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ABSTRACT OF THE DISSERTATION

Passage Equivalency and Predictive Validity of Oral Reading Fluency Measures

by

Christopher Jason Checca

Doctor of Philosophy, Graduate Program in Education
University of California, Riverside, March 2012
Dr. Michael L. Vanderwood, Chairperson

The use of oral reading fluency (ORF) passages within a Response to Intervention (RTI)
framework is examined. Significant limitations within the current ORF research are
discussed. The passage equivalency and readability scores for DIBELS Next, AIMSweb,
and a school district’s curriculum’s ORF passages are evaluated using Generalizability
Theory and readability formulas. Multiple regression is used to analyze the contribution
of ORF progress monitoring passages for predicting the California Standards Test (CST).
The optimal number of ORF passages to administer is also examined. Participants
consisted of third and fifth grade students from an urban school district in Southern
California. Results indicate that readability formulas provide wide range of scores for
individual passages but rank sets of passages fairly equally. Results also indicate that
ORF passages have high levels of reliability and variance attributable to student skill.
Finally, results also indicate that the addition of progress monitoring did not increase the

Vi



predictive validity of the CSTs. The implications, limitations, and future direction of

research are discussed.
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Passage Equivalency and Predictive Validity of Oral Reading Fluency Measures

Response to Intervention (RTI) is a comprehensive educational model that uses
proactive and preventative strategies to identify students at risk for academic failure
(Gersten et al., 2008). The RTI model is part of a paradigm shift in educational policy
and research. The proactive and preventative strategies within RTI include identifying at-
risk students through early educational screening, evaluation of instructional match to
student needs, and the use of evidence-based instructional and intervention strategies to
inform decisions (Fuchs, Mock, Morgan, & Young, 2003; Gersten et al., 2008).

The RTI model most often comprises a 3-tiered system of implementation. At
each stage of the 3-tiered model, data are used to evaluate a student’s level of
performance and, when applicable, growth. Within the 3-tier model, Tier 1 refers to the
general education setting that all students initially receive. Students who are identified as
at risk for academic failure, typically by universal screening measures, are considered for
placement in interventions that provide additional support in their areas of deficiency. A
student placed in Tier 2 may receive small group instruction focusing on his or her needs.
In a Tier 2 intervention, a goal is chosen based upon the student’s current level of
performance and expected rate of growth. Progress monitoring data are collected to
determine the student’s responsiveness to the intervention and assess the progress
towards the student’s goal. Students who fail to show adequate growth in a Tier 2
intervention are considered for placement in a Tier 3 intervention. Tier 3 interventions
are typically more intensive in both frequency and duration and are often conducted 1-to-

1 instead of in small groups (Gersten et al., 2008). At every stage of the RTI model, a



student’s placement is based upon data collected from universal screening or progress
monitoring.
Universal Screening and Progress Monitoring

Universal screening and progress monitoring are two of the key components
within the RTI model (Fuchs, Mock, Morgan, & Young, 2003). Universal screening
refers to the assessment of all students using research-based measures and is one of the
proactive and preventative features of RTI. Unlike traditional educational models that
wait for student failure to begin assessing student abilities (Gresham, 2007), the RTI
model allows for the early identification of students at-risk for academic failure before
they actually experience that failure. In recent years, curriculum based measures (CBM)
have been the assessment tool typically used for both of these assessments.

The CBMs used in progress monitoring are similar to those used in universal
screening. However, unlike universal screening, progress monitoring is typically only
administered to those students who have already been identified as at-risk. For example,
if a student is placed in a Tier 2 intervention after being identified as at-risk, progress
monitoring assessments are given throughout the intervention in order to determine the
student’s responsiveness to the intervention. Thus, universal screening and progress
monitoring, and specifically the measures used for each of these components, are of
critical importance. The data derived from these measures influence the type of
educational services a child receives.

The type of measurement administered is dependent upon the student’s grade.

For example, beginning in the first grade, students are administered oral reading fluency



(ORF) passages as part of the universal screening. The student’s scores are then
compared to absolute benchmarks that are used as an indicator of the student’s progress
towards end-of-year goals. A student who is demonstrating ORF scores below the
absolute benchmark scores is considered to be at risk for later failure.

One example of a universal screener is Dynamic Indicators of Basic Early
Literacy Skills (DIBELS; Good & Kaminski, 1996). DIBELS provides tri-annual
universal screenings with benchmark scores that are used to categorize a student’s level
of performance. At second grade and above, the universal screener that is used by
DIBELS is ORF. Based upon a student’s ORF score, a student is classified as ‘low risk,’
‘some risk,” or ‘at risk.” These categories are used as indicators of a student’s progress
and, for an underperforming student, are an early indicator of the need for intervention.
Thus, ORF data are critical pieces of information used in the decision making process
within an RTI framework.

Efficacy of RTI

There is an extensive body of research that lends support to the efficacy of an
early and proactive educational design. Research has demonstrated repeatedly that early
identification of and intervention for students at risk of academic failure leads to positive
academic outcomes (Vellutino, Scanlon, & Zhang, 2007). Juel (1988) found that 88% of
students who were poor readers in first grade remained poor readers in fourth grade.
Francis, Shaywitz, Stuebing, Shaywitz and Fletcher (1996) found that 75% of the
children who were poor readers in third grade were still poor readers in 9" grade. Francis

et al. found that, for these children, a deficit model and not the ‘catch up’ or lag model



was supported. Children who are good readers tend to read more than those that are poor
readers thereby increasing the gap between skilled and non-skilled readers (Rayner,
Foorman, Perfetti, Pesetsky, & Seldenberg, 2002; Stanovich, 1986). Speece and Ritchey
(2005) found similar discrepancies across a shorter time-span. The authors found that
children identified as at-risk in the beginning of first grade were reading significantly
poorer than non-identified students by the end of first grade. The at-risk students were
reading less than half as many words per minute and at half the rate of growth as their
normally developing peers.

Torgesen, Alexander, Wagner, Rashotee, Voeller, and Conway (2001) examined
the effectiveness of intensive early intervention for students demonstrating significant
reading difficulties. The authors identified 60 children between the ages of eight and ten
with severe reading disabilities and assigned them to one of two reading interventions. In
one intervention the students focused on articulation cues, auditory and visual cues, and
85% of instruction time focused on phonemic decoding. In the other intervention group
the students focused on sight words, phonemic spelling, and 20% of instruction time
focused on phonemic decoding. Each intervention group had two phases of
implementation. The first phase consisted of 50 minutes of 1-on-1 intervention for eight
to nine weeks and the second phase consisted of in-class generalization work using the
same intervention techniques. Assessments were conducted after the second phase and
then again one and two years later. The intervention results showed significant gains for
all students at post test, regardless of intervention grouping. In addition, 50% of the

children were in the average level at post test and 40% of the students were returned to



general education from special education services. There was also significant growth in
receptive and expressive language as well as increase in phonological memory. The
authors state that their results indicate that some students, who are labeled as learning
disabled and in need of special education under traditional identification techniques, may
be caught up to average reading levels if given an intense reading intervention. Thus,
when ineffective instruction is not ruled out, students may be misidentified and placed in
an inappropriate educational setting. This is both disadvantageous and potentially
harmful to the child as well as a misappropriation of limited educational resources.

The more efficient use of limited resources is one of the potential benefits to the
RTI model (Gersten et al., 2008). Burns, Appleton, and Stehouwer (2005) conducted a
meta-analysis to synthesize existing research on the effectiveness of large-scale
implementations of RTI. The authors found that across 21 articles meeting their criteria,
there were strong effect sizes for field-based RTI models (mean effect size [MES] =
1.38), and university-implemented RTI models (MES = 1.04). Similarly, student
outcomes (MES = .96) and systemic outcomes (i.e. number of referrals, students
identified as LD, time spent in special education, and number of students retained; MES
= 1.53) showed significant improvements using an RTI model. Other research supports
the RTI model’s focus on early identification and interventions as being an effective
means to identify students at risk for academic failure (Torgesen, et al, 2001; Vellutino,
Scanlon, & Tanzman, 1998).

Vellutino et al. (1998) identified groups of poor and normal reading kindergarten

students via teacher recommendation and standardized assessment scores. In first grade



the poor reading students were randomly assigned to receive intervention from tutors or
within their home school. The interventions lasted between 1-2 semesters, dependent
upon student response, and tutored students were grouped based upon the level of their
responsiveness to the intervention (i.e. students that demonstrated Very Good, Good,
Limited, and Very Limited growth during intervention were grouped together). The
students’ reading abilities were assessed through the third grade. The authors found that
early and intensive interventions (i.e. students receiving 1-on-1 tutoring) led to a
significant reduction (67.1%) of students identified as disabled readers. Thus, using a
preventative model to identify and intervene with students demonstrating poor reading
abilities as early as Kindergarten and first grade led to a reduction in student reading
difficulties in third grade.

Vellutino et al. (1998) concluded that readers that demonstrated Very Good
growth were likely mislabeled as poor readers based upon experiential and instructional
deficits whereas those students that showed Very Limited growth were more likely to
demonstrate reading difficulties due to cognitive deficits. In addition, the authors found
that typical exclusionary criteria, such as those used in typical reading disability
identification, failed to adequately identify students who were demonstrating reading
difficulties due to experiential and instructional deficits. Similarly, students who
demonstrated different response growth rates in intervention were not differentiated by
the 1Q-achievement discrepancy assessments — the traditional method to identify

individuals with a reading disability. These results have been supported across various



studies (Vellutino et al., 1996; Vellutino, Scanlon, & Lyon, 2000; Vellutino, Scanlon, &
Zhang, 2007; Vellutino, Scanlon, Zhang, & Schatschneider, 2008).

Vellutino et al. (2007) evaluated longitudinal data in order to assess the
effectiveness of using an RTI1 approach (i.e. early identification and intervention) for
identifying students at risk for later academic failure. Vellutino et al. found that
Kindergarten students who were identified and received Tier 2 interventions were less
likely to demonstrate reading difficulties in first grade. Kindergarten students who did
not receive supplemental instruction were more likely to continue to be at risk in first
grade. Vellutino et al. also found that measures of growth in early literacy skills were
able to distinguish between those students who continued to be at risk for long-term
reading difficulties and those students who were able to become independent readers.
Thus, the work by Vellutino et al. demonstrates the importance of both early literacy
skills and the use of appropriate and effective measurement tools to assess these skills.
Reading Fluency

Reading fluency is the ability to read text aloud with speed and accuracy and it is
a critical component of overall reading development (Francis, et al., 2008; National
Reading Panel, 2000). According to Perfetti’s (1985) theory on verbal efficiency, there is
a direct relationship between a reader’s rate and his/her comprehension. Thus, students
who are fluent are able to focus on comprehending the text whereas less fluent students
are more likely to focus on decoding words (Francis, et al., 2008). The theoretical link
between fluency and comprehension has received empirical support (see Fuchs, Hosp, &

Jenkins, 2001). Given the link between reading fluency and reading comprehension, the



use of measurement tools that assess reading fluency has become increasingly important.
One of the earliest attempts at measuring fluency was through CBMs.
CBM and Oral Reading Fluency in RTI

Deno (1985) and colleagues first proposed the idea of using CBM as a tool to
monitor the progress of special education students. Reading-CBMs (R-CBM) have
received the most empirical attention since its inception (Reschly et al., 2009). The most
commonly used form of R-CBM is ORF. ORF measures are used to examine a student’s
reading fluency by calculating the number of words read correctly per minute (WRCM).
ORF scores have been examined thoroughly in the reading literature with research
indicating ORF as a predictor of overall reading ability, comprehension, and later reading
success (Reschly et al., 2009; Wayman et al., 2007).

Measures of ORF are intended to be general outcome measures (GOM; Fuchs &
Fuchs, 1999), as opposed to measures that test student mastery of instructional items.
GOMs are standardized assessments in which difficulty is held constant across
assessments so that long-term goals can be evaluated (Fuchs, Fuchs, & Hamlett, 2007,
Stecker, Fuchs, & Fuchs, 2005). There has been approximately 30 years of research
supporting the reliability and validity of ORF (Reschly et al., 2009; Shinn, 1998). This
research includes empirical support for using ORF data in the classroom to inform and
guide instruction. This practice has been demonstrated to lead to increased gains in
student performance (Fuchs & Fuchs, 1986).

Some of the key characteristics of ORF measures are that they are designed to be

frequently administered, sensitive to changes in the target behavior, relatively



inexpensive, and efficient (Reschly et al., 2009). These characteristics allowed Deno
(1985) and his colleagues to provide special education teachers with a new assessment
tool that allowed for immediate feedback to be provided to special education teachers
regarding the effectiveness of their instruction (Stecker, Fuchs, & Fuchs, 2005). The
special education teachers were then able to make informed decisions regarding the need
for changes in a student’s educational intervention based upon data, with the goal of
improving the rate of student learning and increasing overall achievement (Reschly et al.,
2009).

The use of ORF to monitor progress was part of a paradigm shift that
characterized learning difficulties as problems to be solved rather than inherent intra-
child characteristics (Fuchs, Fuchs, McMaster, & Al Otaiba, 2003; Wayman, Wallace,
Wiley, Ticha, Espin, 2007). Research has supported the use of the problem-solving
approach and, specifically, the effectiveness of using ORF to monitor students’ progress
(Marston, 1989; Wayman et al., 2007). The use of ORF as a progress monitoring tool has
also been demonstrated to have a positive impact on student outcomes (Fuchs & Fuchs,
1986). Based upon early empirical support there was soon a growing body of research
that examined the utility, reliability, and validity ORF and other CBMs (Marston, 1989;
Olinghouse, Lambert, & Compton, 2006). By the 1990’s, CBM research and
applications had moved into the general education classroom (Stecker, Fuchs, & Fuchs,
2005).

