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STATEMENT: The International Society for Cellular and Gene Therapies (ISCT) and the International Society for
Extracellular Vesicles (ISEV) recognize the potential of extracellular vesicles (EVs, including exosomes) from
mesenchymal stromal cells (MSCs) and possibly other cell sources as treatments for COVID-19. Research and
trials in this area are encouraged. However, ISEV and ISCT do not currently endorse the use of EVs or exo-
somes for any purpose in COVID-19, including but not limited to reducing cytokine storm, exerting regenera-
tive effects or delivering drugs, pending the generation of appropriate manufacturing and quality control
provisions, pre-clinical safety and efficacy data, rational clinical trial design and proper regulatory oversight.
© 2020 International Society for Cell and Gene Therapy. This is an open access article under the CC BY-NC-ND

license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
First described in December 2019, the severe acute respiratory
syndrome associated with coronavirus disease-19 (COVID-19)
quickly evolved into a pandemic, with severe and increasing world-
wide morbidity and mortality. Although most infected patients have
mild to moderate symptoms or are even asymptomatic, older
patients and those with pre-existing chronic diseases are at greater
risk of developing serious complications, such as pneumonia or mul-
tiple organ failure. COVID-19 respiratory infection is marked by dys-
regulated immune responses leading to significant respiratory
pathology as well as increased probabilities for multi-organ patholo-
gies. While the inflammatory pathways are still being elucidated,
notable components include increased circulating levels of pro-
inflammatory cytokines and other mediators, including interleukin-6
(IL-6), interleukin-1b (IL-1b), induced protein 10 (IP10) and mono-
cyte chemoattractant protein-1 (MCP-1) [4, 6, 41]. There are also sig-
nificant alterations in circulating inflammatory cell populations, with
initial lymphocytosis followed by severe lymphopenia, with
increased ratios of helper to regulatory T cells [4, 6, 30]. Since dysre-
gulated immune responses and the cytokine storm are triggers for
development of acute respiratory distress syndrome, an increasing
effort and current clinical trials are focused on immune therapeutic
approaches, such as IL-1 blockade (anakinra), IL-6 receptor blockade
(tocilizumab) and Janus kinase inhibition [22]. In parallel, there are a
rapidly increasing number of cell-based therapy investigations,
mostly utilizing mesenchymal stromal cells (MSCs) [12]. These are
based on supporting pre-clinical data for use of MSCs delivered either
systemically or intratracheally in pre-clinical models of acute lung
injuries and on demonstration of safety of systemic MSC administra-
tion in recent trials for acute respiratory distress syndrome resulting
from other etiologies [15, 21].

Among the cell-based therapy investigations for COVID-19, some
registered clinical trials aim to utilize extracellular vesicles (EVs) pre-
pared from MSC-conditioned media rather than the cells themselves.
MSC-EVs will be administered intravenously (ChiCTR2000030484) or
by inhalation (NCT04276987, ChiCTR2000030261). The rationale for
these approaches is based on a relatively small but growing number
of investigations in pre-clinical lung injury and sepsis models in
which MSC-EV preparations were described as being as safe and
effective as—if not more than—their parent cells [19, 40]. The
approach is further supported by a growing body of literature on the
therapeutic potential and mechanisms of EVs in a wide range of dis-
eases, including recent positive results in a steroid-refractory graft-
versus-host disease patient treated with MSC-EVs and in a single-
center, randomized, placebo-controlled phase 2/3 clinical pilot study
on chronic kidney disease patients treated with MSC-EVs [14, 25].

The mechanisms by which EVs exert their beneficial effects, as
well as their site(s) of action, remain incompletely understood.
Nonetheless, effects observed in a range of pre-clinical non-
COVID-19 model systems suggest that they may also have efficacy
against COVID-19. For example, systemic administration of MSC-
EV preparations modulated immune responses such as elevated
cytokine storms in relevant lung disease models, including acute
lung injury and sepsis [17, 20, 23, 24, 27, 35, 38, 42]. Notably, in
Escherichia coli-induced pneumonia mouse models, MSC-EV
administration was found to enhance phagocytosis of bacteria [9,
23]. In a pig model, MSC-EVs were shown to attenuate influenza
virus-induced acute lung injury, among other conditions, by
inhibiting influenza virus replication [11]. Disease-attenuating
effects on inflammatory immune responses following MSC-EV
administration have also been observed in other disease models
[2]. In an ischemic stroke model, for example, syste mic MSC-EV
administration reduced stroke-induced lymphopenia and pro-
inflammatory immune responses in the brain and periphery,
resulting in overall improvement of disease symptoms [7, 37].
These preliminary observations support MSC-EV administration
as a potential treatment option for COVID-19.

However, the specific scientific rationale for the administration of
MSC-EV and other EV treatments in COVID-19 patients needs to be bet-
ter understood and justified. For example, MSC-EVs do not necessarily
suppress immune responses, but rather modulate them. Specifically,
they seem to moderate acute immune responses toward regulatory
responses, with the latter inducing tolerance and restoring homeostasis
[43�45]. While tolerance induction in graft-versus-host disease and
other non-infectious diseases may be beneficial, it might also have
severe adverse effects in the presence of replicating pathogens.
Although influenza and E. coli infections were attenuated in selected
models [9, 11, 23], other viruses and bacteria might conceivably expand
in an uncontrolled manner in induced tolerogenic environments.

