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A FINITARY VERSION OF GROMOV’S POLYNOMIAL
GROWTH THEOREM

Yehuda Shalom and Terence Tao

Abstract. We show that for some absolute (explicit) constant C, the following
holds for every finitely generated group G, and all d > 0:
If there is some R0 > exp(exp(CdC)) for which the number of elements in a ball
of radius R0 in a Cayley graph of G is bounded by Rd

0, then G has a finite-index
subgroup which is nilpotent (of step < Cd). An effective bound on the finite index is
provided if “nilpotent” is replaced by “polycyclic”, thus yielding a non-trivial result
for finite groups as well.

1 Introduction

A famous theorem of Gromov [Gr] asserts that all finitely generated groups of poly-
nomial growth (thus, in the notation used below, one has |BS(R)| ≤ Rd for some d
and all sufficiently large R, where S is a fixed set of generators) are virtually nilpo-
tent. This was generalized by van der Dries and Wilkie [DrW1] by assuming the
polynomial growth condition |BS(R)| ≤ Rd at an infinite number, rather than all
scales. A second proof of this fact, which for the first time released the dependence
on the involved solution to Hilbert’s 5th problem, was given recently by Kleiner [Kl],
motivated by work of Colding–Minicozzi [CM] and using the theory of harmonic
functions. In this paper, we refine Kleiner’s work to obtain a further strengthening
of Gromov’s theorem that only requires the polynomial growth condition at one (suf-
ficiently large, yet explicit) scale, and gives quantitative control on the nilpotency
degree. To state the result (mentioned in the Abstract above) precisely, we need
some notation.

Definition 1.1 ((R0, d)-growth groups). A finitely generated group is a pair
G = (G,S), where G is a group, and S ⊂ G is a finite non-empty symmetric set
which generates G (thus S−1 := {s−1 : s ∈ S} = S). For each g ∈ G, we define
‖g‖S := inf{n : g ∈ Sn} to be the length of the smallest word with alphabet S
that evaluates to g. For each R > 0, we define BS(R) := {g ∈ G : ‖g‖S ≤ R} to
be the collection of words in S of length at most R. For R0, d > 0, we define a
(R0, d)-growth group to be a finitely generated group (G,S) such that∣∣BS(R0)

∣∣ ≤ Rd
0 . (1)
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Remark 1.2. One can of course generalize (1) by replacing the right-hand side of
Rd

0 by CRd
0 for some additional parameter C, as is customary in the literature. But

this would add a new parameter to an already complicated notational system and so
we have chosen to drop this parameter, as one can partially simulate it by increasing
d slightly and assuming R0 is large. Note that a finitely generated group (G,S) has
polynomial growth if and only if there exists a d such that (G,S) is a (R0, d)-growth
group for all sufficiently large R0.

Definition 1.3 (Quantitative finite index). Let R,K > 0. A finitely generated
group (G′, S′) is said to be a (K,R)-subgroup of (G,S) if G′ is a subgroup of G,
S′ ⊂ BS(R), and BS(K + 1) ⊂ BS(K) · BS′(K). If we drop the final condition
BS(K + 1) ⊂ BS(K) ·BS′(K), we say that G′ is a (∞, R)-subgroup of G.

Remark 1.4. Observe that if (G′, S′) is a (K,R)-subgroup of (G,S) then
BS(r + 1) ⊂ BS(r) ·BS′(K) for all r ≥ K, and on iterating this we conclude
G ⊂ BS(K) ·G′k. In particular, G′ is a finite-index subgroup of G of index at most
|BS(K)|. Conversely, if (G′, S′) has finite index in (G,S), then we can write G as a
finite union of cosets x1 ·G′, . . . , xm ·G′ of G′, and in particular one has the relations
exi = xje,ige,i for all 1 ≤ i ≤ m, e ∈ S, and some 1 ≤ je,i ∈ m, ge,i ∈ G′. If one then
sets R := sup{‖e′‖S : e′ ∈ S′} and K := sup{‖xi‖S : 1 ≤ i ≤ m} ∪ {‖ge,i‖S′ : 1 ≤
i ≤ m, e ∈ S} we see that (G′, S′) is a (K,R)-subgroup. Note, however, that this
argument does not (and cannot) give effective bounds on K,R.

Example 1.5. Let m = 2p− 1 be a large odd number. Then the (additive) finitely
generated group (Z/mZ, {−2,+2}) is a (2, 2)-subgroup of (Z/mZ, {−1,+1}), while
conversely, (Z/mZ, {−1,+1}) is merely a (2, p)-subgroup of (Z/mZ, {−2,+2}). The
intuition here is that while {−2,+2} does generate the element 1, this is a “global”
fact (relying on the parity of m) rather than a “local” one, and thus cannot be
detected in the limit p → ∞ if one is only allowed to perform a bounded number of
group operations. Thus we see that this quantitative notion of finite index not only
measures the index of G′ in G, but also the relative position of S and S′. This kind
of “practical” interpretation of abstract (and often trivial) group theoretic notions
is necessary in order to perform the quantitative arguments in this paper properly.

Remark 1.6. It is immediate that if (G,S) is a (R0, d)-growth group, and (G′, S′) is
a (K,Rκ

0)-subgroup of (G,S) for some 0 < κ < 1, then (G′, S′) is a (R1−κ
0 , d/(1−κ))-

growth group. This is analogous to the obvious fact that any finite-index subgroup
of a group of polynomial growth, remains of polynomial growth.

Definition 1.7 (Virtual nilpotency). Let K,R, s,D ≥ 1. A finitely generated
group (G,S) is said to be (s,D)-nilpotent if |S| ≤ D and G is nilpotent of step
at most s (i.e. every s′-fold iterated commutator vanishes for s′ > s). A group
(G,S) is said to be (K,R, s,D)-virtually nilpotent if it contains a (s,D)-nilpotent
(K,R)-subgroup (G′, S′).

Theorem 1.8 (Quantitative Gromov theorem). Let d,R0 > 0, and assume that

R0 ≥ exp
(
exp(CdC)

)
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for some sufficiently large absolute constant C. Then every (R0, d)-growth group is
(K(R0, d),K(R0, d), C

d, Cd)-virtually nilpotent for some K(R0, d) depending only
on R0, d.

In order to simplify the exposition somewhat, we do not give an effective bound
for K(R0, d) in our arguments, relying instead on an ineffective compactness argu-
ment to establish its finiteness. However, it is possible to eradicate this compactness
argument from the proof by standard “quantifier elimination” techniques, at the
cost of making it substantially lengthier (and the final bound for K(R0, d) obtained
is quite poor, of Ackermann type in d). On the other hand, the arguments do give an
effective value for C (it appears that C = 100 works, even if for clarity we won’t keep
track of this aspect, in which no tightness is claimed). We discuss full effectivization
issues in section 15, along with the following result:

Theorem 1.9 (Fully quantitative weak Gromov theorem). Let d > 0 and R0 > 0,
and assume that

R0 ≥ exp
(
exp(CdC)

)
for some sufficiently large absolute constant C. Then every (R0, d)-growth group

has a normal subgroup of index at most exp
(
R

exp(exp(dC))
0

)
which is polycyclic.

This result is in fact established along sections 6–10 (see Proposition 5.2 below),
and can be recommended to the reader as a natural “resting point” along the way to
the full proof of the main Theorem 1.8. It captures the quantitative outcome made
out of Kleiner’s approach, and avoids completely the Milnor–Wolf part of the proof,
which is only made semi-quantitative here. Note also that a completely effective
version of Theorem 1.8 is still available when the group is assumed torsion free; see
Corollary 15.6.

We have the following immediate corollary of Theorem 1.8:

Corollary 1.10 (Slightly super-polynomial growth implies virtual nilpotency).
Let (G,S) be a finitely generated group such that∣∣BS(R)

∣∣ ≤ Rc(log logR)c

for some R > 1/c, where c > 0 is a sufficiently small absolute constant. Then G is
virtually nilpotent.

Remark 1.11. By using completely ineffective compactness arguments, it is well
known that Gromov’s theorem implies the existence of some super-polynomial growth
function for which the corollary holds, although no such explicit function was known
before. It has been proposed that the subradical growth type exp

(
C
√
n
)
might work

(see [G1], [LuM] for some results in this direction). It is also interesting to com-
pare the situation with Segal’s refutation [S] of a conjecture of Lubotzky, Pyber and
Shalev [LuPS] concerning the growth type of the number of finite-index subgroups
of a residually finite group (as a function of the index). It was shown in [S] that here
no super-polynomial bound could yield the same characterization as the polyno-
mial one, of being virtually solvable of finite rank (a remarkable result of Lubotzky,
Mann and Segal [LuMS], which relies, among other things, on Lazard’s deep p-adic
analogue of Hilbert’s 5th problem [L]).
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The nilpotent group generated by Theorem 1.8 has step at most Cd, but an
inspection of the proof shows that it also has Hirsch length (i.e. sum of torsion-
free ranks of the abelian quotients in a grading) at most Cd. It is a standard
computation (which also follows from the well known Bass–Guivarc’h formula for
the growth of nilpotent groups), that nilpotent groups of Hirsch length r and step s
have polynomial growth of order at most O(rs). We thus conclude

Corollary 1.12 (Polynomial growth at one scale implies polynomial growth at all
scales). Let d > 0 and R0 > 0, and assume that

R0 ≥ exp
(
exp(CdC)

)
for some sufficiently large absolute constant C. Let G be a (R0, d)-growth group.
Then one has ∣∣BS(R)

∣∣ ≤ KRCd

for all R ≥ 1, where K = K(R0, d) depends only on R0, d.

Thus, polynomial growth of order d at one (moderately large) scale implies poly-
nomial growth of order O(1)d at all subsequent scales. We do not know if this
exponential loss in the polynomial growth degree is necessary.

1.13 Overview of proof. Our arguments broadly follow the strategy used by
Kleiner [Kl] to prove Gromov’s theorem, being based in particular on the study
of harmonic functions on the Cayley graph associated to (G,S). Kleiner’s proof
proceeded, roughly, along the following steps:

(i) If G is infinite amenable (or is merely without property (T)), then it admits
a fixed-point free affine action on a Hilbert space, one of its orbit maps being
a Hilbert space valued non-constant Lipschitz harmonic function on G. After
taking a section, this implies the existence of a scalar non-constant Lipschitz
harmonic function.

(ii) If G has polynomial growth, then the space of real valued Lipschitz (or fixed
polynomial growth) harmonic functions on G is finite-dimensional.

(iii) From (i) and (ii), an infinite group G of polynomial growth admits a finite-
dimensional representation with infinite image, or equivalently, a normal sub-
group H whose quotient G/H is an infinite linear group.

(iv) Any linear group of polynomial growth is virtually solvable.
(v) From (iii) and (iv), an infinite group G of polynomial growth admits a normal

subgroup H with virtually solvable – or better yet virtually infinite cyclic –
quotient G/H.

(vi) The group H obtained in (v) as the kernel of a Z-target homomorphism of
a finite-index subgroup of G has slower growth, and thus (by induction) is
virtually nilpotent. Hence G is virtually solvable (in fact, polycyclic).

(vii) Any virtually polycyclic (or merely solvable) group of polynomial growth is
virtually nilpotent.

The idea is then to make the proofs of the statements (i)–(vii) as elementary
as possible, so that they may be made quantitative. Note that for these purposes,
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statements involving infinite objects must be re-proved in a finitary version, and
in the fully effective results (e.g. Theorem 1.9) only finitely many elements of the
group are actually involved. This is a rather unconventional difficulty in geometric
group theory, where Gromov’s theorem is a cornerstone. We next remark on our
modification of these steps.

Statement (i) is made quantitative in section 6. The proof given in [Kl] uses
ultralimits and considerations related to Kazhdan’s property (T), and is thus of a
qualitative nature. However, it turns out that one can use the spectral theory of the
Laplacian and Young’s inequality to obtain a quantitative version of an existence
theorem for non-constant Lipschitz harmonic functions on all infinite groups.

Statement (ii), which we discuss in section 7, is the heart of Kleiner’s approach
(inspired by the related work of Colding–Minicozzi [CM]). His arguments are already
quite quantitative. Two noticeable (related) difficulties that arise when trying to
quantify Kleiner’s proof are that the scale R for which a finite-dimensional space
of harmonic functions injects into the ball B(e,R) is not effective, and that in this
scale one lacks an a priori lower bound on the positive value of the determinant of
an associated positive definite quadratic form.

For statement (iii), unlike the abstract setting of Kleiner’s proof, the space we
work with is the one appearing in statement (ii) (modulo the constants), in which
the group operates naturally (preserving the Lipschitz norm). This is trivial in the
qualitative world, but does require a certain amount of care in the quantitative
setting (for instance, one needs quantitative versions of the assertion that any finite-
dimensional vector space has a basis), and is done in section 8.

Statement (iv), established in section 9, was proven in [Kl] (as in Gromov’s
original [Gr]) using the Tits alternative, or by a weaker variant of that alternative due
to the first author [Sh]. However, for our purposes we provide a completely different,
elementary proof, which makes crucial use of the fact (not exploited previously) that
the linear representation in (iii) ranges in a compact Lie group (the one preserving
the Lipschitz norm in (iii)). Our arguments here are inspired by the famous Solovay–
Kitaev theorem [KiSV] in the theory of quantum computations, which itself may be
viewed as a variant on the well-known Zassenhaus–Kazhdan–Margulis theorem (cf.
[K, §4.12]). As in the aforementioned results, we obtain a quantitative version of
(iv) based on the fact that commutators of matrices near the identity collapse fast
towards it, and hence cannot be non-trivially accommodated without a “rapidly
growing supply” of group elements, which will be incompatible with the polynomial
growth hypotheses. Furthermore, the compactness of the ambient group ensures the
existence of a finite-index subgroup of matrices that are close enough to the identity
that the previous considerations apply.

Statement (v) is formalized in Proposition 5.2, and follows simply by putting all
the previous statements together.

Statements (vi), (vii) are formalized together as Proposition 5.3. Statement (vii)
is a result of Milnor [Mi1] and Wolf [W]. The arguments of Milnor quickly allow
us to reduce to a polycyclic setting in which G is an extension of a cyclic group by
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a virtually nilpotent group. The main task, as in [W], is then to show that outer
automorphisms of virtually nilpotent groups which are of polynomial growth are
necessarily virtually unipotent. To do this, one must first eliminate the torsion from
the nilpotent group, and then after taking quotients one is faced with understanding
linear transformations of polynomial growth on a free abelian group Zd. But this
can be handled using known results on Mahler measure of algebraic integers. It
turns out that all these steps can be made semi-quantitative (in the sense that one
does not control the index behind the modifier “virtually”), and this is done in
sections 11–14; this then gives a quantitative (but ineffective) proof of Theorem 1.8
by a compactness argument given in section 3. In section 15 we discuss the changes
needed to make the semi-quantitative proof fully effective.

There are quite a few applications of Gromov’s theorem where an effective version
of it is of interest. We illustrate this only briefly in one geometric setting which was
discussed in Gromov’s original paper [Gr] as Corollary 15.2 below.

Finally, as a by-product of our effort one obtains a simplified, particularly accessi-
ble proof of Gromov’s original qualitative theorem. It also avoids the Tits alternative
and any use of p-adic numbers, and can be fully digested using basic background
in linear algebra and calculus. This soft proof is presented in our companion pa-
per [ShT], along with various other results and questions related to the current work
and around the theme of Lipschitz harmonic functions on groups.

1.14 Comparison with other work. In the literature there seems to be only
one previous effective result related to Gromov’s theorem, due to van den Dries
and Wilkie [DrW2], which handles the subquadratic growth case d < 2 by using
clever, elementary, and quite combinatorial arguments. (The case d < 1 is trivial;
see Lemma 5.1.)