Along with the increase in the popularity of RTI has come an increase in the

scope of the use of ORF (Christ & Silberglitt, 2007; Reschly et al., 2009). ORF measures



are currently used as part of the universal screening and progress monitoring conducted
within schools using the RTI model. The ORF data derived from universal screening and
progress monitoring are being used as an important part of the decision making process
(Christ & Silberglitt, 2007). While data from ORF and other CBMs were originally used
in relatively low-stakes decision making (i.e. decisions regarding altering a special
education student’s academic intervention), they are now used as a key source of data in
high-stakes decisions. For example, ORF measures currently provide data that are used
to evaluate the effectiveness of instruction, screening, bench-marking, goal setting, and
monitoring progress of special education and general education students (Reschly et al.,
2009; Stecker, Fuchs, & Fuchs, 2005). Oral reading fluency data have been used to
predict later student outcomes on reading measures (Fuchs, Fuchs, Hosp, & Jenkins,
2001; Hosp & Fuchs, 2005) and high-stakes statewide assessments (Buck & Torgesen,
2003; Crawford, Tindal, & Steiber, 2001; Hintze & Silberglitt, 2005; McGlinchey &
Hixson, 2004; Silberglitt, Burns, Madyun, & Lail, 2006; Stage & Jacobson, 2001; Vander
Meer, Lentz, & Stollar, 2005). In addition, using the dual discrepancy model of learning
disability identification (Fuchs & Fuchs, 1998), ORF data can be used as a means to help
identify students that demonstrate both an ability level below expectations and a lack of
response to research-based interventions. The use of ORF as an assessment tool in such
high-stakes decisions has led to increased scrutiny regarding the psychometric
characteristics of ORF (Christ & Silberglitt, 2007; Christ & Ardoin, 2009).

Passage Equivalency

10



One of the assumptions for ORF screening and progress monitoring probes is that
each probe is approximately equivalent (Reschly, et al, 2009). This equivalency
assumption is critical as it allows for the interpretation of changes in target behavior to be
interpreted as a function of changes in a student’s skill rather than variability and error
associated with the measurement tools (Ardoin, Suldo, Witt, Aldrich, & McDonald,
2005; Jenkins, Zumeta, Dupree, & Johnson, 2005). Thus, it is imperative within the RTI
model framework that screening and progress monitoring measures are demonstrably
similar. Despite a wealth of research demonstrating the relationship between ORF
measures and overall reading abilities (e g. LaBerge & Samuels, 1974; Perfetti, 1992;
Shinn, 1989; Fuchs, Fuchs, Hosp & Jenkins, 2001), there is evidence that further
statistical equating of passages is required, even when passages demonstrate high
correlations and apparent equivalency based upon readability formulas (Francis et al,
2008). Recently there has been a re-examination of the empirical support regarding
passage equivalency and thereby the reliability and validity of ORF measures (e.g.
Ardoin et al., 2005; Ardoin & Christ, 2009; Betts, Pickart, & Heistad, 2009, Christ &
Silberglitt, 2007).

Readability Formulas

The most common means of establishing passage equivalency has been through
the use of readability formulas (Ardoin et al., 2005). Readability formulas were
developed as a means to identify levels at which students could comprehend text (Balin
& Grafstein, 2001). Readability formulas also provide two unique characteristics: an

indication of how easy a text is to read; and a quantification of text difficulty (Bailin &
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Grafstein). The quantification of text difficulty allows for educators to rank order texts
and identify texts of similar difficulty, based upon their readability formula scores.

There have been hundreds of readability formulas developed since the 1920°s
(Fry, 1989). From these, several readability formulas have become popular, including the
Dale-Chall (1948), FOG (Gunning, 1968), Spache (1953), and Fry (1977) formulas. The
Dale-Chall formula provides an estimation of reading grade level. In order to obtain the
grade level estimate, three 100-word passages from the text of interest are selected. The
words within these passages are then compared to a list of 3000 common words, as
identified by Dale-Chall (1948). This most updated version of this list was created in
1995 (Micro Power & Light Co., 2000). Bailin and Grafstein (2001) state that the
reading grade score is then calculated using the following formula: Reading grade = .16
(% of uncommon words) + .05 (average number of words per sentence). The Dale-Chall
formula is designed to identify passages between grades 4 and 8.

Another formula that uses similar techniques is the FOG (Gunning, 1968)
readability formula. Accoding to Bailin and Grafstein (2001) the FOG formula is
calculated as follows: Reading grade = .4 (average sentence length + percentage of words
greater than two syllables). Thus, the FOG formula calculates readability without
examining the potential familiarity of the words in the passage.

Spache (1953) sought to develop a readability formula that would be able to more
accurately indicate the readability of passages for younger grades, specifically grades 1-3.
In addition, Spache used an alternative and reduced word list from the original Dale-

Chall list of 3000 words. The new list consisted of 769 words which were, according to
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Spache, more indicative of the level of words found in early literacy texts. Thus, grade
level was identified by Spache using the following formula: Grade level = .141 (average
sentence length per 100 words) + .086 (% of words not on the 769 word list) + .839.

The Fry (1977; 2002) readability formula is computed using a minimum of 3
randomly selected 100-word passages from the text being evaluated. For each 100-word
passage the number of syllables and the number of sentences are counted. These
numbers are averaged across the three 100-word passages. The average number of
syllables and sentences are then plotted on the Fry readability graph (see Fry, 2002). The
resulting data point is then used to identify the approximate grade level.

Despite the prevalence and popularity of readability formulas, their validity and
reliability has been questioned. Bailin and Grafstein (2001) provide a critique for the
tools and theories used to derive readability formulas. The authors describe the scores
provided by readability formulas as both “seductive and misleading” (p. 292). The
authors state that readability scores are seductive because they lend a sense of scientific
and mathematical objectivity and are misleading because this apparent scientific
objectivity leads educators to place greater faith in the scores than is warranted by the
empirical evidence.

There are hundreds of readability formulas, each with its own criteria used to
determine a readability score. However, there are several characteristics that are common
across the different formulas. In many readability formulas, the most common variables
used in the calculations are semantic difficulty (i.e. vocabulary) and syntactic difficulty

(Bailin & Grafstein, 2001; Fry, 2002).
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Vocabulary difficulty. Vocabulary difficulty is established via comparison to
word lists or using syllable counts (Bailin & Grafstein, 2001). According to Bailin and
Grafstein, there are significant limitations to each of these techniques. Word lists are
used with the assumption that texts that have a higher number of words that are used
more frequently will be easier to read. This assumption is threatened by several
important factors. First, the word lists used to evaluate texts were derived at different
times in the past. Therefore, some word lists contain words that are no longer frequently
used in the modern lexicon. For example, the word “maypole” is on the Dale-Chall 3000
word list but is not likely to be known or used frequently by modern-day school-aged
children (Bailin & Grafstein). Similarly, modern-day words such as “download,”
“internet,” and “email” may not be included on word lists created prior to the
introduction of these words into the modern lexicon.

Bailin and Grafstein’s (2001) second critique of word lists is that the lists are not
socio-culturally representative of all individuals. The authors note that some frequently
used words by individuals from the inner-city might be distinct from an individual from
the suburbs or rural areas. Word lists have been constructed in such a manner so that
they are not necessarily representative of the vocabulary from different cultural and
regional backgrounds.

The final critique of word lists is that the complexity of the word in use is not
considered (Bailin & Grafstein, 2001). For example, individual words may have several
different meanings and these meanings may be more or less well known based upon the

reader’s socio-cultural background and educational experience. In addition, the meaning
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of an individual word may only become clear when examining the use of that word
within a context, but word lists do not take contextual complexity into account when
determining readability.

An alternative to word lists is to examine word complexity which is most
frequently calculated by examining the number of syllables within the text. Some
readability formulas use the number of syllables per 100 words of texts (e.g. Flesh, Fry),
while others use the number of multisyllabic words (e.g. FOG). Across all syllable-based
formulas it is assumed that as the number of syllables within the text, and thus the length
of the words increases, so does the difficulty of the text (Bailin & Grafstein, 2001).

While examining the number of syllables avoids the socio-cultural vocabulary
idiosyncrasies and the variability in word meaning problems inherent to the word list
method, there are still significant limitations to this technique (Bailin & Grafstein, 2001).
First, monosyllabic words may be more unfamiliar that multisyllabic words. Bailin and
Grafstein (p. 289, 2001) note that the words “curr” and “aardvark™ are less likely to be
familiar to readers than are “reinventing” and “unemployment,” yet the latter words are
considered more difficult as they contain more syllables than the former. The authors
argue that the use of common prefixes and suffixes may actually help increase the
comprehension of a text while simultaneous increasing its readability difficulty score
using the syllable counting technique.

Syntactic complexity. Syntactic complexity is included in most readability
formulas and is typically quantified by examining sentence length (Bailin & Grafstein,

2001). The underlying assumption is that as the length of a sentence increases so does its
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difficulty. However, this may not always be accurate and, according to Bailin and
Grafstein, longer sentences may actually make them easier to read and be understood
than if there were several independent sentences. The authors provide the following
sentences as examples (pg. 291, 2001): “I couldn’t answer your e-mail.” and “There was
a power outage.” Written separately there is not a clear connection between the two
sentences. However, “I couldn’t answer your e-mail because there was a power outage.”
uses the word ‘because’ to demonstrate the clear relationship between the two ideas and
thus make comprehension easier. Readability formulas such as the Dale-Chall (1948),
Spache (1953), FOG (Gunning, 1968), and Fry (1977) that use sentence length to
calculate readability would score the latter sentence as more difficult despite the potential
for it being easier to comprehend than the two separate sentences.

Readability formulas and ORF. Despite these criticisms, the use of readability
formulas with ORF has been pervasive. The vast majority of research involving ORF has
utilized readability formulas, most typically as a tool to equate passages pulled from
students reading curriculum. In addition, readability formulas have been the main source
of analysis and data used in the development of several common ORF tools. For
example, two commonly utilized and publically available ORF tools are DIBELS (Good
& Kaminski, 1996) and AIMSweb (Howe & Shinn, 2002). For both of these tools, the
ORF passages that were written were evaluated and revised using readability formulas.

Good and Kaminski (2002) describe the procedures used to identify and equate
the DIBELS ORF passages for grades 1 through 3. For each grade the development team

wrote passages that were grade appropriate. Each passage was evaluated using several
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readability formulas. However there was a high level of variation across readability
scores. For example, one first grade passage received readability scores of 2.0, 1.2, 4.1
and 7.1 from four different readability formulas. The authors used only the Spache
(1953) readability formula as their final metric for subsequent revisions. Each passage
from each grade was evaluated using the Spache formula to determine if the passage fell
within the developers’ readability formula guidelines. If a passage’s score on the Spache
formula was too high or low the developers edited the passage in order to reduce or
increase its Spache score so that it would reach their criterion.

Good and Kaminski (2002) report that the ORF passages were then rank ordered
based upon a composite readability formula score. Based upon this composite score, the
probes were divided into three groups: low, middle, and high difficulty. The benchmark
and passage monitoring sets were then selected such that each set had one passage from
each of these groups. The authors state, “Thus, each benchmark assessment has a first
passage representative of the easier third, a second passages representative of the middle
third, and a third passage representative of the more difficult third of relative
readabilities” (Good & Kaminski, p. 10). Good and Kaminski note that the differences
between these passages, based upon the readability composite, were relatively minimal
and their goal was to keep the readability of all passages as close as possible.

The progress monitoring probes for AIMSweb also relied heavily upon readability
formulas. Howe and Shinn (2002) describe the passage development process for the
AIMSweb benchmark and passage monitoring ORF probes. Similar to the DIBELS ORF

passage development, the AIMSweb passages were written such that the passages’
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readability scores fell within their predetermined readability formula criteria. However,
there were several important differences between the techniques that the AIMSweb
developers used. Specifically, AIMSweb passages were equated using the Fry (1977)
readability formula, the passages were for grades 1-8, and the passage pool was finalized
based upon a ‘field test’” of the passages with students. This field test identified and
eliminated passages that demonstrated low alternate form reliability, measured by
Pearson’s correlation, and the highest levels of variability in mean, standard deviation,
and standard error of measurement (SEM). Specifically, passages that showed an
alternate forms reliability score of less than .70 and had a mean WRCM of greater than
1.0 SEM outside of the grade-level WRCM mean were eliminated. Thus, in addition to
the Fry readability formula, the AIMSweb developers used descriptive statistics to
identify those passages that were demonstrating characteristics of non-equivalence when
children read the passages.

Based on the apparent methodological and theoretical shortcomings of readability
formulas (Bailin & Grafstein, 2001), it is not surprising to see limited support for using
readability formulas within the ORF research. This seems appropriate as readability
formulas were developed as a means to estimate comprehension difficulty rather than
reading fluency (Christ & Ardoin, 2009). Thus, research has generally failed to support
readability formulas’ ability to predict reading rates because that is not what they were
designed to do (Christ & Ardoin, 2009).

An example of the relative weakness of readability formulas ability to identify

passage similarity is found in the work of Ardoin, Suldo, Witt, Aldrich, and McDonald
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(2005). The authors examined how well several common readability formulas predicted
student performance on ORF measures. Six reading passages were analyzed using the
following eight readability formulas: Powers-Sumner-Kearl, ([PSK] Powers, Sumner, &
Kearl, 1958), FOG (Gunning, 1968), Fry (1977), Spache (1953), Dale-Chall (1948),
Flesch-Kincaid ([FK] Flesch, 1948), Forecast (Sticht, 1973, as cited in Ardoin et al.), and
SMOG (McLaughlin, 1969), and their components. Of these formulas, five (FOG, Fry,
Spache, Dale-Chall, FK) are commonly used in reading research while the remaining
formulas (PSK, SMOG, Forecast) are not. When the readability formulas scores were
compared to students’ WRCM, the authors found that four of the five commonly used
readability formulas (Fry, Spache, Dale-Chall, FK) were not significantly related to
WRCM. On the other hand, the readability formulas that were not typically used in
research (PSK, SMOG, Forecast) all were significantly related to students’ WRCM. The
authors also found that two components of readability formulas were significantly related
to students” WRCM: syllables per 100 words and words not in the Dale-Chall list of
3,000 words. Two other commonly used components (sentence length and Dale-Chall
726 words list) were found not to be significant predictors. Finally, the authors found
significant variation and a lack of agreement on passage difficulty rankings between
readability formulas; a result that supports previous research on the instability of
readability formula estimates (Bruce & Rubin, 1988).

