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Preface

The study of causation has had a checkered history. Although causal
inference plays a central role in all scientific work, the topic has under-
gone extensive analysis only in the philosophy literature. Most applied re-
searchers view the discourses there as largely unrelated to their problems.
It is hard not to agree: philosophical analysis centers on detailed exami-
nation of ordinary-language usage of causal terms, to the near-exclusion of
investigating the role of causation in formal models.

In their theorizing statisticians express reluctance to engage in explicit
causal attributions in the absence of controlled experiment. They point to
the vagueness and lack of a rigorous foundation that attend many discussions
involving causation. In contrast, in their applied work statisticians routinely
use causal language. Other concepts, such as probability, that are of at least
equally controversial provenance play a central role in theoretical statistics–
why the willingness to think hard about the foundations of probability, but
not of causation?

Sociologists have opined that correlation can be identified with causa-
tion given a suffi cient degree of sample stratification, but they did so without
specifying a definition of causation under which this proposition could be
evaluated. Beginning 50 years ago economists did away with the problem by
relabeling predictability as causation despite the existence of readily avail-
able examples of the difference between the two.

For the most part the topic has been ignored. This has had the pre-
dictable consequence that causal language is used without discipline: ana-
lysts debate whether two variables are or are not causally related without
any clear shared understanding of what it means for their relation to be
causal.

In an earlier literature economists had made headway by introducing
the idea of interventions, and situating causal analysis as the determina-
tion of the effects of interventions on variables that appear in formal mod-
els. However, the intervention typically involved hypothesizing a change in
a constant, which, unlike hypothesizing a change in an external variable,
amounts to changing the model. Doing so constitutes using the causal ques-
tion to define the model, as opposed to using the model, taken as defined
independently of the causal question to be addressed, to investigate the
causal question.

v
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Avoiding this problem involves distinguishing a model’s constants from
its external and internal variables and associating interventions on internal
variables with interventions on the external variables that cause them. Un-
der this protocol the model– the map from external to internal variables– is
not altered as part of the analysis of the intervention, so there is some hope
of obtaining satisfactory answers.

The idea that coherent causal analysis in the context of a formal model
is possible only if the model itself is defined independently of the specified
intervention seems obvious. However, it is diffi cult to find sources in which
the matter is discussed explicitly, or in which an effort is made to deter-
mine which interventions on internal variables are admissible by the above
standard, and why.

In formal analyses of causal relations in linear models two problems must
be distinguished: (1) what is the effect on an internal variable of an inter-
vention on an external variable? and (2) what is the effect of an intervention
on one internal variable on another? In (1) there is no ambiguity in theory
about assigning magnitudes to causal effects, although identification and
estimation of causal coeffi cients can be problematic. The fact that (1) and
(2) are often not distinguished creates a presumption that (2) is not sub-
stantially different from (1), suggesting that the basic problems of causation
analysis are being correctly handled in the existing literature both when the
cause variable is external and when it is internal. Here it is argued that
this presumption is incorrect. We find that, contrary to the presumption,
analysis of causal relations among internal variables involves issues that do
not appear when the cause variable is external.

Consider an example. Two internal variables (variables determined by
the model) y1 and y2 are determined by three external variables (variables
taken as given) x1, x2 and x3:

y1 = β11x1 + β12x2(0.1)

y2 = α21y1 + β23x3.(0.2)

Here there is no doubt that the external variables x1 and x2 cause y1, and
also that these and x3 cause y2. Most analysts would interpret this model as
implying that y1 causes y2: an alteration in y1 of magnitude ∆y1 is induced
either by an alteration of ∆y1/β11 on x1 or an alteration of ∆y1/β12 on x2,
and this causes an alteration ∆y2 on y2 of α21∆y1. But in the reduced form
of this model,

y1 = γ11x1 + γ12x2(0.3)

y2 = γ21x1 + γ22x2 + γ23x3,(0.4)

with
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(0.5)
γ11
γ21

=
γ12
γ22

it appears that y1 does not cause y2. This is so even though the same argu-
ment for y1 causing y2 would seem to apply in the model (0.3)-(0.4) (due to
the fact that the coeffi cients in eqs. (0.3)-(0.4) conform to the restrictions
implied by eqs. (0.1)-(0.2)1). As this example suggests, reduced forms dis-
play causal relations when the cause variable is external, but not when the
cause variable is internal.

