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ABSTRACT OF THE THESIS 

 

Usage of Electronic Health Record Phenotyping  

in American Adult Patients with Schizophrenia  

to Improve Detection of Type II Diabetes Mellitus 

 

by 

 

Austin Haynesworth 

Master of Applied Statistics  

University of California, Los Angeles, 2020  

Professor Frederic Paik Schoenberg, Chair 

 

Objective: Prevalence of type II diabetes is higher in diagnosed patients with schizophrenia when 

compared with the general adult population. With the propagation of electronic health records 

(EHR), we assess whether electronic health record phenotyping can improve diabetes mellitus type 

2 (T2DM) screening when compared to conventional diabetic screening metrics in patients with 

schizophrenia. 

 

Method: EHR data from 1267 patients with schizophrenia was used to develop a pre-screening 

tool for current T2DM using logistic regression and random forest models. Three types of models 

were created: the first used conventional diabetic screening criteria (BMI, age, gender, etc.) and 

their interactions. The second utilized conventional factors plus prescribed medications. The third 

utilized conventional factors, prescriptions, and diagnoses as determined by ICD-9 codes. 
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Results: EHR phenotyping models utilizing conventional factors, prescriptions, and diagnosis 

information (EHR-DX) had improved ability to detect T2DM, when compared to models 

containing conventional (EHR-conventional) or conventional & prescription metrics (EHR-RX). 

Conversely, there was not a statistically significant improvement in T2DM detection between 

models containing conventional metrics and models containing conventional & prescription 

metrics (likelihood ratio test, p < 0.001).  The AUC for the full EHR DX, EHR RX, and 

conventional models using logistic regression were 85.8%, 74.8%, and 72.7% respectively.  

Several ICD codes were shown to have a significant association with diabetes diagnosis, including 

several from established predictors or comorbidities, such as prediabetes and heart disease. 

Associations between antipsychotic drugs and diabetes diagnosis were generally insignificant and 

lacked a discernible positive or negative association trend. 

  



 iv 
 

The thesis of Austin Haynesworth is approved.  

 

Ariana Anderson 

 

Mahtash Esfandiari 

 

Frederic Paik Schoenberg, Committee Chair 

 

 

University of California, Los Angeles 

2020 

 
  



 v 
 

TABLE OF CONTENTS 
1 Introduction ………………………………………………………………………………… 1 

2 Materials and Methods……………………………………………………………………… 4 

 2.1 Overview………………………………………………………………………….. 4 

 2.2 Introduction to data & data processing……………………………........................ 5 

 2.3 Selecting predictor variables and sample size consideration……………………... 6 

 2.4 Description of models…………………………………………………………….. 8 

 2.5 Mathematical basis and logistic regression and random forest……....................... 9 

3 Results…………………………………………………………………………………...… 13 

 3.1 Comparing model predictive ability……………………………………………... 13 

 3.2 Identifying factors significant in diabetes diagnosis………………....................... 16 

4 Discussion ……………………………………………………………………..……………18 

 4.1 Usage of EHR phenotyping in diabetes diagnosis……………………………….. 18 

 4.2 Interpretation of Factors Identified to be significant………………....................... 18 

 4.3 Comparison of identified factors with non-schizophrenic patients………………. 20 

 4.4 Future directions………………………………………………………………….. 21 

Appendix……………………………………………………………………………………… 22 

References…………………………………………………………………………………….. 24 

  



 vi 
 

LIST OF FIGURES 
2.1 ICD codes included in study……………………………………………………………….. 7 

3.1 ROC curves for each of the logistic models, including respective AUC …………………. 13 

3.2 Confusion matrices of logistic and random forest models………………………………… 14 

3.3 Performance of classification algorithms………………………………………………….. 16 

3.4 Statistically significant EHR factors………………………………………………………. 17 

A.1 Train and test performance of logistic models……………………………………………. 22 

 
  



 vii 
 

LIST OF TABLES 

1.1 Demographic and basic information of patients included in study………………………….6 

3.1 Likelihood ratio test for proposed models………………………………………………….. 13 

3.2 Summary statistics for three logistic regression models……………………………………. 14 

3.3 Accuracy, specificity, and sensitivity for logistic and random forest models……………….16 

A.1 Log odds ratios for conventional logistic regression model……………………………….. 22 

A.2 Log odds ratios for EHR RX logistic regression model…………………………………….23 

A.3 Log odds ratios for EHR DX logistic regression model………………………….………....23 

 
  



 viii 
 

ACKNOWLEDGEMENTS 
 

I would like to acknowledge everyone who generously helped me during this project. 