There is research that suggests that readability formulas are able to discriminate
between passage levels at a grade-level of analysis (Betts, Pickart, & Heistad, 2009).

Betts et al. found that readability formulas they used were able to distinguish passage
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difficulties at the between grade-level (i.e. second v. third grade). However, when
passages within a grade were examined, the readability formulas were not effective.
Specifically, when five intra-grade passages were examined, the authors found that the
use of raw scores as a metric for passage equivalence was not supported. That is, the
WRCM score derived for ORF passages that is typically used to examine passage
equivalency did not accurately identify passages of similar difficulty. In an attempt to
identify an alternative method to identify equivalent passages, Betts et al. used horizontal
equating using a linear function. Using this statistical equating technique, which adjusts
the differences from multiple test forms such that the results are comparable, they were
able to statistically equate three of five passages. The authors were also able to identify,
using the statistical equating methodology, one passage that was dramatically different
from the other passages. Betts et al.’s work highlights the need for research to identify
alternative ways of identifying those passages that are truly equivalent, as well as
identifying those passages that are non-equivalent and therefore must be altered or
removed from an RTI model’s progress monitoring system.
ORF Psychometrics

With the increase in its popularity and the importance of the decisions being
made, ORF has come under increased scrutiny for its psychometrics. In the recent years
there has been a small but important growing body of research that is investigating this
topic. Significant shortcomings of ORF passage equivalence, even when there are high
levels of correlations across forms and readability indices, have led to the need to use

alternative statistical methods to equate passages (Francis et al., 2008). The relatively
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few researchers who have investigated the topic have attempted to go beyond readability
formulas and highlight some critical potential shortcomings of ORF as well as potential
alterative passage equating techniques.

Christ and Silberglitt (2007) highlighted the need to consider the Standard Error
of Measurement (SEM) when using ORF in high-stakes decision making. The Standards
for Educational and Psychological Testing (American Educational Research Association,
American Psychological Association, & National Council on Measurement in Education,
1999) state that scores derived from assessments must include the SEM so that a
confidence interval (CI) can be established to estimate the range of likely true scores
around an observed score. This idea has been virtually ignored in the ORF literature and
in the decision-making process. In order to identify what the SEM for ORF are, Christ
and Silberglitt examined eight years of available ORF data for students from grades 1-5.
The authors found that the median SEM across grades was 10 WRCM (range 5-15
WRCM). Research has also indicated that SEM and Standard Error of Slope (SEb) can
be reduced for both point estimates and trend estimates when passage difficulty is
controlled (Hintze & Christ, 2004), and the length of time monitoring progress is
increased (Christ, 2006).

Christ (2006) examined ORF data from previously published articles where
Standard Error of Estimates (SEE) of ORF growth were provided. With these data Christ
was able to estimate the SEb. However, Christ found only 3 articles (from a total of 234
articles) that provided this information. Christ found that 5 weeks of progress monitoring

lead to a smaller median SEb (2.21 WRCM) than did 2 weeks of progress monitoring
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(median = 9.19 WRCM). The median SEb was reduced to 0.42 when 15 weeks of
progress monitoring data were used. Another key finding by Christ was that poorly
controlled measurement conditions (e.g. quiet setting, standardized instructions, etc.) can
lead to 4 times more error than data collected from optimally controlled conditions.
Generalizability Theory and ORF

The lack of empirical evidence supporting the use of readability formulas as a
means to identify equivalent passages has led to a call for research to identify alternative
methods to equate passages. To date there have been relatively few attempts to identify
means to equate passages using more advanced techniques. Poncy, Skinner, and Axtell
(2005) and Christ and Ardoin (2009) provide two of the few articles that propose
alternative equating procedures.

One technique that has been proposed to identify equivalent probes is
Generalizability Theory (Hintze, Owen, Shapiro, & Daly, 2000). Generalizability
Theory, first proposed by Cronbach, Glese, Nanda, and Rajaratnam (1972), is a random
sampling theory wherein the dependability of measurement procedures can be analyzed
(Marcoulides, 1999). In contrast to Classical Testing Theory’s unitary conceptualization
of error, Generalizability Theory allows for the examination of several sources of error at
once, such as error attributable to measurement items, testing occasions, and test
administrators (Marcoulides, 1999; 2000). The analysis of several sources of error allows
test developers and researchers to better identify how best to optimize measurement items

(Marcoulides, 1999; 2000).
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Poncy et al. (2005) used this approach by conducting a generalizability study (G-
Study) to identify the percentages of variance that were attributable to student, passages,
and error. The authors administered 20 DIBELS ORF passages to 37 third grade
students. The authors found that approximately 10% of the variance was attributed to the
passages, when all 20 passages were examined. Of the remaining variance, 81% was
attributed to the individual and 9% was error. The authors found that the percentage of
variance attributed to the passages could be reduced by restricting the number of passages
used based upon the average WRCM. When only the passages within a 15 WRCM (n =
14) of the average were used, the percentage of variance attributed to passages decreased
to 5.5% and the percentage attributed to the individual increased to 85.5%. When
passages within 10 WRCM (n = 11) were used, the variances for passages and
individuals were 2% and 89%, respectively. Finally, when passages within 5 WRCM (n
=7) of the average were examined, the percentage of variance attributed to passages and
individuals were 1% and 89%, respectively. Thus, Poncy et al. demonstrated that by
identifying passages that demonstrate a restricted range of WRCM (i.e. are more similar
based upon mean WRCM) the amount of variance attributable to the passages could be
reduced from 10% (when all passage are used) to 1% (5 WRCM range). Simultaneously,
the amount of variance attributable to the individual increased from 81% to 89%, using
the same conditions. Increasing the amount of variance attributable to the individual, as
well as reducing the amount of variance attributable to the measurement items, allows for
a clearer interpretation of the data (Marcoulides, 1999; 2000). Poncy et al.’s research

adds further support to the need to identify those probes that demonstrate equivalency. It
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should be noted that Poncy et al. used statistical analyses to come to their conclusions.
Other research has used field testing to determine the effects of altering the probe set
used.

Field testing was used in two passage equating techniques by Christ and Ardoin
(2009). Christ and Ardoin examined four different passage equating techniques (random
sampling, Spache [1953] readability formula, mean level of performance, and Euclidean
Distance evaluation) to identify those passages that demonstrated equivalency. The
passages, derived from third grade reading textbooks, were administered to second and
third grade students. For each equating technique, 20 passages were pulled from a larger
pool of 50 passages. A random selection of 20 passages was used for the random
sampling technique. The Spache readability formula was used to identify those 20
passages that most closely centered around a score of 3.5. Field testing was used to
identify the 20 passages used in the mean level of performance (i.e. the 20 passages most
closely distributed about the group mean WRCM) and Euclidean Distance evaluation
groups. Euclidean Distance refers to the square root of the sum of squared differences for
students” WRCM on the passages. Those passages with the smallest (i.e. less variable)
mean Euclidean Distance comprised the 20 passages within this group.

Christ and Ardoin (2009) used several G-studies to identify which of the four
techniques were best able to identify consistency in oral reading performance. They
found that neither of the non-field based techniques (random sampling and Spache [1953]
readability formula) provided optimal passage sets. Both techniques poorly controlled

for passage as demonstrated by the amount of variance attributed to the passages in the
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G-Study. For both second and third grade students, the random selection (10% and 6%,
respectively) and Spache readability formula techniques (5% and 4%, respectively) were
the poorest performing techniques. The lack of a discrepancy between the random and
readability formula techniques contributes to the extant literature that indicates the lack of
utility of readability formulas as a tool for identifying equivalent passages. That is,
Christ and Ardoin found that there was not a significant difference between randomly
selected passages and passages that were purported to be of equal readability according to
the Spache formula.

In contrast, the field testing based techniques (mean level of performance and
Euclidean Distance) provided more equivalent passage sets. The generalizability studies
found that for both the second and third grade students, the percentage of variance from
the passages was lowest for the Euclidean Distance technique (1% for both grades)
followed by the mean level of performance technique (4% and 2%, respectively). These
results lend support to the use of field testing to identify equivalent passages when
deriving ORF passages from grade level text.

Two other important findings from the Christ and Ardoin (2009) article are
relevant to ORF research. The first important finding is found when the descriptives for
all 50 passages are examined. The authors found that for both the second and third grade
students, the difference between average performance on the easiest and the hardest
passages was 46 WRCM. Thus, passages derived from the same grade level material can
lead to significant variability, which would invariably introduce large amounts of error

into the decision-making process regarding students’ progress and/or benchmark scores
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(Christ & Ardoin, 2009). As a comparison, the differences between the WRCM for the
middle of the year at-risk and low-risk benchmark scores provided by DIBELS (Good &
Kaminski, 1996) are 17 and 26 WRCM for second and third grades, respectively.
However, it should be noted that the DIBELS scores are derived from the median of 3
ORF passages whereas Christ and Ardoin are examining each passage individually.

The second important finding was that, despite the significant variation across
passages, there were robust levels of alternate form reliability (.92 and .93 for second and
third grade, respectively). Christ and Ardoin (2009) state that these high alternate form
reliabilities are found because they are limited to rank ordering. That is, the WRCM
derived from the passages consistently rank order the students’ performance but they do
not provide consistent raw WRCM scores. Therefore, the practice of using absolute
interpretations of raw scores, as is typically done with benchmarking and progress
monitoring, may be significantly flawed (Christ & Ardoin, 2009). These flaws could be
critical, particularly when students’ raw scores on these passages were as large as 46
WRCM, as was found in this study.

In the Christ and Ardoin (2009) study, the Euclidean Distance equating technique
provided the lowest percentage of variance attributable to passages. Those passages,
numbering 20, were identified via field testing and subsequent statistical analyses.
Ardoin and Christ (2009) used those same 20 passages as part of another study that
examined other important passage equating factors. Specifically, the authors evaluated
passage equivalency through the examination of the SEE and SEb. Both SEE and SEb

are important factors that must be considered within ORF research and school-based
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application. The SEE provides an estimation of the range of scores around a student’s
ORF observed score. Similarly, the SEb provides a range around the slope found across
a student’s data points. These two factors are important to consider when using ORF data
in the decision-making process. SEE’s and SEb’s that are too large, relative to their
respective scores, make interpretation and examination of a students’ progress within an
intervention difficult, if not impossible (Ardoin & Christ, 2009). A large SEb will also
lead to an increased number of false positive and false negative decisions about students’
response to an intervention. Increased false positive and false negatives will increase the
number of students that are erroneously placed into interventions and, therefore, further
tax school districts’ limited resources (Ardoin & Christ, 2009).

In addition to the 20 passages identified from the Christ and Ardoin (2009) study,
Ardoin and Christ (2009) examined each of these factors for 20 DIBELS and AIMSweb
passages. Ardoin and Christ found that the passages equated using the Euclidean
Distance method contained the lowest levels of measurement error (SEE = 10.68; SEb =
0.64), followed by the AIMSweb passages (SEE = 11.89; SEb = 0.71) and DIBELS
passages (SEE = 15.26; SEb = 0.91). The authors note that the two passage sets that
incorporated some level of field testing (Euclidean Distance passages, AIMSWeb),
demonstrated lower levels of measurement error than the DIBELS passages, which relied
solely upon readability formulas to equate passages. However, while the SEE and SEb
for the Euclidean Distance method passages were the lowest of the group examined in
this study, the measurement error levels were still large. The authors calculated that the

68% confidence interval (CI) around the slope observed for the Euclidean Distance
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method passages was a weekly growth rate of 0.28 — 2.44 WRCM. The large CI found
makes accurate interpretation of a student’s actual level, growth, and rate of improvement
a difficult task.

Optimal Amount of ORF Data

Another area within ORF that requires empirical investigation is the number of
probes used during the ORF assessment process. ORF measures are designed such that
they are efficient, sensitive to change, and are capable of modeling growth (Fuchs &
Fuchs, 1999). The typical procedure used in ORF research is to take the median score of
three ORF probes (Shinn, 2002). There is a need for empirical assessment of the
difference in variance accounted for when the number of probes used is varied. There
have been a few articles that have attempted to address this research limitation.

Poncy et al. (2005) used a decision study (D-study) to examine the SEMs when
the number of probes used was varied. D-studies are follow-up analyses of data derived
from G-studies within Generalizability theory (Marcoulides, 1999). Analogous to the
Spearman-Brown Prophecy Formula used in Classical Test Theory (Marouclides, 2000),
a D-study allows for researchers to examine data derived from a G-study and then make
recommendations for change in either test items, length, administrators, or whichever
facet is of interest to the researcher (Marcoulides, 2000). Thus, a D-study allows for the
estimation of the change in the percentages of variance accounted for and error
attributable to different facets when those facets are altered. For example, after
conducting a G-study using a 50-item test, a researcher may use a D-Study to estimate the

percentage of variance accounted for that is gained or lost by adding or reducing the
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number of items on the test by examining the resulting generalizability coefficient. The
generalizability coefficient is Generalizability Theory’s indicator of reliability
(Marcoulides, 1999; 2000).

Applying the D-study technique to their G-study data, Poncy et al. found that
when one probe was used, the generalizability coefficient was .90 with a SEM of 12
WRCM. When nine probes were administered, the reliability coefficient was .99 with a
SEM of 4 WRCM. However, the administration of nine probes would be time
consuming and counter to the RTI principle of brief assessments to inform decision
making. Thus, the more common and efficient practice of administering three probes
was examined. The reliability coefficient and SEM of three probes was .93 and 7
WRCM, respectively. The 7 WRCM SEM for the median of three probes was less than
that found by Christ and Silberglitt (2007).

Jenkins, Graff, and Miglioretti (2009) examined how changes in the number of
probes administered affected reliably estimates of reading growth using ORF passages.
The authors’ sample consisted of 41 students with identified learning disabilities and in
special education in grades ranging from third through eighth. The authors used ORF
passages developed at Vanderbilt University. The authors reported that the passages’
difficulty levels were controlled by analyzing them using 20 different readability
formulas. The authors did not report which formulas were used or how the results were
used to identify which passages met their criteria.