A number of additional issues should be considered before adminis-
tering MSC-EVs to COVID-19 patients. These include the source of MSC-
EVs. MSCs are a heterogeneous cell entity that can be obtained from dif-
ferent tissues. Even if derived from the same tissues, they may display
interindividual and possibly clone-specific functional differences [28,
29, 31, 36]. Indeed, side-by-side comparison of four MSC-EV prepara-
tions harvested from the conditioned media of different donor-derived
bonemarrowMSCs demonstrated significant variations in cytokine con-
tent [14]. Whether this correlates with therapeutic potency is not yet
clear; however, in the example of the ischemic stroke model, it was
demonstrated that MSC-EV preparations with comparable particle and
protein contents can significantly differ in potency. While some prepa-
rations effectively suppressed stroke symptoms, others failed to exert
therapeutic activities [37]. Furthermore, in an acute lung injury model,
EVs from young, but not aged, MSCs alleviated lipopolysaccharide-
induced acute lung injury [10].

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Potentially, heterogeneity of EV potency due to different sources,
preparations, aging and other factors could be resolved by generating
immortalized clonal MSC lines that could be rigorously tested for EV
production and potency [5]. Still, apart from their immunomodula-
tory capabilities, MSC-EVs apparently also control additional biologi-
cal processes, some with approved therapeutic functions [1] and
others that might trigger unforeseen side effects. Just recently, it was
found that adipose-derived MSC-EVs had higher thrombogenic activ-
ity than bone marrow-derived MSC-EVs [3, 34]. Thus, the source of
parental cells might increase thrombosis risk. Coupled with the find-
ing that activation of complement pathways and an associated pro-
coagulant state seem to result in catastrophic microvascular injury
syndrome in a proportion of severe COVID-19 cases [18], MSC-EV
administration could even be counterproductive in COVID-19.

To this end, it is imperative that stringent “identity” and
“potency” parameters are defined and potential side effects
addressed before MSC-EV or other EV preparations are released for
therapeutic applications [16, 32, 39]. To date, many groups use in-
house MSC-EV manufacturing and characterization strategies,
mainly for pre-clinical studies [2]. Protocols fulfilling Good
Manufacturing Practice (GMP) criteria are sparse, and just a few
have been published [8, 26, 33]. For product candidates, studies
focusing on safety and clinical pharmacology need to be per-
formed. Results of such studies are mandatory to provide guidance
for adjustment of manufacturing, storage, dosing and administra-
tion of EV-based therapeutics in specific target diseases.

We would like to refer to a recent statement by ISCT on the use
of MSCs in COVID-19 [13] and one by the Italian STEMnet1, as
many of the same considerations apply to MSC-EVs or other EVs.
Governmental organizations, health care providers and clinical
investigators must take the lead by insisting that clinical uses of
EVs follow appropriate scientific, regulatory and ethical guidelines
and are approved only after a rigorous review by duly empowered
agencies. The ethical guidelines produced by the World Health
Organization are a useful baseline2. The urgency of the current
outbreak does not justify administration of EVs in uncontrolled
compassionate use settings and does not obviate the need to reg-
ister clinical trials, obtain informed consent from patients or prox-
ies and otherwise comply with good clinical practice. In
particular, even limited compassionate use should employ well-
characterized MSC-EV preparations produced through strict GMP
conditions under the oversight of the relevant national regulatory
entity. Additional outbreak-specific measures may be needed,
including establishing simplified clinical protocols for hospital-
ized patients, such as the World Health Organization COVID-19
core protocol; minimizing risks to trial integrity3; and changing
logistics of trial participant visits (e.g., implementation of remote
assessments) as well as protocol changes for the sake of hazard
minimization, which may need to be implemented and reported,
in Europe, to the Institute for Research in Biomedicine Barcelona
after the fact. Certainly, to foster developments, it is helpful to
have regulatory flexibility and support from sources such as the
US Food and Drug Administration special emergency program for
possible therapies, the Coronavirus Treatment Acceleration Pro-
gram4, the European Medicines Agency (EMA) COVID-19
1 http://www.gismonline.it/images/filepdf/20200316_PostionSTEMNET_Covid19-MSCs.pd
2 Organisation WH. Guidance for managing ethical issues in infectious disease outbreaks. W
3 FDA Guidance on Conduct of Clinical Trials of Medical Products during COVID-19 Pandem
4 Coronavirus Treatment Acceleration Program (CTAP) | FDA n.d. https://www.fda.gov

(accessed April 1, 2020).
5 COVID-19 EMA pandemic Task Force (COVID-ETF): “to help EU Member States and the E

ment, authorisation and safety monitoring of treatments and vaccines intended for the treatm
overview/public-health-threats/coronavirus-disease-covid-19/emas-governance-during-cov

6 https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coro
7 https://ec.europa.eu/health/sites/health/files/files/eudralex/vol-10/guidanceclinicaltrials
8 https://www.gov.uk/guidance/mhra-regulatory-flexibilities-resulting-from-coronavirus-
Pandemic Task Force5, the EMA guidance for medicine developers
and companies on COVID-196 and the guidelines for clinical trials
published by an EMA-coordinated group7 or the Medicines and
Healthcare Products Regulatory Agency8, respectively. Most or all
of the considerations covered for cell-based therapies are also
applicable to EV investigations.

In conclusion, to mitigate the risk of potentially life-threatening
side effects, ISCT and ISEV strongly urge that the potential benefits
and risks in the use of MSC-EVs for COVID-19 be weighed carefully
against available pre-clinical data in relevant animal models and clin-
ical data from relevant MSC clinical trials and that any use of EVs be
carefully evaluated through rational clinical trial design, employing
well-characterized EV preparations produced under strict GMP con-
ditions and under the proper regulatory oversight.
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