A related quantitative formulation of Kleiner’s argument was recently given by
Lee and Makarychev [LeM]. They worked in the setting of a finite group (G,S)
obeying a doubling condition |BS(2R)| ≤ 2d|BS(R)| at all scales R > 0, as opposed
to the (weaker) assertion of being an (R0, d)-growth group at a single scale. Using
Kleiner’s method, they obtained upper bounds (roughly of the order of exp(O(d2)))
on the multiplicity of eigenvalues of the Laplacian, and also obtained a subgroup
of G of index bounded by exp(exp(O(d2))) which had a homomorphic image onto
a cyclic group Z/MZ of cardinality at least M � exp(−O(d))|G|exp(−O(d2)). In the
infinitary setting, the presence of a bounded index subgroup with a large homomor-
phic image can be used to locate a commutator subgroup with a reduced order of
growth, to which one can apply an induction hypothesis to obtain a Gromov-like
theorem. Unfortunately, a technical obstruction in this finitary case is that the dou-
bling condition in [LeM] is required at all scales (up to the diameter of G), whereas
the homomorphic image only yields a growth reduction up to scale M or so. Our
main Theorem 1.8 can be viewed as an answer to a question raised in [LeM], re-
garding whether Kleiner’s methods can be adapted to the finitary setting assuming
a polynomial growth hypothesis rather than a doubling condition.
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Another related result, of Milnor–Wolf type, was obtained recently by the second
author in [T2]. There, it was shown that if G is a (R0, d)-growth group which is
solvable of derived length at most l, with R0 sufficiently large depending on l, d,

then G contains a nilpotent group of step at most s(l, d) and index at most R
C(l,d)
0

for some s(l, d), C(l, d) depending only on l and d. This result has a much better
control on the index of the nilpotent subgroup than Theorem 1.8, but it gives a
much poorer (though still effective) bound on the step, or on the size of R0 required,
and is, in addition, restricted to the solvable case. The methods used in that paper
are quite different from those here, replying on additive combinatorics rather than
the theory of harmonic functions and linear representations. By combining the
results in [T2] with Theorem 15.3, one can obtain a variant of Theorem 1.8 in which
the bound K(R0, d) is completely effective, but the quantities exp(exp(CdC)) and
Cd appearing in that theorem are replaced by much larger (but still effective and
explicit) functions of d. We omit the details.

1.15 Acknowledgments. The authors thank Emmanuel Breuillard for valuable
discussions, and the anonymous referee for corrections. The first author was sup-
ported by ISF and NSF grants number 500/05 and DMS-0701639 resp. The second
author is supported by a grant from the MacArthur Foundation, by NSF grant
DMS-0649473, and by the NSF Waterman award.

2 Notation

If E,F are two subsets of a multiplicative group G, we use E ·F to denote the product
set {ef : e ∈ E, f ∈ F}, and E−1 to denote the inverse set {e−1 : e ∈ E}. In an
additive group we can similarly define the sum set E + F and reflection −E. We
also define dilates k ·E := {ke : e ∈ E} for E in an additive group and non-negative
integers k.

Given a group G, we define the commutator [g, h] of two group elements g, h ∈ G
by [g, h] := ghg−1h−1, and the commutator of two subgroups [H,K] to be the
group generated by {[h, k] : h ∈ H, k ∈ K}. We define the lower central series
G = G1 ≥ G2 ≥ . . . by G1 := G and Gi+1 := [Gi, G], and the derived series
G = G(1) ≥ G(2) ≥ . . . by G(1) := G and G(i+1) := [G(i), G(i)]. We say that G is
nilpotent of step at most s if Gs+1 is trivial, and solvable of derived length at most l
if G(l+1) is trivial.

We write X = O(Y ), X � Y or Y � X to denote the statement that |X| ≤ CY
for some absolute constant C.

3 A Compactness Reduction

In this section we perform a compactness reduction to eliminate the role of the
quantities K(R0, d) appearing in Theorem 1.8. This will simplify the proof substan-
tially, at the cost of rendering the final value of K(R0, d) obtained ineffective; but
see section 15 for how one could avoid the use of compactness to obtain an effective
value of K(R0, d).
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We first remove K and R from the definition of virtual nilpotency.

Definition 3.1 (Virtual nilpotency, again). Let s,D ≥ 1. A finitely generated
group (G,S) is said to be virtually (s,D)-nilpotent if it contains a finite-index sub-
group that is (s,D)-nilpotent.

We now claim that Theorem 1.8 follows from the “semi-quantitative” variant
below:

Theorem 3.2 (Semi-quantitative Gromov theorem). Let d > 0 and R0 > 0, and
assume that

R0 ≥ exp
(
exp(CdC)

)
for some sufficiently large absolute constant C. Then every (R0, d)-growth group is
virtually (Cd, Cd)-nilpotent.

We now give the (standard) compactness argument that lets us deduce Theo-
rem 1.8 from Theorem 3.2 (such an argument already appeared in Gromov’s [Gr],
while the general formalism of the “space of marked finitely generated groups” un-
derlying it, was introduced later by Grigorchuk in [G2]).

Proof of Theorem 1.8 assuming Theorem 3.2. Let C be the absolute constant in
Theorem 3.2. Suppose Theorem 1.8 failed, then we could find R0, d obeying the
specified bound (for this choice of C), and a sequence (GN , SN ) of (R0, d)-growth
groups with N → ∞ such that (GN , SN ) is not (N,N,Cd, Cd)-virtually nilpotent.
Observe that |SN | ≤ |BSN

(R0)| ≤ Rd
0 is uniformly bounded, hence by passing to

a subsequence we may assume |SN | = k for all N and some fixed k. Now identify
each (GN , SN ) as a quotient of the free group (Fk, S) under the homomorphism
mapping the free generators S to SN , and denote the kernel by MN < Fk. By a
diagonalization process and after passing to a subsequence, we may assume that
the sets MN converge, i.e. they eventually agree on every finite subset of Fk. Their
limit, M , is of course a normal subgroup of Fk. Obviously G = Fk/M with the
projection of S is a (R0, d)-growth group, hence by Theorem 3.2 it has a finite-index
(Cd, Cd)-nilpotent subgroup. By Remark 1.4, (G,S) is a (K,K,Cd, Cd)-subgroup
for some K. To complete the argument it only remains to observe the following
three facts:

(1) The group G, being virtually nilpotent, is finitely presented;
(2) If a sequence of marked groups converges to a finitely presented group as

above, then from some point on they are all quotients of it (indeed, this
happens when the finitely many relations of the limit group stabilize in the
sequence); and

(3) The property of being a (K,K,Cd, Cd)-nilpotent group is inherited by quo-
tients. �

For technical reasons it is convenient to modify the above definition slightly,
by replacing the number D of generators and the step s with the Hirsch length of
the nilpotent group. Recall that the Hirsch length of a nilpotent group (or more
generally, a polycyclic group) is the sum of the torsion-free ranks of the quotients in
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any normal series of that group with abelian quotients (e.g. for a nilpotent group,
one could use the lower central series).

Definition 3.3 (Virtual nilpotency, yet again). Let r ≥ 1. A r-nilpotent group
is a finitely generated nilpotent group of Hirsch length at most r (and thus step at
most r, as well). A finitely generated group (G,S) is said to be virtually r-nilpotent
if it contains a finite-index subgroup that is r-nilpotent.

By a result of Malcev [M2], if G is nilpotent then any set S ⊂ G, whose projection
generates the abelianization G/[G,G], generates all of G. Hence, a r-nilpotent group
contains a finite-index subgroup generated by at most r generators (or 2r, if one
enforces symmetry). Thus one may replace the conclusion of Theorem 3.2 by the
assertion that every (R0, d)-growth group is virtually Cd-nilpotent.

It remains to prove Theorem 3.2 with this modification. This is the purpose of
the remaining sections of the paper.

4 Generator Bounds

In this section we collect a number of useful results which exploit polynomial growth
hypotheses to locate bounded sets of generators for various types of groups; such
results will be used frequently in the sequel.

First, we observe that the property of having quantitative finite index is transi-
tive.

Lemma 4.1 (Transitivity of quantitative finite index). If (G′, S′) is a (K,R)-
subgroup of (G,S), and (G′′, S′′) is a (K ′, R′)-subgroup of (G′, S′), then (G′′, S′′) is
a (KK ′(K +RK ′ + 1), RR′)-subgroup of (G,S).

Proof. Clearly S′′ ⊂ BS′(R′) ⊂ BS(RR′). Next, since

BS(K + 1) ⊂ BS(K) ·BS′(K) ,

we have
BS(n) ⊂ BS(K + n) ⊂ BS(K) ·BS′(nK)

for any n ≥ 1. Similarly

BS(n
′) ⊂ BS′(K ′ + n′) ⊂ BS′(K ′) ·BS′′(n′K ′)

for all n′ ≥ 1. Combining the two, we conclude that

BS(n) ⊂ BS(K) ·BS′(K ′) ·BS′′(nKK ′)

for all n ≥ 1. Since BS′(K ′) ⊂ BS(RK ′), we conclude that

BS(n) ⊂ BS(K +RK ′) ·BS′′(nKK ′) .

Setting n := K +RK ′ + 1, we conclude that

BS(K +RK ′ + 1) ⊂ BS(K +RK ′) ·BS′′
(
KK ′(K +RK ′ + 1)

)
.

and thus

BS

(
KK ′(K +RK ′+1)+ 1

) ⊂ BS

(
KK ′(K +RK ′+1)

) ·BS′′
(
KK ′(K +RK ′+1)

)
and the claim follows. �
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Next, we observe that a (R0, d) group has a bounded number of generators, after
passing to a finite-index subgroup.

Lemma 4.2 (Generator reduction of (R0, d)-growth groups). Let d ≥ 1, 0 < κ < 1,
and R0 ≥ 1001/κ, and let (G,S) be a (R0, d)-growth group. Then there exists a
(Rκ

0 , R
κ
0)-subgroup (G′, S′) of G with |S′| � O(1)d/κ. In particular (by Remark 1.6)

(G′, S′) is a (R1−κ
0 , d/(1−κ))-growth group. Furthermore we have G = G′ ·BS(R

κ
0).

Remark 4.3. In practice, we will take κ to be small compared to d (e.g. κ = 1/100d),
and so the slight degradation d 
→ d/(1 − κ) in the order of growth here will be
acceptable (at a later stage of the argument, we will obtain a reduction in the
growth order by 1, which will more than compensate for these sorts of losses).

Proof. Clearly
1 ≤ ∣∣BS(1)

∣∣ ≤ ∣∣BS(R
κ
0)
∣∣ ≤ ∣∣BS(R0)

∣∣ ≤ Rd
0 .

By the pigeonhole principle, one can thus find a radius 1 ≤ r ≤ Rκ
0/10 such that∣∣BS(10r)

∣∣ � O(1)d/κ
∣∣BS(r)

∣∣ .
Fix this r. Now, let X be a maximal subset of BS(4r) such that the sets x · BS(r)
for x ∈ X are disjoint. Since the x ·BS(r) are contained in BS(5r), we have

|X| ≤ ∣∣BS(5r)
∣∣/∣∣BS(r)

∣∣ � O(1)d/κ.

On the other hand, by construction of X we have the covering property

BS(4r) ⊂ X ·BS(2r) .

In particular, if we set S′ := X ∪ X−1, and let G′ be the group generated by S′,
then |S′| � O(1)d/κ and

BS(4r) ⊂ S′ ·BS(2r) , (2)

BS(nr) ⊂ BS′(n) ·BS(2r) ,

for n = 1, 2, . . .. In particular, we have

BS(R
κ
0 + 1) ⊂ BS′(Rκ

0) ·BS(R
κ
0)

which on inversion gives

BS(R
κ
0 + 1) ⊂ BS(R

κ
0) ·BS′(Rκ

0) .

On the other hand, we have S′ ⊂ BS(4r) ⊂ BS(R
κ
0), and the claim follows. �

Remark 4.4. Because of this lemma, we will be able to safely absorb a number of
terms involving the size |S| of the generating set in the arguments that follow. (One
should think of d and 1/κ as being bounded; the key point is that the bound on |S|
is independent of R0.)

Remark 4.5. If one does not pass to a finite-index subgroup, then one may need as
many as logR0 generators. Indeed, consider the abelian group G = Zn

2 × Z, where
n ∼ logR0. Then BS(R0) is of polynomial size in R0, but one needs n+ 1 ∼ logR0
generators in order to generate the whole group G. In the converse direction, if
BS(R0) ≤ Rd

0 < 2R0 , then if we let s1, . . . , sn be a maximal sequence in S which is
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dissociated (i.e. the words si11 . . . sinn for i1, . . . , in ∈ {0, 1} are different), then one
easily verifies that 2n ≤ |BS(R0)| ≤ Rd

0 < 2R0 and thus n ≤ d log2 R0 < R0, and that
the set {s1, . . . , sn, s

−1
1 , . . . , s−1

n } generates S and thus G. Thus G can be generated
by O(d logR0) generators in this case.

Remark 4.6. In many applications of Theorem 1.8, S would already be bounded.
But in our proof of Theorem 1.8 (which is based on an induction on d), it will become
necessary at some stage in the proof to pass from G to a subgroup such as [G,G],
which need not have a bounded number of generators. It is then that Lemma 4.2
becomes necessary.

We shall need two further results in a similar spirit. The first asserts that if a
(R0, d)-growth group G can be generated by a small number of generators and has
polynomial growth, then so does [G,G] (cf. [Gr, p. 61], or [Mi1]):

Lemma 4.7 (Generator reduction for a commutator group). Let d ≥ 1, 0 < κ < 1,
and R0 ≥ CdC/κ for some sufficiently large absolute constant C, and let (G,S) be
a (R0, d)-growth group. Then there exists a set of generators S′ of [G,G], each
of the form g[e, e′]g−1 for some e, e′ ∈ S and g ∈ BS

(1
2R

κ
0 − 4

)
. In particular,

([G,G], S′) is a (∞, Rκ
0)-subgroup of (G,S), and thus (by Remark 1.6 ) ([G,G], S′)

is a (R1−κ
0 , d/(1− κ))-growth group.

Proof. It is not difficult to see that [G,G] is generated by the elements g[e, e′]g−1 =
[geg−1, ge′g−1] where e, e′ ∈ S and g ∈ G (since modulo the normal group generated
by these elements, all the basis elements e, e′ commute). The difficulty is to replace
this infinite generating set by a finite one.

For any r ≥ 1, let Ar := {g[e, e′]g−1 : e, e′ ∈ S, g ∈ BS(r)} ⊂ BS(2r + 4), and let
A≤r := Ar ·Ar−1 ·. . .·A0. Then A≤r ⊂ BS(O(r+1)2), and thus by hypothesis we have

|A≤r| ≤ Rd
0 for r ≤ cR

1/2
0 and some small absolute constant c > 0. By hypothesis

(and if C is large enough), R
κ/2
0 is larger than a large multiple of d logR0. In

particular, one can find a 2 ≤ r0 ≤ 1
2R

κ
0 − 4 such that

|A≤r0 | < 2r0−2.