Foremost, I would like to express my sincere gratitude to Dr. Ariana Anderson, for her guidance, 

patience, and support throughout this thesis.  

I would also like to thank the rest of my committee members, Dr. Mahtash Esfandiari and 

Dr. Frederic Paik Schoenberg for their generous encouragement and insightful comments.  

 
 



 1 
 

 
CHAPTER 1 

INTRODUCTION 

The association between schizophrenia and type II diabetes has been recognized for more 

than a century. While diabetes has a prevalence of 13% within the general population, the 

prevalence of diabetes increases 2-3x in patients with schizophrenia (Centers for Disease Control, 

2020; Cohn, 2012).  This relationship is specific to type II diabetes mellitus (T2DM), as type 1 

diabetes mellitus (T1DM) is less common in patients with schizophrenia (Cohn, 2012). It is 

thought that between 20% and 30% of patients with schizophrenia will develop diabetes or 

prediabetes during the course of psychiatric treatment (Cohn, 2012).  

Many factors have been proposed to explain this comorbidity, including side effects of 

antipsychotic medication, poorer overall physical health, unhealthy lifestyle choices, and poorer 

health care options and accessibility (Dixon, 2000). A commonly purported explanation for the 

increased prevalence of diabetes in schizophrenics is that weight gain, a consequence of lifestyle 

factors as well as antipsychotics that promote obesity, leads to progressive insulin resistance (Cohn, 

2012; Ng-Mak 2019). For example, many clinicians consider clozapine and olanzapine to be 

effective in treating schizophrenia. These drugs, however, also have high metabolic liability, which 

has been suggested to lead to antipsychotic-induced weight gain and development of metabolic 

syndrome and obesity (Cohn, 2012; Dixon, 2000). Quetiapine has also been linked to similar 

symptoms (Dixon, 2000). These metabolic changes and resulting obesity have been associated 

with diabetes diagnoses. Thus, recognizing the role certain antipsychotics play in diabetes 

diagnosis can help steer physicians in both schizophrenia and diabetes management. 

There have also, however, been suggestions of a genetic basis for the connection between 

T2DM and schizophrenia. Genetic linkage analyses have identified several loci associated with 
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schizophrenia that have also been identified in linkage studies in T2DM (Bellivier, 2005). 

Meanwhile, proteomic studies have shown perturbances in expression of genes involved in glucose 

metabolism in brain tissue and elevated insulins in patients with schizophrenia when compared to 

controls. This suggests that the metabolic effects of antipsychotic usage and lifestyle factors may 

at all least be partially mediated by genetic disposition in patients with schizophrenia (Hackinger, 

2018.) 

Untreated diabetes has serious long-term health consequences including blindness, 

amputations, and even potential early death from heart attacks (Cohn, 2012). As such, early and 

aggressive intervention for diabetic patients with schizophrenia or patients at high risk of diagnosis 

for diabetes is important for lowering prevalence, lowering mortality, and improving prognosis.  

Unfortunately, currently roughly 25% of individuals with T2DM are undiagnosed 

(Anderson, 2015.) The cost of not treating diabetes is detrimental, both in relation to health and 

finances. According to the American Diabetes association, the total estimated costs of diabetes in 

2012 was $245 billion dollars, with roughly 2/3 of this cost being direct medical costs, and the 

remainder being costs associated with reduced productivity due to absenteeism and early mortality 

(American Diabetes Association, 2013). These costs underscore the importance for early screening 

and detection, such that complications can be avoided and progression can be slowed, 

Historically, diabetes screening risk scores combine basic demographic, lifestyle, and 

historical information with laboratory testing to predict the likelihood of developing diabetes 

(Anderson, 2015.)  Beyond these factors, however, EHRs have demonstrated potential for 

detecting and monitoring diabetes. It has been shown that usage of the full electronic medical 

record -- beyond simple conventional metrics -- to extend screening models can be a useful 

predictive tool for the development of diabetes (Anderson, 2015.) These EHR-based phenotypes 
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can identify individuals who may benefit from interventions and thereby improve patient treatment 

and prognosis. While significant phenotyping studies exist for general adults with type 1 and type 

2 diabetes, EHR phenotyping for diagnosed schizophrenics to predict diabetes diagnosis has not 

been extensively studied (Ng-Mak, 2019). 

