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Abstract 

We study two different models of a turn-based game called 
the Marble Drop Game, which is an experimental paradigm 
designed to investigate higher-order social reasoning. Our 
first model is a computational-level description of the game, 
associating cognitive difficulty of a game trial with its 
structural properties. Our second model is an algorithmic-
level model postulating a forward reasoning plus back-
tracking strategy for solving the game, rather than backward 
induction as prescribed by game theory. Our experiment 
shows that the algorithmic-level model is more predictive for 
the participants’ reaction times.  This research illustrates how 
various methods of logic and computer science may be used 
for building computational cognitive models.  

Keywords: cognitive difficulty; strategic games; higher-order 
social reasoning; theory of mind 

Introduction 
Theory of mind (ToM; Premack & Woodruff, 1978) is the 
ability to attribute beliefs, desires, and intentions to others. 
It is a widely studied phenomenon in the fields of 
psychology, neurosciences, philosophy, and logics. Despite 
the wide interest in ToM, relatively little research has 
concentrated on the complexity of the underlying cognitive 
strategies (Apperly, 2011).  

We speak of first-order reasoning in ToM when a person 
attributes a simple belief, desire, or intention to someone 
else. For example, imagine Ingrid and Rob interacting. If 
Rob thinks “Ingrid knows that it is snowing”, he makes a 
first-order ToM attribution. However, if the situation 
becomes more complex, first-order ToM reasoning is not 
sufficient. When Ingrid thinks “Rob knows that I know that 
it is snowing”, she makes a second-order attribution.  

One way of studying the cognitive basis of ToM in a 
controlled experimental setting is the use of competitive and 
collaborative games. By investigating the underlying 
strategies used during these games, one can shed light upon 
the underlying cognitive processes involved in this game—
including ToM reasoning. In these games, the experimenter 

can control the order of reasoning required to play the game 
successfully by selecting the instances of the game. 

It has turned out in recent years that logic and the 
computational sciences can help to delineate the complexity 
of cognitive tasks, which in turn helps to explain human 
cognition in general, and human cognitive strategies in 
particular. Predictions based on computational analyses can 
be fruitfully compared with empirical evidence. For an 
overview of this emerging field of research, including 
several examples of research on theory of mind combining 
computational and empirical methods, see (Isaac, Szymanik, 
& Verbrugge, 2014). It appears that turn-taking games form 
an especially successful application area in which to bring 
logic and computation to the lab (Szymanik, 2013). 

When analyzing cognition from a computational point of 
view, it is useful to distinguish the levels of analysis of the 
cognitive task at hand, as proposed by Marr (1983). In this 
paper, we investigate the cognitive task of making a 
decision in a particular turn-taking game. We will propose 
an analysis on Marr’s computational level, which concerns 
the problem solved or the function computed, as well as an 
analysis on the algorithmic level, which concerns the 
particular way of achieving a solution to the problem. 
 In the current paper, we will focus on the marble drop 
game—a two-player game in which the players have to take 
into account the actions, beliefs and goals of the other. 

The marble drop game 
The marble drop game is a strategic two-player game that 
has been used to study theory of mind (Meijering, Van Rijn, 
Taatgen, & Verbrugge, 2011; Meijering, van Rijn, Taatgen, 
& Verbrugge, 2012; Raijmakers, Mandell, van Es, & 
Counihan, 2014). Just like well-known games such as poker 
and bridge, marble drop is turn-based. However, marble 
drop is a perfect information game, in contrast with poker 
and bridge, in which players cannot see the others’ cards. In 
the game, each player is assigned a color (orange or blue). 
Then, a marble is dropped onto trapdoors that are controlled 
by one of the players: If the trapdoor is blue, the blue player 
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controls the trapdoor; if the trapdoor is orange, the orange 
player controls the trapdoor. A trapdoor leads either to 
another trapdoor or to a bin containing marbles. Each bin 
contains a number of blue and orange marbles1. The number 
of marbles of the player’s own color determines his pay-off. 
In the marble drop games discussed in this paper, there are 
always four bins and four possible pay-offs, i.e., {1, 2, 3, 4}. 
The goal of this game for a player is to obtain as many 
points as possible, irrespective of the score of the other 
player. 