From the pigeonhole principle, we can thus find 2 ≤ r ≤ r0 such that

|A≤r+1| < 2|A≤r| . (3)

This implies that for any x ∈ Ar+1, that x ·A≤r and A≤r overlap, thus

A≤r+1 ⊂ A≤r ·A−1
≤r . (4)

In particular, Ar+1 is contained in the group generated by Ar, which implies that the
act of conjugation by any element g ∈ S preserves the group generated by Ar. Since
Ar also contains the commutators [e, e′] for e, e′ ∈ S, we conclude that S′ := Ar

generates [G,G]; also, S′ is symmetric by construction. The claims of the lemma
then follow. �

Next, we show that finite-index subgroups of finitely generated groups continue
to be finitely generated in a very quantitative manner.
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Lemma 4.8 (Qualitative finite index implies quantitative finite index). Let d ≥ 1,
I ≥ 1. Let G = (G,S) be a finitely generated group, and let G′ be a finite-index
subgroup of G with index |G : G′| ≤ I. Then there exists a set S′ ⊂ BS(2I + 1) of
generators of G′ such that (G′, S′) is a (2I + 1, 2I + 1)-subgroup of G.

Proof. For each r > 0, the set BS(r) ·G′ is a union of left cosets of G′. The number
of such cosets is of course |G : G′|. Thus by the pigeonhole principle, one can find
0 ≤ r0 ≤ I such that BS(r0 + 1) ·G′ = BS(r0) ·G′. In particular,

BS(r0 + 1) ⊂ BS(r0) ·G′.
If we set S′ := G′ ∩BS(2r0 + 1), then S′ is symmetric and contained in BS(2I + 1),
and by the triangle inequality we have

BS(r0 + 1) ⊂ BS(r0) · S′.
Multiplying both sides on the left by BS(r − r0), we obtain

BS(r + 1) ⊂ BS(r) · S′
for all r ≥ r0 (and hence for all r ≥ 2I + 1). In particular

BS(2I + 2) ⊂ BS(2I + 1) ·BS′(2I + 1)

and the claim follows. �

5 Reduction to Two Key Propositions

Theorem 3.2 (modified as discussed at the end of section 3) is deduced from one
easy proposition and two difficult ones. We begin with the easy proposition, which
handles the base case d < 1:

Lemma 5.1( Sublinear growth case). Suppose that (G,S) is a (R, d)-growth group
for some 0 < d < 1 and R > 1. Then G = BS(R) and so G is finite with |G| ≤ Rd.

Proof. The |BS(r)| for 0 ≤ r < R are integers between 1 and |BS(R)| = Rd < R
that increase in r. Thus by the pigeonhole principle, there exists 0 ≤ r < R − 1
such that |BS(r)| = |BS(r + 1)|, thus BS(r) = BS(r + 1). Iterating this we see that
BS(r) = BS(r

′) for all r′ ≥ r, thus G = BS(r) = BS(R) and the claim follows. �

The higher-order growth cases d ≥ 1 will then be handled by an induction on d.
The first major step in this process is to obtain a reduction in the order of growth
for a certain commutator subgroup:

Proposition 5.2 (Reduction in growth order). Let R0, d ≥ 1, and let (G,S) be a
(R0, d)-growth group. Assume that

R0 ≥ exp
(
exp(CdC)

)
(5)

for some sufficiently large absolute constant C. Then at least one of the following
holds:

(i) G = BS

(
R

exp(exp(O(d)O(1)))
0

)
(in particular, G is finite).
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(ii) There exists a (R
1/10
0 , R

1/10
0 )-subgroup (G′, S′) of G and a positive integer l =

O
(
dO(1)

)
such that (G′)(l) is generated by a set (S′)(l) ⊂ BS′(R

1/10
0 ) for which(

(G′)(l), (S′)(l)
)
is a (R, d− 0.9)-growth group for some R

1−1/10d
0 ≤ R ≤ R0.

This proposition will be established in sections 6–10 using (quantitative versions
of) some arguments of Kleiner [Kl]. The bounds here are completely effective (and
far superior to those in Proposition 5.3 below).

To exploit this growth reduction we need the following variant of Theorem 1.8.

Proposition 5.3 (Semi-quantitative Milnor–Wolf theorem). Let s, l, r, R0, d ≥ 1,
and suppose that

R0 ≥ rC(Cd)Cdl

for some sufficiently large absolute constant C. Suppose we have a short exact
sequence

0 → H → G → L → 0

of groups, where G = (G,S) is a (R0, d)-growth group, H = (H,SH) is a virtually r-

nilpotent (see Definition 3.3) (∞, R
1/10
0 )-subgroup of G, and L is solvable of derived

length at most l. Then (G,S) is virtually r + lO(1)d-nilpotent.

We prove this proposition in sections 11–14. The arguments are quite different
from those used to prove Proposition 5.2, being related to the arguments used by
Milnor [Mi1] and Wolf [W]. A key new technical difficulty in this “single-scale”
setting, not present in earlier “multi-scale” work, is that the index of the nilpotent
subgroup of H may be so large that this subgroup is not “visible” at the one scale
R0 that we directly control.

In the remainder of this section we show how the above three propositions imply
Theorem 3.2 (modified as discussed at the end of section 3). From Lemma 5.1 we see
that Theorem 3.2 holds for d < 1. We may thus assume inductively that d ≥ 1 and
that the claim has already been proven for d− 0.9. By Proposition 5.2, we see that
either conclusion (i) or conclusion (ii) of that proposition holds. If conclusion (i)
holds, then G is finite and the claim follows. If instead conclusion (ii) holds, then by
induction hypothesis we see that

(
(G′)(l), (S′)(l)

)
is virtually Cd−0.9-nilpotent. On

the other hand, G′/(G′)(l) is clearly solvable of derived length at most l = O
(
dO(1)

)
.

Applying Proposition 5.3 to the short exact sequence

0 → (G′)(l) → G′ → G′/(G′)(l) → 0

we conclude (if C is large enough) that G′ is virtually Cd-virtually nilpotent. Since
G′ is a finite-index subgroup of G, the claim then follows.

6 First Step for Proposition 5.2: Production of a Non-Trivial
Lipschitz Almost Harmonic Function

We now begin the proof of Proposition 5.2, following Kleiner [Kl]. Kleiner’s ar-
gument is based on harmonic functions, and in particular on studying the class of
functions u : G → R which are both Lipschitz and harmonic with respect to the
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set S of generators. In our quantitative applications, the group G could well be
finite (with extremely large cardinality), and so there may not be any harmonic
functions other than the constants. To deal with this we need to consider instead
a somewhat larger class of almost harmonic functions. A good example is pro-
vided on the finite group G = Z/NZ (with the standard generators +1,−1, and
with N large) by the function u(x) := N sin(2πx/N). This function is Lipschitz
(with Lipschitz norm approximately 2π), and “almost harmonic” in the sense that
u(x+ 1) + u(x− 1)− 2u(x) = O(1/N) for all x.

It is known (see [Kl, App. ] and the references therein) that infinite groups admit
non-trivial Lipschitz harmonic functions. It is thus not surprising that all “large”
groups (finite or infinite) admit non-trivial almost harmonic Lipschitz functions. To
see this, let us first formalize our definitions.

Definition 6.1. Let u : G → R be a function. The gradient ∇u : G → RS of u is
defined by the formula

∇u(x) :=
(
u(xs)− u(x)

)
s∈S ,

so in particular ∣∣∇u(x)
∣∣ := (∑

s∈S

∣∣u(xs)− u(x)
∣∣2)1/2

.

Dually, given a vector-valued function F = (Fs)s∈S : G → RS , we can define its
divergence ∇ · F : G → R by the formula

∇ · (Fs)s∈S(x) =
∑
s∈S

Fs(xs
−1)− Fs(x) .

The Laplacian of a function u : G → R is defined by the formula

Δu := −∇ · ∇u

or more explicitly (using the symmetry of S)

Δu(x) = 2|S|u(x)− 2
∑
s∈S

u(xs) .

The Lipschitz (semi)-norm ‖u‖Lip of u is defined as

‖u‖Lip := ‖∇u‖�∞(G) = sup
x∈G

∣∣∇u(x)
∣∣ .

A function u : G → R is harmonic if Δu = 0. If ε > 0, we say that a function
u : G → R is ε-harmonic Lipschitz if ‖u‖Lip ≤ 1 and ‖Δu‖�∞(G) ≤ ε.

Remark 6.2. The conventions for the Laplacian Δ and Lipschitz norm may differ by
some (ultimately irrelevant) constant factors from other definitions in the literature.
With these conventions, the function 1

2πN sin(2πx/N) is O(1/N)-harmonic Lipschitz
on Z/NZ.

Proposition 6.3 (Infinite groups have non-constant Lipschitz harmonic functions).
Let R ≥ 1, and let (G,S) be a finitely generated group. Then at least one of the
following statements is true:
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• G = BS(R).
• There exists a O(|S|R−1/3)-harmonic Lipschitz function u : G → R with

|∇u(id)| ≥ 1/|S|.
Remark 6.4. Comparing this with the example u(x) = 1

2πN sin(2πx/N) on Z/NZ
we see that the exponent −1/3 in the proposition should probably be a −1. However,
any positive exponent will suffice for our application.

Proof. Given two functions u, v : G → R, we formally define the convolution u ∗ v :
G → R by the formula

u ∗ v(x) :=
∑
y∈G

u(y)v(y−1x) =
∑
y∈G

u(xy−1)v(y) .

By Young’s inequality, convolution is well-defined whenever u ∈ �p(G), v ∈ �q(G)
and 1/p+ 1/q = 1/r + 1 for some 1 ≤ p, q, r ≤ ∞, in which case we have

‖u ∗ v‖�r(G) ≤ ‖u‖�p(G)‖v‖�q(G) . (6)

We observe the pleasant identities

∇(f1 ∗ f2) = f1 ∗ ∇f2 , (7)

∇ · (f ∗ F ) = f ∗ (∇ · F ) , (8)

and thus
Δ(f1 ∗ f2) = f1 ∗Δf2 . (9)

Fix R. We may assume that G �= BS(R), since we are done otherwise. Let
σ be the measure σ = 1

|S|
∑

s∈S δs, where δs is the Kronecker delta. Observe that

Δu = 2|S|(u ∗ σ − u) for any u, where u ∗ σ(x) :=
∑

y u(xy
−1)σ(y) is the usual

convolution operator.
Let σ(m) := σ ∗ . . . ∗ σ be the m-fold convolution of σ, and let f : G → R be the

function

f :=
1

R

R∑
m=0

σ(m).

Then we have ‖f‖�1(G) = 1 and ‖Δf‖�1(G) � |S|/R. We divide into two cases.

Case 1 (“non-amenable” case): ‖∇f‖�1(G) ≥ R−2/3. By the pigeonhole prin-
ciple, we can then find s ∈ S such that the function fs(x) := f(xs) − f(x) has
�1 norm at least |S|−1‖∇f‖�1(G). If we then define u := h ∗ f , where h(x) :=
sgn(fs(x

−1))/‖∇f‖�1(G), we see from (6), (7) that

‖∇u‖�∞(G) ≤ 1

and ∣∣u(s)− u(id)
∣∣ ≥ 1/|S| ,

while from (6), (9) we have

‖Δu‖�∞(G) �
(|S|/R)

/R−2/3 ,

and the claim follows.
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Case 2. (“amenable” case): ‖∇f‖l1(G) < R−2/3. If we set F := |f |1/2 then we
have the pointwise bound

|∇F | ≤ |S|1/2|∇f |1/2
thanks to the elementary estimate |x|1/2 − |y|1/2 ≤ |x− y|1/2 for x, y ≥ 0. Thus we
have

‖F‖�2(G) = 1 and ‖∇F‖�2(G) ≤ |S|1/2R−1/3.

Also, F is supported on BS(R). Since G �= BS(R) by hypothesis, F cannot be
constant. In particular

‖∇F‖�2(G) > 0 .

Thus if μF is the spectral measure of Δ relative to F , we see that μF is a probability
measure on [0, 1] with

0 <

∫ 1

0
x dμF (x) = ‖∇F‖2

�2(G) ≤ |S|R−1/3.

This implies that

0 <

∫ |S|R−1/3

0
x2 dμF (x) ≤ |S|R−1/3

∫ |S|R−1/3

0
x dμF (x) .

If we then let F ′ ∈ �2(G) be the spectral projection of F to [0, |S|R−1/3], we conclude
that

0 < ‖ΔF ′‖2
�2(G) ≤ |S|R−1/3‖∇F ′‖2

�2(G) . (10)

By the pigeonhole principle, we can find s ∈ S such that the function F ′s(x) :=
F ′(xs)− F ′(x) obeys the lower bound

‖F ′s‖2
�2(G) ≥ |S|−1‖∇F ′‖2

�2(G) . (11)

If we define u := H ∗ F , where H(x) := F ′s(x−1)/‖∇F‖2
�2(G), we see from (6), (8)

that
‖∇u‖�∞(G) ≤ 1 ,

while from (11) we have
|u(s)− u(id)| ≥ 1/|S|

and from (6), (9), (10) we have

‖Δu‖�∞(G) ≤ |S|R−1/3,

and the claim follows. �

Remark. See also the recent paper [LeP] for a related probabilistic construction
of (Hilbert space valued) harmonic maps on amenable groups.

Once one has one non-trivial almost harmonic function u, one can then cre-
ate a further family ρ(g)u, g ∈ G, of almost harmonic functions by translation:
ρ(g)u(x) := u(g−1x). Kleiner’s approach to Gromov’s theorem revolves around a
study of this family, starting with the fundamental observation that this family is
(approximately) finite-dimensional. We now turn to this important fact.
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7 Second Step for Proposition 5.2: Kleiner’s Theorem

Kleiner [Kl], building upon work of Colding and Minicozzi [CM], proved that in
a group of polynomial growth the space of Lipschitz harmonic functions is finite-
dimensional; indeed, an inspection of the argument shows that the dimension of this
space is bounded by some constant C(d) depending only on the order d of growth.
The main objective of this section is to prove the following quantitative version of
this fact:

Theorem 7.1 (Quantitative Kleiner theorem). There exists an absolute constant
C > 0 such that for any 0 < κ < 0.1, and any (R0, d)-growth group (G,S) with
d ≥ 1 and

R0 ≥ K := (C|S|)Cd3/κ2
, (12)

there exists a finite-dimensional subspace V of RG of dimension

dim(V ) = O(|S|)O(d3/κ2)

such that for every R−K0 -harmonic Lipschitz function u : G → R, there exists v ∈ V
such that

‖u− v‖�2(BS(R1−κ
0 )) ≤ R−100d

0 .

We will prove Theorem 7.1 in several stages, following [Kl]. For any x ∈ G
and r ≥ 1, we write B(x, r) := x · BS(r) for the ball of radius r centered at x.
The first step is the following Poincaré inequality (compare with one first proved
by Colding and Minicozzi in [CM], and its adaptation to the group setting due to
Kleiner–Saloff-Coste in [Kl, Th. 2.2]):

Lemma 7.2 (Poincaré inequality). Let f : G → R, x ∈ G, and r ≥ 1. Let
fB(x,r) :=

1
|B(x,r)|

∫
B(x,r) f be the average value of f on B(x, r). Then

∥∥f − fB(x,r)
∥∥
�2(B(x,r)) ≤ 2r

|BS(2r)|
|BS(r)| ‖∇f‖�2(B(x,3r)) .

Proof. By definition of the gradient, we have the pointwise bound∣∣f(ygs)− f(yg)
∣∣ ≤ ∣∣∇f(yg)

∣∣
for all y, g ∈ G and s ∈ S. If we take g ∈ BS(2r) and average this in �2 over all
y ∈ B(x, r), we conclude that( ∑

y∈B(x,r)

∣∣f(ygs)− f(yg)
∣∣2)1/2 ≤ ‖∇f‖�2(B(x,3r)) .