This prompted the present study which attempted to evaluate the usefulness of expanded 

diabetic screens that include antipsychotic prescriptions and full EHR ICD-9 code data. 
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 Overview 

A data set including patients with schizophrenia was mined from University of California 

Health Systems EHR data. Data included transcripts from 1997 patients seen between 1991-2017.  

On average, patients had 2988 days (median = 2876 days) between their first and last encounter. 

On average, patients developed diabetes after 2524 days (median = 2661 days) of being followed.  

Further demographic information is provided in Table 1.1.   

Patients were determined to have T2DM using a surveillance algorithm developed by 

Klompas et al. This algorithm utilizes laboratory diagnostic criteria, suggestive medication 

prescriptions, and ICD-9 codes. Specifically, Klompas utilized the following T2DM diagnostic 

metrics: 

o Hemoglobin A1C > 6.5% 

o Fasting glucose > 126 mg/dL 

o Prescription for insulin outside of pregnancy (Cases where the prescription of 

insulin happened during or after the pregnancy were filtered out) 

o ICD-9 code 250 on two or more occasion. 

o Prescription for one or more of the following antidiabetic medications: glyburide, 

gliclazide, glipizide, glimepiride, pioglitazone, rosiglitazone, repaglinide, 

nateglinide, meglitinide, sitagliptin, exenatide, pramlintide  

The Klompas algorithm was also used to distinguished between type 1 and type 2 diabetes. As 

the connection between schizophrenia and diabetes only exists in T2DM, only non-diabetics and 
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those with type II diabetes were included in this study. Patients with type 1 diabetes (n=11) were 

removed. Incomplete cases were also removed (n=730). 

We then assessed whether T2DM risk scores could be improved with prescription profiles and 

full EHR phenotypes, created using the additional medical and diagnostic information contained 

in the EHR. Our methodology roughly mimicked that which was used in Anderson et al. We 

predicted current T2DM status using a multivariate logistic regression model in R comparing three 

separate models: 

o “Conventional model” mimicking conventional risk scores;  

o ‘‘EHR RX” model which contained conventional information along with 

prescription information; 

o A full EHR model (“EHR DX”), based upon the EHR phenotype, containing 

conventional information, diagnostic information based on ICD codes, and 

prescription information.  

The EHR RX model is specifically important for patients with schizophrenia, as prescribing 

metabolic syndrome-inducing antipsychotics is believed to lead to diabetes diagnosis (Cohn). 

 

2.2 Introduction to data & data processing 

Once missing data was removed, our dataset consisted of 1267 complete cases, from an 

original 1997 cases. Our response variable, diabetes diagnosis contained 133 subjects being 

classified as having diabetes and 1134 classified as without diabetes (Table 1.1).  
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 Non-Diabetic Type 2 Diabetes 
Number of patients 1134 133 
Male % 53.10% 52.60% 
Age (years) 47 (18) 56 (15) 
BMI 27(6) 29(7) 
Systolic BP mmHG 123(17) 127 (20) 
Diastolic BP mmHG 76(11) 76(12) 
Total Diabetes Risk 
Factors 1.7(1.2) 2.3(1.5) 
Hypertension DX (%) 31.30% 64.70% 
High Cholesterol (%) 14.10% 17.30% 
Smoking (%) 31.50% 27.10% 

 

 

  

2.3 Selecting Predictor Variables and Sample Size Consideration 

Initially, our dataset consisted of 1267 complete cases with 193 predictor variables. Due to the 

relatively small number of observations and the fact that our response variable was unbalanced, a 

reduction of our independent variables was necessary (Peduzzi et al. ,1996). Reduction choice was 

based on: 

1. To reduce bias, we removed as predictors established treatments and complications of 

T2DM. This included primary and secondary diabetes-related diagnosis (ICD-9 250.x2, 

249.x ), diabetic retinopathy (ICD-9 366.41), and medications used to treat diabetes 

such as metformin and insulin (Anderson, et al). (4) 

2. Antipsychotic medications that lacked a single prescription amongst the 1267 patients 

were removed. (7) 

3. Medications that are no longer prescribed due to being withdrawn by the FDA were 

removed. (1) 

Table 1.1: Introduction to the 1267 complete cases that were used in the model. Values indicate mean 
and standard deviation in parenthesis for a given value (unless otherwise stated as a percentage). 
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4. Predictors with high degrees of multicollinearity or aliasing, as determined by the 

variance inflation factor quotient (VIF), were removed. (6) 

5. Initially 145 most common ICD-9 codes were included in the dataset. Because this 

large number of predictors violates our sample size restriction (and led to convergence 

issues for the logistic models), the 50 most common ICD-9 codes were retained (Fig. 