An example trial of the marble drop game is shown in 
Figure 1. In this particular trial, the blue (dark grey) player’s 
highest number of marbles is in bin 3; for the orange (light 
grey) player, the highest number of marbles is in bin 4.  

 

 
 

Figure 1: A trial of the marble drop game that requires 
second-order reasoning: The orange (light grey) player has 

to reason about which side of trapdoor C the blue (dark 
grey) opponent believes that  the orange player himself 

intends to open. 
 
Backward induction, the process of reasoning backwards 
from the end to determine a sequence of optimal actions, 
will yield the optimal solution for this game (Aumann, 
1995). Although there is a lively debate among game 
theorists about the question whether common knowledge of 
rationality in a game of perfect information entails the 
backward induction solution (see Ghosh et al. 2014 for an 
overview), game theory textbooks generally propose 
backward induction as the standard solution (e.g., Osborne 
& Rubinstein, 1994).  For marble drop trials with four bins 
and three trapdoors that have been used in the experiment, 
the backward induction solution will always be found in 6 

                                                             
1 Note that in the original game, the hue of the color of the 

marbles in the bin determined its payoff. However, for the 
convenience of the reader, we will use the number of marbles. 

steps, where each step consists of attending to one pay-off. 
In the example game of Figure 1, the orange player would 
perform backward induction as follows: check and compare 
the numbers of orange marbles in bins 3 and 4 (two steps); 
the number in bin 4 is higher, so now check and compare 
the numbers of blue marbles in bins 2 and 4 (two steps); the 
number in bin 2 is higher, so now check and compare the 
numbers of orange marbles in bins 1 and 2 (two steps); the 
number in bin 1 is higher, so open the left-hand side of 
trapdoor A. The total number of steps is 2+2+2=6. It is not 
hard to see that this is irrespective of pay-off structure. 

 
 

Figure 2: Pay-off structures of two types used in the 
experiment. The left and right numbers in the leaves 
correspond to the pay-off of the player and opponent, 
respectively. The numbers after S, T, and U represent 

whether it is the player’s turn (1) or the opponent’s (2). 
 

However, backward induction is not the only possible 
reasoning strategy. Meijering et al. (2012) investigated 
whether participants used this backward induction strategy, 
which is indeed in general the most optimal way to play the 
marble drop game, or if participants rather used the so-
dubbed forward reasoning plus backtracking strategy. See 
the next section for an explanation how that strategy works 
for the example games represented in Figure 2.  

Forward reasoning plus backtracking appears at first sight 
to be a suitable candidate because of the prevalence of a 
forward causal or temporal direction in human reasoning. 
Moreover, for most pay-off structures that can occur in 
theory, the solution can be found with forward reasoning 
plus backtracking in a smaller number of steps than when 
backward induction were used (see Szymanik, Meijering, 
and Verbrugge, 2013 for a simulation showing this). For 
example, if bin 3 had contained 4 blue and 4 orange 
marbles, the forward reasoning plus backtracking algorithm 
would only have taken four steps: “attend the number of 
marbles in bin 1, 2, 3 consecutively (three steps) and 
conclude that bin 3 contains the maximum possible number 
of 4 blue marbles; then check that it also contains the 
maximum number, 4, of orange marbles (fourth step), so 
choose the right-hand side of trapdoor A”. 

 In their study, Meijering et al. (2012) recorded eye-
fixations while participants were playing the marble drop 
game. Next, they analyzed the fixation patterns and 
compared the found patterns to predicted patterns by either 
the backward induction strategy or the forward reasoning 
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plus backtracking strategy. The eye-fixation data suggested 
that participants were using the forward reasoning plus 
backtracking strategy more than backward induction. 

Forward reasoning plus backtracking 
As suggested by the name of the strategy, forward reasoning 
plus backtracking is a combination of forward reasoning and 
backward reasoning. In principle, forward reasoning alone 
can yield a very fast solution if the highest value for the blue 
player is in bin 1—there is no need for ToM reasoning in 
that case. However, all items used in the experiment of 
Meijering et al. (2012) were carefully picked such that they 
all required second-order ToM reasoning in order to obtain 
the highest possible pay-off. In these items, backtracking is 
required to predict the succeeding action of the opponent in 
order to determine whether the highest possible pay-off (4) 
is accessible. A player who employs this strategy starts at 
the top trapdoor and tries to find out which trapdoor to open 
to obtain the highest pay-off, and then uses backward 
reasoning to find out whether that bin is reachable. 