Each student was administered a total of 29 ORF passages over a 10-week period.

An overall “true” growth slope was calculated by taking the mean growth rate, across
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students, derived from WRCM scores from all 29 ORF passages. Over the 10-week
period, the first week served as baseline, which was derived from the average WRCM
from four passages. Students then read passages each week for the duration of the study.
The number of passages a student read was determined by the study’s design. Student
growth rates were calculated from ORF passages collected in the following manner: one
passage every week; two passages every 2 weeks; three passages every 3 weeks; four
passages every 4 weeks; and passages from the first (baseline) and last week only. The
authors found that the three passages every 3 weeks (M=1.08) and first and last weeks
only (M=1.04) measurement schedules provided growth means that most closely
resembled the “true” growth rate estimation (M=1.09).

Jenkins et al. (2009) also examined the effects of using one ORF measure on
growth estimation reliability. In the original design, students” ORF baseline was
established by taking the average score of four ORF passages. The authors used four
passages instead of the customary three passages in an effort to establish a more stable
baseline score (Jenkins, et al.). When comparing the number of probes used (1 v. 4), the
first probe given at baseline was used in the 1-probe group. The authors found that using
one CBM measure instead of four to establish a baseline significantly inflated growth rate
estimations. Similarly, when one ORF measure was used at each point of the 10-week
design the growth rate estimation was significantly inflated.

Jenkins et al. (2009) used as their outcome measure a “true” reading growth slope
which was found by calculating the growth slope derived from 29 ORF probes

administered over the 10-week period. Thus, the authors were able to compare the
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growth rates calculated from each of the weekly variations (i.e. one every week, two
every two weeks, three every three weeks, four every four weeks, and first and last weeks
only) to the growth slope using all the measures in order to best identify which was most
similar to the “true” rate. The authors’ use of the “true” slope as their criterion measure
is justified by stating that the use of a pre and post-test design using typical achievement
tests would be inappropriate.

Specifically, achievement assessments are inadequate measures of growth over
the short-term and are designed to measure relative status rather than individual growth.
While the reasons for avoiding using achievement assessments as a criterion measure are
valid and logical, the authors’ alternative criterion measure of a “true” growth slope is
insufficient. One of the critical components of progress monitoring is its ability to
provide data that can be used to identify those individuals that are non-responders and are
therefore more likely to be at risk for future reading failure (Vellutino et al., 1998;
Vellutino, Scanlon, & Zhang, 2007). The ‘true’ rate criterion proposed by Jenkins et al.
may be a limitation as identifying a student’s growth rate limits the level of interpretation
to that variable. As comprehension is the ultimate goal of reading education, criterion
measures that focus on this aspect of reading may be more informative and, as such,
should be used as the outcome variable.

Limitations of Previous ORF Research

There are several significant limitations to and unanswered questions within the

existing universal screening and progress monitoring research. Throughout the RTI

model, data are used to inform the decision making process. Thus, in order for the RTI
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model to be successful, the measures used to derive data must be psychometrically sound.
In particular, the equivalency of passages is an area that remains elusive. For the most
common commercially available universal screening and progress monitoring tools
(DIBELS and AIMSweb), the use of readability formulas has been the main source of
passage equating. However, there is ample evidence that indicates that readability
formulas do little to provide equivalent passages based upon the raw WRCM scores
(Francis, et al., 2008). Thus, alternative means to equate passages must be evaluated.

While there have been several articles that indicate positive signs for the use of
ORF measures there are significant limitations, beyond readability formulas, that need to
be addressed empirically. One of the most striking limitations within the progress
monitoring research is the lack of research that uses high-stakes statewide assessment as
the outcome variable. Some articles (e.g. Jenkins et al., 2009) use growth rate as
outcomes. However, given the importance placed upon statewide assessments by school
administrators, there is a need for a better understanding of how progress monitoring data
can predict student’s outcome on high-stakes statewide assessment. While it is important
that the relationship between ORF measures and later ORF reading performance is
known, given the high-stakes nature of decisions being made within education, the
relationship between ORF measures and statewide assessments needs to be further
evaluated.

Several articles have used high-stakes statewide assessments as the outcome
variable. However, much of the research that has been conducted using ORF data to

predict statewide assessments has several significant limitations of its own. Specifically,
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some of the research has not appeared in peer-reviewed journals (Barger, 2003; Buck &
Torgesen, 2003; Shaw & Shaw, 2002; VVander Meer, Lentz, Stollar, 2005; Wilson, 2005)
or it has a participant pool with a homogenous group or low number of subjects (Barger,
2003); much of the research has used students who have previously been identified and
are already receiving intervention or are in special education. The predictive ability of
progress monitoring data for student outcomes on high-stakes statewide testing, above
and beyond information provided by universal screening data, has yet to be answered.

Another area in the ORF progress monitoring research that requires further
evaluation involves the number of progress monitoring data probes and overall number of
data points. Specifically, the number of probes and data points that are needed to provide
the most amount of predictive ability while remaining efficient requires further
clarification. For example, Jenkins et al. (2009) indicated that the number of progress
monitoring assessments could be reduced. While their research indicates a reduction in
the number of assessment time points will not negatively impact the estimation of the true
slope, it ignores the basic tenet that progress monitoring is done to inform the decision
making process and quickly identify non-responders. The authors’ assertion contradicts
other research that indicates that more data points leads to greater ability to accurately
identify student abilities (Christ, 2006).

Another limitation within the ORF progress monitoring literature is the
combination of student data across grades. For example, Jenkins et al. (2009) found a
mean growth rate of 1.09 across all 29 passage administrations. This mean growth rate

was used as the standard against which their different time administration rates were
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measured. However, this growth rate is not representative of the growth rate across all
the groups (Fuchs, Fuchs, Hamlett, & Germann, 1993). Similarly, Christ and Ardoin
(2009) combined students’ data from second and third grade students into a single
analysis. The combining of second and third grade students” WRCM scores ignores
existing research that indicates students’ reading ability and their ORF growth rates are
not uniform across grades (Deno, Fuchs, Marston, & Shinn, 2001). By combining these
students’ scores, differences between the predictive accuracy of later reading success may
be obscured.

Another limitation within the ORF literature involves the lack of standardization
of curriculum passages used. Some research has used readability formulas to identify
ORF passages pulled from student grade-level texts (Francis et al., 2008). However, as
there are significant limitations of readability formulas (Ardoin et al., 2005; Betts et al.,
2009; Christ & Ardoin, 2009), the stability of these passages are in question. Some
research, such as Jenkins et al. (2009), identified the passages used in their research
through teacher recommendation of passages at reading level, while other research
(Christ & Ardoin, 2009) used passages derived from third grade text to evaluate both
second and third grade students. The lack of standardization and the lack of a match
between student’s grade level and the ORF passage level may introduce unaccounted
error into the research designs.

A final limitation to the current ORF research is the relatively low number of
participants within many of the studies. The number of participants is reduced even

further when the data are not collapsed across grades, as mentioned in the first limitation.
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The relatively low number of students used in the existing ORF research limits the ability
to generalize the findings beyond the populations used.
Research Questions

The focus of these research questions was on limitations within the existing literature.
Specifically, this study attempts to add to the ORF literature in two areas: ORF passage
equivalency and ORF’s predictive accuracy of a high-stakes statewide assessment. In
order to address these needs, two of the most popular CBM assessment tools, DIBELS
Next (Good and Kaminski, 2010) and AIMSweb, were utilized. These assessments were
chosen because of their frequent use in both research and school district settings. In
addition, passages derived from a school district’s curriculum (SDC) were used in the
analyses.

The focus of research questions 1a — 1b was on the accuracy of readability formulas
and the relationship between readability formula rankings and student WRCM. The
focus of research question two was on the distribution of ORF passage variability
between students, passages, and error. The focus of research questions 3a — 3b was on
the limitations related to progress monitoring. Finally, the focus of research question
four was to examine the optimal number of probes to use. The research questions are as
follows:

= Research Question la: To what extent do the Flesch, FOG, Powers, SMOG,

Forcast, Fry, Spache (3" grade only), and Dale-Chall (5™ grade) readability
formulas provide similar readability scores for ORF passage from the DIBELS

Next, AIMSweb, and SDC passage sets?

35



Research Question 1b: To what extent are readability formula scores related to
student’s WRCM for ORF passages from the DIBELS Next, AIMSweb, and SDC
passage sets?

Research Question 2: What percentage of variance is attributable to item (i.e.
passage), the individual, and error for third and fifth grade ORF passage sets from
DIBELS Next, AIMSweb and SDC? G-Theory was used in order to evaluate
passage equivalency.

Research Question 3a: To what extent does the addition of the slope from six
weeks of ORF progress monitoring data explain additional variance in predicting
later reading success, as measured by the California Standards Test-English
Language Arts (CST-ELA) beyond universal screening ORF data? In addition,
does any one of the ORF passage sets (i.e. DIBELS Next, AIMSweb, SDC)
predict CST-ELA scores better or worse than the other passage sets?

Research Question 3b: Do bi-weekly or first three weeks only progress
monitoring models provide a more parsimonious alternative to the 6-week model
when explaining variance in predicting CST-ELA outcomes?

Research Question 4: To what degree is the amount of variance accounted for
different between a one-randomly-chosen-probe approach score and a median-of-
three-probe approach score? For this question, the data for the one-randomly-
chosen approach are derived by randomly choosing one of the three weekly ORF
probes as the score for that week. In addition, does any one of the ORF passage

sets (i.e. DIBELS Next, AIMSweb, and SDC) predict CST-ELA scores better or
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worse than the other passage sets, when using the one-randomly-chosen-probe

approach score?

Method
Procedure

Parental consent was obtained for 114 students from two schools within an urban
school district in Southern California. Prior to participation in the study, student assent
was collected. Two of the students did not provide assent giving a final total of 112
students: 49 third-grade (46.9% male) and 63 fifth-grade students (44.4% male). Student
demographic data were collected by school staff and provided to the author by school
administrators. Students attended a district where approximately 81.3% of students were
receiving free or reduced lunch. Oral reading fluency data were collected individually by
trained test administrators. As per Christ’s (2006) recommendations, efforts were made
to collect all data in a quiet environment and to follow standardization procedures. Data
were collected either in a quiet corner of the student’s classroom or outside the student’s
classroom.

In order to answer research questions 1 and 2, students were randomly assigned to
read from one of the three passage sets (DIBELS Next, AIMSweb, SDC). For the
DIBELS and AIMSweb passages the respective standardized directions were
administered to each student. For the SDC passage set the AIMSweb directions were
given to each student. In order to reduce maturation effects as much as possible (Fuchs
& Fuchs, 1993) while simultaneously avoiding fatigue effects, efforts were made for

students to read all 20 passages over a 2-day period (i.e. 10 passages per day). The
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majority of student data (81%) were collected within two days and a total of 89% were
collected within four days. The remaining 11% of student data were collected between 6-
11 days due to factors such as scheduling conflicts, school functions, and absences.

In order to answer research questions 3 and 4, progress monitoring ORF passages
were administered to students. The same student participants used to answer research
questions 1 and 2 were used to answer research questions 3 and 4. Each student was
randomly assigned to read one of the passage sets that he or she did not read previously.
For example, if a student read the DIBELS Next ORF passages as part of research
questions 1 - 2, then that student was randomly assigned to read either the AIMSweb or
SDC passages. By ensuring that no student read the same ORF passage set twice the
potential for practice effects, a source of unwanted error, was reduced.

For each student there were weekly assessments during a 6-week progress
monitoring period. During these weekly assessments each student read three ORF
passages from his or her randomly assigned passage set, giving a total of 18 passages
read over the 6-week period. For the DIBELS Next and AIMSweb passages the
respective standardized administration instructions were administered to each student.
Similar to the procedure for research questions one and two, students reading the SDC
passage set were given the AIMSWeb directions.

Administrator Training and Interobserver Reliability

Each test administrator was trained in the administration and standardization for

each of the passage sets. Three of the test administrators, including the author, had

extensive experience in administering ORF passages in previous research. A fourth test
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administrator was trained by the author and was observed on several occasions to ensure
procedural integrity. Before data collection began, scores collected by the test
administrators were compared to scores collected by the first author in order to ensure
accuracy.

In order to determine interobserver reliability the percentage of agreements were
divided by the number of agreements plus disagreements (Hintz, 2005). Based on a total
of 34 IRR observations the interobserver reliability was 98.33%.

Materials

The ORF passages used in this study were derived from three sources: DIBELS
Next, AIMSweb, and the school district’s grade-level curriculum.

DIBELS Next. DIBELS Next (Good & Kaminski, 2010) is a set of literacy
measures. The DIBELS Next ORF measure is an individually administered standardized
assessment of reading accuracy and fluency using grade-level text. The DIBELS Next
ORF assessment uses the same principles and procedures of other CBM (see Shinn,
1989). DIBELS Next ORF probes are 1-minute long fluency measures. Students read
aloud three grade-level reading passages. The WRCM score is calculated by subtracting
errors and omissions from the total number of words read. Misread words or hesitations
of greater than three seconds are considered errors, while self-corrections, within three
seconds, are considered accurate. The median score of the three passages is the student’s
oral reading fluency score. The DIBELS Next passage set consists of 21 ORF passages,

for each appropriate grade-level, provided by the DIBELS Next developers. For the
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progress monitoring portion of this study only the first 18 DIBELS Next passages were
used in the analysis and for the passage equivalency section all 21 passages were used.

AIMSweb. The AIMSweb R-CBM measure is an individually administered
standardized oral reading fluency measure (Howe & Shinn, 2002). AIMSweb measures
use the same principles and procedures of other CBM (see Shinn, 1989). AIMSweb R-
CBM probes are 1-minute long fluency measures. Students read aloud three grade-level
reading passages. The WRCM score is calculated by subtracting errors from total words
read. Misread words or hesitations of greater than three seconds are considered errors,
while self-corrections, within three seconds, are considered accurate. The median score
of the three passages is the student’s oral reading fluency score. Fluency scores are
collected at three times during the school year (fall, winter, and spring). The AIMSweb
passage set consists of the first 20 passages for each appropriate grade-level retrieved
from the AIMSweb website. For the progress monitoring portion of this study only the
first 18 AIMSweb passages are used in the analysis and for the passage equivalency
section all 20 passages were used.