2.1) while the rest were removed. (95) 

  

Fig 2.1: The 50 most common ICD-9 diagnoses across 1267 subjects. Proportion of diabetic and non-diabetic 
cohort with the diagnosis is reported for each ICD-9 code.
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2.4 Description of models 

The first logistic regression model (conventional model) mimics conventional risk scores by 

including only the limited subset of covariates (smoking status, sex, age, BMI, cholesterol, and 

hypertensive status) that have been used in current diabetes risk models. Systolic & diastolic blood 

pressure were also included. Lastly a backwards stepwise regression was performed to determine 

relevant interaction effects to be included in the model. 

The second logistic regression model (EHR RX) included conventional information but also 

included prescriptions. As described in Cohn et al, antipsychotic use and the related weight gain 

and lifestyle side effects, are suggested factors for diabetes prevalence in patients with 

schizophrenia. Medications up until the date of Klompas diagnosis were included, as it is assumed 

a clinician's prescribing behavior could be influenced by patient’s diabetes status (Anderson et al, 

2015.) 

For the full EHR logistic regression model (EHR DX), 50 most commonly diagnosed ICD-9 

codes were included, in addition to basic conventional screening information and prescriptions. 

An additional variable, total number of diabetes risk factors (as described in Anderson et al 2015), 

was also included. These risk factors are common comorbidities of diabetes. Patient’s full ICD-9 

code record was included, sans codes associated with diabetes diagnosis and complications as 

described above. Diabetes is often not diagnosed until long after symptoms begin to occur 

(Katulanda, 2016.) As the Klompas classification algorithm identifies both confirmed diagnosed 

and undiagnosed T2DM, usage of the full ICD-9 record allows for more complete screening.  

To gauge performance, we compared the performance of these models using a likelihood ratio 

test. Briefly, a likelihood ratio test is used to compare two nested models and takes the form: 
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!"# =	−2()*
!+(-.)
!0(-.)

 

              = 12345672+ − 123456720 

where !+  is the simpler model and !0  is the more complex model. This test statistic is 

approximately 89. 

Next, we computed performance statistics such as receiver operating characteristic (ROC) 

curves and area under the curve (AUC) to determine the ability to detect T2DM. 

Within each model, the significance of covariates was evaluated based on Wald chi-squared 

statistic, and the most significant covariates were highlighted. 

Finally, we validated the findings from our logistic models externally using a random forest 

prediction model. 

Data was split into test and train sets at a 70:30 ratio. All models were trained and tested on 

the same train and test sets. 

 

2.5 Mathematical Basis of Logistic Regression and Random Forest Models 

The two primary classification techniques employed in this study are logistic regression 

and random forest. We will briefly speak about the mathematical basis of each. 

 

i) Logistic Regression 

Logistic regression is a method of classification. It models log odds, which are defined as: 

log=
>(?)

1 − >(?)A = BC +	BEFE + ⋯+ BHIEFHIE 

where our left term is our log odds, or logit, and p is the probability of our event occurring. Unlike 

in linear regressions where our outcome variable y is numeric, in logistic regression, we model the 

(1) 

(2) 
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probability that y belongs to a certain class. In binomial logistic regression, this means that ?	 ∈

"	and >(?) ∈ [0,1], and we model y using the function: 

 

O(P|?) = R(?) = 	
2STUSVW

1 + 2STUSVW  

 

For estimation of our parameters, B, logistic regression utilizes maximum likelihood estimation: 

  

!(B) = 	X>(?Y)Z[
\

Y]E

	(1 − >(?Y)
EIZ [

 

((BC, B) = 	^_Y()*>(?Y

\

Y]E

) + (1 − _Y)()*1− 	>(?Y) 

`(
`Ba

= 	−	^
1

1 + 2	STUW[S 2
STUW[S	?Ya +	^_Y?Ya

\

Y]E

\

Y]E

 

=	^(_Y − >(?Y; BC, B))?Ya

\

Y]E

 

 

We end with the final form of the log likelihood function, which can be optimized via finding the 

value of B that maximizes this function. Solving this likelihood function can be done with Newton 

– Raphson approach.  

The statistical significance of the betas is determined via the Wald chi-squared statistic. 

For each estimated B = c in logistic regression, the Wald chi-square is defined as: 

 

(4) 

(5) 

(3) 
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8defg9 = (
c

h. 2. (c))
9	, j4kℎ	7)6m412672	46k2n35(: c ± q	h. 2. (c)	, 

 

where Z is the Gaussian percentile.  

