V ∈ B(H,K) be a bounded operator from a Hilbert space H to a

Hilbert space K. The map B(H) 3 T 7→ V TV ∗ ∈ B(K) is completely positive by an

elementary computation.

Completely positive maps are closed under composition, so a combination of the two

above examples gives that if π : A → B(H) is a homomorphism and V ∈ B(H,K), then

ψ(a) = V π(a)V ∗ is a completely positive map from A to B(K). In fact, all completely

positive maps are of this form for some V and π (in the same way that all states are vector

states via the GNS representation) by the Stinespring construction later in this section.

Conditional expectations provide another important example of completely positive maps.

First, some definitions:

Definition 3.1.5 A map π : A → B between C∗-algebras A and B is called contractive if

‖π(a)‖ ≤ ‖a‖ for all a ∈ A.

Definition 3.1.6 (Conditional Expectation) Let B ⊂ A be an inclusion of C∗-algebras. A

conditional expectation from A to B is a contractive, completely positive B-bimodule map

E : A→ B satisfying E(b) = b for all b ∈ B.

The B-bimodular condition is the same as saying that E(bab′) = bE(a)b′ for all a ∈ A and

b, b′ ∈ B. If A and B are von Neumann algebras, we also require our conditional expectations

to be normal unless otherwise stated.

Since we will often make use of conditional expectations in later sections, we record a

few useful facts about them here. The following characterization is due to Tomiyama. See

[BO08] Chapter 1 for an elementary proof.

Theorem 3.1.7 Let B ⊂ A be C∗-algebras and suppose E : A→ B is a linear map satisfying

E(b) = b for all b ∈ B. Then the following conditions are equivalent:

(i) E is a conditional expectation
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(ii) E is contractive and completely positive

(iii) E is contractive.

In other words, every contractive projection from A onto B is automatically a conditional

expectation.

The following lemma guarantees the existence of conditional expectations in the tracial

von Neumann algebraic setting. Recall that a map φ : M → M is called trace-preserving if

τ(φ(x)) = τ(x) for all x ∈M .

Lemma 3.1.8 Let (M, τ) be a von Neumann algebra with faithful normal tracial state τ ,

and let N ⊂ M be a von Neumann subalgebra with the same unit as M . Then there is a

unique τ -preserving normal conditional expectation E : M → N .

Proof. Let eN denote the orthogonal projection eN : L2(M, τ) → L2(N, τ), and define

E : M → B(L2(N, τ)) via E(x) = eNxeN . Noting that E(x) commutes with the right

N -action on L2(N) and recalling that N = ρ(N)′, we see that E takes its image in N and

satisfies E(y) = y for all y ∈ N . Therefore E is a trace-preserving conditional expectation

E : M → N . To see that such an expectation must be unique, note that if Ê is another such

expectation, then

τ(Ê(x)y) = τ(xy) = τ(E(x)y),

for all x ∈M, y ∈ N . So Ê = E.

By definition, conditional expectations are completely positive maps. We give a couple

of examples of these expectations.

Example 3.1.9 (Group Case) Let H ⊂ G be a subgroup of a discrete group G. The

canonical trace τ(
∑
cgλg) = ce on the group von Neumann algebra L(G) induces (by the

above lemma) a unique trace-preserving conditional expectation E : L(G) → L(H). It

satisfies the following relation:

E(
∑
g∈G

cgλg) =
∑
h∈H

chλh.

53



Example 3.1.10 (Abelian Case) Let F be a sub-σ-algebra of the σ-algebra G of µ-measurable

subsets on a probability measure space (X,µ). As in the proof of the above lemma, we

consider the orthogonal projection E : L2(X,G, µ) → L2(X,F , µ) ⊂ L2(X,G, µ). This or-

thogonal projection restricts to a conditional expectation E : L∞(G, µ) → L∞(F , µ). In

fact, every conditional expectation on an abelian von Neumann algebra is of this form in

the sense that if Ê : A → B is such an expectation, then there exists an expectation

E : L∞(G, µ) → L∞(F , µ) and an isomorphism φ : A → L∞(G, µ) such that φ ◦ Ê = E ◦ φ

for some choice of G and F .

We remark that a state is a special case of a conditional expectation. It can be shown

that any positive map into or out of an abelian algebra is automatically completely positive.

In particular, states are both completely positive and contractive, making them conditional

expectations onto the scalars. And in the same way that we can use a state to run the

GNS construction, we can take a completely positive map ψ : M → B(K) and produce a

representation π : M → B(H) and operator V ∈ B(H,K) so that ψ(x) = V π(x)V ∗ for all

x ∈ M . We give a sketch of Stinespring’s construction below, but see [BO08] Chapter 1 for

more details.

Theorem 3.1.11 (Stinespring Dilation) Let ψ : M → N ⊂ B(K) be a completely positive

map. There exists a Hilbert space H, a representation π : M → B(H), and an operator

V ∈ B(H,K) satisfying

ψ(x) = V π(x)V ∗

for all x ∈M . If ψ is unital, then V ∗ is an isometry.

Proof. (Sketch) Consider the algebraic tensor product M⊗K equipped with the sesquilinear

form satisfying 〈x⊗ ξ, y⊗ η〉 = 〈ψ(y∗x)ξ, η〉K . As in the GNS construction, one checks that

this is non-negative definite and quotients by the zero-length vectors to obtain a positive-

definite form on the quotient H0. The left multiplication π0 : M → M ⊗ K, defined by

π0(x)(y ⊗ η) := xy ⊗ η, descends to a representation π : M → B(H) on the completion H

of H0 with respect to 〈·, ·〉. We define V ∗ ∈ B(K,H) by extending V ∗(ξ) = 1⊗̂ξ (where we
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write x⊗̂ξ for the image of x⊗ ξ ∈M ⊗K in H). Then for any x ∈M , ξ, η ∈ K we can see

that

〈V π(x)V ∗ξ, η〉K = 〈π(x)(1⊗̂ξ), 1⊗̂η〉 = 〈x⊗̂ξ, 1⊗̂η〉 = 〈ψ(x)ξ, η〉K ,

Thus, as operators on K, we get that ψ(x) = V π(x)V ∗. Finally, if ψ is unital, then ψ(1) =

1 = V V ∗. So V ∗ is an isometry from K to H.

We may call (π,H, V ) a Stinespring dilation of the completely positive map ψ. If we

also require that π(M)V ∗K is dense in H (as in the above construction), then a Stinespring

dilation of ψ (i.e. a triple (π,H, V ) satisfying the conditions of the theorem) is unique up to

unitary equivalence. Furthermore, the constructed π is normal if ψ was normal.

The next section gives an important definition (that of injectivity) related to the existence

of extensions of completely positive maps.

3.2 Injectivity and Connes’ Characterization of Amenability

Using the notion of complete positivity, we now consider injectivity in a certain category,

which enables us to give Connes’ characterization of injectivity (or amenability) for von

Neumann algebras. First we set up the appropriate category.

Definition 3.2.1 An operator system is a ∗-closed subspace E ⊂ A of a unital C∗-algebra

A such that 1 ∈ E.

Note that any von Neumann algebra (or C∗-algebra) is an operator system. Now let C

denote the category of operator systems whose morphisms are contractive (i.e. ‖ψ‖ ≤ 1)

completely positive maps. We will say that a von Neumann algebra is injective if it is an

injective object in this category. In other words:

Definition 3.2.2 (Injectivity) A von Neumann algebra M is injective if every contractive

completely positive map ψ : E →M from an operator system E ⊂ A in a unital C∗-algebra

A extends to a contractive completely positive map ψ̂ : A→M .
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The fact that B(H) is injective is the content of Arveson’s theorem. See [BO08] Theorem

1.6.1 for a proof of the following.

Theorem 3.2.3 (Arveson’s Theorem) Let E ⊂ A be operator systems. Any contractive

completely positive map ψ : E → B(H) extends to a contractive completely positive map

ψ̂ : A→ B(H).

Recall our earlier definition of amenability:

Definition 3.2.4 (Amenability) A von Neumann algebra M ⊂ B(H) is amenable if there

exists a conditional expectation E : B(H)→M .

Equipped with Arveson’s theorem, it’s easy to see that injectivity and amenability are

equivalent. If M is injective, then any contractive, completely positive extension to B(H)

of the identity map id : M →M is a conditional expectation onto M . Conversely, if M has

such an expectation, then we can take a morphism ψ : E → M ⊂ B(H) and use Arveson’s

theorem to produce an extension ψ̂ : A→ B(H). The composition E
B(H)
M ◦ ψ̂ then witnesses

the injectivity of M . The equivalence of injectivity with amenability also shows that the

amenability of M doesn’t depend on the choice of representing Hilbert space H.

Connes’ theorem expands this equivalence - notably showing that amenability is equiva-

lent to hyperfiniteness. We’ll state the theorem in the tracial case. Proving that (ii) through

(v) are equivalent is relatively straighforward (see e.g. [AP17] Chapter 10). The difficult

part is showing that amenability implies hyperfiniteness. See [Tak03] Chapter XVI for a full

proof.

Theorem 3.2.5 (Connes) Let (M, τ) be a separable tracial von Neumann algebra. The

following are equivalent:

(i) M is hyperfinite

(ii) M is amenable

(iii) M is injective

(iv) there exists a state φ on B(L2(M)) extending τ such that φ(xT ) = φ(Tx) for all
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x ∈M , T ∈ B(L2(M)).

(v) there exists a net (ξi) of unit vectors in L2(M)⊗ L2(M) satisfying ‖xξi − ξix‖2 → 0

and 〈xξi, ξi〉 → τ(x) for all x ∈M .