Szymanik et al. (2013) investigated the use of the forward 
reasoning plus backtracking strategy by looking at the 
reaction times obtained by Meijering et al. (2012). 
Szymanik et al. used an ad hoc forward reasoning plus 
backtracking algorithm that had been used by Meijering et 
al. to create fixation-patterns for their eye-tracking analyses 
of the 16 item types used in their experiments. The 
algorithm was then used to predict the number of decision 
steps necessary for each type of trial. Szymanik et al. found 
that the number of steps as calculated by the algorithm 
indeed predicted the reaction times. In the current paper, we 
present a more general forward reasoning plus backtracking 
algorithm that can be applied to any binary turn-taking 
(extensive form) game tree (see Algorithm 1). 

Structural Complexity of Game Trees 
Inspired by the work of Szymanik (2013) on the 
computational complexity of solving finite extensive-form 
turn-taking games, Szymanik et al. (2013) investigated 
possible computational-level explanations of the marble 
drop task. They introduced a method to quantify the 
difficulty of a marble drop trial that was constructed such 
that it is independent from particular algorithmic-level 
implementations. In their study, they proposed to look at the 
structure of marble drop game trials. The main idea is to 
quantify the complexity of the corresponding game trees 
with respect to the number of alternations between two 
players. The intuition is that every alternation potentially 
corresponds to the next level of higher-order ToM 
reasoning. Therefore, the difficulty of the game should 
increase with the number of alternations. Additionally, the 
pay-off distribution must be taken into account, because 
many alternations may be simply ignored by the players if 
reasoning about them clearly does not lead to better pay-
offs.  Let us give a reminder of the definitions. 
 
Definition 1 Let us assume that players {1,2} strictly 
alternate in the game; Let player i ∈ {1,2}. Then: 

• In a Λ tree, all nodes are controlled by Player i. 
• A Λ tree, a tree of k-alternations for some k ≥ 0,  

starts with a player I node. 
 
Note that all 16 game trees corresponding to item types used 
in the experiments of Meijering et al. (2012) are Λ trees. 
 
Definition 2 A game T is generic, if for each player, distinct 
end nodes have different pay-offs.  
 
Note that all 16 item types in the experiments of Meijering 
et al. (2012) are generic games. 
 
Definition 3 Suppose i ∈ {1,2}. If T is a generic game tree 
with the root node controlled by Player 1 and n is the 
highest possible pay-off for Player 1, then T −is the minimal 
sub-tree of T containing the root node and the node with 
pay-off n for Player i. 
 
For example, consider both Λ trees from Fig. 2. Taking the 
minimal sub-trees containing the root node and the node 
with pay-off 4 for Player 1 yield a Λ sub-tree for the item 1 
and a Λ  sub-tree for item 3 (also see Szymanik et al., 2013 
for more explanations). 

The levels of lambda-difficulty of reduced trees T − (later 
“lambda-difficulty”) was indirectly tested by comparing 
trials in which the highest pay-off was accessible to trials in 
which the highest pay-off was not accessible (Szymanik et 
al., 2013). The rationale behind this test was that non-
accessible trials would generally include more alternations 
and would therefore be more difficult. Indeed, it turned out 
that the non-accessible trials took more time to complete 
than the accessible trials. However, Szymanik et al. did not 
investigate the direct relation between the structural 
difficulty of the reduced trees and the reaction times. 

The current study builds on the work of Szymanik et al. 
(2013). Now for the first time we directly explore the use of 
the lambda-difficulty of the reduced trees. In addition, we 
introduce an algorithmic-level explanation, namely the 
forward reasoning plus backtracking algorithm. The 
predictive power of both the structural lambda-difficulty 
and forward reasoning plus backtracking strategy are 
investigated. Thus, two hypotheses can be formulated.  

 
H1: Is lambda-difficulty of reduced game trees predictive 

for the reaction time of the marble drop game?  
 