In the context of our study, in each binomial logistic regression model, we will calculate the B 

for each covariate then determine its significance via its Wald statistic. 

 

ii) Random Forest 

Random forest is a technique used for classification. It works similarly to a decision tree, but, 

unlike a singular tree, random forest uses a collection of decorrelated decision trees to reach a final 

classification recommendation.  

Random forest is based on the concept of bootstrapping, a technique of estimating statistics of 

a population by sampling the dataset with replacement. Specifically, each decision tree within the 

random forest makes predictions based on a bootstrapped data set and using a random subset of 

predictor variables to arrive at its final Y classification. The final predicted Y classification is 

determined as a vote across all trees. 

 

iii) Methods of Evaluation 

Our models will be evaluated via receiver operator curve (ROC) and area under the curve 

(AUC). The ROC provides a graphical way to summarize the true positive rate (sensitivity) versus 

the false positive rate (1-specificity.) It is a curve that summarizes all of the true positive versus 

false positive values that a given threshold in our model will produce, where false positive is 

defined as an error in data reporting in which the model improperly indicates presence of a 

condition where it does not exist. The area under this curve is AUC. A higher AUC indicates that 
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we are maximizing true positives while minimizing false positives, with a maximum possible value 

of 1. In the context of our study, AUC is used to compare various models to determine how good 

they are at correctly classifying diabetes. 

Additionally, each model will be evaluated using a confusion matrix, that will categorize the 

model’s performance on a test data set. Sensitivity (ability to determine diabetic cases correctly), 

specificity (ability to determine non-diabetic cases correctly) and accuracy (ability to differentiate 

diabetic and non-diabetic cases) will all be reported. 
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CHAPTER 3 

RESULTS 

3.1 Comparing Conventional versus Expanded Model Predictive Ability 

Incorporating EHR prescription and ICD-9 data improved classification accuracy when 

compared with using conventional diabetes screen covariates for the logistic regression models. 

Incorporating only drug data, however, saw a modest yet statistically insignificant improvement 

in classification performance. Specifically, the EHR DX model predicted better than the 

conventional model, but the EHR RX model did not improve classification accuracy over 

conventional model to a statistically significant degree (likelihood ratio test, p < 0.001; Table3.1).  

Model Comparison Likelihood Ratio 89 Likelihood Ratio df p-value 
Conventional v. EHR RX 15.38 20.00 0.754 
Conventional v. EHR DX 125.11 70.00 5.77x10-5 

EHR RX v. EHR DX 109.73 50.00 2.31x10-6 

 

 

For the EHR DX, EHR RX, and conventional logistic regression models, the AUC was 

85.8%, 74.8%, and 72.7% respectively (Figure 3.1).  

 
 
 

 

 

 

 
 

 

 

 

 
Figure 3.1: ROC curves with respective AUC percentages for all three logistic models. As more EHR phenotype 
information was added, AUC increased, indicating that EHR phenotyping improved ability to detect T2DM.  

Table 3.1: Likelihood ratio test for conventional, EHR RX, and EHR DX logistic models. (*) indicated significant at p 
< .001 level.  



 14 
 

 

 

 

Performance tests for accuracy, sensitivity, and specificity were performed and confusion matrices 

were produced (Figure 3.2).  

 

 

 

 

  

Model AUC AIC BIC McFadden R2 

Conventional 0.727 641.19 718.89 0.095 

EHR RX 0.748 657.68 832.52 0.130 

EHR DX 0.858 629.13 1037.07 0.315 

Conventional - Logistic Regression  Conventional - Random Forest 

 Reference    Reference  
Prediction 0 1  Prediction 0 1 

0 158 5  0 212 10 
1 131 23  1 77 18 

       

EHR RX - Logistic Regression  
EHR RX - Random 
Forest  

 Reference    Reference  
Prediction 0 1  Prediction 0 1 

0 159 5  0 200 9 
1 130 23  1 89 19 

       

EHR DX - Logistic Regression  
EHR DX - Random 
Forest  

 Reference    Reference  
Prediction 0 1  Prediction 0 1 

0 209 6  0 199 7 
1 80 22  1 90 21 

Table 3.2: Summary statistics for our three logistic regression models 

Figure 3.2: Confusion matrices of logistic regression and random forest models run on test data set of 317 subjects 
(289 non-diabetic, 28 diabetic.) 
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From these matrices, we can see that the EHR DX model outperformed the conventional 

and EHR RX model. The EHR RX and conventional model performed nearly identically, with the 

small difference in performance being statistically insignificant. Random forest showed a similar 

trend. Models were evaluated on accuracy (the ability of the model to differentiate diabetic and 

non-diabetic cases correctly), specificity (the ability of the model to correctly determine diabetic 

cases), and sensitivity (the ability of the model to correctly determine non-diabetic cases.) Full 

model performance can be seen in Table 3.3 and graphically in Figure 3.3. Train-versus-test data 

performance can be found in Appendix Figure A.1. 