Remark 3.2.6 The above conditions are also equivalent to the condition that the trivial

bimodule ML
2(M)M is weakly contained in the coarse bimodule ML

2(M)⊗L2(M)M (defined

in the next section), but we won’t explore weak containment further here.

We can, with the help of Connes’ theorem, give more examples of amenable von Neumann

algebras.

Example 3.2.7 (Amenable Groups) It’s easy to show that L(G) is amenable as a von Neu-

mann algebra if and only if G is an amenable group. Thus, for example, any finitely generated

group of subexponential growth produces an amenable group von Neumann algebra.

Example 3.2.8 Let N ⊂ (M, τ) be an arbitrary von Neumann subalgebra of an amenable

tracial von Neumann algebra M . Composing the unique trace-preserving expectation EN :

M → N with an expectation EM : B(H) → M gives the amenability of N . So, at least in

the tracial setting, it’s easy to see that amenability passes to subalgebras.

Example 3.2.9 (Abelian/Type I) Since abelian von Neumann algebras are easily seen to

be hyperfinite, we see that any abelian algebra is amenable. More generally, any Type I von

Neumann algebra is hyperfinite, thus amenable.

Now that we’ve seen the general structure and some important uses/examples of com-

pletely positive maps, we can discuss the correspondence between completely positive maps

and bimodules.

3.3 Bimodules

Before establishing the connection to completely positive maps, we first discuss the definition

and common examples of bimodules over von Neumann algebras. See e.g. [AP17] for more
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detailed exposition. Throughout this section, let M and N be separable von Neumann

algebras.

3.3.1 Definitions and Examples

Definition 3.3.1 (Left/Right Modules) We define a left M-module to be simply a (normal)

representation π : M → B(H). Sometimes we refer to H itself as the left module and write

xξ instead of π(x)ξ when π is understood. In this case, we may write MH to emphasize that

H is a left M -module and suppress π from the notation. Similarly, a right M -module is a

left M op module. Given a right M -module ρ : M op → B(H), we may write ξx for ρ(xop)ξ.

Similarly, we may use HM to emphasize that H is a right M -module if ρ is understood.

Definition 3.3.2 (Bimodules) An M -N -bimodule is a pair of representations {π : M →

B(H), ρ : N op → B(H)} on the same Hilbert space H such that π(M) commutes with

ρ(N op). In other words, H is simultaneously a left M -module and a right N -module such

that these two actions commute. When the representations π and ρ are understood, we may

suppress them from our notation and write MHN for the bimodule.

We remark that the commutativity of the left and right actions is equivalent to the

associativity relation

(xξ)y = x(ξy)

for x ∈M, y ∈ N . We will say that two left M -modules (H1, π1) and (H2, π2) are isomorphic

if there is a unitary operator U : H1 → H2 such that Uπ1(x) = π2(x)U for every x ∈M . We

similarly define isomorphism of right M -modules and M -N -bimodules in the obvious way

(i.e. by the existence of a unitary that intertwines the actions).

We’ve already seen a few important examples of (bi)modules. We will postpone the exam-

ples of bimodules over abelian and group algebras until we’ve discussed the correspondence

between bimodules and completely positive maps in the next section.

Example 3.3.3 L2(M, τ)
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Let (M, τ) be a tracial von Neumann algebra. Then L2(M), equipped with its natural

left- and right-multiplication operations, is an M -M -bimodule. It is sometimes called the

identity or trivial M -M -bimodule for reasons explained below.

Example 3.3.4 (Direct Sums) If H,K are M -N -bimodules, then H ⊕K is again an M -N -

bimodule with the natural diagonal M - and N -actions.

Example 3.3.5 (Coarse Bimodule) Given tracial von Neumann algebras M and N , the

coarse bimodule is the M -N -bimodule L2(M)⊗L2(N) with left- and right- actions satisfying

x(ξ ⊗ η)y = xξ ⊗ ηy.

The space of Hilbert-Schmidt operators, which we will denote L2(L2(N), L2(M)), is de-

fined to be the collection of operators T : L2(N)→ L2(M) with Tr(T ∗T ) finite. This space

is a Hilbert space with 〈S, T 〉 := Tr(S∗T ) and is endowed with an M -N -bimodular structure

via composition, i.e. for x ∈M , y ∈ N ,

xTy = x ◦ T ◦ y.

One can check that the coarse bimodule is isomorphic to the latter bimodule via the map

that takes ξ ⊗ η to 〈Jη, ·〉ξ : L2(N)→ L2(M). See [AP17] for more details.

Remark 3.3.6 (Classification of left/right M -modules)

We can use the trivial module to build larger M -modules in the following way. Consider

the right M -module l2(N) ⊗ L2(M) where x ∈ M acts by idl2(N) ⊗ ρ(x) (i.e. the diagonal

right action). The commutant of 1⊗ ρ(M) in B(l2(N)⊗ L2(M)) is B(l2(N))⊗M (where we

write M ⊂ B(L2(M)) for the left multiplication operators). Thus, given any projection p ∈

B(l2(N))⊗M , we have the associated right M -module given by p(l2(N)⊗L2(M)). It can be

shown that two such right M -modules are isomorphic if and only if the associated projections

are equivalent in B(l2(N))⊗M . In fact, all (separable) right M -modules are isomorphic to

p((l2(N) ⊗ L2(M)) for some p, which establishes a bijective correspondence between right

M -modules and equivalence classes of projections in B(l2(N))⊗M . The situation for left

modules is completely analogous.
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Using the preceding classification, we can now define a notion of size (or dimension) of

a module. Recall that B(l2(N)) has a canonical semifinite trace given by Tr. The tensor

product of these traces Tr⊗ τ gives a faithful, normal semifinite trace on B(l2(N))⊗M . We

define the dimension of a module as follows:

Definition 3.3.7 (Dimension of a left/right M -module) Let (M, τ) be a tracial von Neu-

mann algebra. We define the M -dimension of a right (resp. left) M -module H to be

dimM(H) := (Tr⊗ τ)(p), where p is any projection in B(l2(N))⊗M (resp. B(l2(N))⊗ρ(M))

such that p((l2(N)⊗ L2(M)) is isomorphic to H as M -modules.

Remark 3.3.8 Unfortunately, the above definition of dimension for a module H is not

intrinsic to the module structure. It depends on the choice of the faithful trace τ , which is

not unique except in the case that M is a II1 factor.

Example 3.3.9 (Dual Bimodule)

Given a bimodule MHN , the conjugate Hilbert space H is canonically an N -M bimodule

via the following action:

yξx = x∗ξy∗,

for x ∈M, y ∈ N . We call NHM the dual or contragredient bimodule of MHN . The identity

bimodule ML
2(M)M is self-dual in the sense that ML2(M)M is isomorphic to ML

2(M)M as

M -M -bimodules.

Before proceeding to the discussion of composition (or fusion tensor products) of bimod-

ules, we need to define left- and right-boundedness of vectors in a module.

Definition 3.3.10 (Left- and Right-Bounded Vectors) Let MHN be an M -N -bimodule. A

vector ξ ∈ H is called left M-bounded (resp. right N-bounded) if the map x 7→ xξ (resp.

y 7→ ξy) extends to a bounded operator Rξ : L2(M)→ MH (Lξ : L2(N)→ HN).

The collection of all left-bounded vectors is denoted MH
◦, and similarly H◦N for right-

bounded vectors. Popa showed in [Pop86] that MH
◦ ∩H◦N is dense in MHN .
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Now let ξ, η ∈ H◦N . One can check that L∗ηLξ : L2(N)→ L2(N) commutes with the right

N -action. Since the commutant of the right N -action on the trivial bimodule is simply the

left N -action, L∗ηLξ ∈ N . We will write 〈η, ξ〉N for L∗ηLξ. Clearly 〈η, ξ〉∗N = 〈ξ, η〉N . On H◦N ,

〈·, ·〉N defines an N -valued inner product which is right N -linear in the second variable, i.e.

〈η, ξ1x+ ξ2〉N = 〈η, ξ1〉Nx+ 〈η, ξ2〉N

for all x ∈ N , ξ1, ξ2, η ∈ H ·N . One verifies that τ(〈ξ, ξ〉N) = ‖ξ‖2, so that 〈·, ·〉N is in fact

positive definite.

Similar considerations hold for R∗ηRξ with ξ, η ∈ MH
◦. In this case, R∗ηRξ defines an

element of M ′ = JMJ , so one conjugates by J to get an element of M . Because of the

anti-linearity of J , 〈·, ·〉M is M -linear in the first variable.

Example 3.3.11 (Connes’ Fusion Tensor Product) Suppose we have a right M -module HM

and a left M module MK. We define the fusion or relative tensor product H⊗MK as follows.

Consider the algebraic tensor product H◦M⊗K (note the restriction to right-bounded vectors

in H), together with the pre-inner product defined by extending the relation

〈η1 ⊗ ξ1, η2 ⊗ ξ2〉H◦M⊗K := 〈ξ1, 〈η1, η2〉Mη2〉K .

Just as in the GNS construction, we define H⊗MK to be the completion of the separation

(i.e. the quotient by the ideal I of zero-length vectors) of H◦M ⊗K with respect to this pre-

inner product. Denote by ξ ⊗M η the image of ξ ⊗ η ∈ H◦M ⊗ K after separation and

completion.

Note that for any x ∈ M , we have ξx ⊗M η = ξ ⊗M xη. To see this, we compute the

length of their difference ξx ⊗M η − ξ ⊗M xη with respect to the pre-inner product. For

readability, we suppress the subscripts for the scalar-valued inner products.