H2: Is the forward reasoning plus backtracking strategy 

predictive for the reaction time of the marble drop game? 

Implementation 

Forward reasoning + backtracking algorithm 
Algorithm 1 shows the implementation of the forward 
reasoning plus backtracking strategy as used in the current 
study. The algorithm computes the number of attentional 

1 
3 

i 
1 

i 
k+1 

1 
3 

1 
2 

1 
3 

1780



steps (henceforth referred to as steps). The steps are 
computed by counting the number of times a value gets 
attended. For example, comparing two values in bins of the 
marble drop game would be counted as two steps, because 
both values need to be attended for the comparison. 

 
Algorithm 1. The following algorithm computes the 

number of forward reasoning plus backtracking steps, where 
m is the number of nodes, Pn is the pay-off for the player at 

node n, and On is the pay-off for the opponent at node n. 
 

Require: Pn ϵ {1 : m} and On ϵ {1 : m} 
Ensure: all Pn are unique and all On are unique 
01: n ← 1 {start with forward reasoning at the first node} 
02: Steps ← 1 
03: while not max Pn do 
04:  n ← n + 1 and Steps ← Steps + 1 {While the highest 

pay-off is not found continue with the next node} 
05:   if max Pn and max On then 
06:   Steps ← Steps + 1 {Do not backtrack if the highest 

pay-off of both players is in this node} 
07:    return Steps 
08:   end if 
09: end while 
10:  High ← n {Remember the node with the highest pay-

off} 
11: Back ← m 
12: n ← m - 1 {Start backtracking at the last two nodes} 
13: while Back ≠ High and n > 0 do 
14:   if trapdoor(n) = player then 
15:    if PBack > Pn then 
16:  Back ← Back {Node Back has the highest pay-

off for the player, therefore the nodes can be 
substituted by node Back} 

17:    else if PBack < Pn then 
18:  Back ← n {Node n has the highest pay-off for the 

player, therefore the nodes can be substituted by 
node n} 

19:    end if 
20:   else if trapdoor(n) = opponent then 
21:    if OBack > On then 
22:  Back ← Back {Node Back has the highest score 

for the opponent, therefore the nodes can be 
substituted by node Back} 

23:    else if OBack < On then 
24: Back ← n {Node n has the highest pay-off for the 

opponent, therefore the nodes can be substituted 
by node n} 

25:    end if 
26:   end if 
27:   n ← n - 1 
28:  Steps ← Steps + 2 {There are two pay-offs being 

compared, hence this takes 2 steps} 
29:  end while 
30: return Steps {Return the number of Steps for forward 
reasoning plus backtracking}  

 

As an example, we will walk through two items that were 
actually presented in the game experiment (see Figure 2). 
Item 1 At first, the player attends all leaves until she finds 
her highest pay-off. The highest pay-off is in the fourth leaf 
(i.e., the right leaf of U), hence it takes 4 steps. Next, the 
player needs to compare the pay-off of the opponent in this 
leaf with the pay-off of the opponent in the left leaf of T. 
Since there are two nodes to compare, this will take 2 steps. 
Because the highest pay-off for the opponent is in the left 
leaf of node T, the opponent will never let the first player 
reach her highest pay-off. Therefore, the highest pay-off is 
not accessible. Finally, the player has to compare her pay-
off in the left leaf of T with the pay-off of the left leaf of the 
first node (i.e., node S). This comparison also requires 
attending to two nodes and thus takes 2 steps. This left leaf 
has the highest possible pay-off. In total, the algorithm finds 
the highest possible solution in 8 steps. 
Item 3 Again, the player attends all leaves until she finds 
her highest pay-off. In this case, the highest pay-off is in the 
second leaf (the left leaf of node T), and thus it takes 2 steps 
to find her highest pay-off. Next, the algorithm computes 
the number of steps needed to find out whether the pay-off 
is accessible. To that end, the pay-off in both leaves of node 
U are compared—this also takes 2 steps. Then, the 
opponent’s pay-off in the left leaf of node T is compared to 
the opponent’s pay-off in the right leaf of node U. This 
comparison also takes 2 steps. A rational opponent would 
choose the left leaf at node T, because that is the highest 
possible pay-off for the opponent. Thus, for the player, the 
highest pay-off is accessible. For this item, the algorithm 
computes for a total of 6 steps.  