Telescoping this using the triangle inequality, we conclude that( ∑
y∈B(x,r)

∣∣f(yg)− f(y)
∣∣2)1/2 ≤ 2r‖∇f‖�2(B(x,3r)) .

for all g ∈ BS(2r). Summing in g using the triangle inequality, we conclude that( ∑
y∈B(x,r)

( ∑
g∈BS(2r)

∣∣f(yg)− f(y)
∣∣)2)1/2 ≤ 2r

∣∣BS(2r)
∣∣‖∇f‖�2(B(x,3r)) .
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But for any y ∈ B(x, r), we have

∣∣f(y)− fB(x,r)(y)
∣∣ ≤ 1

|BS(r)|
∑

z∈B(x,r)

∣∣f(z)− f(y)
∣∣ ≤ 1

|BS(r)|
∑

g∈BS(2r)

∣∣f(yg)− f(y)
∣∣ ,

and the claim follows. �

For ε-harmonic functions, we have a reverse inequality.

Lemma 7.3 (Reverse Poincaré inequality). Let f : G → R be ε-harmonic Lipschitz,
and let B(x, r) be a ball for some r ≥ 1. Then

‖∇f‖�2(B(x,r)) � |S|O(1)
(

1
r‖f‖�2(B(x,2r)) + εr

∣∣BS(2r)
∣∣1/2) .

Proof. Let ψ : G → R be the cutoff function ψ(y) := max
(
1− dist(x,y)

2r , 0
)
. Then it

will suffice to show that∑
y∈G

|∇f |2ψ2(y) � |S|O(1)
(

1
r2
‖f‖2

�2(B(x,2r)) + ε2r2∣∣BS(2r)
∣∣) . (13)

We may clearly restrict the sum on the left to B(x,2r−1). Now, for any y∈B(x,2r−1)
and s ∈ S we have(

f(ys)− f(y)
)
ψ2(y) =

(
fψ2(ys)− fψ2(y)

)− f(ys)ψ(y)
(
ψ(ys)− ψ(y)

)
− f(ys)

(
ψ(ys)− ψ(y)

)2
. (14)

From the triangle inequality, dist(x, ys) differs from dist(x, y) by at most 1, and thus

ψ(ys)− ψ(y) = O(1/r) .

Also, f(ys) = O(|f(y)|+ |∇f(y)|). Multiplying (14) by f(ys)− f(y) and summing
in s, we conclude that

|∇f |2ψ2(y) = ∇(fψ2) · ∇f +O

(
|S|(|f(y)|+ |∇f(y)|)

(
ψ(y)

r
+

1

r2

))
.

Inserting this into the left-hand side of (13) and summing by parts, we conclude
that

∑
y∈G

|∇f |2ψ2(y) �
∑
y∈G

∣∣fψ2(y)
∣∣∣∣Δf(y)

∣∣+ |S|
r

∑
y∈G

∣∣∇f(y)
∣∣(|f(y)|+ |∇f(y)|)ψ(y)

+
|S|
r2

∑
y∈B(x,2r−1)

∣∣∇f(y)
∣∣(|f(y)|+ |∇f(y)|) . (15)

As f is ε-harmonic, we can use Cauchy–Schwarz to bound∑
y∈G

∣∣fψ2(y)
∣∣∣∣Δf(y)

∣∣ ≤ ε
∑

y∈BS(2r−1)

|f(y)|

≤ ε
∣∣BS(2r)

∣∣1/2‖f‖�2(BS(x,2r−1))

≤ ε2r2∣∣BS(2r)
∣∣+ 1

r2
‖f‖2

�2(BS(x,2r−1)) .

Another application of Cauchy–Schwarz gives
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|S|
r

∑
y∈G

∣∣∇f(y)
∣∣(|f(y)|+ |∇f(y)|)ψ(y)

≤ c
∑
y∈G

∣∣∇f(y)
∣∣2ψ2(y) +

1

c

|S|2
r2

∑
y∈G

(|f(y)|+ |∇f(y)|)2

for any c > 0. By choosing c small enough, we can then absorb the first term on the
right-hand side into the left-hand side of (15) and conclude that

∑
y∈G

|∇f |2ψ2(y) � ε2r2∣∣BS(2r)
∣∣+ |S|O(1)

r2

(‖f‖2
�2(BS(x,2r−1)) + ‖∇f‖2

�2(BS(x,2r−1))

)
.

But from definition of ∇ and the triangle inequality we see that

‖∇f‖�2(BS(x,2r−1)) � |S|‖f‖�2(BS(x,2r))

and the claim follows. �

Now we need some more definitions. Given R > 0, define the symmetric bilinear
form QR : RG ×RG → R by the formula

QR(u, v) :=
∑

x∈BS(R)

(
u(x)− u(id)

)(
v(x)− v(id)

)
. (16)

This form is clearly positive semi-definite (with finite rank). Given any u1, . . . , uk :
G → R, we define the R-volume VolR(u1, . . . , uk) by the formula

VolR(u1, . . . , uk) = det
(
(QR(ui, uj))1≤i,j≤k

)1/2
;

the right-hand side is non-negative due to the positive semi-definite nature of QR.
Geometrically, one can view VolR(u1, . . . , uk) as the length of the wedge product
u1 ∧ . . . ∧ uk in

∧k RG, using the induced semi-definite form from QR.
The QR are monotone increasing in R as symmetric bilinear forms, which implies

the monotonicity relationship

VolR(u1, . . . , uk) ≤ Vol4R(u1, . . . , uk) . (17)

When k is large, and the u1, . . . , uk are approximately harmonic, we can improve
this inequality by applying Proposition 7.3 on large balls and Proposition 7.2 on
small balls. More precisely, we have the following inequality (cf. [Kl, Lem. 3.16],
[CM, Prop. 4.16]):

Proposition 7.4 (Volume decrease). Let k ≥ 1 be an integer, 0 < ε, δ < 1 and
R > 1/δ. Let u1, . . . , uk : G → R be ε-harmonic Lipschitz functions. Suppose also
that

k ≥ 2

( |BS(2R)|
|BS(δR)| + 1

)
. (18)

Then we have

VolR(u1, . . . , uk)

≤ O(|S|)O(k)
(
δk/2

( |BS(7δR)|
|BS(δR)|

)k/2

Vol4R(u1, . . . , uk) + kε2Rk+2∣∣BS(4R)
∣∣k/2) .
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Proof. Let us write
v := Vol4R(u1, . . . , uk) . (19)

We may of course assume that

v > kε2Rk+2∣∣BS(4R)
∣∣k/2, (20)

otherwise we are done by (17). In particular, this implies that u1, . . . , uk are linearly
independent. Let V be the k-dimensional subspace of RG spanned by the u1, . . . , uk;
the non-vanishing of v implies that V is a Hilbert space with respect to the bilinear
form Q4R.

We will now study a subspace V ′ of V consisting of “locally mean zero” func-
tions. Let x1, . . . , xm be a maximal 2δR-separated subset of BS(R). Then the balls
B(xj , δR) for 1 ≤ j ≤ m are disjoint and contained in B(2R), so we have the upper
bound

m ≤ |BS(2R)|
|BS(δR)| .

We then introduce the subspace

V ′ :=
{
u ∈ V : uB(xj ,2δR) = 0 for all 1 ≤ j ≤ m ; u(0) = 0

}
,

where we recall that uB := 1
|B|

∑
y∈B u(y) is the mean of u on B. Clearly V ′ is a

subspace of V of codimension at most m+ 1; by (18), we conclude that

dim(V ′) ≥ k/2 . (21)

Using the Gram–Schmidt process, we may then find an orthonormal (with respect
to QR) basis ũ1, . . . , ũk of V such that ũ1, . . . , ũdim(V ′) lies in V ′.

Let 1 ≤ i ≤ dim(V ′). From Lemma 7.2 and the construction of V ′ we have∑
y∈B(xj ,2δR)

∣∣ũi(y)∣∣2 � δ2R2
∑

y∈B(xj ,6δR)

∣∣∇ũi(y)
∣∣2. (22)

Now suppose a point x is contained in J balls B(xj , 6δR). Then the J balls B(xj , δR)
are contained in B(x, 7δR). Since these balls are disjoint, we conclude that J ≤
|BS(7δR)|/|BS(δR)|. On the other hand, all theB(xj , 6δR) are contained inBS(2R).
We can therefore sum (22) in j to conclude that

m∑
j=1

∑
y∈B(xj ,2δR)

∣∣ũi(y)∣∣2 � δ2R2 |BS(7δR)|
|BS(δR)|

∫
y∈BS(2R)

∣∣∇ũi(y)
∣∣2.

On the other hand, by construction of the xj we see that the balls B(xj , 2δR) cover
BS(R). Since ũi(0) = 0, we thus see from (16) that

QR(ũi) � δ2R2 |BS(7δR)|
|BS(δR)|

∑
y∈BS(2R)

∣∣∇ũi(y)
∣∣2. (23)

To estimate this, we wish to use Lemma 7.3, but first we must express ũi as an
approximately harmonic function. As the uj have Lipschitz norm at most 1, we see
from (16) that

QR(uj , uj) ≤ R2∣∣BS(R)
∣∣ (24)
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for all 1 ≤ j ≤ k. Thus when represented in the orthonormal basis ũ1, . . . , ũk, the
u1, . . . , uk are elements of Rk of norm at most R|BS(R)|1/2, whose coordinates form
a k × k matrix whose determinant of magnitude v. Taking adjugates (i.e. using
Cramer’s rule), we conclude that the inverse of this matrix has coefficients of size
O(v−1(R|BS(R)|1/2)k−1). In other words, the ũ1, . . . , ũk are linear combinations of
the u1, . . . , uk whose coefficients have size O(v−1(R|BS(R)|1/2)k−1). In particular,
each ũi is equal to O(kv−1(R|BS(R)|1/2)k−1) times a ε-harmonic Lipschitz function
(note that the property of being ε-harmonic Lipschitz is convex). We may then
apply Lemma 7.3 to conclude that∑

y∈BS(2R)

∣∣∇ũi(y)
∣∣2 � |S|O(1)

(
1

R2

∑
y∈BS(4R)

∣∣ũi(y)∣∣2 + kε2v−1Rk
∣∣BS(4R)

∣∣k/2) .

Since ũi(0) = 0, and ũi is a unit vector with respect to Q4R, we see from (16) that∑
y∈BS(4R)

∣∣ũi(y)∣∣2 = 1 .

Inserting these estimates and (20) into (23) we obtain

QR(ũi) � |S|O(1)δ2 |BS(7δR)|
|BS(δR)|

for 1 ≤ i ≤ dim(V ′). Meanwhile, for dim(V ′) < i ≤ m we have the crude bound

QR(ũi) ≤ Q4R(ũi) = 1 .

We conclude (using (21)) that

VolR(ũ1, . . . , ũk) � O(|S|)O(k)δk/2
( |BS(7δR)|

|BS(δR)|
)k/2

.

On the other hand, by orthonormality we have Vol4R(ũ1, . . . , ũk). Observe that
the ratio VolR(u1, . . . , uk)/Vol4R(u1, . . . , uk) is invariant under row operations, and
therefore by (19) we have

VolR(u1, . . . , uk) � O(|S|)O(k)δk
( |BS(7δR)|

|BS(δR)|
)k

Vol4R(u1, . . . , uk) ,

and the claim follows. �

Now we iterate Proposition 7.4 to obtain

Proposition 7.5 (Volume bound). Let k ≥ 1 be an integer, 0 < ε < 1,
0 < κ < 0.1, d ≥ 1, and R0 > 1. Assume that

k ≥ Cd/κ

and
R0 ≥ C1/κkC

for some sufficiently large constant C. Then for every (R0, d)-growth group (G,S),
and every ε-harmonic Lipschitz functions u1, . . . , uk : G → R, we have

VolR1−κ
0

(u1, . . . , uk) � R
O(k(d+log |S|))−c κ2

d+1
k log k

0 + ε2O(R0)
O(kd)

for some absolute constant c > 0.
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Proof. We choose δ by the solving the equation

k = C
d
κ
log 1

δ (25)

for some large absolute constant C, thus

δ = k
− κ

d logC . (26)

From our assumptions on k,R0 we see (for sufficiently large choices of constants)
that

R−0.1
0 < δ < 0.1 . (27)

Let n be the largest integer such that 4NR1−κ
0 ≤ R0, thus

N � κ logR0 (28)

(note from hypothesis that κ logR0 > 1). Set Rn := 4nR1−κ
0 for 1 ≤ n ≤ N . By

telescoping series and (1) we see that

N∏
n=1

|BS(2Rn)|
|BS(δRn)| � R

O(d log 1
δ )

0 � O(1)
dN
κ

log 1
δ .

We thus conclude that for at least N/2 values of 1 ≤ n ≤ N , we have

|BS(2Rn)|
|BS(δRn)| ≤ O(1)

d
κ
log 1

δ .

By (25), we thus have (for C large enough) that

k ≥ 2

( |BS(2Rn)|
|BS(δRn)| + 1

)

for at least N/2 values of n. For each such n, we may apply Proposition 7.4 and
conclude that

VolRn(u1, . . . , uk) ≤ O(|S|)O(k)δk/2
( |BS(7δRn)|

|BS(δRn)|
)k/2

·VolRn+1(u1, . . . , uk) + kε2Rk+2
n

∣∣BS(4Rn)
∣∣k/2.

We may make the assumption

VolR1−κ
0

(u1, . . . , uk) > 2kε2R
k+2+dk/2
0 (29)

since we are done otherwise. Then (by (1) and monotonicity of volume) we have

VolRn(u1, . . . , uk) > 2kε2Rk+2
n

∣∣BS(2Rn)
∣∣k/2,

and thus

VolRn(u1, . . . , uk) ≤ O(|S|)O(k)δk/2
( |BS(7δRn)|

|BS(δRn)|
)k/2

VolRn+1(u1, . . . , uk)

for at least N/2 values of n. For the other values of n, we see from (17) that

VolRn(u1, . . . , uk) ≤ VolRn+1(u1, . . . , uk) .
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Putting this all together and using monotonicity of volume again, we conclude that

VolR1−κ
0

(u1, . . . , uk) ≤ O(1)k
2N |S|kNδkN/4

( N∏
n=0

|BS(7δRn)|
|BS(δRn)|

)k/2

VolR0(u1, . . . , uk) .

On the other hand, by telescoping series and (1) we have
N∏

n=0

|BS(7δRn)|
|BS(δRn)| ≤ R

O(d)
0 .

Also, arguing as in the proof (24) we have

QR0(ui, ui) ≤ R2
0|BS(R)| ≤ Rd+2

0

and thus
VolR0(u1, . . . , uk) ≤ R

O(kd)
0 .

We conclude that

VolR1−κ
0

(u1, . . . , uk) ≤ O(|S|)kNδkN/4R
O(kd)
0 .

Substituting in (26), (28) we obtain the claim. �

In practice, we will only use this proposition in the regime where d, 1/κ, |S| are
bounded, k is sufficiently large depending on these parameters (but independent
of R0), and ε is less than extremely large negative power of R0. More precisely, we
will use the following corollary of Proposition 7.5:

Corollary 7.6 (Volume bound). Let 0 < κ < 0.1, d > 0, R0 > 1, and let (G,S)
be a (R0, d)-growth group. Suppose that

k ≥ (C|S|)Cd3/κ2

and
R0 ≥ kC

for some sufficiently large absolute constant C. Then for any R−Ckd
0 -harmonic Lip-

schitz functions u1, . . . , uk : G → R, we have

VolR1−κ
0

(u1, . . . , uk) ≤ R−100kd
0 .