‖ξx⊗M η − ξ ⊗M xη‖2
H◦M⊗K

= 〈ξx⊗M η − ξ ⊗M xη, ξx⊗M η − ξ ⊗M xη〉

= 〈η, 〈ξx, ξx〉Mη〉 − 〈η, 〈ξx, ξ〉Mxη〉

− 〈xη, 〈ξ, ξx〉Mη〉+ 〈xη, 〈ξ, ξ〉Mxη〉

= 0,
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where the last equality follows from the M -linearity of the M -valued inner product.

One can check that any left L-action on HM and right N -action on MK descend from

H◦M ⊗MK
◦ (equipped with the action from the coarse bimodule) to actions on H ⊗M K. In

this way, the fusion of LHM and MKN yields an L-N -bimodule LH ⊗M KN . We note that if

M = C, then LH ⊗M KN is simply the coarse bimodule LH ⊗KN .

Remark 3.3.12 In the above definition, we used left-bounded vectors from H to define

the inner product on H◦M ⊗ MK. One could have instead used the M -valued inner product

coming from right-bounded vectors in K, yielding a similarly defined pre-inner product on

HM⊗MK◦. By Proposition 12.2.2 in [AP17], these pre-inner products coincide on H◦M⊗MK◦

and the above construction applied to any of these three spaces yields the same Hilbert space

(or L-N -bimodule) H ⊗M K.

The relative tensor product satisfies the following properties:

Lemma 3.3.13 Let LHM , MKN , and NQP be bimodules. The following are canonically

isomorphic (as bimodules):

(i) (dual) K ⊗M H ' H ⊗M K

(ii) (associativity) H ⊗M (K ⊗N Q) ' (H ⊗M K)⊗N Q

(iii) (identity) L2(M)⊗M H ' H ' H ⊗N L2(N)

For proofs of the above, see [AP17], [Con94]. We will see another justification for (ii) and (iii)

when we discuss the relationship between bimodules and completely positive maps, where

the fusion tensor product corresponds to composition of maps. For this reason, the fusion

tensor product is sometimes called the composition of HM and MK.

We conclude this section with a final example of a common M -M bimodule, coming from

the basic construction.

Example 3.3.14 (Jones’ Basic Construction)

Let N ⊂ (M, τ) be a unital inclusion of tracial von Neumann algebras. There is a corre-

sponding natural inclusion of L2(N, τ |N) ⊂ L2(M, τ). Let eN be the orthogonal projection
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from L2(M) onto L2(N), viewed as an operator in B(L2(M)). The basic construction of

the inclusion N ⊂ M is (the inclusion of M into) the algebra 〈M, eN〉, the von Neumann

subalgebra of B(L2(M)) generated by M and eN . Because compression by eN implements

the conditional expectation onto N , we have eNxeN = EN(x)eN for all x ∈ M , where EN

denotes the conditional expectation. Therefore, using the fact that the central support of eN

in 〈M, eN〉 is 1, we see that 〈M, eN〉 is generated (as a von Neumann algebra) by elements

of the form xeNy with x, y ∈M .

The basic construction comes equipped with a faithful, normal semifinite trace Tr defined

on the generators xeNy as follows:

Tr(xeNy) = τ(xy),

for all x, y ∈M .

Concerning the basic construction, we will occasionally make use of the following theorem.

The map described below was first defined by Popa (see [Pop95]). For a more complete

discussion of the following theorem and its proof, see Theorem 4.5.3 in [SS08].

Theorem 3.3.15 (The Pull-down Map) Let N ⊂ (M, τ) a unital inclusion. There is an

M-M-bimodular map TM : L1(〈M, eN〉,Tr)→ L1(M, τ) such that

TM(xeNy) = xy

for all x, y ∈M and satisfying the following conditions for all X ∈ L1(〈M, eN〉):

(i) TM respects ∗ and the respective traces: τ(TM(X)) = Tr(X)

(ii) eN(TM(eNX)) = eNX

(iii) ‖TM(X)‖1 ≤ ‖X‖1 (where each 1-norm comes from the appropriate trace)

(iv) TM maps eNM onto M isometrically for the 2-norm (i.e. ‖TM(eNX)‖2 = ‖X‖2).

We will call TM the pull-down map. It can equivalently be described as the unique faithful,

normal operator-valued weight TM from the basic construction 〈M, eN〉 to M satisfying

condition (i) above.
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3.3.2 Correspondence Between Bimodules and Completely Positive Maps

We have already examined the relationship between cyclic representations (H, ξ) with desig-

nated cyclic vector ξ and states φ, where φ = 〈ξ, ·ξ〉 is the recipe for producing a state from

the former, and the GNS representation gives the recipe for producing a cyclic representation

from the latter. In this section, we discuss the generalization of this correspondence to that

of cyclic bimodules and completely positive maps.

3.3.2.1 From Cyclic Bimodules to Completely Positive Maps

Definition 3.3.16 (Cyclic M -N -Bimodule) An M -N -bimodule MHN is cyclic if there is a

vector ξ ∈ H such H is densely spanned by MξN . We call ξ a cyclic vector.

Given a cyclic bimodule (MHN , ξ) with ξ left N -bounded, recall from the previous section

that we defined Lξ : L2(N) → H to be the extension of the map y 7→ ξy, and we saw that

〈η, ξ〉N := L∗ηLξ ∈ N for any left-bounded ξ, η ∈ H. It’s easy to see that, for any x ∈M and

left N -bounded ξ, xξ is still left-bounded, and Lxξ = xLξ. So, given such a cyclic bimodule,

we define for x ∈M :

Φ(x) := 〈ξ, xξ〉N = L∗ξxLξ.

From the last term, it’s clear (using Example 3.1.4) that we’ve defined a completely positive

map Φ : M → N .

Remark 3.3.17 We note the similarity between the vector state recipe φ(x) = 〈ξ, xξ〉 and

the above definition of Φ(x) = 〈ξ, xξ〉N . It’s easy to see that the notion of cyclicity defined

above corresponds, in the case N = C, to a cyclic representation of M and that Φ = φ in

this case.

3.3.2.2 From Completely Positive Maps to Bimodules

Now let Φ : M → N be a normal, (unital) completely positive map between tracial von

Neumann algebras. Using Φ, we can define a pre-inner product on M ⊗ L2(N) satisfying:

〈y ⊗ η, x⊗ ξ〉 := 〈η,Φ(y∗x)ξ〉,
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where the latter inner product is that of L2(N), coming from its trace. Complete positivity

of Φ gives positive semidefiniteness, and we will denote by HΦ (or simply H) the separation

and completion of M ⊗L2(N) with respect to this pre-inner product. We note that HΦ is a

Stinespring dilation for Φ.

We will again abuse notation and write x ⊗ ξ for its image in H. Then H becomes an

M -N -bimodule with the actions satisfying

x(y ⊗ ξ)z = xy ⊗ ξz

for all x, y ∈M , ξ ∈ L2(N), and z ∈ N .

As in the GNS representation, we can recover the completely positive map Φ from the

cyclic vector ξ̂ = 1 ⊗ 1̂. It is easy to check that ξ̂ is left N -bounded, and we have Φ(x) =

〈ξ̂, xξ̂〉N . It follows that if Φ is trace-preserving, then 〈·ξ̂, ξ̂〉 and 〈ξ̂·, ξ̂〉 (the scalar-valued

inner products) are the traces on M and N respectively.

3.3.2.3 More Bimodule Examples

We can now justify some of the previous nomenclature and give examples of important

bimodules and their corresponding completely positive maps.

Example 3.3.18 (Identity/Homomorphisms) Using the construction of the previous sec-

tion, it’s easy to see that if π : M → N is a ∗-homomorphism, then the corresponding

bimodule Hπ is isomorphic to π(M)L
2(N)N , where the left M -action is twisted by π (i.e.

x · ŷ = π̂(x)y) for x ∈M and y ∈ N , and the right action is the usual one. In particular, an

automorphism α of M corresponds to α(M)L
2(M)M , and the identity automorphism corre-

sponds to the identity bimodule. If π : M → N is an isomorphism, one can check that the

contragredient bimodule satisfies Hπ ' Hπ−1 .

Example 3.3.19 (Conditional Expectations) Let EN : M → N ⊂ M be a conditional ex-

pectation, regarded as a completely positive map from M to itself. Then x ⊗ y 7→ xeNy

induces an isomorphism between HEN ' L2(M) ⊗N L2(M) and L2(〈M, eN〉) as M -M -

bimodules, where eN is the Jones projection corresponding to the inclusion N ⊂ M . In
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particular, τ : M → C corresponds to the coarse bimodule L2(M) ⊗ L2(M), and we again

see that id : M →M corresponds to L2(M)⊗M L2(M) ' L2(M).

Example 3.3.20 (Abelian Case) Recall that any abelian von Neumann algebra on a sepa-

rable Hilbert space can be written as L∞(X,µX) for some standard measure space (X,µX).

(In fact, we may take X = [0, 1].) Now let A ' L∞(X,µX), B ' L∞(Y, µY ) be abelian

algebras. Then any A-B-bimodule is isomorphic to one of the form H =
∫
H(x,y)dµ(x, y),

where µ is a measure on X × Y whose marginals are absolutely continuous with respect to

µX , µY and with n(x, y) := dimH(x,y) µ-measurable. The actions are given by

f · ξ(x, y) · g = f(x)g(y)ξ(x, y)

for all f ∈ A, g ∈ B, ξ ∈ H. See [Con94] Appendix V.B for more details.