Output 
The two different proposed methods were used to describe 
the difficulty of the game items as used in the data obtained 
by Meijering et al. (2012). The descriptions of the 16 items 
that were used in the current dataset are shown in Table 1. 

Experimental results 
Similarly to Szymanik et al (2013), the experimental data of 
Meijering et al. (2012) was used2. To recall, 23 psychology 
students participated in the experiment. They were asked to 
play a marble drop game, as depicted in Figure 1, in which 
they only had to make the first decision (either stop and take 
the pay-off or continue to the next trapdoor).  

Both the lambda-difficulty (abbreviated as Lambda) and 
the number of steps as calculated by the forward reasoning 
plus backtracking algorithm (abbreviated as Steps) were 
calculated for each trial that the participants had received 
during the experiment.  

Next, linear mixed-effects models were used to 
investigate the predictive power of both the lambda-
difficulty and the forward reasoning plus backtracking 
strategy.  

 
                                                             
2 Following Meijering et al. (2012), only reaction times from the 

second block were analyzed. 
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Table 1: Number of steps when using forward reasoning 

plus backtracking (Steps) and the levels of lambda-difficulty 
(Lambda) for all 16 items of the marble drop game in the 

analyzed dataset. “Attainable” represents whether the 
player’s highest possible pay-off 4 is in fact attainable.  

 
Item3 Steps Lambda (Λ ) Attainable 
1 8 3 No 
2 8 2 No 
3 6 2 Yes 
4 8 2 No 
5 8 2 No 
6 8 3 No 
7 5 3 Yes 
8 6 2 Yes 
9 6 2 Yes 
10 8 3 No 
11 6 3 Yes 
12 5 3 Yes 
13 8 3 No 
14 6 3 Yes 
15 6 2 Yes 
16 8 2 No 

Mixed-effect models 
The data was analyzed with linear mixed-effect models 
using the LME4 package (Bates, Maechler, Bolker, & 
Walker, 2013) available in R Project (Team R Core, 2013). 
To find the best model, we formulated a full model based on 
theoretical assumptions. We then dredged the model by 
systematically leaving out different fixed factors and 
interactions (Bartón, 2013). This dredge process resulted in 
a subset of all possible models that the full model allowed 
for. Next, the Akaike information criterion (AIC; Akaike, 
1974) was calculated for each model, and the model with 
the lowest AIC (i.e., the best model) was selected for further 
analyses. The AIC is suitable for this particular procedure, 
because it takes into account the trade-off between the 
complexity of a model and its fit. Thus, we were able to 
select the best model out of our subset of models. 
Null-model In order to get a reference for the calculated 
AIC for both the forward reasoning plus backtracking model 
and the lambda-difficulty model, we calculated a null-model 
in which we only put the random effect of participant. The 
AIC of this null-model is 1056. 

The p-values of the factors in the selected models were 
calculated by estimating the degrees of freedom 
(Kuznetsova, Brockhoff, & Christensen, 2013). 
Forward reasoning + backtracking First, Steps was 
entered in the model, because we hypothesized that Steps is 
predictive of the reaction times. Secondly, Accuracy was 
entered in the model. Accuracy was 0 or 1, corresponding to 
an incorrect or correct response, respectively. Furthermore, 
an interaction effect between Accuracy and Steps was 

                                                             
3 The corresponding trees can be found on the website 

http://www.ai.rug.nl/SocialCognition/wp-content/uploads/trees.pdf 

entered. Rationale behind this interaction is that we cannot 
know what happens when an incorrect response is given, 
thus one could expect that Steps is not predictive for 
incorrect responses. To account for speed-up effects due to 
learning, the sequence in which trials were presented to the 
participant was coded as the factor Trial. Thus, the fixed 
factors of the full model were entered as follows: Steps + 
Accuracy + Steps × Accuracy + Trial. Participant was 
entered as random factor. Automatic model selection selects 
the full model as the best model with an AIC of 954. The 
AIC of this model is lower than the AIC of the null-model 
thus the full model is a better model. 