School District’s Curriculum Passages. A passage set derived from a school
district’s curriculum were used as part of these analyses. English Language Arts books
from the Open Court curriculum were used as sources for the SDC passages in both 3"
and 5" grade. In order to limit the potential for students finishing a passage before the
one minute had elapsed, only passages with a minimum of 200 words were used for this
study. This passage set was included along with the other commercially available sets

(DIBELS Next and AIMSweb) due to the prevalence of similar passage sets being used
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in research and within the school setting. There have been several articles that have
included some form of a non-standardized passage set (e.g. Ardoin & Christ, 2009;
Hintze & Christ, 2004). Many curricula used in schools now provide their own ORF
passages. For the purposes of this research, text-based curriculum passages were
retrieved from the grade-level curriculum being used within the school district. Similar
to the other ORF measures, the WRCM score is calculated by subtracting errors and
omissions from the total number of words read. Misread words or hesitations of greater
than three seconds are considered errors, while self-corrections, within three seconds, are
considered accurate. The median score of the three passages is the student’s oral reading
fluency score. The SDC passage set consists of the first 20 passages for each appropriate
grade-level retrieved from the Open Court curriculum grade-level books. For the
progress monitoring portion of this study only the first 18 school curriculum passages are
used in the analysis and for the passage equivalency section all 20 passages were used.
Readability Formulas. All three of the passage sets were analyzed using the
Readability Calculations (Micro Power & Light Co., 2000) program. This program
provides multiple readability estimates for a passage. Each passage used in this study
was entered into the program and the following readability formulas were calculated:
Flesch, FOG (Gunning, 1968), Powers, SMOG, Forcast, Fry (1977), Spache (3" grade
only; 1953), and Dale-Chall (5™ grade only; 1948). The Spache formula was used with
the 3" grade passages only because the formula is designed to be used in lower
elementary grade level text only (Spache, 1953; Micro Power & Light Co., 2000).

Similarly, the Dale-Chall is used with the 5™ grade passages only because it is designed
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to be used with passages at a 4™ grade or higher level of difficulty (Micro Power & Light
Co., 2000). Unlike the other formulas that produce numeric grade estimations (e.g. 3.2),
the Dale-Chall formula gives broader grade-level estimations (early 5). In order to
include the Dale-Chall output in these analyses the estimation was quantified. Using a 5"
grade passage as an example, the Dale-Chall label and quantification were as follows:
Early 5" = 5.1; Early-to-mid 5" = 5.3; Mid 5" = 5.5; Mid-to-upper 5" = 5.7; Upper 5" =
5.9. This quantification process was developed by the author in order to include the
Dale-Chall in the analyses.

CST-ELA. The CST-ELA served as the main dependant variable for the
predictive component of this study. The CSTs are the high-stakes statewide assessment
administered to all school children in California, beginning with the second grade (CDE,
2009). The CSTs are a criterion referenced assessment that are used to measure student’s
mastery of grade-level content in several areas. The English Language Arts (ELA)
section of the CSTs assesses students’ English language abilities based upon grade-level
curriculum and minimum proficiency standards. The test content validity was established
via item review by experts in English Language Arts (CDE, 2009). Convergent validity
was established by comparing ELA to California Achievement Test - Sixth Edition
(CAT/6) Reading and Language tests. Correlations between the second and third grade
CST-ELA and the CAT/6 Reading were .77 and .77 and CAT/6 Language .76 and .75,
respectively (CDE, 2009). Reliability scores for the CST-ELA were also strong: a = .94

(2nd grade); .93 (3rd grade; CDE, 2009).
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Each student’s CST raw score is converted to a scale score that falls into one of 5
categories: Far Below Basic, Below Basic, Basic, Proficient, and Advanced. The
California Department of Education (2009) states that the educational goal for every
student is to reach at least the Proficient level on the CST assessments. Scores on the
CST-ELA and Mathematics assessments are used as part of the formula to measure
school and district Academic Performance Index. In addition, the CST-ELA and
Mathematics tests are used to calculate Adequate Yearly Progress scores, which are used
to evaluate progress towards NCLB goals of student academic proficiency.

Results

Descriptive data for CST-ELA scores and Winter ORF screening scores are
presented in Table 1. Descriptive data for readability formula scores are presented in
Tables 2 — 3. Data for 3" and 5™ grade students are presented separately.

Research Question One

For research question one, each of the 21 DIBELS Next, and 20 AIMSweb, and
SDC ORF passages were analyzed using the Flesch, FOG, Powers, SMOG, Forcast, Fry,
Spache (3" grade only), and Dale-Chall (5™ grade only) readability scores. The
readability scores were calculated using the Readability Calculations program (Micro
Power & Light Co., 2000). For those formulas that compare passage words to a list (e.g.
Dale-Chall) to calculate passage difficulty the most up-to-date list available was used.

In order to answer research question 1a, a nonparametric statistic must be used as
there cannot be an assumption of equal intervals between grade levels of passages

(Ardoin et al., 2005). The Kendall’s coefficient of concordance (Kendall’s) is a
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nonparametric measure of correlation used with ordinal data in order to obtain a
correlation between multiple (i.e. greater than 2) sets of ranks (Sheskin, 2007; Siegel &
Castellan, 1988). The measure of agreement between sets provided by the Kendall’s
statistic allows for the examination of agreement between rankings. The Kendall’s scores
(represented by W) can range from 0 to 1, where a score of 1 indicates complete
agreement across rankings and a score of O indicates no pattern of agreement (Sheskin,
2007). The test of significance for W can be completed using chi-square distribution
tables when the following formula is used:
Y¥=m(n-1)W

Where:

m = number of sets

n = number of objects (i.e. probes)
In order to answer the first research question, the relationship between the seven
readability formulas (Flesch, FOG, Powers, SMOG, Forcast, Fry, Spache (3" grade
only), Dale-Chall (5" grade only)) was calculated using the Kendall’s statistic. The
Kendall’s test was conducted for each passage type in both 3" and 5" grade. As shown
in Table 4, the resulting y* statistics indicate that for each grade (3 and 5™) and for each
passage type (DIBELS Next, AIMSWeb, SDC) there was a significant association among
the ranking of the seven readability formulas.

To further examine these relationships, the level of association between individual
readability formulas and a student’s WRCM were evaluated. For each student, a ranking

of passage difficulty was created based upon the WRCM measured. The passage with
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the lowest WRCM was ranked the most difficult. The passage with the next lowest
WRCM was ranked second most difficult and so on until the passage with the highest
WRCM was ranked the easiest. Ties in WRCM rankings were handled the same as were
the ties in readability formula rankings (see Sheskin, 2007). This process was repeated
for each student.

In order to answer research question 1b, Kendall’s tau (t), a non-parametric
measure of association, was then calculated between each readability formula’s ranking
and the passage difficulty rankings as measured by the WRCM for each student. The
resulting Kendall’s taus were then used to in a Friedman Two-way Analysis of Variance
by Ranks. The Friedman, a non-parametric alternative to a classical Analysis of VVariance
(Sheskin, 2007), was then employed to assess for main effects. For the DIBELS Next
passage set there was a significant main effect for the 3" grade, ¥*(6, N = 19) = 25.02, p
<.001, and 5" grade, ¥*(6, N = 25) = 60.90, p <.001, passages. For the AIMSWeb
passage set there was a significant main effect for the 5™ grade passages, ¥*(6, N = 25) =
46.31, p <.001 but not for the 3" grade passages, °(6, N = 18) = 3.20, p = .783. For the
SDC passage set there was a significant main effect for the 3" grade, °(6, N = 11) =
34.55, p <.001, and 5" grade, x*(6, N = 13) = 47.23, p <.001, passages. Statistical
significance on the Friedman indicates that there is at least one readability formula that
has a relationship with WRCM that is significantly different from at least one other
formula.

Sheskin (2007) recommends using Wilcoxon matched-pairs signed-ranks test

(Wilcoxon) as a nonparametric follow-up pairwise comparison when a significant main
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effect is found using the Friedman test. For this research, the Wilcoxon test allows for
the examination of whether a readability formula is significantly better or worse than
another readability formula in predicting WRCM rankings. (Ardoin, et al., 2005). For
each significant Friedman main effect, the Wilcoxon follow-up was conducted with a p-
value adjusted to .001 to account for the multiple comparisons. The results of follow-up
assessments are displayed in Tables 5— 9. For the DIBELS Next 3" grade passage set
the Fry readability formula was significantly different from the FOG and SMOG
formulas. All other differences were non-significant. Although there was a main effect
found for the SDC passage set using a p-value of .05, there were no significant
differences between readability formula ranks when using the adjusted p-value of .001
was used.

For the 5" grade version of the passages there were a higher number of significant
differences. For the DIBELS Next passages the Flesch formula was significantly
different from all formulas except for the Powers formula. The Powers formula was
significantly different from all other formulas except for the Flesch formula. For the
AIMSWeb passages the Flesch formula was significantly different from the FOG,
SMOG, & Fry formulas. The Dale-Chall was significantly different from all formulas
with the exception of the Flesch. For the SDC passages the Dale-Chall was significantly
different from the Flesh and FOG formulas while all other comparisons were non-
significant.

Research Question Two
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In order to answer research question two, a Repeated Measures Analysis of
Variance (ANOVA) was conducted. The ANOVA output was used to complete analysis
for a one-facet G-study. In the one-facet design, the model is written as follows
(Marcoulides, 2000):

Xpi = K+ Hp + Hi + Lpie
Where:

K= Grand Mean

Hp = person effect

Hp = item effect

HMpie = residual effect (i. e. error)

The ANOVA was calculated using the data derived from the ORF measures.
Using a Generalizability Theory framework, variance components for the person (i.e.
student), item (i.e. passages), and residual (i.e. error) were calculated using the
appropriate formulas (Marcoulides, 2000). In addition, a generalizability coefficient (G-
coefficient) using relative error was calculated. G-coefficients are used as an indication
of the dependability of a measurement procedure and range from 0 to 1.0 with higher
scores indicating higher reliability (Marcoulides, 2000). The specific formulas used in
the calculations are as follows:
Person variance scores:

0% = (MSp — MSpie) /

Item variance scores:

0% = (MS; — MSyie) I,
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The error variance component (azpi,e) is equal to the Mean Square of the residual
produced by the repeated measures ANOVA. G-coefficients using relative error were
then calculated using the following formula:

Ep%s = 02p / (O’Zp + %)
Where: 65 = 6%pie I Ni.

For 3" grade students who read the DIBELS Next passages the amount of
variance attributable to the students was 89.66%, to the passages was 1.74%, and to error
was 8.59%. The G-coefficient was .995 for 3 grade students reading DIBELS Next
passages. For 3" grade students who read the AIMSWeb passages the amount of
variance attributable to the students was 95.52%, to the passages was 0.73%, and to error
was 3.74%. The G-coefficient was .998 for 3" grade students reading AIMSWeb
passages. For 3" grade students reading the SDC passages the amount of variance
attributable to the students was 88.53%, to the passages was 4.34%, and to error was
7.12%. The G-coefficient was .996 for 3" grade students reading the SDC passages.

For 5™ grade students who read the DIBELS Next passages the amount of
variance attributable to the students was 92.13%, to the passages was 2.67%, and to error
was 5.19%. The G-coefficient was .997 for 5™ grade students reading DIBELS Next
passages. For 5™ grade students who read the AIMSWeb passages the amount of
variance attributable to the students was 88.8%, to the passages was 3.2%, and to error
was 8%. The G-coefficient was .995 for 5™ grade students reading AIMSWeb passages.
For 5™ grade students reading the SDC passages, the amount of variance attributable to

the students was 82.47%, to the passages was 10.75%, and to error was 6.77%. The G-
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coefficient was .996 for 5™ grade students reading the school district’s curriculum
passages. Taken together, the reliability and variance attributable to students are high for
both the 3 and 5" grade students. These results exceed those found by Poncy, Skinner
and Axtell (2005) and provide strong evidence for reliability of all three of the passage
sets.

Research Question Three

In order to answer research questions 3a — 3b, a multiple regression design was
used. Unlike previous research which regressed variables upon reading growth rates (e.g.
Jenkins et al., 2009) the outcome variable in this study was the standard score on a high-
stakes statewide assessment (i.e. CST-ELA). The predictor variables for the regression
equation varied in order to answer the specifics of each question. For both 3a and 3b,
each set of regression equations was calculated separately using DIBELS Next,
AIMSweb, and the school district’s curriculum passage set.

For question 3a, the first model was a simple linear regression using students’
winter ORF benchmark scores to predict CST-ELA outcomes. Model 2 added students’
ORF slope, derived from six weeks of progress monitoring data, to Model 1. The slope
was derived by calculating a linear regression through each of the six data points for each
child. This design was used in order to examine what, if any, additional variance in CST
scores can be accounted for by six weeks of ORF progress monitoring data above winter
ORF universal screening scores.

As seen in Tables 10 - 12, for 3" grade students, for the students who read the

DIBELS Next passages the winter ORF screening was a significant predictor of CST-
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ELA scores. However, the winter ORF screening score for the students who read the
AIMSWeb and SDC passages was not a significant predictor of CST-ELA outcomes.
Thus in Model 1, before student progress monitoring data were included, there were
group level differences between the predictive relationship of winter ORF screening and
CST-ELA outcomes. This group-level difference is unexpected as all students were
randomly assigned to one of the three reading passage set groups. The addition of
progress monitoring slope did not significantly improve the model for any of the third
grade passage groups.

The same regression model was repeated using data from students in the 5 grade.
For these students, there was a significant association between winter ORF screening and
CST-ELA scores for all three groups. The addition of progress monitoring slope did not
significantly improve the model for any of the 5" grade passage groups. The lack of
additional variance accounted for by adding slope replicates other research. For example,
Schatschneider, Wagner, and Crawford (2008) found that the addition of ORF slope did
not provide additional information beyond a single time point assessment, for first grade
students.