We now restrict our attention to A-A-bimodules with A ' L∞(X, ν). Given a measure

η on X ×X whose marginals are absolutely continuous with respect to ν, we may define a

completely positive map η̂ : A→ A by:

η̂(f)(x) =

∫
f(y)η(x, y).

More precisely, η̂(f) is the element of A satisfying
∫
X
η̂(f)(x)g(x)dν =

∫
X×X f(y)g(x)dη

for all g ∈ A. Conversely, every A-A-bimodule is of this form for some η and multiplicity

function n. See [Shl99] Examples 2.8, 3.4 for more details.

In terms of the construction from the previous section, the completely positive map η̂

corresponds to Hη̂ ' L2(X ×X, η) with the left and right A-actions being multiplication by

f(x) and g(y) respectively and with 1X×X being the associated cyclic vector.

In particular, with n ≡ 1, the identity bimodule corresponds to the η given by the push-

forward of ν under the diagonal embedding x 7→ (x, x), and the coarse bimodule corresponds

to the product measure η = ν × ν. More generally, with A and B as above, the product

measure on X × Y corresponds to the coarse bimodule L2(A)⊗ L2(B).

Example 3.3.21 (Composition) Let Φ : M → N , Ψ : N → P be normal and completely

positive. Note that Ψ◦Φ : M → P is again completely positive. The following are isomorphic
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as M -P -bimodules:

HΨ◦Φ ' HΦ ⊗N HΨ.

Thus, the fusion tensor product of bimodules corresponds to the composition of completely

positive maps. See Proposition 17 in Appendix V.B from Connes’ [Con94] for a proof.

3.3.3 A-valued Semicircular Families

3.3.3.1 Construction and Definitions

Before proceeding, we need the notion of an A-A bimodule with an A-valued inner product.

More precisely:

Definition 3.3.22 (Hilbert-A-bimodule) Let A be a von Neumann algebra (or C∗-algebra),

and let K be an A-A-bimodule (in ring theoretic sense, i.e. K is not required to be a Hilbert

space). We say that a C-sesquilinear form 〈·, ·〉A : K ×K → A is an A-valued inner product

if it satisfies

〈aξ, ψb〉A = 〈ξ, a∗ψ〉Ab

〈ξ, ψ〉∗A = 〈ψ, ξ〉A

and 〈ξ, ξ〉A ≥ 0

for all a, b ∈ A and ξ, ψ ∈ K. The inner product is called non-degenerate if 〈ξ, ξ〉A > 0

whenever ξ 6= 0.

If K is equipped with a (possibly degenerate) A-valued inner product, we call K a Hilbert-

A-bimodule.

Note that a non-degenerate Hilbert-C-bimodule is just a (pre-)Hilbert space. One can

compose the A-valued inner product with a state on A to produce a scalar-valued pre-inner

product. For more details on these bimodules, see e.g. [Spe98] Chapter IV.

Now let A be a semifinite von Neumann algebra. Throughout this section, we use [n] to

denote the set {1, 2, ..., n} if n ∈ N and [n] = N if n is infinite. Now let n ∈ N ∪ {∞} and
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suppose we’re given a family of maps ηij : A → A with i, j ∈ [n] such that the associated

map η : A → A ⊗ B(H) is normal and completely positive. Here, H is a Hilbert space of

dimension n (separable if n =∞), and ηij are the entrywise components of the map η, where

we view A⊗B(H) as matrices with A-valued entries.

We now describe Shlyakhtenko’s construction of an A-valued semicircular family of co-

variance η, following [Shl99]. Given an η as above, Shlyakhtenko showed that there is a

unique A-A bimodule K, spanned as a bimodule by vectors ξi (i ∈ [n]), with an A-valued

inner product satisfying:

〈ξi, aξj〉A = ηij(a)

for all a ∈ A.

Using this bimodule K, we mimic the construction of the full Fock space but using the

Connes fusion tensor product for A-bimodules in place of the usual tensor product. We

obtain the following Fock space bimodule:

F(K) = A⊕K ⊕ (K ⊗A K)⊕ ...⊕K⊗Am ⊕ ...

We will sometimes write F instead of F(K) if K is clear from the context. We define another

A-valued inner product on F(K) by linearly extending the following relations:

〈a, b〉F = a∗b

〈ξ1 ⊗A ...⊗A ξj, ψ1 ⊗A ...⊗A ψk〉F = δjk〈ξj, 〈ξj−1, ..., 〈ξ1, ψ1〉A...ψj−1〉Aψj〉A

for all a, b ∈ A, ξi, ψi ∈ K. One can check that this defines a (possibly degenerate) Hilbert-

A-module structure on F(K). See [Spe98] 4.6 for details.

For ξ ∈ K, we consider the left creation operator l(ξ) : F → F defined by:

l(ξ)1A = ξ

l(ξ)(ξ1 ⊗A ξ2 ⊗A ...⊗A ξn) = ξ ⊗A ξ1 ⊗A ξ2 ⊗A ...⊗A ξn.

Here, we note that 1A ∈ F(K) lives in the first summand of the above decomposition of

F(K) and takes the place of the usual vacuum vector Ω of the full Fock space.
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As described in [Shl99], l(ξ) has an adjointable (with respect to the A-valued inner

product) extension, which we still denote by l(ξ). This extension and its adjoint, the left

annihilation operator l(ξ)∗, satisfy the following relations for all ξ, ψ ∈ K and a, b ∈ A:

l(ξ)∗l(ψ) = 〈ξ, ψ〉A

al(ξ)b = l(aξb).

Now let φ be a faithful, normal state on A. By composing the natural A-valued inner

product of F(K) with φ, we get a pre-inner product on F . By separating and completing

with respect to this inner product, we obtain a Hilbert space Fφ. The actions of A and the

creation/annihilation operators on F descend to actions on Fφ, satisfying the same relations

as above.

Matching the notation used in [Shl99], we define Φφ(A, η) to be the von Neumann algebra

in B(Fφ) generated by A and {Xi : i ∈ [n]}, where Xi = s(ξi) := l(ξi) + l(ξi)
∗. We will

call Φφ(A, η) the von Neumann algebra generated by a family of A-valued semicirculars of

covariance η. We note that the compression of Φφ(A, η) by the projection onto the Hilbert

space closure of A in Fφ gives a normal conditional expectation Eφ : Φφ(A, η)→ A. Finally,

Shlyakhtenko showed that Φφ(A, η) and Eφ do not depend on the particular choice of faithful,

normal state φ in the following sense: if ψ is another faithful, normal state on A, there’s

an isomorphism of Φφ(A, η) with Φψ(A, η) which intertwines the expectations. So in what

follows we will suppress φ from the notation, writing instead Φ(A, η) and E : Φ(A, η) → A

for the von Neumann algebra generated by a family of A-valued semicirculars of covariance

η with its expectation onto A.

Lastly, we mention that Φ(A, η) encodes η in the following way:

E(XiaXj) = 〈ξi, aξj〉A = ηi,j(a).

For this reason and because Xi is distributed as a semicircular element with respect to φ◦E,

we will call {Xi : i ∈ [n]} a semicircular family of covariance η.

Remark 3.3.23 (Scalar-valued Case) Here, we briefly describe the specialization to A = C

in the construction above. The requisite input data η : C→ C⊗B(H) = B(H) is determined
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by η(1), which can be taken to be any positive element of B(H). The associated C-C

bimodule H is simply a Hilbert space. If η is given in terms of component functions ηij, then

we get a corresponding basis (ξi) of H whose Gram matrix is η(1). The canonical expectation

E onto A in this case corresponds to the vector state ω associated to the vacuum vector

Ω ∈ F(H). In particular, if {ξi : i ∈ [n]} is an orthonormal basis for H, then Φ(C, η) =

s(H) = {s(ξi) : i ∈ [n]}′′ is the von Neumann subalgebra of B(F(H)) corresponding to the

free Gaussian functor on H with faithful, normal trace state ω. The completely positive map

η in the above construction is given in this case by:

ηij = 〈ξi, ξj〉 = δij.

3.3.3.2 Freeness with Amalgamation and Examples

Earlier, we saw that the orthogonality of ξ, η in H corresponds to l(ξ), l(η) being free. In

other words, direct summands of a Hilbert space correspond to freely independent algebras

under the free Gaussian functor. Here, we mention the A-valued analogue of this result and

give a couple of related examples.

Definition 3.3.24 (Vacuum Expectation) Let K be a Hilbert-A-module. Let l(K) denote

the ∗-algebra generated by A and {l(ξ) : ξ ∈ K} on F(K). We define the vacuum expectation

on l(K) by:

ωA(x) := 〈1A, x1A〉F .

Remark 3.3.25 Note that here 1A is taking the place of the usual vacuum vector Ω, and the

expectation is A-valued. It’s easy to see that this expectation corresponds (after separation

and completion) to the conditional expectation E : Φ(A, η) → A of the previous section.

Thus, to establish the A-valued analogue of the earlier orthogonality result, it’s enough to

show the following (we mimic the proof of Theorem 4.6.15 in [Spe98]).

Lemma 3.3.26 Let K1 and K2 be Hilbert-A-bimodules. Then l(K1) is free with amalgama-

tion over A from l(K2) in (l(K1⊕K2), ωA), i.e. if xj ∈ l(Kij) with ij 6= ij+1 and ωA(xj) = 0

for all j, then ωA(x1...xn) = 0.
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Proof. Let xj be as above. Since ωA(xn) = 0, we have

xn1A ∈ ⊕m∈N+K
⊗Am
in

⊂ F(K1 ⊕K2)	 A.