Thresholds were determined via Youden’s J index. Briefly, the Youden's J index is defined 

as a combined metric of sensitivity and specificity (Sensitivity + Specificity - 1) and has a value 

between 0 and 1.   

 

r = s5?t(h26h4k434k_t +	h>274m474k_t − 1 

 

In diagnostic cases where sensitivity and specificity are diagnostically important, 

the Youden index will indicate the performance at a given cutoff, and, under these 

circumstances J defines an optimal cutoff, c (Berrar, 2019). The logic behind choosing this 

threshold (as opposed to simply optimizing accuracy) was that improved sensitivity, sometimes at 

the detriment of accuracy, is important in diabetes diagnosis, given that a missed diagnosis (false 

negative) was more costly than a false positive. 

 

 

 

(7) 
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 Accuracy Sensitivity Specificity 
Conventional - Logistic 0.571 0.820 0.540 
EHR RX - Logistic 0.571 0.830 0.550 
EHR DX - Logistic 0.729 0.786 0.723 
Conventional - RF 0.726 0.643 0.734 
EHR RX - RF 0.691 0.679 0.692 
EHR DX - RF 0.694 0.750 0.689 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Identifying factors significant in diabetes diagnosis. 

Beyond model performance, we were also interested in identifying significant factors for 

diabetes diagnosis. According to conventional logistic regression model, only hypertension status 

and BMI were significant at the p <0.001 level, though several factors were significant at the p < 

0.10 level (see Appendix Table A.1). 

Figure 3.3 Accuracy, sensitivity and specificity of logistic and random forest models, run on validation data. Result shows 
increased ability to detect diabetes when incorporating full EHR phenotype data, but only a modest, insignificant increase 
when incorporating only drug data.    

0
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0.9

Accuracy Sensitivity Specificity

Performance of Classification Algorithms

Conventional - Logistic EHR RX - Logistic EHR DX - Logistic

Conventional - RF EHR RX Random Forest EHR DX Random Forest

Table 3.3: Accuracy, sensitivity and specificity of logistic and random forest models, run on validation data. 



 17 
 

ICD790: Nonspecific 
findings

on examination of blood*

ziprasidone

ICD338: Pain, not 
elsewhere classified*

Hypertension

ICD110: Dermatophytosis*

ICD276: Fluid electrolyte and 
acid-base balance disorders *

ICD780: Alteration of 
consciousness *

ICD781: Dyskinesia due to 
extrapyramidal disorder*

ICD427: Cardiac dysrthymias

current age x smoking

BMI

ICD300: Anxiety, dissociative, and …

ICD728: Disorders of muscle ligament …

ICD733: other disorders of bone or …

benadryl*

clozapine

wellbutrin

smoking

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

EHR DX Factors Significant at the p < 0.10 level

In the EHR RX model, BMI and hypertension were once again highly significant. Of the 

20 drugs included in the model, none were shown to be significant at the p < 0.05 level. 

Antipsychotics like olanzapine and quetiapine, which we hypothesized could be related to 

antipsychotic-induced weight gain, development of metabolic syndrome, and diabetes, were not 

found to be significant.  

The EHR DX found similar results in relation to conventional factors and medications 

(Figure 3.4). Because of the inclusion of the ICD-9 codes, it also provides information regarding 

significant comorbidities. A total of 7 ICD codes were found to be significant at the p < 0.05 level. 

 

 

 

 

 

  

Figure 3.4 Significant factors for EHR DX. Factors with (*) were significant at the p < 0.05 level. 
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CHAPTER 4 

DISCUSSION 

4.1 Usage of EHR Phenotyping in Diabetes Diagnosis for Patients with Schizophrenia 

 Usage of the full EHR DX model brought significant improvements to diabetes 

identification when compared to conventional diabetes screening metrics or conventional metrics 

plus prescription information. Usage of only prescriptions with conventional metrics did not see a 

statistically significant increase in performance over conventional metrics alone. 