Now we can prove Theorem 7.1. We first observe that it suffices to prove
Theorem 7.1 for R−K0 -harmonic Lipschitz functions which vanish at the identity,
since the general case can then be handled by adding the constant functions
to V (increasing the dimension by one). By Corollary 7.6 and the hypothesis
on R0, we can find (if C is large enough) a threshold k0 = O(|S|)O((1+d)3/κ2)

such that VolR1−κ
0

(u1, . . . , uk0) ≤ R−100k0d
0 for all R−K0 -harmonic Lipschitz functions

u1, . . . , uk0 : G → R. Using the greedy algorithm, one may then find R−K0 -harmonic
Lipschitz functions u1, . . . , uk : G → R for some 0 ≤ k < k0 such that

VolR1−κ
0

(u1, . . . , uk, u) ≤ R−100d
0 VolR1−κ

0
(u1, . . . , uk)

for all R−K0 -harmonic Lipschitz functions u : G → R. But if we let V be the space
spanned by u1, . . . , uk, then from the base times height formula we have

VolR1−κ
0

(u1, . . . , uk, u) = distQ
R1−κ
0

(u, V )VolR1−κ
0

(u1, . . . , uk)

and the claim follows.
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8 Third Step for Proposition 5.2: Establishing an Approximate
Isometric Representation

The group G acts on the space RG of functions u : G → R by left translation, thus

ρ(g)(u)(x) := u(g−1x)

for all u ∈ RG, g ∈ G, x ∈ G. Observe that this action preserves the vector space V
of Lipschitz harmonic functions. In view of Kleiner’s theorem, and assuming G has
polynomial growth, this gives a finite-dimensional linear representation of G; on the
quotient space V/R of V modulo the constant functions, the Lipschitz semi-norm
becomes a norm, which is preserved by the group action.

The purpose of this section is to establish an analogous claim for (R0, d) groups
rather than groups of polynomial growth. It is convenient to work modulo the
constants. Let RG/R be the space of functions from G to R modulo addition by
constants, and let π : RG → RG/R be the quotient map. Observe that the action
ρ of G on RG descends to an action ρ on RG/R. One can also meaningfully define
the concept of a ε-harmonic Lipschitz function u in RG/R, since this concept is
invariant under addition by constants. We can also define induced �p(B) norms for
every finite B ⊂ G by

‖u‖
�p(B) := inf

{‖u‖�p(B) : π(u) = u
}

for any u ∈ RG/R. For p = 2, this norm is associated with an inner product

〈u, v〉
�2(B) =

∑
y∈B

u(y)v(y)

where u, v are the unique lifts of u, v by π that have mean zero on B.
We will need a quotiented variant of Theorem 7.1 with an additional “good scale”

R1 which is stable under translations.

Proposition 8.1 (Quantitative Kleiner theorem with good scale). Let 0 < κ < 0.1,
and let (G,S) be a (R0, d)-growth group with d ≥ 1 obeying

R0 ≥ K := (C|S|)Cd3/κ3
(30)

for some sufficiently large C. Then there exists a finite-dimensional subspace V of
RG/R of dimension

dim(V ) ≤ O(|S|)O(d3/κ2)

and a scale R1−2κ
0 ≤ R1 ≤ R1−κ

0 with two properties:

• Every R−K0 -harmonic Lipschitz function u ∈ RG/R lies at a distance at most

R−99d
0 from V in the �2(BS(R1)) norm.

• For every u ∈ V , we have

‖u‖�2(BS(R1)) ≤ (1 +R−κ0 )‖u‖�2(BS(R1−R1−4κ
0 )) . (31)

Proof. We first make the observation that we may replace (31) by the variant
condition

‖u‖
�2(BS(R1/2))

≥ R−200d
0 ‖u‖

�2(BS(R1))
(32)
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at the slight cost of tightening the lower bound R1 ≥ R1−2κ
0 to R1 ≥ 2R1−2κ

0 .
Indeed, suppose that (32) held for all u ∈ V . Then, if we let Qr : V → R denote
the positive definite quadratic form Qr(u) := ‖u‖2

�2(BS(r))
for each r > 0, we see

that detQR1/ detQR1/2 ≤ (R200d
0 )2 dim(V ) (where we pick some arbitrary fixed basis

of V with which to compute determinants). As the Qr are increasing in r, we may
then use the pigeonhole principle (and the bounds on R0 and dim(V )) and find
R1/2 ≤ R′1 ≤ R1 such that

detQR′
1
≤ (1 +R−κ0 )2 detQR′

1−R1−4κ
0

;

diagonalizing the quadratic form QR′
1
with respect to QR′

1−R1−4κ
0

we obtain (31) with

R1 replaced by the slightly smaller R′1.
It remains to find a V and R1 obeying (32), as well as the property about V

approximating R−K0 -harmonic Lipschitz functions. From Theorem 7.1 and a quoti-
enting by π, we see that if we (temporarily) set R1 := R1−κ

0 , we may find a subspace

V 0 of RG/R of dimension O(|S|)O(d3/κ2) such that every R−K0 -harmonic Lipschitz

function u ∈ RG/R lies at a distance at most R−100d
0 from V 0 in the �2(BS(R1))

norm.
If the property (32) holds for all u ∈ V 0 with this choice of R1, then we are done.

Otherwise, suppose there exists u0 ∈ V 0 for which

‖u0‖�2(BS(R1/2))
< R−200d

0 ‖u0‖�2(BS(R1))
(33)

Clearly, u0 is non-zero; we may normalize

‖u0‖�2(BS(R1))
= 1 . (34)

Let V 1 be the orthogonal complement of u0 in V 0, thus V 1 has dimension one less
than V 0.

Now let u ∈ RG/R be a R−K0 -harmonic Lipschitz function. By construction, we
can find v ∈ V 0 such that

‖u− v‖
�2(BS(R1))

≤ R−100d
0 . (35)

On the other hand, u has Lipschitz constant at most 1 and thus (since constants
have been quotiented out)

‖u‖
�2(BS(R1))

≤ R1
∣∣BS(R1)

∣∣1/2 ≤ R
1+d/2
0 .

In particular

‖v‖
�2(BS(R1))

� R
1+d/2
1

and hence by Cauchy–Schwarz and (34)

〈v, u0〉�2(BS(R1))
= O(R

1+d/2
0 ) . (36)

We split v = v1 + 〈v, u0〉�2(BS(R1))
u0, where v1 ∈ V 1 is the orthogonal projection

of v to V 1. From (33), (34), (36) the latter term is small on BS(R1/2):∥∥〈v, u0〉�2(BS(R1))
u0

∥∥
�2(BS(R1/2))

≤ R−150d
0
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(say). From this, (35), and the triangle inequality we conclude that

‖u− v1‖�2(BS(R1/2))
≤ R−100d

0 +R−150d
0 .

Thus, the property that V 0 approximates R−K0 -harmonic Lipschitz functions has
been inherited by V 1, at the slight cost of reducing the scale R1 to R1/2 and in-
creasing the error of approximation slightly from R−100d

0 to R−100d
0 + R−150d

0 . One

can then iterate this process at most dim(V 0) = O(|S|)O(d3/κ2) times until we find
a space V and a scale R1 for which (32) is satisfied; the dimension bound and the
largeness hypothesis on R0 ensures that R1 ≥ R1−2κ

0 , and that the total error of
approximation never exceeds R−99d

0 . The claim follows. �

Let κ, (G,S), R0, d,K, V ,R1 be as in Proposition 8.1, and set D := dim(V ), thus

D = O(|S|)O(d3/κ2). (37)

In practice,D should be viewed as bounded (especially when compared with the large
parameter R0), and so the factors of DO(1) that appear below should be ignored at
a first reading.

Let Ω ⊂ V be the set of all elements of V which lie within a distance R−99d
0

in �2(BS(R1)) norm from a R−K0 -harmonic Lipschitz function. This is a symmetric
convex subset of V with non-empty interior. Applying John’s theorem [J], we may
then find an ellipsoid E ⊂ V such that E ⊂ Ω ⊂ √

D · E. If we let e1, . . . , eD ∈ V
and λ1, . . . , λD > 0 be the principal orthonormal directions and radii of this ellipsoid
with respect to the Hilbert space structure �2(BS(R1)) on V , we thus see that

λiei ∈ Ω

for i = 1, . . . , D, and conversely every element of Ω can be represented in the form

D∑
i=1

tiλiei (38)

for some t1, . . . , tD = O(DO(1)).
Since Ω (and hence

√
D ·E) contains the ball of radius R−99d

0 , we have the lower
bound

λi ≥ R−99d
0 /

√
D (39)

for all 1 ≤ i ≤ D. Also since R−K0 -harmonic Lipschitz functions have an �2(BS(R1))

norm of at most R1|BS(R1)|1/2 ≤ R
(d+1)/2
0 , we have the upper bound

λi � R
(d+1)/2
0 (40)

for 1 ≤ i ≤ D.
Let 1 ≤ i ≤ D and g ∈ G. By construction, there exists a R−K0 -harmonic

Lipschitz function ui ∈ RG/R with ‖ui − λiei‖�2(BS(R1)) ≤ R−99d
0 . Translating this,

we obtain ∥∥ρ(g)ui − λiρ(g)ei
∥∥
�2(g·BS(R1))

≤ R−99d
0 .

In particular, if g ∈ BS(R
1−5κ
0 ), then∥∥ρ(g)ui − λiρ(g)ei

∥∥
�2(BS(R1−R1−5κ

0 )) ≤ R−99d
0 .
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On the other hand, ρ(g)ui is also a R−K0 -harmonic Lipschitz function, and thus must
lie within R−99d

0 in �2(BS(R1)) norm of some function fg,i ∈ Ω. By the triangle
inequality we thus have∥∥fg,i − λiρ(g)ei

∥∥
�2(BS(R1−R1−5κ

0 )) ≤ 2R−99d
0 . (41)

Using (38), we can write

fg,i =

D∑
j=1

tg,j,iλjej (42)

for some tg,i,j obeying the bounds

|tg,j,i| � DO(1). (43)

Another bound on these coefficients is obtained by observing that∥∥λiρ(g)ei
∥∥
�2(BS(R1−R1−5κ

0 )) ≤ λi‖ei‖�2(BS(R1)) = λi

and thus (by (41), (39))

‖fg,i‖�2(BS(R1−R1−5κ
0 )) � DO(1)λi

and thus (by (31))
‖fg,i‖�2(BS(R1)) � DO(1)λi .

Using (42) and the orthonormal properties of ej we conclude that

|tg,j,i| � DO(1)λi/λj . (44)

We now investigate the extent to which the D×D matrices Ug := (tg,j,i)1≤j,i≤D
behave like a representation. From construction we see that we may take Uid = I,
where I is the D ×D matrix. Now we look at the multiplicativity.

Proposition 8.2 (Ug approximately multiplicative). If g, h ∈ BS(R
1−5κ
0 /2) and

1 ≤ i, k ≤ D, then the (k, i) entry of the matrix Ugh − UgUh, i.e.

tgh,k,i −
d∑

j=1

tg,k,jth,j,i ,

has magnitude O(DO(1)R−99d
0 /λk).

Proof. From (41), (42) we have∥∥∥∥
D∑
j=1

th,j,iλjej − λiρ(h)ei

∥∥∥∥
�2(BS(R1−R1−5κ

0 ))
≤ 2R−99d

0

for all 1 ≤ i ≤ D; applying ρ(g) to this, we conclude∥∥∥∥
D∑
j=1

th,j,iλjρ(g)ej − λiρ(gh)ei

∥∥∥∥
�2(BS(R1−2R1−5κ

0 ))
≤ 2R−99d

0 .

Meanwhile, from (41), (42) we have∥∥∥∥λjρ(g)ej −
D∑

k=1

tg,k,jλkek

∥∥∥∥
�2(BS(R1−2R1−5κ

0 ))
≤ 2R−99d

0 ,
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and thus by the triangle inequality we have∥∥∥∥λiρ(gh)ei −
D∑

k=1

D∑
j=1

th,j,itg,k,jλkek

∥∥∥∥
�2(BS(R1−2R1−5κ

0 ))
� DO(1)R−99d

0 .

Meanwhile, from one final application of (41), (42) we have∥∥∥∥λiρ(gh)ei −
D∑

k=1

tgh,k,iλkek

∥∥∥∥
�2(BS(R1−2R1−5κ

0 ))
� DO(1)R−99d

0

and so by the triangle inequality∥∥∥∥
D∑

k=1

[
tgh,k,i −

d∑
j=1

th,j,itg,k,j

]
λkek

∥∥∥∥
�2(BS(R1−2R1−5κ

0 ))
� DO(1)R−99d

0 ,

and thus by (31)
∥∥∥∥

D∑
k=1

[
tgh,i,k −

d∑
j=1

th,i,jtg,j,k

]
λkek

∥∥∥∥
�2(BS(R1))

� DO(1)R−99d
0 .

As the ek are orthonormal, the claim follows. �

9 Fourth Step for Proposition 5.2: Taking Commutators

We continue the discussion in the previous section. To simplify the expressions
slightly we will make the smallness assumption

κ ≤ 1

d
,

1

log |S| (45)

on κ, and in particular from (37)

D ≤ 2O(κ−O(1)). (46)

For reasons that will be clearer later, we will also need to make R0 larger than
previously assumed, in particular we assume that

R0 ≥ 22C/κC

(47)

for some sufficiently large absolute constant C. (In particular, quantities such as

R
κ10/2D2

0 are still quite large.)
The next step is to locate a large set of group elements g ∈ G (which will be

commutators of other group elements) for which Ug are very close to the identity
matrix I. The key point here is that if Ug, Uh are within ε of I for some small ε > 0
(in some suitable matrix norm), then the commutator [Ug, Uh] is within O(|D|O(1)ε2)
of I. Meanwhile, from (8.2), we expect [Ug, Uh] ≈ U[g,h]. The strategy here can be
viewed as a simplified variant of the argument used to prove the Solovay–Kitaev
theorem [KiSV].

We turn to the details. Let us write Oλ(X) to denote any matrix whose
(k, i) entry is O(X/λk), and Oλ

λ(X) to denote any matrix whose (k, i) entry is
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O(Xmin(1, λi/λk)). Then we can rewrite the conclusion of Proposition 8.2 as

Ugh = UgUh +Oλ

(
DO(1)R−99d

0
)
, (48)

and rewrite (44), (43) as
Ug = Oλ

λ

(
DO(1)) . (49)

We also observe the multiplication laws

Oλ
λ(X)Oλ

λ(Y ) = Oλ
λ

(
DO(1)XY

)
; Oλ

λ(X)Oλ(Y ) ,Oλ(X)Oλ
λ(Y ) = Oλ

(
DO(1)XY

)
.

(50)
In particular we have

UgUg−1 , Ug−1Ug = I +Oλ

(
DO(1)R−99d

0
)

(51)

for all g ∈ BS(R
1−5κ
0 /2).

We have the following fundamental fact:

Lemma 9.1 (Commutator bound). If g, e, e′ ∈ BS(R
1−5κ
0 /100) and 0 < ε ≤ 1 are

such that
Ue, Ue′ = I +Oλ

λ(ε) +Oλ(X) , (52)

for some R−99d
0 ≤ X ≤ R−98d

0 , then

Ug[e,e′]g−1 = I +Oλ
λ

(
DO(1)ε2)+Oλ

(
DO(1)X

)
.

Proof. From (48), (49), (50) we have

U[e,e′] = UeUe′Ue−1U(e′)−1 +Oλ

(
DO(1)X

)
.