Similarly, we have a corresponding inclusion for xn−1. Since in 6= in−1, we get:

xn−1xn1A ∈
(
⊕mK⊗Amin−1

)
⊗A
(
⊕mK⊗Amin

)
⊂ F(K1 ⊕K2)	 A.

Continuing inductively, we get

x1...xn1A ∈
(
⊕mK⊗Ami1

)
⊗A ...⊗A

(
⊕mK⊗Amin

)
⊂ F(K1 ⊕K2)	 A.

Thus, x1...xn1A ⊥ A, and ωA(x1...xn) = 0 as desired.

It follows from this lemma that direct sums of A-A-bimodules correspond to algebras

of creation/annihilation operators which are free with amalgamation over A. Specializing

A = C recovers the earlier scalar-valued case.

We now give a couple of corollaries concerning the A-valued semicircular systems of the

previous subsection. See [Shl99] for more details/examples.

Example 3.3.27 Suppose ηij (the coefficiencts of the completely positive map η : A →

A⊗ B(H)) form a block diagonal matrix (i.e. ηij ≡ 0 off the block diagonal). If the blocks

are enumerated by i and ηi denotes the restriction of η to the ith block, then it’s easy to see

that the associated Kη = ⊕iKηi as A-A-bimodules, so the above gives

Φ(A, η) ' ∗A(Φ(A, ηi)).

Example 3.3.28 Let A = L∞(X,µ). By Example 3.3.20, we can obtain a completely

positive map η : A→ A from a finite positive measure ν on X ×X. If ν = ν1 + ν2, with ν1

disjointly supported from ν2, then we have Kν = Kν1 ⊕Kν2 , and

Φ(A, ην) ' Φ(A, ην1) ∗A Φ(A, ην2).

Example 3.3.29 Let η = EB : A → B be a conditional expectation. As we’ve seen, the

associated A-A-bimodule is L2(〈A, eB〉), with ξ = eB implementing η, i.e. 〈eB, aeB〉A =

EB(a).
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In this case, one can show (see [Shl99] Example 3.3) that

Φ(A, η) = Φ(A,EB) ' (L∞[0, 1]⊗B) ∗B A.

In particular, if η = φ is a state on A,

Φ(A, φ) ' L∞[0, 1] ∗ A,

and if η = idA,

Φ(A, id) ' L∞[0, 1]⊗ A.

3.3.4 Intertwining by Bimodules

In [Pop06a], [Pop06b], Popa introduced the following characterization, which will be useful

in studying the relative position of two subalgebras A and B of an ambient von Neumann

algebra M . We outline Popa’s proof of the characterization below. More details can be

found in [Pop06b] Section 2.

Theorem 3.3.30 (Popa)

Let (M, τ) be a tracial von Neumann algebra with von Neumann subalgebras A,B ⊂ M

satisfying 1A ≤ 1M , 1B = 1M (so that A ⊂ M is not necessarily a unital inclusion). Then

the following are equivalent:

(i) There is no sequence of unitaries (uk)k∈N in A such that

lim
k→∞
‖EB(x∗uky)‖2 = 0

for all x, y ∈ 1AM , where ‖x‖2 := τ(x∗x)1/2.

(ii) There is a nonzero subbimodule AHB ⊂A L2(1AM)B of finite dimension over B, i.e.

dimB(HB) <∞.

(ii’) There exists a projection 0 6= p ∈ A′ ∩ 1A〈M, eB〉+1A with Tr(p) < ∞, where Tr is

the canonical semifinite trace on 〈M, eB〉.

72



(iii) There exist n ≥ 1, a homomorphism π : A → Mn(B) (possibly non-unital), and a

partial isometry 0 6= v ∈M1,n(1AM) such that for all x ∈ A:

xv = vπ(x).

If A,B ⊂M satisfy the above conditions, then we write A �M B and say that A embeds

into B inside M .

Proof. First, we note that (ii) and (ii’) are easily seen to be equivalent: Given AHB as in (ii),

let p be the projection p : L2(1AM) → H. Since H is a right B-module, p commutes with

the right B action, i.e. p ∈ 〈M, eB〉+. Furthermore, Tr(p) = dimB(H) <∞. Similarly, since

H is a left A-module, p ∈ A′. In particular, p = 1Ap = p1A. Putting all of this together, we

see that 0 6= p ∈ A′∩1A〈M, eB〉+1A. Conversely, any such projection commutes with the left

A- and right B-actions, and therefore takes as its range a subbimodule of finite dimension

over B.

Now we show (i) =⇒ (ii) =⇒ (iii) =⇒ (i).

(i) =⇒ (ii’): Since no sequence of unitaries of the above form exists, we can find an ε > 0

and F ⊂ 1AM , a finite subset such that ‖EB(x∗uy)‖2
2 ≥ ε for all x, y ∈ F , u ∈ U(A). Now let

x =
∑

y∈F yeBy
∗ ∈ 1A〈M, eB〉+1A, and let C ⊂ 1A〈M, eB〉+1A denote the ultraweakly-closed

convex hull of {uxu∗ : u ∈ U(A)}. Then, for any c′ ∈ C, since Tr(x) =
∑

y∈F τ(yy∗) < ∞,

we have ‖c′‖2 ≤ ‖x‖2 < ∞. (Note: the ‖ · ‖2 norm here is with respect to Tr in the basic

construction.) So C is closed and bounded in L2(〈M, eB〉).

Now let c be the unique element of smallest ‖ · ‖2 norm in C. By the uniqueness of c and

the fact that ‖ucu∗‖2 = ‖c‖2 for all u ∈ U(A), we see that c ∈ A′. Now note that for any

u ∈ U(A), we have:∑
y∈F

Tr(eBy
∗(u∗xu)yeB) =

∑
y,z∈F

Tr(eB(z∗uy)∗eB(z∗uy)eB) (since x =
∑
z∈F

zeBz
∗)

=
∑
y,z∈F

τ(EB(z∗uy)∗EB(z∗uy))

=
∑
y,z∈F

‖EB(z∗uy)‖2
2 ≥ ε.
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Taking convex combinations, we see that
∑

y∈F Tr(eBy
∗c′yeB) ≥ ε for all c′ ∈ C, in

particular for c. So 0 6= c ∈ A′ ∩ 1A〈M, eB〉+1A. Finally, if we take p to be a spectral

projection of the form 1[δ,‖c‖](c) with 0 < δ < ‖c‖, then p satisfies the conditions of (ii’).

(ii) =⇒ (iii): By the classification of right B-modules, there exists an n ≥ 1, a projection

p ∈ Mn(B), and an isomorphism of right B-modules ψ : p(Cn ⊗ L2(B)) → AHB. The left

action of A on H induces a ∗-homomorphism π : A→ pMn(B)p via ψ defined by

xψ(ξ) = ψ(π(x)ξ)

for all x ∈ A, ξ ∈ p(Cn⊗L2(B)). We will write π(x) = (πi,j(x))i,j∈{1,...,n}) for the component

entries in Mn(B).

We now let ei ∈ Cn⊗L2(B) denote the vector (0, ..., 0, 1̂B, 0, ..., 0) with 1̂B in its ith entry.

Consider the vector ξ = (ψ(pe1), ..., ψ(pen)) ∈ Cn⊗H. We aim to show that xξ = ξπ(x) for

all x ∈ A. So let x ∈ A.

In the jth component, we have:

(xξ)j = xψ(pej)

= ψ(π(x)pej) = ψ(p(π(x)ej)) = ψ(p(
n∑
i=1

eiπi,j(x)))

=
∑
i

ψ((pei)πi,j(x))

=
∑
i

ψ(pei)πi,j(x) (since ψ respects the right B action)

= (ξπ(x))j.

So xξ = ξπ(x).

Now consider the operator in 1An+1Mn+1(M)1An+1 ⊂ B(Cn+1 ⊗ L2(M)) given by:

X =

x 0

0 π(x)

 ,

and consider the vector

η =

0 ξ

0 0

 ∈ 1An+1(Cn+1 ⊗ L2(M))1An+1 .
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Because xξ = ξπ(x), we have0 xξ

0 0

 = Xη = ηX =

0 ξπ(x)

0 0

 .

Let Yη be the unbounded operator affiliated with Mn+1(M) that corresponds to η ∈

1An+1(Cn+1 ⊗ L2(M))1An+1 , with polar decomposition Yη = V |Yη|. Note that Yη (and there-

fore V ) depends only on ξ and not on the choice of x ∈ A. Then V is a partial isometry in

1An+1Mn+1(M) that commutes with X (because Xη = ηX).

If we write

V =

u v

w z


to be compatible with the matrix description of X, then v ∈ M1,n(1AM), and a quick

computation shows that XV = V X implies xv = vπ(x). A similar computation verifies

that v is again a partial isometry (from ker z to keru∗), and, in particular, v 6= 0. Since v

doesn’t depend on x, we’ve found a partial isometry v and homomorphism π which satisfy

the requirements of (iii).

(iii) =⇒ (i): Suppose for contradiction that we can find a sequence (uk) ⊂ U(A)

satisfying the conditions in (i). Then a component-wise computation yields that

‖(idMn(C) ⊗ EB)v∗ukv‖2 →k→∞ 0.