For research question 3b, the progress monitoring data collected across the 6-
week period were analyzed to determine the most effective and efficient use of resources.
In order to examine this, several regression equations were analyzed using the ORF score
from each of the progress monitoring weeks. The first regression equation, which
includes all 6 data points, was labeled the complete model. Subsequent regression

equations, labeled reduced models, removed specific weeks. The bi-weekly model
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included data from weeks 2, 4, and 6 only. The first three weeks model included data
from weeks 1, 2, and 3 only. Each reduced model was then compared to the complete
model to compare the change in variance accounted for by both the complete and reduced
models (Agresti & Finlay, 1997).

The regression equation outcomes for the complete and reduced models are
presented in Tables 13 - 18. For 3" grade students, the complete models for the DIBELS,
AIMSWeb and SDC passage type were not significant. This result indicates that the six
weeks of progress monitoring data did not significantly predict CST-ELA outcomes for
any of the passage sets. For the DIBELS Next passage set, the first-three-weeks-only
model was significant, F(3, 8) = 5.30, p = .026, although the AR? statistic between the
complete and reduced models was not significant, 4R? = -.16, p = .319. This result, likely
due to a change in degrees of freedom, indicates that the reduced first-three-weeks-only
model may be a more parsimonious model than the complete.

For 5™ grade students, the complete model using DIBELS Next passages was
significant while the complete models using AIMSWeb and SDC passages were not.
Further examination of the DIBELS Next results found that there was not a significant
difference for the bi-weekly, 4R? = -.177, p = .205, or the first three weeks only AR? = -
.104, p = .401 reduced models. Both of these models were significant and therefore are
parsimonious alternatives to the complete model. Further examination of the AIMSWeb
results found that both of the reduced models were significant. Although neither the 4R?
for the bi-weekly model, 4R? = -.097, p = .511, nor the first three weeks model, 4R? = -

.083, p =.527, were significant, their respective overall models were significant,
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indicating that the reduced models provide a more parsimonious alternative than the
complete model. Further examination of the SDC passages found that both of the
reduced models were significant. Although neither the AR? statistics for the bi-weekly
model, 4R? = -.07, p = .617, nor the first three weeks model, 4R? = -.181, p = .251, were
significant, their respective overall models were significant. Thus, for 5" grade students,
both of the reduced models were significant for each of the three passages types
indicating that the reduced models are more parsimonious alternatives. The significance
of the models, despite non-significant 4R?, is likely due to a reduction in degrees of
freedom when calculating the F-statistic.

Research Question Four

For research question four, the analyses from research question three were re-
conducted. However, instead of using the median score from three ORF passages, the
analyses were conducted using one randomly selected progress monitoring probe as the
source of weekly data. The same complete and reduced model comparison used to answer
research question three were replicated to answer research question four.

Thus, for the replication of research question 3a, there was no change in the first
model which was a simple linear regression using students’ winter ORF benchmark
scores to predict CST-ELA outcomes. However, the slopes added to the second models
were calculated using one randomly selected passage score from each week instead of the
weekly median scores. The slope was calculated the same was as previously described
with the following exception: the data used to calculate slope were derived from one

randomly-selected data point per week instead of the median of three. The results for
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questions four are presented in Tables 19-21. For 3 grade students, there was a
significant association between winter ORF screening and CST-ELA scores for 3 grade
DIBELS Next passages but not for AIMSWeb and SDC passages. The addition of
progress monitoring slope did not significantly improve the model for any of the third
grade passage groups. For the DIBELS Next group, despite lacking a significant change
in variance explained, 4R*=.001, p = .918, the addition of the progress monitoring slope
to the regression equation, and subsequent loss of a degree of freedom, made the model
non-significant.

The same regression model was repeated using data collected from students in the
5" grade. For these students, there was a significant association between winter ORF
screening and CST-ELA scores for all three groups. The addition of progress monitoring
slope did not significantly improve the model for any of the 5™ grade passage groups.

The final portion of research question four involved the replication of question 3b
in which the same previously described procedures for using one-randomly-chosen-probe
approach were utilized. The complete and reduced models are in Tables 22 - 27. For 3"
grade students, the complete models for the DIBELS and SDC passage sets were not
significant while the complete model for the AIMSWeb passage group was significant.
For both the DIBELS and SDC passage sets, neither the bi-weekly nor the first three
weeks models were significant improvements (p > .05) over the complete models.
Further examination of the AIMSWeb passage group found differing results for the bi-
weekly and first-three-weeks-only reduced models. The AR?for the bi-weekly reduced

model was non-significant, AR? = -.101, p = .178, and the overall model was significant
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indicating that the reduced model is a more parsimonious alternative to the complete
model. The AR?for the first three weeks reduced model was significant, AR?*=-502, p=
.011, and the subsequent model was non-significant. Thus, the first-three-weeks-only
reduced model was not a more parsimonious alternative to the complete model.

For 5™ grade students the complete model for the DIBELS Next, AIMSWeb, and
SDC passage groups were significant. Further examination of the DIBELS Next results
found that there was not a significant difference for the bi-weekly (4R® = -.175, p = .218)
or the first-three-weeks-only (4R? = -.20, p = .176) reduced models. Each of the reduced
models were significant indicating that either one is a more parsimonious alternative to
the complete model for the DIBELS Next group. Further examination of the AIMSWeb
results found that there was not a significant difference for the bi-weekly (4R?=-.29, p =
.050), or the first-three-weeks-only (4R?*= -.139, p = .208) reduced models. Each of the
reduced models were significant indicating that either one is a more parsimonious
alternative to the complete model for the AIMSWeb. Further examination of the SDC
results found that there was not a significant difference for the bi-weekly (4R* = -.219, p
= .128), or the first-three-weeks-only (4R® = -.027, p = .825) reduced models. Each of
the reduced models were significant indicating that either one is a more parsimonious
alternative to the complete model for school district curriculum group.

Discussion

One of the core components in an RTI model is the assessment of students’

current level of skill, either as part of whole-class screening or as part of a more frequent

progress monitoring schedule. The quality of the decisions educators can make is

54



directly related to the quality of data derived from these assessments. In the elementary
school years one of the most common and empirically supported forms of CBM is ORF.
The general purpose of this study was to evaluate the quality of three types of ORF
assessments. More specifically, there were two areas of focus in this research. First, the
reliability of readability formulas used to calculate ORF passages was examined by
research questions one and two. Second, the utility of using ORF progress monitoring
passages to predict a high-stakes state-wide assessment was examined by research
questions three and four. For all research questions data were collected from students in
two grades (3 and 5™ grade) using three different types of ORF passages (DIBELS
Next, AIMSWeb, SDC).
Passage Equivalency and Readability Formulas

Examination of the equivalency of readability formulas, using the Friedman test, a
nonparametric version of ANOVA, provided mixed results. There were significant
differences in rankings for the DIBELS Next and SDC passages but not the AIMSWeb
for 3" grade students. There were significant differences for all three passage types for
5" grade students. Follow-up pairwise comparisons found that differences in the third
grade were minimal. For the DIBELS Next passages only two of the associations were
significant different (Spache v. SMOG and Spache vs. FOG). For the SDC there were no
significant differences once the p-value had been adjusted for multiple comparisons.
Thus, for 3" grade passages as a whole, the readability formulas ranked the difficulty of
the passages similarly (with the exception of the two differences on the DIBELS Next).

However, as presented in Tables 2 and 3, the mean grade-level scores provided by the
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different formulas show a wide range. Therefore, with the exception of the two Spache
differences for the DIBELS Next passages, the other readability formulas demonstrate
stability in the ranking of the individual passages within the parameters of their own
formula. For example, the mean passage grade-level ranking for the 3" grade DIBELS
Next passages using the Spache formula was 3.79 whereas the mean for the FORCAST
was 8.76. However, there was not a significant difference between the rankings of these
two readability formulas. Thus, for the third grade passages, although the grade-level
score of an individual passage may be dramatically different across readability formulas,
the difficulty of a set of passages can be ranked relatively equally regardless of the type
of formula used.

The results for the 5 grade passage sets are less clear. The Friedman test was
significant for the DIBELS Next, AIMSWeb, and SDC passages. For the DIBELS Next
set, two formulas, Flesch and Powers, had significantly different grade-level rankings
from all the other formulas (though there was not a significant difference between the
two). Thus, the Flesch and Powers ranked passage difficulty in a similar manner, yet
significantly different than all the other formulas.

For the AIMSWeb passages the Flesch formula was significantly different from
three other formulas (FOG, SMOG, Fry) while the Dale-Chall was significantly different
from all the other formulas. This discrepancy was seen, albeit on a smaller scale, in the
SDC passages. For those passages the only observed significant differences were
between the Dale-Chall and two other formulas (Flesch and FOG). The Dale-Chall

formula results are particularly intriguing because it is a formula that is designed to be
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used with passages from upper-elementary and higher. However, these results may have
been influenced by the quantification process required to analyze the Dale-Chall results.
It is possible that the quantification may have introduced error into the subsequent
analyses.

Similar to the 3 grade passages, there was a large range of mean passage
difficulty ranks between formulas for the 5™ grade passages. A few formulas,
particularly the Flesch and Dale-Chall, appeared to have different rankings from many of
the other formulas. However, there was also a fair amount of agreement in passage
rankings by set making interpretation or recommendation on which readability formula is
best suited for 5™ grade passages difficult.

Passage Variability Using Generalizability Theory

G-Theory was used as a way to examine the reliability of ORF passages.
Replicating and expanding upon results from previous research (e.g. Poncy, Skinner,
Axtell, 2005), the result of this study provided strong evidence that the vast majority of
the observed variance was attributable to students and not to the passages or to error.
This effect was observed across 3 and 5™ grade and all passage types. The G-
coefficient, a measure of reliability, was greater than .99 for all passage types at all
grades, indicating a high amount of reliability in passage scores. There were high levels
of observed variability attributable to the students across all settings (ranging from 82.47
—95.52%) coupled with the low passage variability (ranging from 0.73 — 10.75%) with
the commercial passage sets (DIBELS Next and AIMSWeb) outperforming the SDC

passage set. These results provide strong evidence to support the idea that student scores
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are attributable to differences in student abilities and not differences in the passages or
random error. In addition, based upon the slightly higher levels of error attributable and
lower levels attributable to passages, the commercial passage sets (DIBELS Next and
AIMSWeb) appear to be a more reliable alternative to the SDC passages.

Taken together, the results from research questions one and two allow for some
interpretation of ORF passages. In general, educators can select standardized passages
and anticipate ORF scores that are highly reliable and are reflective of student ability,
rather than error attributable to passages. These strong psychometric properties are found
across passages despite the wide range of readability formula scores. The utility of
readability formula scores as a means to accurately equate passages needs to be
reconsidered. Ata minimum, readability formulas should be used as a first step in a
passage equating procedure. The wide range of scores found in this study indicates that
passage readability score is heavily influenced by the formula used. Thus, the same set
of passages could be identified as being appropriate for 2" and 5™ grade students, based
solely upon readability formula selection. The one caveat to these findings is that
readability formulas appear to rank a set of passages relatively equally, regardless of the
type of formula used.

Progress Monitoring and CST-ELA Scores

Progress monitoring data were collected weekly over a span of six weeks. In
order to determine what, if any, extra variance in a high-stakes statewide assessment
could be accounted for beyond the winter ORF screening conducted at the schools, the

slope from the six weeks of progress monitoring were added to regression equations. The
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English Language Arts section of the CSTs, the high-stakes statewide assessment for
California, was used in these analyses.

For both 3" and 5" grades the addition of 6-weeks of ORF progress monitoring
did not significantly improve the prediction of CST-ELA scores above the winter ORF
screening, regardless of the type of ORF assessment used. There are several explanations
for these results. First, the progress monitoring probes were administered to all students
in the participating classrooms and student skill was not controlled for in this study. In
addition, data on what, if any, additional support or interventions a student was receiving
was not available, making interpretation of the effects of these interventions impossible.
It is also possible that the school-wide screening data is sufficiently able to predict the
CST-ELA scores and that further progress monitoring is redundant, a result that is
supported by other research (Schatschneider, Wagner, & Crawford, 2008).

Despite the lack of significance found there were some unexpected results
encountered. For 3 grade students, despite being randomly assigned to one of the three
passage type groups (DIBELS Next, AIMSWeb, SDC), there were inconsistencies in the
base model when predicting CST-ELA scores. The DIBELS Next group winter ORF
Screening scores were significantly related to CST-ELA scores but the AIMSWeb and
SDC group scores were not. These results were found before any data from the progress
monitoring were included in the equation. Post-hoc exploration found no significant
differences between groups on winter ORF Screening scores, F(2, 43) = .453, p = .64, or

CST-ELA scores, F(2, 43) =.024, p = .976.
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The 5™ grade results were somewhat more expected in that each group’s winter
ORF Screening score was significantly related to its CST-ELA outcome before the
addition of the progress monitoring. When the slope from 6-weeks of progress
monitoring was added there was not a significant increase in variance explained. The
small 4R? observed for the passage sets (DIBELS Next =.067; AIMSWeb =.016; SDC
=.016) provide little practical or statistical gain over the screening data alone. Further
post-hoc analyses revealed other unexpected trends in the data. The average slope for 3"
grade students was .83 (SD = 2.20) indicating average gains of just under a word per
week for all 3" grade students. This finding is similar to previous estimations of 1 word
per week growth for 3 grade students (Fuchs, Fuchs, Hamlett, Walz, & Germann, 1993).
However, for the 5™ grade students the average slope was -.65 (SD = 2.48) indicating a
loss of over a half of a word per week across all students; a result that contradicts the
expected growth of 0.5 words per week (Fuchs, et al.). Further post-hoc analyses reveal
that there was a significant difference between reading passage groups’ slope for 5"
grade, F(2,60) = 5.75, p =.005. Follow-up analyses, using Tukey HSD, revealed that
there was a significant difference between the mean slope for the DIBELS Next group (M
=.742) and the AIMSWeb (M =-1.42) and SDC (M =-1.27). There was not a significant
difference between the AIMSWeb and SDC slopes. Why the AIMSWeb and SDC
groups showed negative growth over the course of the six weeks is unclear. One possible
explanation is test fatigue. Though each student was assessed for approximately three
minutes per week, the week-after-week assessments may have led to decreased

motivation to read as well as possible. Regardless of the cause, there is not a clear
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explanation as to why this trend would be observed for the AIMSWeb and SDC groups
and not the DIBELS Next group since passage type was randomly assigned.
Frequency of Progress Monitoring Data

In order to contribute to the literature on the frequency and number of progress
monitoring data points (e.g. Jenkins, 2009), several of these variables were evaluated in
this study. Following the recommendations of Agresti and Finlay (1997), regression
models were run to compare two reduced models (bi-weekly and first three weeks) to a
complete model (all six weeks). The progress monitoring data were derived from the
median score of three ORF reading passages, the standard technique used in ORF
research and practice. Then, in order to examine the stability of the median-of-three-
probes approach the previous analyses were run using only one, randomly selected, ORF
score from each week. For all equations, the outcome measure used was the CST-ELA.