 

4.2 Interpretation of Factors Identified to be Significant 

 Using the EHR DX model, we were able to identify conventional, drug, and diagnostic 

factors that were shown to be significant in identifying type II diabetes. 

 The identified conventional factors were generally unsurprising. Hypertension was 

consistently identified across all three logistic models as the most significant conventional factor 

and had a positive association, with the odds of diabetes diagnosis increasing by 2.9, 3.0, and 2.3 

times in the conventional, RX, and DX models respectively (p<0.05 for all three models). This is 

consistent with the literature, as hypertension is common amongst diabetic patients and is a strong 

risk factor for severe cardiac complications, which are the leading cause of morbidity for diabetic 

patients (Boer et al, 2017). Similarly, BMI had a consistently positive association across all three 

models, albeit with a smaller effect size compared to hypertension, with the odds of diabetes 

diagnosis increasing by 4% for all three models (p < 0.05.)   

 The identified drug factors were inconclusive. Across both the EHR RX and EHR DX 

models, only Benadryl was found significant at a p < 0.05 level, with the odds of diabetes diagnosis 

being 62.9% less likely. This may be because Benadryl is often used to treat extrapyramidal 
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symptoms such as dystonia from first generation anti-psychotic drugs, which are typically 

associated with less weight gain and less metabolic side effects.  

Associations for various antipsychotic drugs was mixed. Olanzapine and quetiapine, which 

have been posited to increase diabetes risk due to their impacts on hyperglycemia and metabolic 

syndrome had a negative, statistically insignificant association. Clozapine, which was significant 

at the p < 0.10 level was significant in the EHR DX model, also had a negative association. 

Ziprasidone, another antipsychotic, had a positive, statistically significant association, with odds 

of diabetes diagnosis increasing 2.8 times. This is not entirely inconsistent with established 

literature, which shows varying (both positive and negative) associations between second-

generation antipsychotics and diabetes diagnosis (Citrome, 2013). It is also important to consider 

that these findings may be reflective of prescribing patterns, as doctors may be less likely to 

prescribe an antipsychotic with known metabolic side effects to an overweight patient. This 

explanation would be consistent with the findings related to Benadryl. 

The identified diagnoses create for interesting potential future directions. Some identified 

ICD-9 codes were quite logical. For example, ICD-9 790, “nonspecific findings on examination 

of blood”, was significant with 3.2 times increased odds (p < 0.001). Within ICD-9 790 exists 

ICD-9 790.2: abnormal glucose, impaired fasting glucose, impaired glucose tolerance test, and 

other abnormal glucose. This code is used to diagnose pre-diabetes, thus it is unsurprising that it 

has a significant positive association for diabetes diagnosis. 53% of diabetic patients in our study 

had an ICD790 diagnosis as opposed to 22.6% of non-diabetic patients. According to the American 

Diabetes Association, up to 70% of individuals with prediabetes will eventually develop diabetes. 

Other common comorbidities or complications of diabetic symptoms were also identified 

to have positive associations, like ICD 276, which includes ketoacidosis, a complication associated 
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with secondary diabetes (odds ratio 2.23; p = 0.016). Major cardiac complications (ICD 427) were 

also found to be significant with a positive association (odds ratio 1.8; p = 0.075). 

A few ICD codes identified as significant are more commonly found in schizophrenics than 

the general population, and could be interesting areas for future discussion. For example, ICD300: 

Anxiety, dissociative, and somatoform disorders was associated with 51% decreased odds of 

diabetes diagnosis (p = 0.022). This was surprising, as the literature suggests a bidirectional 

increase of diabetes in those with anxiety, and increased anxiety in those with diabetes within the 

general population (Chien et al, 2016). Further investigation of both the behavioral and 

physiological impacts of anxiety, schizophrenia, and diabetes would be an interesting future 

direction. 

 

4.3 Comparison of identified factors with non-schizophrenic patients 

Within this study, only patients with schizophrenia were analyzed for diabetes risk.  This 

population was selected because although risk is well-studied in the general population it is 

unknown whether this population may have unique risk factors, given the impact of the disorder.  

For example, patients with schizophrenia often have disorganized and dissociated thinking, which 

in turn leads to worse self-care and compliance.  This could lead to them achieving a later diagnosis 

of diabetes, with more associated complications. Comparison of identified factors within this study 

against similar studies for non-patients with schizophrenia could help pinpoint schizophrenic-

specific factors for diabetes diagnosis.  