On the other hand, since uk ∈ A, using the intertwining relation in (iii), we see that

v∗ukv = π(uk)v
∗v. Let p = π(1A). Then π(uk) ∈ U(pMn(B)p), and, since v∗vp = v∗1Av =

v∗v, we see that v∗v ≤ p. Therefore we have:

‖(idMn(C) ⊗ EB)(v∗v)‖2 = ‖π(uk)(idMn(C) ⊗ EB)(v∗v)‖2

= ‖(idMn(C) ⊗ EB)(π(uk)v
∗v)‖2

= ‖(idMn(C) ⊗ EB)(v∗ukv)‖2 → 0.

So, by faithfulness of EB, we conclude that v∗v = 0 and thus that v = 0, which is a

contradiction.
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Our main use of Popa’s intertwining techniques will be to mimic the characterization

obtained in Theorem 3.1 of [HSV16] in the setting of our free Bogoliubov actions. In [HSV16],

the authors are able to characterize the unitary conjugacy of some corners of the states φ,

ψ on M in terms of the existence of an intertwining bimodule between (the images of) the

group algebras Lφ(R) and Lψ(R) in the core c(M) ' M oσφ R ' M oσψ R. We obtain a

similar characterization for the equivalence of some corners of our Bogoliubov actions (see

Theorem 4.1.6).

We also make repeated use of the following theorem of Houdayer and Ueda, which allows

us to locate algebras with non-amenable relative commutant inside an amalgamated free

product. More precisely, we have:

Theorem 3.3.31 (Theorem 4.4, [HU16]) Let (B ⊂ Mi)i∈I be a family of inclusions with

expectation, with Mi σ-finite and B amenable, and let (M,E) = ∗B(Mi, Ei) be the associated

amalgamated free product over B. If A ⊂ M is a (not necessarily unital) inclusion with

expectation and A is finite, then at least one of the following holds:

1.) The von Neumann algebra A′ ∩ 1AM1A is amenable.

2.) There exists i ∈ I such that A �M Mi.

Now take A to be a corner of L(R) inside of the crossed product for our free Bogoliubov

action M = L(F∞) oσα R. We will use the fact that the spectral measure of α has a

mass at 0 to guarantee that A′∩1AM1A is non-amenable. Thus, if we realize M as a certain

amalgamated free product, this theorem will force the embedding of A into one of the factors

in the free product decomposition. See the proof of 4.2.1 for details.
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CHAPTER 4

Classification Results

4.1 Technical Results and Preliminaries

4.1.1 Rajchman Measures

In order to apply some of the strong solidity results of Houdayer and Shlyakhtenko in [HS11],

we will need to have free Bogoliubov actions which are mixing. Recall that an orthogo-

nal/unitary representation α : G→ O(H) (resp. α : G→ U(H)) is called mixing if

lim
g→∞
〈αgξ, η〉 = 0

for all ξ, η ∈ H. (In what follows, we’ll mainly be concerned with mixingness for G = Z.)

By Proposition 2.8 in [HS11], the following are equivalent:

(1) The representation α : Z→ O(H) is mixing.

(2) The associated free Bogoliubov action σα : Z y Γ(H) is mixing.

So if we want our Bogoliubov actions to be mixing, it will be sufficient to restrict our

attention to orthogonal actions of Z on a real Hilbert space H which are mixing. To do

this, we first reframe the mixingness condition above in terms of the spectral measure as-

sociated to the representation α. Recall that a representation of Z is determined by the

data ([µ], n), where [µ] is a measure class and n a multiplicity function on S1. Choosing

a representative probability measure µ for [µ], we can form the associated representation

πµ : Z→ U(L2(S1, µ)) given by πµn(f(z)) = znf(z) for f ∈ L2(S1, µ). We note that the rep-

resentation associated to ([µ], n) is mixing if and only if πµ is mixing, i.e. iff
∫
znf(z) dµ→ 0

for all f ∈ L2(S1, µ) as n→∞. But since 1 ∈ L2(S1, µ) is a cyclic vector for πµ, this latter
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condition is equivalent to
∫
zn dµ→ 0 as n→∞. In other words, our representation will be

mixing if and only if the Fourier coefficients of µ decay to zero at infinity.

We define a Rajchman measure to be a measure on S1 whose Fourier coefficients µ̂(n) =∫
zn dµ go to zero as n → ∞. Menshov was the first to construct examples of Rajchman

measures that were singular with respect to Lebesgue measure. For a survey, see [Lyo95].

We will need the following facts about Rajchman measures:

Lemma 4.1.1 Let µ be a Rajchman measure.

(i) If ν � µ, then ν is a Rajchman measure.

(ii) Any translation of µ is a Rajchman measure.

(iii) A finite periodic extension of µ is a Rajchman measure.

Remark 4.1.2 Our use for (iii) is to take a Rajchman measure supported on [−1
2
, 1

2
] and

extend it periodically to [−1, 1]. We only need the lemma to ensure that this extension is

still Rajchman. This is what we mean by “finite periodic extension.”

Proof. For (i), let ν = fµ with f ∈ L1(µ). For any polynomial p(z) = anz
n + ... + a0, we

have lim supn |f̂µ(n)| = lim supn | ̂fµ− pµ(n)| ≤ ‖f − p‖1. Since the last term can be made

arbitrarily small, we see that ν = fµ is Rajchman.

Part (ii) follows from the fact that translation of the measure µ corresponds to modulation

of its Fourier coefficients, which doesn’t affect their convergence to zero.

Finally, (i) and (ii) imply (iii), since a finite periodic extension of µ is a finite sum of

translations of (restrictions of) µ.

Remark 4.1.3 In the following sections, we may identify R/Z with S1 in the usual way,

via the map t 7→ e2πit, with t ∈ [0, 1]. We will implicitly use this identification when we say

that a [0, 1]-supported measure is Rajchman.

4.1.2 Corners Retain Spectral Data

Throughout this section we restrict our attention to an R-action implemented by (Ut)t∈R (on

a real Hilbert space H) whose infinitesimal generator has spectral measure (δ0,∞) + (µ,∞)

78



with µ non-atomic. Under these assumptions, we can write H = H0 ⊕ H1, where each

summand is infinite-dimensional, and with Ut = id⊕U ′t where U ′t has no eigenvectors (since

µ is non-atomic). Note that µ being non-atomic also implies that the only finite-dimensional

invariant subspaces of H for Ut are those fixed by the action (i.e. where the action is id).

Applying the free Gaussian functor F to this action, which turns direct sums into free

products (see e.g. [VDN92]), we get a von Neumann algebra M = s(H0) ∗ s(H1) = A ∗ B

with A ' B ' L(F∞) (since s(Hi) ' L(F∞)), with corresponding free Bogoliubov action αt

arising from F(Ut) = id ∗ F(U ′t). Note that F(U ′t) has no eigenvectors since U ′t had none,

and therefore, denoting by Mα the fixed point algebra of the action, the above discussion

implies the following:

Lemma 4.1.4 We have Mα = A.

Now, given a projection 0 6= p ∈ A, since p is fixed by the action, we can consider the

restriction of α to the corner pMp. Note that A is a II1 factor, so, taking a smaller p if

necessary we can assume τ(p) = 1
n

for some n ∈ N with τ the canonical trace on A. We now

relate the spectral data from α with the spectral data from the compression (pMp, pαtp) as

follows:

Lemma 4.1.5 If p ∈ A satisfies τ(p) = 1
n

, we have:

(pMp, αt|pMp) ' (M∗n2

, α∗n
2

t ) ' (M,αt).

Proof. Let {Si}i∈N be a semicircular family of generators for B corresponding to an or-

thonormal basis {ξi} for H1. Note that, on these generators, the Bogoliubov action α

satisfies αt(s(ξ)) = s(U ′t(ξ)).

Since A is a factor and τ(p) = 1
n
, we can find partial isometries vi ∈ A, i = 1, ..., n, such

that viv
∗
i = p for all i and

∑
i v
∗
i vi = 1. Note that M is generated by A ∪ {Si}i∈N, so that

pMp is generated by pAp and {viSkv∗j}1≤i,j≤n,k∈N [VDN92, Lemma 5.2.1].

For i, j ∈ 1, ..., n and k ∈ N, denote Sikj = n1/2viSkv
∗
j . The normalization is chosen so

that in the compressed W∗-probability space (pMp, nτ |pMp) we have that {Siki}1≤i≤n,k∈N is
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a free semicircular family (with semicircular law supported on [−1, 1]), and {Sikj}1≤i<j≤n,k∈N

is a free circular family ∗-free from {Siki} [VDN92, Prop. 5.1.7].

So, all together, pMp is generated ∗-freely by pAp, the semicircular family {Siki}1≤i≤n,k∈N,

and the circular family {Sikj}1≤i<j≤n,k∈N.

Now we note that (pAp, αt|pMp) = (pAp, id) ' (A, id). The first isomorphism of the claim

then follows, since for any i, j ∈ {1, ..., n} and any k, we have αt(Sikj) = αt(n
1/2vi(s(ξk))v

∗
j ) =

n1/2vi(s(U
′
t(ξk)))v

∗
j . Finally, the latter isomorphism follows from the infinite multiplicities of

our representations, since an m-fold free product of the Bogoliubov action corresponds to

multiplying the multiplicity function for the H-representation by m.