Median-of-Three Approach. Using the median of three ORF scores, the
complete and reduced regression models were analyzed for each grade and for each
passage type. For the 3 grade students, none of the three passage sets were significant
predictors of the CST-ELA when using the complete model (i.e. all six data points) and
only one (DIBELS Next) was significant for 5" grade students. Thus, six weeks of
weekly ORF progress monitoring provided little information to predict CST-ELA
outcomes, with the exception of DIBELS Next in 5™ grade. The finding that progress
monitoring data are not predictor of later reading ability is analogous to findings from

other research (e.g. Schatschneider, Wagner, & Crawford, 2008).
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The reduced models (biweekly and first-three-weeks-only) were found to be more
parsimonious alternatives to the complete models for all of the 5" grade passage sets. In
addition, in 3" grade, the first-three-weeks-only model was a more parsimonious
alternative to the DIBELS Next complete model. The change in degrees of freedom, and
the subsequent change in the F-statistic, is a possible explanation for why the reduced
models were generally more successful in predicting CST-ELA.

One-Randomly-Selected-Probe Approach. The previous analyses were
replicated using one randomly selected data point from each progress monitoring week
instead of the median of three. The results indicate areas of similarity and discrepancy
between the two approaches. The unexpected results from the 3™ grade slope regression
models were replicated. Again, the winter ORF screening scores were significant
predictors of CST-ELA for the DIBELS Next group but not for the AIMSWeb or SDC
groups. The addition of the progress monitoring slope did not significantly improve the
model for any of the groups. For the 5™ grade, the results using the one-randomly-
selected-probe approach replicated the results from the median-of-three approach. Thus,
there were no observable differences in outcome when using the one-randomly-selected-
probe approach as compared to the median-of-three approach. However, the unexpected
lack of relationship between the screening data and CST-ELA outcomes for two of the
groups makes interpretation of these results difficult.

When the one-randomly-selected-probe procedure was applied to the complete
and reduced (bi-weekly and first-three-weeks-only) models both similarities and

differences between this approach and the median-of-three approach were observed.
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Examination of the complete models reveals that there were more significant predictors
of CST-ELA when using the one-randomly-selected-probe approach. Using this
approach, one 3" grade (AIMSWeb) and all 5™ grade sets were significant — an increase
from the one complete model that was significant (3" grade DIBELS Next) using the
median-of-three approach. Examination of the reduced models showed similarities based
upon grade. For the 3" grade group, one of the reduced models was significant in both
the median (DIBELS Next first-three-weeks) and one-probe (AIMSWeb biweekly). All
other reduced models were non-significant in 3 grade. In 5™ grade, however, all the
reduced models were significant for all passage sets for both the median and one-probe
approaches.

There were some observed differences between the median-of-three and one-
randomly-selected-probe approaches. Specifically, there was a change in variance
accounted for by the complete models. For the 3" grade passages, the amount of
variance explained by the complete models decreased for the DIBELS Next (83% v.
37.1%) and the SDC (37.8% v. 27.7%). However, for the AIMSWeb passages there was
an increase in variance explained (77.3% v. 95.1%). The same pattern was observed with
the 5™ grade passages. The amount of variance explained decreased for the DIBELS Next
(67.9% v. 66.8) and SDC (78.9% V. 69.6%) and increased for the AIMSWeb (64.8% v.
77.5%). These reduction in variance explained as observed in the DIBELS Next and
SDC sets is expected due to the expected increase in variability of weekly scores using
only one probe. Unlike the relatively stable decrease observed in the SDC passages,

there were large differences between the DIBELS Next 3™ and 5" grade changes in
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variance (45.9% and 1.1%, respectively). This discrepancy could be due to variations in
passage difficulty included in the DIBELS Next weekly sets. The DIBELS Next ORF
passage sets are comprised of three passages that have been labeled as having easy,
middle and hard levels of difficulty (Good & Kaminski, 2010). Thus, it is possible that
there was more stability in the type of passage that was randomly selected in the 5" grade
set as opposed to the 3" grade set. Another possibility is that there is a greater level of
equivalence for the 5™ grade passages. Why the AIMSWeb passages showed an increase
in variance explained when the number of probes was reduced is unclear.

Differences by Grade. Though not a focus of this research there were some
anecdotal differences observed between the 3™ and 5™ grade outcomes, regardless of the
number of probes used. The relationship between the ORF progress monitoring sets
appear to be different based upon grade. For 3" grade, there was a general lack of
significant relationship between the models and the CST-ELAs. Out of a total of 18
models (one complete and two reduced for each passage set, using both probe selection
approaches), there were 15 non-significant models. The three exceptions, as previously
described, were: DIBELS Next — first-three-weeks using the median approach;
AIMSWeb complete and biweekly using the one-probe approach. In 5" grade, the
opposite trend is found. Of the 18 models, 16 were significant with the AIMSWeb and
SDC complete models using the median approach being the only non-significant models.
These results indicate some sort of discrepancy between the 5™ grade and 3" grade ORF

passage sets ability to predict CST-ELA when they’re used as progress monitoring tools.
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This discrepancy needs to be more thoroughly investigated to determine if these results
can be replicated using alternative outcome measures and across different grades.
Limitations

There were several limitations that must be considered when evaluating these
results. First, the data come from two schools in one school district in Southern
California. The student population in this district has a relatively high percentage of both
English Language Learners and students who received free and reduced lunches. Thus,
the population used in this research may not be representative of all populations. Second,
the number of students available was limited. This fact, coupled with the research design
which separated students by grade and then by passage type resulted in a relatively small
number of students reading a given passage type in a given grade. Future research should
attempt to increase the number of students used and thereby increase the power of the
results found. A final limitation involves some statistical assumptions that were violated.
Specifically, in research questions three and four, the use of weekly ORF probes as
individual predictors in the regression equations led to high levels of multicollinearity.
Given the nature of the data collected and the design of the research question the
multicollinearity is both expected and unavoidable. When interpreting the results this
violation should be considered. For research question one, there was a violation of the
Kendall’s statistic. The probes administered during the second phase were not
counterbalanced. In order to verify the current results, future research should replicate
using a counterbalanced presentation of the probes.

Conclusions
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This research examined the equivalency and predictive utility of ORF progress
monitoring probes. The results indicate that there is a clear discrepancy in the
identification of equivalent passages. The readability formulas, more often than not,
provided similar rankings of passage difficulty, however, their mean grade-level scores
varied greatly and were often 3-5 grade levels different than the identified passage level.
In contrast, the G-theory results showed that the large majority of the variability observed
was attributable to students and not to the passages. These results, coupled with other
research (Poncy, et al, 2005; Christ & Ardoin, 2009), lend support to the idea that
statistical equating of ORF passages should be considered as a more reliable and
informative option than traditional readability formulas when evaluating passage
equivalency.

There are less firm conclusions regarding the use of ORF progress monitoring
probes to predict the CSTs, a high-stakes statewide assessment. The addition of six
weeks of progress monitoring did not significantly improve the ability to predict CST-
ELA scores above winter ORF screening data. The results seem to lend support to
previous research (Schatschneider, Wagner, & Crawford, 2008) indicating that later
reading achievement can be accurately measured with one-time assessments. The
difference between the relationship between progress monitoring and CST-ELAs for 3"
and 5™ grade passages, regardless of the number of probes selected, requires further

investigation.
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Table 1

Descriptive Statistics for CST-ELA and Winter ORF Screening

Group N M(SD) Skewness Kurtosis
CST-ELA

Third Grade 47 326.6 (49.0) -17 -.36

Fifth Grade 63 318 (45.3) .07 -.69

Winter ORF Screening
Third Grade 47 79.6 (41.2) 11 -97

Fifth Grade 64  107.6 (37.9) -.04 -.69

Note. CST-ELA = California Standards Test — English Language Arts. Winter ORF
Screening data derived from AIMSWeb district-wide screening collected at the schools.
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Table 2

Descriptive Statistics for Readability Formulas for 3rd Grade Passages

DIBELS Next® AIMSWeb® spC?
Formula M (SD) Min  Max M (SD) Min Max M (SD) Min  Max
Flesch 2.68(43) 19 34 1.70(50) 0.7 2.8 433(168) 21 76
FOG 475(43) 40 57 3.73(48) 31 48 6.61(1.65) 4.4 104
Powers 432(17) 40 46 4.00(.19) 36 44 462(49) 39 54
SMOG 6.39(32) 58 7.2 545(49) 48 65 701(1.36) 50 9.2
FORCAST 8.76 (53) 7.6 9.7 8.25(51) 7.2 94 849(83) 71 98
Spache 3.79(25) 31 46 3.20(33) 25 38 3.07(69) 22 52
Fry 3.77(81) 22 53 1.90(55) 08 3.0 414(181) 12 6.8

Note. SDC = School District Curriculum Passages.

®Data derived from 21 passages.
®Data derived from 20 passages.
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Table 3

Descriptive Statistics for Readability Formulas for 5 Grade Passages

DIBELS Next® AIMSWeb® spC?
Formula M (SD) Min  Max M (SD) Min Max M (SD) Min  Max
Flesch 3.80(39) 33 46 2.65(72) 15 44 7.05(2.24) 29 119
FOG 5.85(60) 49 6.9 487(94) 36 68 957(232) 56 142
Powers 472(16) 45 50 430(26) 39 50 532(61) 41 62
SMOG 7.24(42) 64 80 6.33(73) 52 7.7 915(1.66) 6.1 113
FORCAST 9.36 (45) 8.7 103 8.58(56) 7.7 9.9 8.98 (.82) 75 10.2
Dale-Chall 531(66) 45 7.5 3.84(69) 27 57 575(1.55) 29 9.1
Fry 536 (53) 45 6.3 3.34(1.06) 1.6 6.0 7.00 (2.47) 2.8 140

Note. SDC = School District Curriculum Passages.

®Data derived from 21 passages.
®Data derived from 20 passages.
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Table 4

Kendall’s Coefficient of Concordance by Grade and Passage Type

Group W v df p
DIBELS Next

3" Grade 610 85.35 20 <.001

5" Grade 413 58.87 20 <.001
AIMSWeb

3" Grade 568 75.60 19 <.001

5" Grade 635 84.40 19 <.001

School District Curriculum
3" Grade 797 105.94 19 <.001

5" Grade 836 111.23 19 <.001
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Table 5

Wilcoxon Pairwise Comparisons for DIBELS Next 3™ Grade Passages

Readability Formula 1 2 3 4 5 6 7
1. Flesch - -2.37 -1.87 -258 -.22 -85 -.02
2. FOG - -281 -20 -267 -89 -3.30*
3. Powers - -3.14 -97 -56 -2.11
4. SMOG - -2.70 -85 -3.62*
5. Forcast - -1.25 -.16
6. Spache - -1.05
1. Fry -

Note. Significance level is set at * p < .001 to account for multiple comparisons.
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Table 6

Wilcoxon Pairwise Comparisons for DIBELS Next 5" Grade Passages

Readability Formula 1 2 3 4 5 6 7
1. Flesch - -3.28* -2.62 -3.66* -3.24* -3.51* -3.82*
2. FOG - -3.30* -2.77 -114 -240 -1.60
3. Powers - -3.86* -3.63* -3.53* -4.00*
4. SMOG - -1.52 225 -2.23
5. Forcast - -287 -11
6. DaleChall - -3.14

1. Fry -

Note. Significance level is set at * p < .001 to account for multiple comparisons.
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Table 7

Wilcoxon Pairwise Comparisons for AIMSWeb 5" Grade Passages

Readability Formula 1 2 3 4 5 6 7
1. Flesch - -3.26* -2.70 -3.57* -3.12 -2.46 -4.00*
2. FOG - -34 -240 -1.14 -3.40* -2.34
3. Powers - -1.30 -1.99 -3.43* -242
4. SMOG - -.66 -3.32* -1.84
5. Forcast - -3.70* -1.37
6. DaleChall - -3.83*

1. Fry -

Note. Significance level is set at * p < .001 to account for multiple comparisons.
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Table 8

Wilcoxon Pairwise Comparisons for School District Curriculum 3™ Grade Passages

Readability Formula 1 2 3 4 5 6 7
1. Flesch - -869 -293 -2.94 -267 -236 -2.58
2. FOG - -2.23 -280 -222 -254 -231
3. Powers - -18 -205 -2.05 -13
4. SMOG - -196 -1.96 -.80
5. Forcast - -18 -2.13
6. Spache - -2.13

1. Fry

Note. Significance level is set at * p < .001 to account for multiple comparisons.
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Table 9

Wilcoxon Pairwise Comparisons for School District Curriculum 5" Grade Passages

Readability Formula 2 3 4 5 6 7
1. Flesch -2.17 -269 -2.87 -3.04 -3.18* -2.48
2. FOG - -3.11 -3.11 -3.11 -3.18* -2.94
3. Powers - -2.87 -2.83 -2.83 -.80
4. SMOG - -2.34 -1.71 -297
5. Forcast - -25 -2.97
6. DaleChall - -2.70
1. Fry -

Note. Significance level is set at * p < .001 to account for multiple comparisons.
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Table 10

Predictors of California State Test-English Language Arts Using DIBELS Next

Model 1 Model 2

Variable B SEB S B SEB S

Third Grade
Winter ORF Screening 795 321 581* 1.02 33  .745*
Progress Monitoring Slope® 21.14 13.21 .390
R? 338 463
F 6.13* 4.74*
AR? 125

Fifth Grade
Winter ORF Screening .788 193 .693** 841 189 .739**
Progress Monitoring Slope® 509 3.20 .263
R’ 480 547
F 16.60** 10.27**
AR? 067

Note. Third grade n = 14. Fifth grade n = 20.
®0ORF data are calculated using the median-of-three approach.
*p<.05 **p<.01
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Table 11

Predictors of California State Test-English Language Arts Using AIMSWeb

Model 1 Model 2

Variable B SEB S B SEB S

Third Grade
Winter ORF Screening .266 244 .289 208 .245  .226*
Progress Monitoring Slope® 565 473 318
R? .084 181
F 1.19 1.33
AR? 097

Fifth Grade
Winter ORF Screening .862 169 .7160** 834 174 735*%*
Progress Monitoring Slope® -2.06 2.46 -.128
R? 577 593
F 25.91** 13.10**
AR? 016

Note. Third grade n = 15. Fifth grade n = 21.
®0ORF data are calculated using the median-of-three approach.
*p<.05 **p<.01
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Table 12

Predictors of California State Test-English Language Arts Using SDC

Model 1 Model 2

Variable B SEB S B SEB p

Third Grade
Winter ORF Screening -282 378 -.203 -295 368  -212
Progress Monitoring Slope® -4.72 358  -348
R? 041 162
F .556 1.61
AR? 121

Fifth Grade
Winter ORF Screening 730 225 597** 814 260 .666**
Progress Monitoring Slope® -3.84 560 .145
R’ 356 372
F 10.50** 5.34*
AR? 016

Note. Predictors for CST-ELA using School District Curriculum Passages. Third grade n
= 15. Fifth grade n = 21.