Splitting Ue′ = (Ue′ − I) + I and using (51), (49), (50) we conclude that

U[e,e′] = Ue(Ue′ − I)Ue−1U(e′)−1 + U(e′)−1 +Oλ

(
DO(1)X

)
. (53)

From (52), (50) we have

(Ue − I)(Ue′ − I), (Ue′ − I)(Ue − I) = Oλ
λ

(
DO(1)ε2)+Oλ

(
DO(1)X

)
,

and thus

Ue(Ue′ − I) = (Ue′ − I)Ue +Oλ
λ

(
DO(1)ε2)+Oλ

(
DO(1)X

)
.

Inserting this into (53) and using (48), (49), (50) we conclude that

U[e,e′] = (Ue′ − I)U(e′)−1 + U(e′)−1 +Oλ
λ

(
DO(1)ε2)+Oλ

(
DO(1)X

)
.

Applying (53) again we obtain

U[e,e′] = I +Oλ
λ

(
DO(1)ε2)+Oλ

(
DO(1)X) .

If we multiply this on the left by Ug and on the right by Ug−1 and use (51), (49),
(50) we obtain the claim. �

We would like to iterate this bound to find many g with Ug very close (e.g.
O(R−50d

0 )) to I, but to get started we will need to locate a preliminary supply

of g for which Ug is somewhat close (e.g. O(R
−κ/2D2

0 )) to I. Morally, this should
follow from the Dirichlet box principle (i.e. the pigeonhole principle) since the Ug

(and Ug−1) are morally localized to a compact set of matrices (thanks to (49)) and
are approximately multiplicative. We now make this intuition precise.
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Lemma 9.2 (Box principle). There exists a subgroup (G′, S′) ofG with S′⊂BS(R
κ10

0 )
and finite index |G : G′| ≤ Rκ10

0 such that

Ue = I +Oλ
λ

(
DO(1)R

−κ10/2D2

0
)
+Oλ

(
DO(1)R−99d

0
)

for all e ∈ S′.

Proof. From (49), the matrices Ug for g ∈ BS(R
1−5κ
0 /2) are contained in a set

of matrices the form
{
U : U = Oλ

λ

(
DO(1)

)}
. From the convexity of the condi-

tions used in the Oλ
λ( ) notation (and the largeness hypothesis on R0), we may

cover this D2-dimensional set by M ≤ Rκ10

0 balls B1, . . . , BM of the form Bm ={
U : U = Um + Oλ

λ

(
R−κ10/2D2)}

for some Um = Oλ
λ

(
DO(1)

)
. (Here we are using

(47) to clean up the bounds somewhat.)
For each r > 0, let Ar ⊂ {1, . . . ,M} be the set of those 1 ≤ m ≤ M such

that Ug ∈ Bm for some g ∈ BS(r). Clearly the Ar are increasing in r, so by the
pigeonhole principle there exists 1 ≤ r ≤ M such that Ar+1 = Ar.

Fix this r. For each m ∈ Ar, let gm ∈ BS(r) be a representative such that
Ugm ∈ Bm. Since Ar+1 = Ar, we see that for each g ∈ BS(r+1) there exists m ∈ Ar

such that Ug ∈ Bm, and in particular

Ug = Ugm +Oλ
λ

(
R
−κ10/2D2

0
)
.

Multiplying by Ug−1
m

on the right and using (51), (49), (50), we see that

Ugg−1
m

= I +Oλ
λ

(
DO(1)R

−κ10/2D2

0
)
+Oλ

(
DO(1)R−99d

0
)
,

and similarly

Ugmg−1 = I +Oλ
λ

(
DO(1)R

−κ10/2D2

0
)
+Oλ

(
DO(1)R−99d

0
)
.

Let S′ denote the set of all gg−1
m , gmg−1 that arise in this manner, then S′⊂BS(2r+1)

is symmetric and

BS(r + 1) ⊂ S′ · {g1, . . . , gM} ⊂ S′ ·BS(r) .

Iterating this we see that

BS(r + n) ⊂ BS′(n) ·BS(r) ⊂ BS′(n+ 1) · {g1, . . . , gM}
for all n; thus if G′ denotes the group generated by S′, then on taking unions as
n → ∞ we conclude that

G ⊂ G′ · {g1, . . . , gm} .
Thus G′ has index at most M , and the claim follows. �

Write ε := R
−κ10/2D2

0 , thus

Ue = I +Oλ
λ

(
DO(1)ε

)
+Oλ

(
DO(1)R−99d

0
)

(54)

for all e ∈ S′.
Since (G,S) is a (R0, d)-growth group and S′ ⊂ BS(R

κ10

0 ), we see that (G′, S′) is
a
(
R1−κ10

0 , d/(1 − κ10)
)
-growth group. Applying Lemma 4.7, we see that the com-

mutator group (G′)(2) := [G′, G′] can be generated by a set (S′)(2) of generators in
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BS′
(
Rκ10

0
)
of the form g[e, e′]g−1 for some e, e′ ∈ S′ and g ∈ BS′

(
Rκ10

0
)
, and further-

more
(
(G′)2, (S′)(2)

)
is a

(
R1−2κ10

0 , d/(1 − 2κ10)
)
-growth group. From Lemma 9.1

we conclude that

Ue = I +Oλ
λ

(
DO(1)ε2)+Oλ

(
DO(1)R−99d

0
)

for all e ∈ (S′)(2), where the O(1) exponents are larger than those in (54) by a
multiplicative absolute constant.

Let l be the first integer such that

ε2l < R−100d
0 (55)

or equivalently
2l(κ/2D2) > 100d

thus by (37), (45)

l � d3

κ2

(
1 + log |S|) � κ−6. (56)

We can iterate the above procedure l times and conclude that the lth group (G′)(l)

in the derived series of G′ is generated by a set (S′)(l) ∈ BS′(Rκ
0) with the property

that
Ue = I +Oλ

λ

(
D2O(l)

ε2l)+Oλ

(
D2O(l)

R−99d
0

)
for all e ∈ (S′)(l). By (47), (46), (40), (55) we may clean this up as

Ue = I +Oλ(R
−90d
0 )

(say). From (41), (42) we conclude that∥∥ρ(e)(λiei)− λiei
∥∥
�2(BS(R1))

� R−80d
0

(say) for all 1 ≤ i ≤ D and e ∈ (S′)(l), which by (38) implies that∥∥ρ(e)f − f
∥∥
�2(BS(R1))

� R−70d
0

(say) for all f ∈ Ω and e ∈ (S′)(l). In particular, for any R−K0 -harmonic Lipschitz
function u, we see from the triangle inequality that∥∥ρ(e)u− u

∥∥
�2(BS(R1))

� R−60d
0

(say) for all e ∈ (S′)(l). Unpacking the definition of the �2(BS(R1)) norm, and noting
that BS(R1) has cardinality at most Rd

0, we conclude that

u(eg)− u(eh) = u(g)− u(h) +O(R−50d
0 )

(say) for all g, h ∈ BS(R1) and e ∈ (S′)(l) (here we use the symmetry of (S′)(l)). In
particular, for e, e′ ∈ (S′)(l) and g ∈ BS(R1/2) we have

u(ee′g) = u(eg) + u(e′g)− u(g) +O(R−50d
0 ) .

Reversing e and e′ and subtracting we conclude that

u(ee′g) = u(e′eg) +O(R−50d
0 ) ,

and thus
u
(
[e, e′]g

)
= u(g) +O(R−50d

0 ) ,
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for e, e′ ∈ (S′)(l) and g ∈ BS(R1/4), which implies (after replacing g by g−1h, and
u( · ) by u(g · ) that

u
(
g[e, e′]g−1h

)
= u(h) +O(R−50d

0 ) (57)

for all g, h ∈ BS(R1/8) and e, e′ ∈ (S′)(l).
By invoking Lemma 4.7 one last time, one can find a set (S′)(l+1) of generators of

(G′)(l+1) in BS′(R2κ
0 ) of the form g[e, e′]g−1 for some e, e′ ∈ (S′)(l) and g ∈ BS(R

2κ
0 ),

and so from (57) we have concluded the following:

Theorem 9.3 (Many trivial directions for harmonic Lipschitz functions). Let
0 < κ < 0.1, R0, d ≥ 1, and let G be a (R0, d)-growth group. Assume the bounds

(45), (47) for some sufficiently large C. Then there exists a
(
R1−κ10

0 , d/(1 − κ10)
)
-

growth subgroup (G′, S′) ofG of index at mostRκ10

0 and a positive integer l = O(κ−6)
such that (G′)(l+1) is generated by a set (S′)(l+1) ⊂ BS′(R2κ

0 ) obeying the bound

u(ex) = u(x) +O(R−50d
0 ) (58)

for all e ∈ (S′)(l+1), x ∈ BS(R
1−3κ
0 ), and all R−K0 -harmonic Lipschitz functions

u : G → R, where K is defined by (30).

Remark 9.4. An instructive example here is that of the Heisenberg group G =(
1 Z Z
0 1 Z
0 0 1

)
, with the elementary row operations as generators. One can show that

the only harmonic Lipschitz functions u : G → R are those functions which are
affine-linear combinations of the near-diagonal coefficients x, z of the group element( 1 x y

0 1 z
0 0 1

)
, and in particular such functions are invariant with respect to the vertical

element e :=
(

1 0 1
0 1 0
0 0 1

)
. One way to see this is to use the harmonicity to observe the

reproducing formula u = u ∗ σ(m) for any m, where σ(m) are the random walk dis-
tributions defined in Proposition 6.3. As e is central, one then has ∂eu = u ∗∂eσ(m),
where ∂ef(x) := f(ex)− f(x). But a computation shows that the total variation of
∂eσ

(m) is O(1/m2) (the intuition here is that σ(m) behaves like uniform probability
measure on a box of dimensions O

(√
m
)
in the x, z directions and O(m) in the y

directions); in contrast, u, being Lipschitz, can only fluctuate by at most O(m) on
the bulk of the support of σ(m). Estimating things carefully and taking limits as
m → ∞ we conclude that ∂eu = 0, at which point it is easy to verify the claim.
This example illustrates the general phenomenon, established in our companion pa-
per [ShT] (using a different method), that Lipschitz harmonic functions on nilpotent
groups vanish along iterated commutator directions; in fact modulo the constants
they are exactly the additive group characters.

10 Final Step for Proposition 5.2: Non-Trivial Harmonic
Lipschitz Functions Have Large Range

An easy application of the maximum principle shows that any non-constant har-
monic function u : G → R must attain an infinite number of values. We thus
expect any ε-harmonic Lipschitz function u : G → R obeying some non-degeneracy
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condition (e.g. a lower bound on ∇u(id)) to also take on a large number of values
in any given ball BS(R).

In fact we will need a stronger result (under a polynomial growth hypothesis),
which asserts that a non-degenerate ε-harmonic function must in fact fluctuate by
� R on the ball BS(R):

Proposition 10.1 (Lower bound on range). Let (G,S) be a (R0, d)-growth group
for some R0, d ≥ 1, let 0 < κ < 0.1, and suppose that (12) holds for some sufficiently
large absolute constant C. Let u : G → R be an R−K0 -harmonic function such that
|∇u(id)| ≥ 1/|S|, where K was defined in (12). Then for every R1−5κ

0 ≤ R ≤ R1−2κ
0

we have
sup

x∈BS(R)

∣∣u(x)− u(id)
∣∣ � O(|S|)−O(d3/κ2)R−κ0 R . (59)

Proof. Our main tool here will be the quantitative Kleiner theorem (Theorem 7.1).
This theorem gives us a space V ⊂ RG of dimension

D := dim(V ) = O(|S|)O(d3/κ2)

such that for every g ∈ G, there exists vg ∈ V such that∥∥ρ(g)u− vg
∥∥
�2(BS(R1−κ

0 )) ≤ R−100d
0 ,

and in particular ∥∥ρ(g)∇u−∇vg
∥∥
�2(BS(R1−κ

0 )) ≤ |S|R−100d
0 . (60)

The balls BS(R
′) for R−κ0 R ≤ R′ ≤ R are increasing in R′, and have cardinality

between 1 and Rd
0. By the pigeonhole principle, one may thus find a radius 2R−κ0 R ≤

R′ ≤ R such that ∣∣BS(R
′)
∣∣ � O(1)d/κ

∣∣BS(R
′/10)

∣∣ . (61)

Fix this R′. By subtracting off a constant, we may assume u(id) = 0. Write
α := R′R−K0 +R−1 supx∈BS(R′) |u(x)|, then∑

x∈BS(R′)

|u(x)|2 ≤ (R′)2α2∣∣BS(R
′)
∣∣ .

Applying Proposition 7.3 we conclude that

‖∇u‖�2(BS(R′/2)) � |S|O(1)α
∣∣BS(R

′)
∣∣1/2. (62)

Now, let g1, . . . , gD+1 be chosen uniformly at random from BS(R
′/10). From

(61), (62), and Chebyshev’s inequality we see that for each distinct 1 ≤ i, j ≤ D+1,
we have ∣∣ρ(gi)∇(u)(gj)

∣∣ ≤ 1

100|S|D (63)

with probability at least 1 − O(|S|)O(d3/κ2)α2. By the union bound, we thus have
(63) for all distinct 1 ≤ i, j ≤ D + 1 with probability at least 1 − O(|S|)O(d3/κ2)α2.
Meanwhile, for i = j, we have

∣∣ρ(gi)∇(u)(gj)
∣∣ ≥ 1

|S|
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by hypothesis. Applying (63) we see that

∣∣∇(vgi)(gj)
∣∣ ≤ 1

200|S|D
for i �= j, and ∣∣∇(vgi)(gj)

∣∣ ≥ 1

2|S|
for i = j. The matrix (∇(vgi)(gj))1≤i,j≤D+1 is then diagonally dominant and thus
invertible; however, the vg1 , . . . , vgD+1 lie in a D-dimensional space and thus must
have a linear dependence. This leads to a contradiction unless the stated event occurs
with zero probability; this forces α � O(|S|)−O(d3/κ2), and the claim follows. �

We can combine this with Theorem 9.3 and Proposition 6.3 to obtain a crucial
reduction in growth order, from d to approximately d− 1:

Corollary 10.2 (Reduction in growth order). Let 0 < κ < 0.1, R0, d ≥ 1, and let
(G,S) be a (R0, d)-growth group. Assume the bounds (45), (47) for some sufficiently
large C. Then at least one of the following holds:

• G = BS

(
R

exp(exp(κ−O(1)))
0

)
.

• There exists a
(
R1−κ10

0 , d/(1 − κ10)
)
-growth subgroup (G′, S′) of G of in-

dex at most Rκ10

0 and a positive integer l = O(κ−6) such that (G′)(l+1) is
generated by a set (S′)(l+1) ⊂ BS′(R2κ

0 ) for which
(
(G′)(l+1), (S′)(l+1)

)
is a(

R1−4κ
0 , (d− 1 + 6κ)/(1− 4κ)

)
-growth group.

Proof. Applying Proposition 6.3 we see that either the first conclusion holds, or
there exists a R−K0 -harmonic Lipschitz function with |∇u(id)| ≥ 1/|S|, where K is
defined by (12). Applying Theorem 9.3 we can ensure that (58) holds for this value
of u; iterating this we see in particular that

u(gx) = u(x) +O(R−40d0 ) (64)

for all e ∈ B(S′)(l+1)(R1−4κ
0 ), x ∈ BS(R

1−4κ
0 ).