What is it about the arithmetic operations involved in solving the struc-
tural model for its reduced form that alters the causal relation between y1
and y2? Clearly some general characterization of causation underlies our
willingness to label y1 as causing y2 in one model but not the other. Equally
clearly this difference has something to do with the fact that in the model
(0.1)-(0.2) y1 and y2 both appear in one of the equations, whereas in the
model (0.3)-(0.4) neither equation contains both y1 and y2. Thus at an in-
tuitive level the inference of causation appears to be based on the presence
of both the cause variable and the effect variable in at least one of the equa-
tions of the model. If causation in formal models is to be explicated along
these lines, it seems worthwhile to develop a precise formulation of this idea.

This monograph is aimed at developing a definition of causation under
which analysis of interventions does not involve altering the model assumed
to characterize the environment. In general the cause variable may be either
external or internal, so that the definition includes as a special case the
characterization of causal dependence as involving a specification of the
cause variable as external.

In many, but not all, cases the formal treatment of causation proposed
here agrees with informal discussions. For instance, under the definitions
proposed here y1 does in fact cause y2 in the model (0.1)-(0.2), but does not
do so in (0.3)-(0.4), agreeing with the informal analysis just discussed.

Discussion of theoretical aspects of causation is accompanied by ex-
tended analysis of examples. Earlier versions of this material were presented
in Cooley-LeRoy [7] and LeRoy [19], [20], [21], [22], [23]. I am indebted
to Nancy Cartwright, Christian Gilles, Fei Jia, Judea Pearl, Stephen Salant
and Rish Singhania for comments on this monograph and its predecessors.

1That is, due to the fact that we have γ11 = β11, γ12 = β12, γ23 = β23, γ21 = α21β11
and γ22 = α21β12. These imply that we have ∆y2 = α21∆y1 regardless of whether the
intervention that generates ∆y1 is on x1 or x2.





Part 1

Theory





CHAPTER 1

Structural Models

A linear structural model can be written as

(1.1) Ay = Bx,

where y denotes the internal variables of the model (those determined by
the model) and x denotes its external variables (those taken as given).1

Both x and y are vectors. A = {αij} and B = {βik} are matrices of
constants. A is square and nonsingular, and is normalized by setting the
elements of the main diagonal equal to one. The dimensions of x and y
are unrestricted. Prior to Chapter 7 attention is restricted to models that
are linear in variables, as indicated in eq. (1.1). In most places additive
constants are deleted.

Economists associated with the Cowles Commission in the 1940s and
1950s, who first developed the analysis of structural models, distinguished
the structural form of a model from its solution form,

(1.2) y = A−1Bx ≡ Gx,
where G = {γij}. Eq. (1.2) is usually called the reduced form.

The variables of a model may be either observed by the analyst or un-
observed. If xj is unobserved the coeffi cients βij and γij (i = 1, ..., n, where
n is the number of internal variables) are not identified. This being so, for
each j such that xj is unobserved one of the coeffi cients βij or γij can be set
equal to 1 as an arbitrary choice of units. For the present we are not con-
cerned with whether or not variables are observed, but starting in Chapter 5
where the distinction is introduced the convention just specified is adopted.

The Cowles economists viewed the structural form as conveying valuable
information not contained in the reduced form. It is diffi cult to extract from
their discussions an account of why this information disappears in going from
the structural form to the reduced form, and exactly how it is connected with
causation (it was usually associated with identification). In this respect a

1In an earlier literature the preferred terms were “endogenous”and “exogenous”. However,
more recently the latter term was assigned a more specialized meaning in the econometrics
literature (Engle, Hendry and Richard [10]), so it is avoided here. See Leamer [17] for a
discussion of the many meanings attached to the term “exogenous”. Leamer took the view
that exogeneity involves invariance of probability distributions, whereas here probabilistic
considerations are not involved in the characterization of variables as internal or external.

3
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recurrent theme has been that the structural form coeffi cients can be used to
analyze interventions, and therefore locate causal orderings among internal
variables, whereas the reduced-form coeffi cients cannot be used in this way.
There remains the question of what it is about structural models that makes
this so.

We will show in Chapters 2 and 4 that a version of the Cowles argument
is correct. A definition of causation is proposed that clarifies the precise
nature of the information that is lost in passing from the structural to the
reduced form. Before presenting this material it is necessary to discuss some
treatments of causation that are alternatives to ours.

1. Equality and Causation

Many contemporary applications of structural models, particularly those
directed toward graphical analysis of causation, use an alternative specifica-
tion of structural models, written as

(1.3) y = Ay + x,

with reduced form

(1.4) y = (I −A)−1x.

Here A has zeros on the main diagonal. In eq. (1.3) the symbol = is taken
to denote causation, with the right-hand side variables of each equation
interpreted as directly causing the left-hand side variable. Thus = is an
assignment operator, as in computer languages.