®ORF data are calculated using the median-of-three approach.

*p<.05 **p<.01
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Table 13
Predictors of CST-ELA Using Complete and Reduced Median-of-Three Progress

Monitoring Models: DIBELS Next - 3" Grade

Complete Model Bi-weekly First Three
Weeks
Variable B SEB i B SEB p B SEB S
Week 1°  -924 294 -6.00* -6.46 234 -4.20*
Week 2° 672 299  .395 1.75 372 1.03 222 278 131
Week 3° 484 440 3.29 507 273 345

Week 4° -01 512 -004 -1.77 349 -111
Week 5°  3.09 204 181

Week 6° 186 219 1.13 1.09 324 .66

R? 83 36 67
F 3.92 1.51 5.30*
AR? -.46 -.16

Note. CST-ELA = California State Test-English Language Arts. All models have n = 12.
®Progress monitoring data are based on median of three passages
*p<.05 **p<.01
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Table 14
Predictors of CST-ELA Using Complete and Reduced Median-of-Three Progress

Monitoring Models: DIBELS Next - 5" Grade

Complete Model Bi-weekly First Three Weeks
Variable B SEB S B SEB S B SEB S
Week 1° .043 .802 .038 -233 .761 -.206
Week 2° -10 145 -772 -359 124 -28 -686 1.16 -.529
Week 3 917 136  .681 193 884 1.43*

Week 4° -24 112 -184 1.05 .968 .802
Week 5°  1.22 .687 951

Week 6° .055 1.39  .046 206 144 172

R? 679 502 575
F 3.52% 4.37* 5.85%*
AR? -177 -.104

Note. CST-ELA = California State Test-English Language Arts. All models have n = 17.
®Progress monitoring data are based on median of three passages
*p<.05 **p<.01
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Table 15

Predictors of CST-ELA Using Complete and Reduced Median-of-Three Progress

Monitoring Models: AIMSWeb — 3™ Grade

Complete Model Bi-weekly First Three Weeks
Variable B SEB b B SEB S B SEB S
Week 12 -149 175 -1.34 076 1.19 .068
Week 22 -286 182 -275 -3.22 190 -3.10 -144 169 -1.38
Week 3% -1.79 216 -1.65 191 195 1.76
Week 42 941 2.37 874 223 144 2.07
Week 5% 3.78 165 3.77
Week 6% 155 184 1.59 135 152 1.09
R? 773 468 297
F 2.27 2.05 .985
AR? -.305 - 476

Note. CST-ELA = California State Test-English. All models have n = 17.
®Progress monitoring data are based on median of three passages.
*p<.05 **p<.01
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Table 16
Predictors of CST-ELA Using Complete and Reduced Median-of-Three Progress

Monitoring Models: AIMSWeb — 5" Grade

Complete Model Bi-weekly First Three Weeks
Variable B SEB S B SEB S B SEB S
Week 1° 854 1.01 .705 1.31 .838 1.08
Week 2° 122 .76 102 665 586 .558 045 682 .038
Week 3° 490 114 422 -455 799 -392

Week 4°  -592 1.04 -496 -848 911 -711
Week 5°  -1.02 932 -825

Week 6° 934 832 810 1.04 696  .897

R? 648 551 565
F 2.76 4.90* 5.20*
AR? -.097 -.083

Note. CST-ELA = California State Test-English. All models have n = 16.
®Progress monitoring data are based on median of three passages.
*p<.05 **p<.01
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Table 17
Predictors of CST-ELA Using Complete and Reduced Median-of-Three Progress

Monitoring Models: School District Curriculum — 3" Grade

Complete Model Bi-weekly First Three Weeks
Variable B SEB S B SEB S B SEB S
Week 1° 133 113 1.09 166 107 135
Week 2° 084 154 .07 480 .870 .39 -1.40 114 -1.14
Week 3 150 165 128 -102 .838 -.086

Week 4° 121 133 .84 961 124 671
Week 5°  -2.18 1.86 -1.79

Week 6 -1.56  1.37 134 -1.14 135 -97

R? 378 .066 191
F .809 260 866
AR? -311 -.187

Note. CST-ELA = California State Test-English. All models have n = 15.
®Progress monitoring data are based on median of three passages.
*p<.05 **p<.01
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Table 18
Predictors of CST-ELA Using Complete and Reduced Median-of-Three Progress

Monitoring Models: School District Curriculum — 5™ Grade

Complete Model Bi-weekly First Three Weeks
Variable B SEB S B SEB S B SEB S
Week 1° -1.24 153 -1.09 -487 126 -427
Week 2 -954 157 -.831 -158 142 -1.38 690 124 -602
Week 3° 419 141 342 598 932 488

Week 42 2.48 1.28 2.19 2.05 1.10 1.81
Week 5% -675 1.37 -506

Week 6° 728 2.29 575 324 1.18 .256

R? 623 553 442
F 2.76 5.36* 3.44*
AR? -.07 -.181

Note. CST-ELA = California State Test-English. All models have n = 17.
®Progress monitoring data are based on median of three passages.
*p<.05 **p<.01
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Table 19

Predictors of California State Test-English Language Arts Using DIBELS Next

Model 1 Model 2

Variable B SEB S B SEB p

Third Grade
Winter ORF Screening 795 321 581* 790 339 .578*
Progress Monitoring Slope® -780 7.37 -.026
R? .338* 339
F 6.13* 2.82
AR? .001

Fifth Grade
Winter ORF Screening .788 193 .693** 820 .204 .721**
Progress Monitoring Slope® 1.39 231 .108
R’ A80** 491
F 16.61** 8.19**
AR? 011

Note. Third grade n = 14. Fifth grade n = 20.
®0ORF data are calculated using the one-randomly-chosen-probe approach.
*p<.05 **p<.01
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Table 20

Predictors of California State Test-English Language Arts Using AIMSWeb

Model 1 Model 2

Variable B SEB S B SEB p

Third Grade
Winter ORF Screening .266 244 .289 297 226 .323
Progress Monitoring Slope® 5.09 280 .447
R? .084 282
F 1.19 2.36
AR? 198

Fifth Grade
Winter ORF Screening .862 169 .160** 865 .169 .762**
Progress Monitoring Slope® -1.88 1.88 -.150
R? 577 599
F 25.91** 13.47**
AR? 022

Note. Third grade n = 15. Fifth grade n = 21.
®0ORF data are calculated using the one-randomly-chosen-probe approach.
*p<.05 **p<.01
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Table 21

Predictors of California State Test-English Language Arts Using SDC

Model 1 Model 2

Variable B SEB S B SEB S

Third Grade
Winter ORF Screening -282 378 -.203 -405 378  -291
Progress Monitoring Slope® -3.93 291  -367
R? 041 168
F .556 1.21
AR? 127

Fifth Grade
Winter ORF Screening 730 225 597** 814 260 .666**
Progress Monitoring Slope® -3.84 5.60 .145
R? 356 356
F 10.50** 4.98*
AR? .000

Note. Predictors for CST-ELA using School District Curriculum Passages. Third grade n
= 15. Fifth grade n = 21.

®ORF data are calculated using the one-randomly-selected-probe approach.

*p<.05 **p<.01
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Table 22
Predictors of CST-ELA Using Complete and Reduced One-Randomly-Selected-Passage

Progress Monitoring Models: DIBELS Next — 3" Grade

Complete Model Bi-weekly First Three Weeks
Variable B SEB S B SEB S B SEB S
Week 1*  -930 3.24 -588 -200 214 -126
Week 2° 676 4.84 .382 377 275 213 144 362  .815
Week 3*  -629 5.88  -.425 -166 356 -.112

Week 4° 133 762  .803 -262 3.17 -.158
Week 5° 395 278 243

Week 6° 299 477 184 885 2.05 .546

R? 371 357 340
F 491 1.48 1.38
AR? -.01 -.03

Note. CST-ELA = California State Test-English Language Arts. All models have n = 12.
®Progress monitoring data are based on one randomly selected passage
*p<.05 **p<.01
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Table 23
Predictors of CST-ELA Using Complete and Reduced One-Randomly-Selected-Passage

Progress Monitoring Model: DIBELS Next — 5" Grade

Complete Model Bi-weekly First Three Weeks
Variable B SEB S B SEB S B SEB S
Week 1° 391 594 .350 -149 588 -.134
Week 2° 505  .687 410 485 667 .394 751 .709 610
Week 3*  -071 .931 -.062 238 .643  .207

Week 4° 057 .604 .045 510 .607  .404
Week 5° 143 634 1.03*

Week 6 -1.10 111 -937 -091 .692 -.078

R? 668 493 468
F 3.36* 4.20% 3.81*
AR? -175 -.20

Note. CST-ELA = California State Test-English Language Arts. All models have n = 17.
®Progress monitoring data are based on one randomly selected passage
*p<.05 **p<.01
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Table 24

Predictors of CST-ELA Using Complete and Reduced One-Randomly-Selected-Passage

Progress Monitoring Models: AIMSWeb — 3" Grade

Complete Model Bi-weekly First Three Weeks
Variable B SEB S B SEB p B SE B S
Week 1° 146 .542 1.33 1.83 1.35 1.67
Week 2 -3.14 627 -3.20 -255 555 -259**  -1.06 121 -1.08
Week 3*  -1.08 .671  -.922 -145 126 -.124
Week 4° 1.17  .920 115 186 .949 1.83
Week 5° 467  .853 446
Week 6° 1.68 .652 1.74 125 773 1.30
R? 951 849 359
F 12.81* 13.13** 1.31
AR? -101 -.592*

Note. CST-ELA = California State Test-English Language Arts. All models have n = 11.
®Progress monitoring data are based on one randomly selected passage
*p<.05 **p<.01
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Table 25
Predictors of CST-ELA Using Complete and Reduced One-Randomly-Selected-Passage

Progress Monitoring Models: AIMSWeb — 5" Grade

Complete Model Bi-weekly First Three Weeks
Variable B SEB S B SEB S B SEB S
Week 1° 126 514 1.19* 978 420  .926*
Week 2*  -432 588 -354 764 599 .626 -092 551 -.076
Week 3 520 556 472 -082 460 -.075

Week 4° 512 .566 481  -230 535 -.216
Week 5% -1.24 617 -1.04

Week 6°  -.036  .482 -033 323 421 .299

R? 775 485 636
F 5.17* 3.76* 6.99%*
AR? -.290 -.139

Note. CST-ELA = California State Test-English Language Arts. All models have n = 16.
®Progress monitoring data are based on one randomly selected passage
*p<.05 **p<.01
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Table 26

Predictors of CST-ELA Using Complete and Reduced One-Randomly-Selected-Passage

Progress Monitoring Models: School District Curriculum — 3™ Grade

Complete Model Bi-weekly First Three Weeks
Variable B SEB S B SEB S B SEB S
Week 1° 1.04 871 .980 762 .657  .719
Week 2° 749 894 682 514 590 .469 816 770 .744
Week 3  -1.33 141 -1.25 -142 860 -1.35
Week 4° 819 1.56 642 -159 1.05 -.124
Week 5°  -371 .976 -.382
Week 6°  -1.04 1.28 -630 -552 1.05 -336
R? 277 .097 218
F 511 .396 1.02
AR? -.180 -.060

Note. CST-ELA = California State Test-English Language Arts. All models have n = 15.
®Progress monitoring data are based on one randomly selected passage

*p<.05 **p<.01
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Table 27
Predictors of CST-ELA Using Complete and Reduced One-Randomly-Selected-Passage

Progress Monitoring Models: School District Curriculum — 5" Grade

Complete Model Bi-weekly First Three Weeks
Variable B SEB S B SEB S B SEB S
Week 1*  -862 1.04 -738 -269 562 -.230
Week 2  -038 851 -030 .908 .713  .730 098 .603 .079
Week 3 1.19 501 1.03* 1.09 370 .942*

Week 4° 204 .609 197 -352  .614 -.340
Week 5° 094 761 .083

Week 6° 357 471 308 360 426 311

R? 696 AT7 669
F 3.82* .3.96% 8.76%*
AR? -.219 -.027

Note. CST-ELA = California State Test-English Language Arts. All models have n = 17.
®Progress monitoring data are based on one randomly selected passage
*p<.05 **p<.01
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