The fixed factors of the selected model are listed in Table 
2. First, a main effect of Accuracy is found. The negative 
estimate β suggests that individuals are faster at correct 
trials. Furthermore, the Trial factor reveals the presence of a 
learning effect. The more trials an individual does, the faster 
he/she responds. The interaction effect Steps x Accuracy 
shows that Steps predicts the reaction times of marble drop 
games that are correctly solved. The lack of a main effect 
for Steps suggests that for incorrect trials, the forward 
reasoning plus backtracking does not predict reaction times. 
This is due to the algorithm’s incapability to predict errors. 

  
Table 2. The factors of the forward reasoning plus 

backtracking model and the corresponding estimate (β), t-
statistics, and p-values. 

 
Factor β t p 
Intercept  9.512 20.67 >0.001 
Steps -0.060 -0.87 0.387 
Accuracy -1.531 -3.27 0.001 
Steps×Accuracy 0.209 3.00 0.003 
Trial -0.007 -4.02 >0.001 

 
Lambda-difficulty Lambda, Accuracy, Trial, and the 
interaction between Lambda and Accuracy were entered in 
the full model, following the same rationale as in the before-
mentioned analyses. Thus, the fixed factors of the model 
were entered as follows: Lambda + Accuracy + Lambda × 
Accuracy + Trial. Participant was entered as random factor. 
Automatic model selection preferred the model with factors 
Lambda + Trial to the full model. The simpler model has an 
AIC of 992, which is higher than the AIC of the forward 
reasoning plus backtracking model, but lower than the AIC 
of the null-model.  

The effects of the fixed factors for the Lambda + Trial 
model are shown in Table 3. Both the main effects of Trial 
and Lambda significantly predict the reaction time on a 
marble drop game. As with the forward reasoning plus 
backtracking model, Trial can be interpreted as a learning 
effect. The effect of Lambda is more difficult to explain. If 
lambda-difficulty positively predicts reaction times (i.e., the 
more difficult a trial, the slower the participant), one would 
expect a positive estimate. However, the estimate of lambda 

1 
i 
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is negative, meaning that participants are faster in solving 
trials that are defined as difficult by the lambda-difficulty. 

Finally, when we compare the AIC scores of the lambda-
difficulty model to the forward reasoning plus backtracking 
model, the latter has a lower AIC score and thus best 
explains the data. 
 
Table 3. The factors of the lambda-difficulty model and the 

corresponding estimate (β), t-statistics, and p-values. 
 

Factor β t p 
Intercept  9.684 84.38 >0.001 
Lambda -2.263 -7.51 >0.001 
Trial  -0.008 -3.89 >0.001 

Discussion 

Overview 
We have investigated two cognitive models of playing a 
turn-based game called the Marble Drop Game. Our 
computational-level model is based on the logical 
description of the game trees in terms of player alternations 
and the distribution of highest pay-off. Our more specific 
algorithmic-level model proposes a concrete strategy that 
can be used by subjects to solve the game trials. The 
previous experiments (Szymanik et al., 2013) have not been 
able to distinguish between the two modeling approaches, as 
both models are consistent with the eye-tracking study of 
Meijering et al. (2012). In this paper, by generalizing the 
forward reasoning with backtracking algorithm put forward 
by Meijering et al. (2012), we have managed to disentangle 
the predictions of the two models. We have shown that for 
the experimental items of Meijering et al. (2012) only the 
forward reasoning plus backtracking model allows to predict 
subjects’ behavior: the number of steps that the algorithm 
must take for a given marble drop game item predicts the 
reaction time subjects will need to correctly solve the trial.  

Outlook 
In the future we plan to continue the reported research in a 
number of directions. First of all, we would like to better 
understand why the computational model based on the 
structural descriptions has failed. Is it because the lambda-
hierarchy does not take into account the decision of the 
other player? And if that is the reason, how could we fix it?  
Or maybe, the lambda predictions would approximate the 
cognitive difficulty better for a wider variety of game items? 
Finally, what is the precise relation between our two 
models? To answer the last two questions it would be 
necessary to generalize the forward reasoning plus 
backtracking algorithm even more, in such a way that it 
could be applied to any turn-based game.  
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