4.1.3 Embedding gives Corner Conjugacy of Actions

By mimicking the proof of Theorem 3.1 in [HSV16], we can relate the embeddability of

Lβ(R) into Lα(R) inside the crossed product with the existence of a corner on which the two

actions are conjugate. More precisely, we have:

Theorem 4.1.6 Let M be a tracial von Neumann algebra with a fixed faithful normal trace

τ . Suppose α, β : R→ Aut(M) are two actions of R on M which are cocycle conjugate, and

suppose that the only finite-dimensional α-invariant subspaces of L2(M) are those on which

α acts trivially. Fix any q ∈Mβ a nonzero projection. The following are equivalent:

(a) There exists a nonzero projection r ∈ Lβ(R) such that

Πα,β(Lβ(R)qr) ≺MoαR Lα(R)

(b) There exists a nonzero partial isometry v ∈ M such that v∗v ∈ qMβq, vv∗ ∈ Mα,

and for all x ∈M ,

αt(vxv
∗) = vβt(x)v∗.

Proof. To see that (a) implies (b), take r as in (a), so that Πα,β(Lβ(R)qr) ≺MoαR Lα(R),

and take wt ∈M with Ad wt ◦ αt = βt.
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First, we claim that there’s a δ > 0 for which there exist x1, ..., xk ∈ qM with

k∑
i,j=1

|τ(x∗iwtαt(xj))|2 ≥ δ

for all t. Suppose for a contradiction that no such δ exists. Then we can find a net (ti)i∈I

such that

lim
i
τ(x∗wtiαti(y)) = 0

for any x, y ∈ qM .

But then for any p, p′ finite trace projections in Lα(R), s, s′ ∈ R, and x, y ∈M , we have

(in the 2-norm from the trace on M oα R):

‖ELα(R)(pλα(s)∗x∗Πα,β(λβ(ti)q)yλα(s′)p′)‖2 = ‖λα(s)∗pELα(R)(x
∗qΠα,β(λβ(ti)qy)p′λα(s′))‖2

= ‖pELα(R)((qx)∗wtiαti(qy))p′λ(s′ + ti)‖2

= ‖ELα(R)((qx)∗wtiαti(qy))pp′‖2 → 0,

where the last equality follows from the fact that ((qx)∗wtiαti(qy)) ∈M , so

ELα(R)((qx)∗wtiαti(qy)) = τ((qx)∗wtiαti(qy)),

and the latter term goes to zero by supposition for any x, y ∈M .

Now note that linear combinations of terms of the form xλα(s)p (resp. yλβ(s′)p′) as

above are dense in L2(M oα R, T r), so by approximating Πα,β(r)a, (resp. Πα,β(r)b) with

such sums for any a, b ∈M oα R, it follows from the above estimate that

‖ELα(R)(a
∗Πα,β(λβ(ti)qr)b‖2 → 0.

But this contradicts Πα,β(Lβ(R)qr) ≺MoαR Lα(R), so the δ > 0 of our above claim exists.

We can thus find δ > 0, x1, ..., xk ∈ qM such that
∑k

i,j=1 |τ(x∗iwtαt(xj))|2 ≥ δ for all t.

We now pass to the basic construction 〈M, eτ 〉, where eτ is the rank-one Jones projection

corresponding to the trace on M . Denote by τ̂ the canonical trace on 〈M, eτ 〉 which satisfies

τ̂(xeτy) = τ(xy) for all x, y ∈ M . We denote by TM the faithful normal operator-valued
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weight from the basic construction to M satisfying τ̂ = τ ◦ TM (i.e. TM is the pull-down

map). Here, we consider the positive element

X =
k∑
i=1

xieτx
∗
i ,

together with the following normal positive linear functional on 〈M, eτ 〉:

ψ(T ) =
k∑
i=1

τ̂(eτx
∗
iTxieτ ).

Note that TM(X) =
∑k

i=1 xix
∗
i ∈M , so in particular ‖TM(X)‖ <∞.

For every t ∈ R, we have:

ψ(βt(X)) =
∑
i,j

τ̂(eτx
∗
iwtαt(xj)eταt(xj)

∗w∗t xieτ )

=
∑
i,j

|τ(x∗iwtαt(xj)|2 ≥ δ > 0

Now consider K the ultraweak closure of the convex hull of {βt(X) : t ∈ R} inside

q〈M, eτ 〉q. Note that by normality of ψ, ψ(x) ≥ δ for any x ∈ K.

Since K is convex and ‖ · ‖2-closed, there exists a unique X0 ∈ K of minimal 2-norm.

But since the 2-norm is invariant under β, we must have that ‖βt(X0)‖2 = ‖X0‖2 for all t,

so by uniqueness of the minimizer, X0 is itself fixed by the extended β action (and nonzero

since φ(X0) ≥ δ). Also, by ultraweak lower semicontinuity of TM , we know that ‖TM(X0)‖ ≤

‖TM(X)‖ <∞.

Take a nonzero spectral projection e of X0. Then e is still β-invariant and satisties

‖TM(e)‖ <∞. But this means that τ̂(e) = τ(TM(e)) <∞, so e must be a finite rank projec-

tion, since τ̂ corresponds to the usual trace Tr on the trace-class operators in B(L2(M), τ).

Now since eτ has central support 1 in 〈M, eτ 〉 (and because eτ is minimal), we have

that there exists V a partial isometry in 〈M, eτ 〉 such that V ∗V = f ≤ e and V V ∗ = eτ .

We remark that f remains β-invariant, since e was finite rank, and our finite-dimensional

invariant subspaces are all fixed by the action. Note also that e ≤ q (since X0 ∈ q〈M, eτ 〉q),

so that V = V q = eτV .
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Applying the pull-down lemma, we see that:

V = eτV = eτ (TM(eτV )) = eτTM(V ).

Set v = TM(V ) and note that since ‖TM(V ∗V )‖ = ‖TM(e)‖ < ∞, we have v ∈ M , and

V = eτv.

Since eτ 〈M, eτ 〉eτ = Ceτ , and since V is left-supported by eτ , we have that for each t there

exists a λt ∈ C such that λteτ = V wtα̂t(V
∗). Note that since V wtα̂t(V

∗)(V wtα̂t(V
∗))∗ =

V wtα̂t(V
∗V )w∗tV

∗ = V β̂t(e)V
∗ = V V ∗ = eτ , the last equality of the previous sentence

implies that λtλt = 1. We also have:

eτλtαt(v) = λteτα(v) = λteτ α̂(V )

= V wtα̂t(V
∗V ) = V β̂t(e)wt = V wt

= eτvwt.

Thus, applying the pull-down map, we have that λtαt(v) = vwt, and, replacing v by its

polar part if necessary, we’ve found a partial isometry in M , conjugation by which intertwines

the actions. We have for any x ∈M :

αt(vxv
∗) = αt(v)αt(x)αt(v

∗) = λtvwtαt(x)w∗t v
∗λt = vβt(x)v∗.

Furthermore, with some applications of αt(v) = λtvwt, we see that

βt(v
∗v) = wtαt(v

∗v)w∗t = wt(w
∗
t v
∗λt)(λtvwt)w

∗
t = v∗v,

and

αt(vv
∗) = (λtvwt)(w

∗
t v
∗λt) = vv∗,

so we’ve found the promised intertwiner.

Conversely, assume that we have v ∈M such that v∗v ∈ qMβq, vv∗ ∈Mα, and satisfying

αt(vxv
∗) = vβt(x)v∗ for all x ∈ M . Take wt ∈ M with Ad wt ◦ αt = βt. Then, as above,

we have vwt = λtαt(v), for some λt ∈ S1. Multiplying both sides by λt and absorbing this

factor into wt, we may assume without loss of generality that λt = 1 for all t, so we have

vwt = αt(v).
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Now let λαt (resp. λβt ) denote the canonical unitaries that implement the respective ac-

tions on M in the crossed product M oα R (M oβ R). Then the relation vwt = αt(v)

implies vΠα,β(λβt ) = λαt v. Furthermore, for any finite trace projection r ∈ Lβ(R), we

have vΠα,β(qr) = vqΠα,β(r) = vΠα,β(r) 6= 0, so v∗ is a partial isometry that witnesses

Πα,β(Lβ(R)qr) ≺MoαR Lα(R) (by condition (iii) in 3.3.30). Thus, (b) implies (a).

4.2 The Main Result

We can now prove our main result after fixing some notation. Since orthogonal repre-

sentations of R are characterized by their spectral measure class and multiplicity function

(see e.g. [HSV16, Section 1]), we’ll assume in what follows that our mutliplicity function

m : R → N ∪ +∞ satisfies m ≡ +∞. Further, we assume that our representation π of R

is of the following type: π = π0 ⊕ πλ ⊕ πµ, where π0 is the trivial representation, πλ the

left regular representation, and µ is a Rajchman measure on [0, 1]. Here, we let πµ denote

the representation of R whose spectral measure is given by periodic extension of µ. Again,

all summands here are representations of infinite multiplicity. Let C denote the set of all

spectral measure classes on R associated to representations of this type. We’ll use [π] to

denote the spectral measure class associated to the representation π.

Following the usual recipe, we have, associated to π, a free Bogoliubov action α of R.

Let α, β be two Bogoliubov actions of R on LF∞ obtained in this way, and (with a slight

abuse of notation), denote by [α], [β] the associated spectral measure classes in C. We can

now show the following:

Theorem 4.2.1 With the notation above, if α and β are cocycle conjugate, then [α] = [β].

Proof. Note that cocycle conjugacy implies that LF∞oαR ∼= LF∞oβR. We’ll denote by A ⊂

LF∞ oα R = M the algebra LαR, which is isomorphic to L∞(R) via the Fourier transform.

We know that this crossed product is generated by a family of A-valued semicirculars, with

covariance maps η
(k)
i : L∞(R) → L∞(R) (making use of the identification in the previous

sentence) of the following type:
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η(f)(x) =

∫
f(y)Kη(x, y)

where Kη is a measure on R2 corresponding to η (see, e.g. [Shl99, Examples 2.8, 5.2]).