By Proposition 10.1 (and cleaning up the constants) we have

sup
x∈BS(R1−4κ

0 )

∣∣u(x)− u(id)
∣∣ ≥ 10R1−6κ

0

and thus there exists a path of length at most R1−4κ
0 starting at the origin on

which u fluctuates by at least ≥ 10R1−6κ
0 . Since u also has Lipschitz constant at

least 1, we can thus find M > R1−6κ
0 points x1, . . . , xM ∈ BS(R

1−4κ
0 ) such that

u(x1), . . . , u(xM ) all differ by at least 1. Combining this with (64) we see that the
sets B(S′)(l+1)(R1−4κ

0 ) · xm for 1 ≤ m ≤ M are disjoint. But these sets all lie in

BS(R0), which has cardinality at most Rd
0. We conclude that

B(S′)(l+1)(R1−4κ
0 ) ≤ Rd

0/M = Rd−1+6κ
0

and the claim follows. �

Finally, we can prove Proposition 5.2.
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Proof of Proposition 5.2. Applying Lemma 4.2 with κ = c/d for some sufficiently

small absolute constant c > 0, one can find a (R
c/d
0 , R

c/d
0 )-subgroup (G̃, S̃) ofG which

is a
(
R

1− 1
100d

0 , d−0.01
)
-growth group and with |S̃| � O(1)d

2
and G = G̃ ·BS

(
R

1
100d
0

)
.

We then apply Corollary 10.2 to (G̃, S̃) with κ := c/d2 for some sufficiently small
absolute constant c > 0. If the first conclusion of Corollary 10.2 holds, then the

properties relating (G,S) to (G̃, S̃) imply that G = BS

(
R

exp(exp(O(d)O(1)))
0

)
. If the

second conclusion of Corollary 10.2 holds, then the claim follows after substituting
in the value of κ (and replacing l by l + 1), and using Lemma 4.1. (Observe from
Lemma 4.8 that G′ is a (Rκ10

0 , Rκ10

0 , 1)-subgroup of G.) �

11 First Step for Proposition 5.3: Reduction to a Cyclic Base

We now begin the proof of Proposition 5.3. In this section we execute the first step
of this proof, which is to reduce to the case when the base group L is cyclic rather
than solvable.

By replacing S with S ∪ SH , replacing R0 by R
9/10
0 , and adjusting d and C

appropriately, we may assume that SH ⊂ S in Proposition 5.3, thus (H,SH) is now
a (∞, 1)-subgroup of (G,S).

We now claim that Proposition 5.3 follows from the l = 1 case of this proposition,
and specifically from

Proposition 11.1 (Semi-quantitative Milnor–Wolf theorem, first reduction). Let
r,R0, d ≥ 1, and suppose that

R0 ≥ CdrC

for some sufficiently large absolute constant C. Suppose we have a short exact
sequence

0 → H → G → A

of groups, where G = (G,S) is a (R0, d)-growth group, (H,SH) is a virtually r-
nilpotent (∞, 1)-subgroup of (G,S), and A is abelian. Then (G,S) is virtually
r +O(1)d-nilpotent.

To see how Proposition 11.1 implies Proposition 5.3, we induct on l. The case
l = 1 already follows from Proposition 11.1, so suppose that l ≥ 2 and the claim has
already been proven for l − 1.

Let κ := 1/100dl, then by Lemma 4.7 we may find a set of generators
S′ ⊂ BS(R

κ
0) ∩ [G,G] for [G,G]. If we then set G̃ := 〈[G,G], H〉 and S̃ :=

SH ∪ S′ ⊂ BS(R
κ
0), we see that (G̃, S̃) is a (R1−κ

0 , d/(1 − κ))-growth group, and
we have the short exact sequence

0 → H → G̃ → [N,N ] → 0 .

Of course, [N,N ] is solvable of derived length at most l−1, so by induction hypoth-
esis (G̃, S̃) is virtually r + (l − 1)O(1)d-nilpotent. (Note that even after iterating
this induction hypothesis l times, the order of growth d of G̃ does not increase sig-
nificantly, thanks to the choice of κ, so for the purposes of computing quantitative
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bounds one can treat d as constant throughout this iteration.) On the other hand,
G/G̃ is abelian. If we then apply Proposition 11.1 to the short exact sequence

0 → G̃ → G → G/G̃ → 0

we obtain the claim (for C large enough).
Now suppose we are in the situation of Proposition 11.1. At present, the abelian

group (A,SA) could have many generators; but we can cut down the number of
generators to a quantity depending on d. Indeed, as G = (G,S) is an (R0, d)-growth
group, we see that (A,SA) is also an (R0, d)-growth group, where SA is the projection
of S to A. Applying Lemma 4.2, we may find a (R0.9

0 , d/0.9)-growth (R0.1
0 , R0.1

0 )-
subgroup (A′, SA′) of (A,S) with |SA′ | � O(1)d. Let G′ be the preimage of A′ in
G, and let S′ := BS(R

0.1
0 ) ∩ A′, then (G′, S′) is a (R0.1

0 , R0.1
0 )-subgroup of (G,S).

We may thus replace G,A, S by G′, A′, S′ in Proposition 11.1 (adjusting d and C
slightly), thus allowing us to reduce to the case when A is generated by at most
m = O(1)d elements a1, . . . , am, and furthermore that we may assume that elements
are contained in the projection of S to A.

As (H,SH) is a (∞, 1)-subgroup of (G,S), SH is contained in S. We can then
discard all elements of S other than those in SH and those that are projecting to A,
and thus assume that S takes the form

S = SH ∪ {e1, . . . , em, e−1
1 , . . . , e−1

m }
where e1, . . . , em ∈ G projects to the generators a1, . . . , am of A.

An easy induction on m then allows us to reduce to the one-dimensional case
m = 1, and specifically from

Proposition 11.2 (Semi-quantitative Milnor–Wolf theorem, second reduction).
Let r,R0, d ≥ 1, and suppose that

R0 ≥ CdrC

for some sufficiently large absolute constant C. Suppose we have a short exact
sequence

0 → H → G → A

of groups, where (G,S) is a (R0, d)-growth group, (H,SH) is a virtually r-nilpotent
subgroup, and A is cyclic. Suppose also that S = SH ∪ {e, e−1} for some e ∈ G.
Then G is virtually r + 1-nilpotent.

It remains to establish Proposition 11.2. This will be accomplished in section 14,
after some preliminaries in sections 12, 13.

12 Second Step for Proposition 5.3: Slow Growth of Iterated
Conjugation

Suppose we are in the situation of Proposition 11.2. The short exact sequence forces
H to be a normal subgroup of G, and so the generator e induces an automorphism
T : H → H defined by the conjugation operation Th := ehe−1. As SH generates H,
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we see that there exists some radius R such that T (SH), T−1(SH) ⊂ BSH
(R). This

gives rise to the crude bound

‖Tnh‖SH
≤ R|n|‖h‖SH

for all n ∈ Z and h ∈ H, where the norms ‖ ‖SH
were defined in Definition 1.1.

This bound is useless for our purposes because the argument gives no effective
bound on R. However, it turns out that one can use the polynomial growth hypoth-
esis |BS(R0)| ≤ Rd

0 to obtain a much stronger bound, after adjusting the generating
set S slightly. Namely, we have

Proposition 12.1 (Slow growth). Let R0, d ≥ 1 be such that R0 ≥ Cd for some
sufficiently large absolute constant C. Suppose we have a short exact sequence

0 → H → G → A

of groups, where A is cyclic. Suppose also that G = (G,S) is a (R0, d)-growth group
with S = SH ∪ {e, e−1}, where SH ⊂ H generates H, and the projection e of S to

A generates A. Then there exists a symmetric set S̃ ⊂ BS(R
1/10
0 )∩H generating H

such that
‖Tnh‖S̃ � exp

(|n|/R0.01
0

)‖h‖S̃
for all n ∈ Z and h ∈ H, where T : H → H is the conjugation map Th := ehe−1.

Proof. By hypothesis, |BS(R0)| ≤ Rd
0. From the pigeonhole principle and the lower

bound on R0, we may then find a radius R
1/30
0 ≤ R ≤ R

1/20
0 such that∣∣BS(10R) ∩H

∣∣ ≤ O(1)d
∣∣BS(R) ∩H

∣∣ .
Fix this R. For every 0 ≤ N ≤ R, consider the sets

AN :=
⋃

−N≤n≤N
Tn

(
BS(R) ∩H

)
.

Observe that the AN are symmetric subsets of H that are increasing in N , and that
BS(R) ∩H ⊂ AN ⊂ AN · (BS(R) ∩H) ⊂ BS(10R) ∩H, and thus∣∣BS(R) ∩H

∣∣ ≤ ∣∣AN · (BS(R) ∩H)
∣∣ ≤ O(1)d

∣∣BS(R) ∩H
∣∣ .

By another application of the pigeonhole principle, there exists 0 ≤ N ≤ R/2 such
that ∣∣AN+C−dR · (BS(R) ∩H)

∣∣ < ∣∣AN · (BS(R) ∩H)
∣∣+ ∣∣BS(R) ∩H

∣∣
for some large absolute constant C.

Fix this R, and set S̃ := AN , thus S̃ is a symmetric subset of BS(R
1/10
0 ) ∩ H

which contains SH and thus generates H. For every −C−dR ≤ n ≤ C−dR, we see
from construction that∣∣(S̃ ∪ TnS̃) · (BS(R) ∩H)

∣∣ < ∣∣S̃ · (BS(R) ∩H)
∣∣+ ∣∣BS(R) ∩H

∣∣ . (65)

This implies that

S̃ ∪ TnS̃ ⊂ S̃ · (BS(R) ∩H
) · (BS(R) ∩H

)−1
,

for if there was an element x∈S̃∪TnS̃ which did not lie in S̃ · (BS(R)∩H) · (BS(R)∩H)−1,
then the set x ·BS(R)∩H) would lie in (S̃∪TnS̃) · (BS(R)∩H) but be disjoint from



GAFA A FINITARY VERSION OF GROMOV’S POLYNOMIAL GROWTH THEOREM 1539

S̃ · (BS(R)∩H), contradicting (65). Since BS(R)∩H is contained in the symmetric
set S̃, we conclude that

TnS̃ ⊂ BS̃(3)

and thus (as Tn : H → H is an automorphism)

‖Tnh‖S̃ ≤ 3‖h‖S̃
for all h ∈ H and −C−dR ≤ n ≤ C−dR. From iteration we then obtain

‖Tnh‖S̃ � exp
(
Cd|n|/R)‖h‖S̃

for all h ∈ H and n ∈ Z, and the claim then follows from the lower bounds on R
and R0. �

13 Third Step for Proposition 5.3: The Case of an Action on
Lattices

We are still preparing for the proof of Proposition 11.2 (and hence Proposition 5.3).
Proposition 12.1 places us in the setting of an automorphism T : H → H on some
virtually nilpotent group H whose iterates grow very slowly with respect to some
word norm ‖ ‖S′ . In this section we study a key model case of this situation, in
which H = ZD = (ZD,+) is a lattice of bounded dimension, and the word norm
‖ ‖S′ is replaced by the Euclidean norm |·| on RD (and hence ZD). The study of this
case is central to all arguments of Milnor–Wolf type, see e.g. [W], or the appendix
by Tits in [Gr]. The main result to establish in this section is as follows.

Proposition 13.1 (Dichotomy between periodicity and exponential growth). Let
D ≥ 1, and let T ∈ SLD(Z) be an invertible linear transformation T : ZD → ZD.
Then at least one of the following statements holds:

• (Periodicity) There exists a non-zero vector w ∈ ZD and an integer 1 ≤ n ≤
DO(1) such that Tnw = w.

• (Growth) For any N ≥ 1, there exists a non-zero vector v = vN ∈ ZD such
that

|TNv| � exp
(
cN/DO(1))|v| (66)

for some absolute constant c > 0.

Proof. Let λ1, . . . , λD ∈ C be the eigenvalues of T (counting multiplicity). Then
λ1 . . . λD = det(T ) = ±1, which implies that max1≤j≤D |λj | ≥ 1.

Suppose first that max1≤j≤D |λj | = 1, then all the λj are algebraic integers whose
Galois conjugates all lie on the unit circle. By a classical result of Kronecker[Kr]
(or Remark 13.2 below), this implies that the λj are all roots of unity. If one of
the λj is a primitive nth root of unity, then the degree φ(n) of that root cannot
exceed D. Elementary number theory (using the prime factorization of n) yields
that φ(n) ≥ cεn

1−ε for any ε > 0 and some constant cε > 0, and thus we have
n = O

(
DO(1)

)
. Then Tn − I has non-trivial kernel, and we obtain the periodicity

claim.
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Now suppose instead that max1≤j≤D |λj | > 1. Applying a result of Dobrowolski
[D], we conclude in fact that max1≤j≤D |λj | > 1 + cD−O(1) for some c > 0 (in fact

the more precise bound 1+c log3 D
D log log3 D is known). In particular we may assume that

|λ1| ≥ 1 + cD−O(1). Let v1 be an eigenvector of λ1, then clearly

|TNv1| � exp
(
O(1)−DN

)|v1| .
From the triangle inequality we see that either the real or complex part of v1 obeys a
similar growth bound. Approximating this real or complex part by a non-zero vector
with rational coefficients and then clearing denominators, we obtain the claim. �

Remark 13.2. For our applications, one may replace Dobrowolski’s lower bound
of 1+cD−O(1) here with the more elementary bound of 1+exp(−O(D)), the proof of
which we sketch as follows. Suppose we had an algebraic integer λ of degree D, all of
whose Galois conjugates were at most 1 +C−D for some large absolute constant C,
but which was not a root of unity. Using the minimal polynomial of λ, one can
find a diagonalizable transformation T : CD′ → CD′

for some D′ ≤ D with integer
coefficients and with eigenvalues equal to these Galois conjugates. One can then
use the corresponding eigenvectors to design a symmetric convex body B with the
property that Tn(B) ⊂ 2 · B for all n ≤ (C/10)D. By rescaling, one may assume
that B contains a lattice vector v in ZD on its boundary, but no non-zero lattice
vector in its interior. As λ is not a root of unity, the images of Tnv are all distinct,
and so 2 ·B contains at least (C/10)D lattice vectors; but standard volume packing
arguments show that this cannot be the case for C large enough.

14 Final Step for Proposition 5.3: Eliminating the Finite Factors

We are now ready to prove Proposition 11.2. Let r,R0, d,H,G,A, S, SH , e be as in
Proposition 11.2.

By hypothesis, H contains a finite-index nilpotent subgroup H ′ of Hirsch length
at most r, and thus step s ≤ r. As is well known, H ′ then contains a finite-index
subgroup H ′′ which is torsion free.

The group H ′′ need not be T -invariant. However, observe from Legendre’s theo-
rem that h|H:H′′| ∈ H ′′ for all h ∈ H. Thus, if we let H ′′′ be the group generated by
{h|H:H′′| : h ∈ H}, then H ′′′ is a T -invariant normal subgroup of H ′′. The nilpotent
quotient group H ′′/H ′′′ is generated by finitely many torsion elements, hence it is
finite. We conclude that H ′′′ is a T -invariant finite-index torsion-free subgroup of H,
and thus has Hirsch length r. Let H ′′′

i be an upper central series for H ′′′ terminating
at H ′′′

s := H ′′′. By torsion freeness, we can identify H ′′′
i /H ′′′

i−1 with Zdi for all i ≤ s,
with Σdi = r.

Meanwhile, by Proposition 12.1, there exists a set S̃ ⊂ BS(R
1/10
0 )∩H generating

H such that
‖Tnh‖S̃ � exp

(|n|/R0.01
0

)‖h‖S̃ (67)

for all n ∈ Z and h ∈ H, where T : H → H is the conjugation map Th := ehe−1.
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We claim that the S̃ norm and S′′′ norm are comparable on H ′′′, i.e. there exists
an M > 0 such that

M−1‖h‖S′′′ ≤ ‖h‖S̃ ≤ M‖h‖S′′′ (68)

for all h ∈ H ′′′. (We do not claim an effective bound on M .) The second inequality
follows for sufficiently large M since each element of S′′′ is generated by S̃. To get
the former inequality, observe as in Remark 1.4 that we can partition H into finitely
many cosets x1 ·H ′′′, . . . , xm ·H ′′′ (with x1 = id, say) with relations exi = xje,ige,i
for all 1 ≤ i ≤ m, e ∈ S̃ and some 1 ≤ je,i ≤ m, ge,i ∈ H ′′′; iterating these relations
we see that any product of R elements of S̃ can be expressed as the product of one
of the xi times R of the ge,i; in particular, any product of R elements of S̃ that lie
in H ′′′ can be expressed as the product of R of the ge,i, giving the desired inequality
for some M .