While this study did not analyze non-diabetic patients, the methodology of this study 

closely mirrors that of Anderson et al 2015. Comparing that results of this study to Anderson’s 
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study, hypertension and BMI had significant, positive associations for diabetes diagnosis across 

both patients with schizophrenia and those without. 

In regards to drug or diagnostic similarities, the two studies observed different drugs, with 

this study primarily focusing on antipsychotics, thus reducing the comparison value. Similarly, the 

studies lack substantive ICD-9 code similarities. 

 

4.4 Future directions 

Because of the data used, this analysis was limited in its scale. Specifically, all data was 

mined from the University of California Health System. While this includes a wide range of 

hospitals, there is inherently a limited geographic range of patients, and consequently a potentially 

limited scope of environmental factors. Additionally, due to the number of complete case 

observations available, we were unable to incorporate all 145 ICD codes that existed within the 

data set. This may have led to missing potentially significant diagnoses. Within this current cohort, 

it would be interesting to use lesser diagnosed ICD codes as predictors to identify additional 

significant diagnoses. Alternatively, utilizing a dataset with a higher number of observations would 

support a larger number of predictor variables. Lastly, another issue is the smaller number of those 

who have diabetes type II within our dataset compared to those who do not. This imbalance could 

affect the significance of the findings. As such, for future directions, mining data on a national 

scale and collecting a larger, more balanced number of observations will allow for a more robust 

study. 
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Factors Log odds Std. Error z value Pr(>|z|)  
Age 0.015 0.010 1.394 0.163  
Gender (male = 1) 0.334 0.287 1.164 0.244  
BMI 0.044 0.015 2.857 0.004 ** 
Systolic BP -0.014 0.009 -1.595 0.111  
Has Hypertension 1.067 0.333 3.208 0.001 ** 
High Cholesterol 1.953 1.440 1.356 0.175  
Smoking -2.032 1.110 -1.830 0.067 . 
Area -0.016 0.016 -1.032 0.302  
Age x High Cholesterol -0.030 0.021 -1.415 0.157  
Age x Smoking 0.030 0.018 1.661 0.097 . 
Age x Area depravation index 0.000 0.000 1.213 0.225  
Gender x High Cholesterol -0.854 0.619 -1.380 0.168  
Gender x Smoking 0.632 0.598 1.057 0.290  
Systolic BP x Area depravation index 0.000 0.000 0.619 0.536  
Has hypertension x Area depravation 
index -0.003 0.005 -0.571 0.568  

Table A.1: Log odds ratios for conventional logistic regression model. 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Figure A.1: Train versus test performance of logistic regression models 
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Factor Log Odds Std. Error z value Pr(>|z|)  

BMI 0.038 0.020 1.952 0.051 . 

Has Hypertension 0.840 0.403 2.086 0.037 * 

Smoking -2.190 1.330 -1.647 0.100 . 

clozapine -1.038 0.593 -1.752 0.080 . 

ziprasidone 1.034 0.537 1.927 0.054 . 

wellbutrin -1.098 0.577 -1.902 0.057 . 

benadryl -0.965 0.437 -2.208 0.027 * 

ICD733 -0.791 0.432 -1.829 0.067 . 

ICD728 -0.728 0.410 -1.776 0.076 . 

ICD110 0.816 0.352 2.319 0.020 * 

ICD338 0.964 0.383 2.513 0.012 * 

ICD781 0.757 0.347 2.181 0.029 * 

ICD427 0.615 0.345 1.783 0.075 . 

ICD300 -0.700 0.305 -2.298 0.022 * 

ICD276 0.802 0.332 2.419 0.016 * 

ICD790 1.169 0.301 3.883 0.000 *** 

ICD780 0.788 0.336 2.341 0.019 * 

Age x Smoking 0.043 0.023 1.895 0.058 . 
 
 
 
 
 
 
 
 

Factors Log Odds Std. Error z value Pr(>|z|)  

BMI 0.041 0.016 2.530 0.011 * 

Has Hypertension 1.091 0.343 3.185 0.001 ** 

Smoking -2.365 1.157 -2.044 0.041 * 

wellbutrin -0.832 0.497 -1.676 0.094 . 

Age x Smoking 0.036 0.019 1.921 0.055 . 

Table A.2: Log odds ratios for EHR RX logistic regression model. Only factors identified as significant at the p < 
0.1 level were included. 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Table A.3: Log odds ratios for EHR DX logistic regression model. Only factors identified as significant at the p < 
0.1 level were included. 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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