In our setting, we have covariance maps η
(k)
i , with k ∈ N accounting for our infinite

multiplicities and i = 0, 1, 2 corresponding to the trivial, left regular, and µ summands of

our orthogonal representation respectively. For all k, the associated measures on R2 are

given by:

K
(k)
0 (x, y) = δx=y

K
(k)
1 (x, y) = e−(x2+y2) dx dy

K
(k)
2 (x, y) = µ(x− y).

[We remark that the (arbitrary) choice of Gaussian measure instead of Lebesgue measure

for K
(k)
1 was simply for finiteness of K

(k)
1 and for definiteness. It follows from [Shl99, Prop.

2.19] that the W∗-algebra generated by A and the A-valued semicirculars associated to η

(i.e. Φ(A, η) in the notation of [Shl99]) depends only on the absolute continuity class of Kη.]

Now we remark that if Kη = K ′η +K ′′η with K ′η, K
′′
η disjoint and satisfying the same self-

adjointness condition asKη (i.e. Kη(x, y) = Kη(y, x)), then, setting η′(f)(x) =
∫
f(y)K ′η(x, y)

(respectively, η′′(f)(x) =
∫
f(y)K ′′η (x, y)), we obtain completely positive maps η′, η′′ : L∞(R)→

L∞(R). Recalling the notation Φ(A, η) from [Shl99] for the W∗-algebra generated by the A-

valued semicircular family of covariance η and using our choice of A = LR and η above, we

have the following isomorphism:

Φ(A, η) ∼= Φ(A, η′) ∗
A

Φ(A, η′′).

Let Ωj =
(
∪∞k=−∞[jk, j(k + 1)]× [jk, j(k + 1)]

)
∩ {(x, y) : |x − y| ≤ j

2
} and set K2,j =

1ΩjK2, with K2 as above. Now we note that, by the preceding discussion and the infi-

nite multiplicity of our representations, we may decompose our algebra LF∞ oαt R as an
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amalgamated free product over A in the following way:

LF∞ oαt R ∼= ∗
A
j∈Z

[
Φ(A, η0) ∗

A
Φ(A, η1) ∗

A
Φ(A, η2,j)

]
,

where η0 and η1 are, as before, the completely positive maps corresponding to the trivial and

left regular representations, still with infinite multiplicities.

Now let B be the image in M of Lβ(R) under an isomorphism of the crossed products

M = LF∞ oα R ∼= LF∞ oβ R. We first want to establish the following claim:

Claim 4.2.2 With A,B, and M as above, we have B ≺M A.

Proof. Since B has nonamenable relative commutant in M , we may apply [HU16, Theorem

4.4] to the amalgamated free product decomposition preceding the claim to conclude that

B ≺M Φ(A, η0) ∗
A

Φ(A, η1) ∗
A

Φ(A, η2,j) for some j. Thus, restricting to a corner of B if

necessary, it suffices to establish the claim with M replaced by Φ(A, η0)∗
A

Φ(A, η1)∗
A

Φ(A, η2,j).

Furthermore, we may assume without loss of generality that j = 1, since the following

argument will apply (mutatis mutandis) for all j.

Thus we’ve reduced to the case where M is the W∗-algebra generated by X
(k)
i , a family of

A-valued semicirculars of covariance η
(k)
i (corresponding to the measures K

(k)
i ), with k ∈ Z,

i ∈ {0, 1, 2}, and:

K
(k)
0 = δx=y

K
(k)
1 = e−(x2+y2) dx dy

K
(k)
2 = ω(x, y),

where ω(x, y) = µ(x− y) for (x, y) ∈ ∪∞k=−∞[k, k + 1]× [k, k + 1]∩ {(x, y) : |x− y| ≤ 1
2
} and

ω(x, y) = 0 otherwise. Recall that µ is some representative measure for the third summand

in our representation, as defined at the beginning of this section.

Recalling our identification of A with L∞(R), we consider the projections pj = 1[j,j+1] ∈ A.

By considering the polar decomposition of X
(0)
1 , we obtain partial isometries vj ∈ M such
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that

vjv
∗
j = p0, v∗j vj = pj.

First we note that we have vjAv
∗
j
∼= pjApj ∼= L∞[0, 1] in a natural way. For later

use, let’s give a name to this isomorphism: βj : vjAv
∗
j → L∞[0, 1]. We also observe that

since K
(k)
0 and K

(k)
2 are supported on ∪k∈Z[k, k + 1] × [k, k + 1], then if j 6= j′, we have

pjX
(k)
0 pj′ = pjX

(k)
1 pj′ = 0 for all k.

Therefore, if we consider the compression p0Mp0 (call it N), we see that N is generated

by the following with j, k ∈ Z:

(1)Aj := vjAv
∗
j

(2) vjX
(k)
0 v∗j

(3) vjX
(k)
2 v∗j

(4) vjX
(k)
1 v∗j′ , j′ ∈ Z.

But because X
(k)
1 comes from the left regular representation of R, the terms in item (4) are

semicircular (if j = j′) or circular (if j 6= j′) elements, ∗-free from the terms corresponding

to (1), (2) and (3). Furthermore, since the terms from item (1) above are also pairwise ∗-free

from each other, if we write Q for the algebra they generate, we have Q = W ∗(Aj : j ∈ Z) ∼=

∗ZL∞[0, 1]. Writing Y
(k)
i,j for pjX

(k)
i p∗j (i ∈ {0, 2}, j, k ∈ Z), we see that Y

(k)
i,j form a Q-valued

semicircular family of covariance ηi,j : Q→ Q, with ηi,j as follows:

η0,j(q) = EQ
Aj

(q)

η2,j(q) = β−1
j

(
η2(βj ◦ EQ

Aj
(q))

)
,

where EQ
Aj

is the unique trace-preserving expectation from Q onto Aj.

It follows that {W ∗(Aj, Y
(k)

0,j , Y
(k)

2,j ) : k ∈ Z}j∈Z are free in N . Therefore, we see that

N ∼= ∗j∈ZW ∗(Aj, Y
(k)

0,j , Y
(k)

2,j : k ∈ Z) ∗ LF∞.

Now let B be an abelian subalgebra of N with nonamenable relative commutant, as be-

fore. Making another application of [HU16, Theorem 4.4] to the free product decomposition
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above, we see that B ≺N W ∗(Aj, Y
(k)

0,j , Y
(k)

2,j : k ∈ Z) for some j or B ≺N LF∞. The lat-

ter is impossible by the solidity of LF∞, so we may assume without loss of generality that

B ≺N W ∗(Aj, Y
(k)

0,j , Y
(k)

2,j : k ∈ Z) for some fixed j.

But by the above description of the covariance maps ηi,j, we know that

W ∗(Aj, Y
(k)

0,j , Y
(k)

2,j : k ∈ Z) ∼= W ∗(Aj, Y
(k)

0,j : k ∈ Z) ∗
Aj
W ∗(Aj, Y

(k)
2,j : k ∈ Z)

∼= (Aj ⊗ LF∞) ∗
Aj
W ∗(Aj, Y

(k)
2,j : k ∈ Z).

Another application of [HU16] gives that B ≺N Aj ⊗ LF∞ or B ≺N W ∗(Aj, Y
(k)

2,j : k ∈ Z).

If the former happens, then we are done with the proof of the claim, since the solidity of

LF∞ yields that B ≺N Aj and therefore that B ≺N A, as desired. Therefore, to finish

the proof of the claim, it suffices to show that the latter embedding cannot happen, i.e.

B 6≺N W ∗(Aj, Y
(k)

2,j : k ∈ Z). So it’s enough to show that W ∗(Aj, Y
(k)

2,j : k ∈ Z) is solid.

The preceding discussion implies that W ∗(Aj, Y
(k)

2,j : k ∈ Z) ∼= W ∗(L∞[0, 1], Y (k) : k ∈

Z), where Y (k) are L∞[0, 1]-valued semicircular elements whose covariance as a measure on

[0, 1]× [0, 1] is given by

K(x, y) = 1|x−y|< 1
2
µ(x− y).

We extend the restriction of µ to [−1
2
, 1

2
] to a periodic measure µ̃ on R of period 1, and

then we consider the measure K̃ on [0, 1]× [0, 1] defined by:

K̃(x, y) = µ̃(x− y).

Note that K is absolutely continuous with respect to K̃, so that if η, η̃ are the respective as-

sociated completely positive maps on L∞[0, 1], we have that Φ(L∞[0, 1], η) ⊂ Φ(L∞[0, 1], η̃).

But Φ(L∞[0, 1], η̃) ∼= LF∞oγ Z via an isomorphism that identifies L∞[0, 1] with L(Z), where

γ is the Bogoliubov action of Z associated with the measure µ̃. Note that γ is mixing by

our earlier lemma 4.1.1 and its preceding discussion. Therefore, by [HS11] Theorem 3.10,

LF∞oγ Z is solid, and therefore Φ(L∞[0, 1], η) is solid also, which concludes the proof of the

claim.
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Now that we’ve established that B ≺M A, we may apply Theorem 2.3 above to find a

nonzero partial isometry v ∈M such that vv∗ ∈Mα, v∗v ∈Mβ, and

αt(vxv
∗) = vβt(x)v∗.

Therefore, shrinking the support of v if necessary, we may assume that τ(vv∗) = 1
n

for some

n ∈ N and apply Lemma 4.1.5 to conclude that [α] = [α∗n
2
] = [β∗n

2
] = [β], as desired.
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