Inserting (68) into (67) we conclude that

‖Tnh‖S′′′ � M2 exp
(|n|/R0.01

0
)‖h‖S′′′ (69)

for all h ∈ H ′′′ and n ∈ Z.
We shall now argue similarly to Tits in his appendix to Gromov’s [Gr], but in

a quantitative manner. The automorphism T preserves eachH ′′′
i and thus acts on the

successive abelian quotients which are torsion free as well (cf. [M1]): H ′′′
i /H ′′′

i−1
∼= Zdi .

Beginning from the top, by Proposition 13.1, either H ′′′
s /H ′′′

s−1
∼= Zds contains a non-

zero periodic vector with period at most O(ds)
O(1) = O(r)O(1), or else one can find

for any n ≥ 1 a non-zero vector v in Zds such that

|Tnv| � exp
(
n/O(r)O(1))|v| .

But by the lower bound on R0, the latter possibility contradicts (69) if one takes n
sufficiently large, since one can use the norm in Zds as a lower bound for the S′′′

norm. Thus Zds contains a non-zero periodic vector v with some period 1 ≤ p0 �
rO(1). This implies that the operator T p0 − I (viewed as a linear transformation
on Zds) maps Zds to a T -invariant subgroup of Zds of infinite index. Hence the
map Φp0 : h 
→ (T p0h)h−1 maps H ′′′

(0) := H ′′′
s /H ′′′

s−1 into a T -invariant subgroup

of it, H ′′′
(1) (of strictly smaller dimension). We can iterate this process, finding a

1 ≤ p1 ≤ O(r)O(1) such that Φp1 maps H ′′′
(1) into a T -invariant subgroup H ′′′

(2) of

strictly smaller dimension, until these groups vanish, i.e. T takes H ′′′
s = H ′′′ into

H ′′′
s−1. But then we can work on the abelian quotient H ′′′

s−1/H
′′′
s−2

∼= Zds−1 instead.

Standard nilpotent algebra then tells us that the square root | |1/2 of the norm on
Zds−1 is essentially a lower bound for the S′′′ norm (continuing to rely heavily on
torsion freeness), and we can continue the argument much as before, reducing the
dimension of the T -invariant subgroups until they fall into H ′′′

s−2, then H ′′′
s−3, etc.,

eventually collapsing to the identity. Since H ′′′ had Hirsch length r, we can thus
find 1 ≤ p1, . . . , pm � rO(1) for some 1 ≤ m ≤ r and T -invariant subgroups

H ′′′ = H ′′′
(1) ≥ H ′′′

(2) ≥ . . . ≥ H ′′′
(m+1) = {id}

such that Φpi maps H ′′′
(i) to H ′′′

(i+1) for all 1 ≤ i ≤ m. If we let P := p1 . . . pm � rO(r)

be the product of all these periods, it follows that TP acts unipotently on H ′′′. This
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implies that
{enPh : n ∈ Z , h ∈ H ′′′}

is a finite-index subgroup of G which is nilpotent of Hirsch length (and thus step)
at most r + 1, and Proposition 11.2 follows.

15 Effectivization

In this section we discuss some fully effective results including Theorem 1.9 and
the case of torsion-free groups, and mainly remark on the modifications needed in
the above arguments to make the bound on the quantity K(R0, d) in Theorem 1.8
effective. However, we will not provide complete details here for the latter, as they
are rather lengthy, and the final bound on K(R0, d) obtained by this process is quite
poor.

15.1 Some fully quantitative results. We begin by mentioning one quanti-
tative geometric application of Theorem 1.8, based on Milnor’s result [Mi2] as used
in [Gr, p. 72].

Corollary 15.2 (to Theorem 1.8). Let (V, d) be a complete Riemannian manifold
of dimension n, and K ≥ 0 be such that the values of the Ricci tensor on the unit
tangent bundle at all points is bounded from below by −(n−1)K. Let Γ be a group
of isometries of V generated by the finite subset S. For a point v ∈ V , define

δv := inf
{
d(γv, v) | γ ∈ Γ

}
Δv := sup

{
d(γv, v) | γ ∈ S

}
.

If for some v ∈ V and some R > exp(exp(C(2n)C) the inequality,

4
Δv

δv
exp

(
2πΔv

√
KR

)
< R

holds, where C is the absolute constant of Theorem 1.8, then Γ is virtually nilpotent.

This follows immediately from Milnor’s inequality[Mi2]

∣∣BS(R)
∣∣ ≤ 4n

(
Δv

δv

)n

Rn exp
(
2πΔv

√
KR

)

combined with the main Theorem 1.8, to which the condition in Corollary 15.2 is
tailored with the value d = 2n. Of course, the corollary is of interest in situations
where K, or both Δv, δv and their quotient, are small.

We next discuss Theorem 1.9. This result is in fact a direct consequence of
Proposition 5.2 above. More precisely, this proposition immediately implies the
following:

Theorem 15.3. Let d,R0 be as in Theorem 1.8. There exists effective (explicit)
functions A(R0, d), B(d) such that for every (R0, d)-growth group (G,S) a sequence
of at most B(d) operations of the type below reduce the group to the trivial group:

1. Passing to a finite-index subgroup of index bounded by A(R0, d).
2. Passing to the kernel of a homomorphism to a cyclic group (finite or infinite).
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The proof of this result goes simply by inspecting Proposition 5.2. In each
step where 1 occurs, the worst bound on A(R0, d) comes from possibility (i) in
Proposition 5.2, where A(R0, d) has to be taken as an upper bound for the size of

the ball BS

(
R

exp(exp(O(d)O(1)))
0

)
. Otherwise, we pass to the finite-index subgroup G′

appearing in (ii), for which the inclusion G ⊆ BS(R0)G
′ holds, giving a bound Rd

0
on its index. By Proposition 5.2 the number of operations B(d) performed in this
process is obviously O(dO(1)), thus completing the proof of Theorem 15.3.

To complete the proof of Theorem 15.3, notice that every group which can be
reduced to the trivial group using the operations 1 and 2 above is virtually polycyclic
in an effective manner, by applying the following lemma as many times as necessary:

Lemma 15.4. If a group G has a subgroup G′ of index at most I which contains
a polycyclic normal subgroup of index at most J , then G has a polycyclic normal
subgroup of index at most (I · J)!.
Proof. By hypothesis, G has a polycyclic subgroup G′′ of index at most IJ . The
group G acts by left multiplication on the quotient set G/G′′; the stabilizer H of
this action then has index at most (IJ)!, and is a normal subgroup of G that is
contained in G′′. Since any subgroup of a polycyclic group is polycyclic, the claim
follows. �

Remark 15.5. Of course, only type 1 steps contribute to the computation of
the total index (this makes the computation effective; unfortunately, the lack of
reasonable control over the size of the finite quotients appearing in 2 is responsible
for our inability to get a similarly effective result concerning the index of a nilpotent
subgroup).

Finally, the following observation shows that torsion is the only obstacle at this
point to obtaining a fully effective version of Gromov’s theorem, an issue which will
be shortly discussed in more detail over the next subsection.

Corollary 15.6 (to Theorem 1.8). Retain the assumptions of Theorem 1.8, but
assume further that G is torsion free. Then a finite-index nilpotent subgroup as in
the theorem can be found with index q satisfying

log log log q < Cd,

where C is an absolute (effective) constant.

This follows immediately from Corollary 1.12 and a result of Auslander and
Schenkman – see [Gr, p. 71] and the reference therein.

15.7 Towards full effectivization of Theorem 1.8. For the purpose of full
quantification one must forego the compactness argument in section 3 that allowed
us to reduce Theorem 1.8 to Theorem 3.2. Instead, one must replace “virtually
r-nilpotent” by something more like “(K,R, s,D)-virtually nilpotent” throughout
the arguments, making sure to keep the bounds on K,R effective.

Of the three components of the proof in section 5, the first two (Lemma 5.1
and Proposition 5.2) are already completely effective (and do not use the notion of
virtual r-nilpotency). The main issue, therefore, is to locate an effective version of
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Proposition 5.3. This proposition is applied about O(d) times during the induction
on the growth order d in the proof of Theorem 1.8, so any deterioration in the
K,R constants occurring in that proposition will need to be iterated O(d) times
to obtain the final bound on K(R0, d). The arguments in section 11, in which
Proposition 5.3 is reduced to Proposition 11.2, are also quite effective, in the sense
that any effective version of the latter can be converted by a routine modification of
the arguments in that section to a quantitative version of the former. But as before,
the deterioration of the bounds will worsen due to the induction on the step l and
the dimension m appearing in the arguments in that section (more precisely, the
bounds in Proposition 5.3 will basically be a O(1)d-fold iteration of the bounds in
Proposition 11.2).

The key proposition in section 12, namely Proposition 12.1, is already effective.
The key proposition in section 13, namely Proposition 13.1, can also be made ef-
fective without much difficulty, for instance by using the Kronecker approximation
theorem to quantitatively approximate a vector by one with rational coefficients,
and using Cramer’s rule to bound all the vectors that are constructed from linear
algebra (e.g. locating an integer vector in the null space of a matrix with integer
coefficients). To deal with various denominators in Cramer’s rule, one does need to
obtain a quantitative lower bound on the difference |λi−λj | between two eigenvalues
of a matrix T with integer coefficients, but this can be accomplished by using Galois
theory to observe that the product

∏
λi �=λj

(λi − λj) of all these eigenvalue gaps is a
non-zero rational integer, and in particular has magnitude at least 1. We omit the
details.

The only remaining parts of the argument which need more careful attention are
those in section 14, as it is here that one truly begins to exploit such qualitative
notions as Hirsch length and torsion freeness.

Recall that a group G = (G,S) is virtually r-nilpotent if it contains a finite-
index nilpotent subgroup G′ = (G′, S′) which is torsion free of Hirsch length r (and
thus step at most r). The notion of finite index can be made quantitative using
the concept of a (K,R)-subgroup as defined in Definition 1.3. Nilpotency of a given
step is also a quantitative concept (being nilpotent of step s is equivalent to the
s-fold commutators of the generating set S′ vanishing). However, torsion freeness
cannot be verified using only finitely many group operations on the generators and so
should not be considered as quantitative. (For instance, the additive group Z/NZ
with generating set {−1,+1} has torsion, in contrast to the torsion-free group Z
with the same set of generators, but it is only possible to distinguish the two groups
after performing at least O(logN) group operations on the generators, which is
unbounded as N → ∞.) This is a genuine problem in the proof, as torsion freeness
is used crucially in section 14 in order to bound ‖Tnh‖S′′′ from below using the norm
of a projection of Tnh to a free abelian group Zdi .

It is thus natural to seek finitary substitutes for the concept of being torsion-free.
Call a abelian group G = (G,+) generated by a set S = {±e1, . . . ,±eD} of gener-
ators e1, . . . , eD M -torsion-free for some M ≥ 1 if the sums {n1e1 + . . . + nDeD :
|n1| + . . . + |nD| ≤ M} that make up BS(M) are all distinct. This property, in
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contrast to the qualitative property of being torsion-free, can be verified in finite
time using a finite number of group operations on generators, and so we consider
this a quantitative property. A key ingredient in the proof that any finitely gener-
ated nilpotent group has a finite-index torsion-free subgroup is that same result for
abelian groups. We now give a quantitative version of this fact. It is convenient
to extend the asymptotic notation X � Y by allowing the constants to depend
on additional parameters, indicated by subscripts on the � symbol; for instance,
X �D Y means that X ≤ C(D)Y for some quantity C(D) depending only on D.
(Of course, to get effective bounds at the end of the day, it is important to ensure
that all implied constants such as C(D) depend in an effective fashion on parameters
such as D.)

Lemma 15.8 (Quantitative location of anM -torsion-free group). Let G = (G,S,+)
be a finitely generated abelian group with D generators S = {±e1, . . . ,±eD}, and let
F : R+ → R+ be an arbitrary function. Then there exists an integer 1 ≤ M �F,D 1
and a (M, 1)-subgroup (G′, S′) ofG with S′ = {±f1, . . . ,±fD′} for some 1 ≤ D′ ≤ D,
such that (G′, S′) is F (M)-torsion-free.

Proof (Sketch). We use the “rank reduction argument”. We begin by initializing
(G′, S′) equal to (G,S) and initializing M := 1, then (G′, S′) is already an (M, 1)-
subgroup of (G,S). If (G′, S′) is F (M)-torsion-free then we are done. If not, write
S′ = {±f1, . . . ,±fD′} for some D′ (which is initially equal to D). Because of the
failure of (G′, S′) to be F (M)-torsion-free, we must have a non-trivial dependence

n1f1 + . . .+ nD′fD′ = 0

where 0 < |n1| + . . . + |nD′ | ≤ 2F (M). Without loss of generality we may take
nD′ to have the largest magnitude, and in particular be non-zero. Then we see that
the subgroup (G′′, S′′) of (G′, S′) generated by S′′ := {±f1, . . . ,±fD′−1} has finite
index (indeed, the index is at most |nD′ |); more quantitatively, one can show that
(G′′, S′′) is a (O(D′F (M)), 1)-subgroup of (G′, S′), which by Lemma 4.1 implies that
(G′′, S′′) is a (M ′, 1)-subgroup of (G,S) for some M ′ = O(DMF (M))O(1). One then
replaces (G′, S′), D′,M by (G′′, S′′), D′′,M ′ respectively, and iterates this procedure.
Since the rank D′ starts at D and decreases by one at each stage, this algorithm
terminates in at most D steps, and the claim follows. �

Remark 15.9. The eventual bound on M is essentially a D-fold iteration of F .
Unfortunately, in applications F has to be quite a rapidly growing function (expo-
nential or worse), which leads to quite poor bounds, especially after the induction
loops on the growth order d, the solvability index l, and the dimension D that ap-
pear in the proof are carried out. It is thus of interest to reduce the dependence on
the torsion-free property (and also to reduce the length of the induction loops) in
order to improve the bounds.

In a similar vein to the above discussion, it is possible to define a quantitative
notion of an “M -torsion-free nilpotent group”, and establish a quantitative version of
the fact that every finitely generated nilpotent group contains a finite-index torsion-
free subgroup, which roughly speaking asserts that for any given F , any (s,D)-
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nilpotent subgroup will have an (M,M)-subgroup which is F (M)-torsion-free for
some M �F,s,D 1. This will turn out to be a usable quantitative substitute for the
qualitative notion of torsion freeness if F is chosen to be sufficiently rapidly growing.
Indeed, the various vectors in ZD which appear in the arguments in section 14
will have norm bounded by some effective function of the parameter M (thanks
to quantitative versions results such as Proposition 13.1), and as long as F (M)
is much larger than the norm of these vectors, then the M -torsion-free nilpotent
groups involved will behave “as if” they are genuinely torsion free for the purposes
of the computations being performed. For instance, it would suffice to take F (M) :=
exp(exp(exp((CdlM)C) for some large absolute constant C. If one does this, then
the final bounds obtained on K(R0, d) are essentially an Ackermann function of R0
and O(1)d.
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