Characterizing structural models using eq. (1.3) rather than eq. (1.1)
appears to imply that linear operations on the equations of the model are
ruled out, due to the assumption that in eq. (1.3) x has no coeffi cient matrix.
Linear operations are consistent with the absence of the coeffi cient matrix
only if x is replaced by a vector each element of which is a function of, in
general, all the xj . This redefinition of the set of external variables changes
the model.

The interpretation of = as an assignment operator in eq. (1.3) appears
to allow each of two internal variables to cause the other. This occurs when
A is not triangular. Some analysts have accepted this implication, but others
share the view expressed below that causation is inherently asymmetric. If
so it follows that simultaneous determination of sets of internal variables
does not fall under the rubric of causation, and therefore must be treated
separately. Under the definition to be proposed causation is asymmetric
whether or not the coeffi cient matrix A in eq. (1.1) is triangular. Further,
the proposed definition of causation is consistent with existence of sets of
variables that are simultaneously determined.

Under the interpretation of = as an assignment operator each equation in
eq. (1.3) has a distinct identity: the variables that are direct causes of yi are
all located on the right-hand side of the i-th equation. The characterization
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of = as a reflexive, symmetric and transitive operator, on the other hand,
implies that it is arbitrary which variable or variables appear on the left-hand
side of an equation. In the formulation (1.1), in which = is interpreted as
reflexive, symmetric and transitive, all the internal variables are on the left-
hand side of the equations and all the external variables are on the right-hand
side. This is purely a matter of convenience. The equations of the reduced
form are best thought of as defining a single map from an m-dimensional
space of external variables to an n-dimensional space of internal variables.
With = interpreted as a reflexive, symmetric and transitive operator, writing
the model as y = Ay + x does not connect with causation in any obvious
way.

The alteration in the meaning of = from its mathematical definition to
its interpretation as representing causation has led some writers to express
the view that graphical depictions of causal models, which have incorporated
the altered meaning of =, are fundamentally different from their algebraic
counterparts. Below we will conclude that, contrary to this, there is no
reason to avoid using = with its usual mathematical meaning in analyzing
causation. This is a major attraction: economic models are derived from
primitives by using mathematical calculations in which = is interpreted as
a reflexive, symmetric and transitive operator, as opposed to an assignment
operator. Proposing to change the interpretation of = upon termination of
such derivations creates more problems than it solves. With = preserving
its mathematical interpretion in the analysis of causation these problems do
not arise.

The objection here is not to the interpretation of the right-hand side
variables as causing the left-hand side variables. The problems appear when
the analyst starts from that specification and takes it to constitute the defi-
nition of causation. The procedure here, in contrast, begins with proposing
a definition of causation. Then, starting with the (non-causal) representa-
tion of the model as Ay = Bx, that definition can be used to reparametrize
the model. The reparametrization involves redefining A and B so that the
model is of the form y = Ay+Bx, with the right-hand side variables directly
causing the left-hand side variable, and with A triangular. The parametriza-
tion is always feasible if there are no simultaneously-determined variables.
This procedure is discussed in the following chapter.

2. Causation Based on “Ceteris Paribus”

Angrist and Pischke [2] is one of the few recent sources in the economics
literature that discusses causation in structural models explicitly and clearly
(although, in our view, not correctly). Their account outlines a treatment of
causation that is widespread, if not universal, in contemporary economics. If
yj appears on the right-hand side of the structural equation determining yi,
then yj is defined to cause yi “ceteris paribus”. Here “ceteris paribus”means
that other variables in the equation determining yi, which may include both
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internal and external variables, are held constant. The i, j element of A in eq.
(1.3) is interpreted as giving a quantitative measure of the causal dependence
of yi on yj , ceteris paribus. The intervention on yj is not connected with
the external variables that, according to the model, determine yj .

The ceteris paribus definition of causation relies on the problematic char-
acterization of equality as an asymmetric relation, as discussed in the pre-
ceding section. Interpreting the equality symbol instead as having its usual
mathematical meaning, as recommended here, implies that a definition of
causation based on the “ceteris paribus” condition is not admissible inas-
much as it treats the left-hand side variable differently from the right-hand
side internal variables.

Another problem (or, perhaps better, another manifestation of the same
problem) is that analyzing causation using the ceteris paribus condition
when the “ceteris”includes internal variables implies the existence of func-
tional relations linking purportedly external variables. As a consequence,
the causal analysis is conducted using a model different from that actually
proposed: holding constant the internal variable effectively redefines it to
be an external variable, and one of variables originally labeled as external
becomes internal. If such model respecifications are to be avoided it is neces-
sary to disallow causal statements that are conditional on internal variables.
Conditioning on external variables is admitted, since replacing an exter-
nal variable by a constant does not involve redefining an internal variable
as external, nor does it introduce functional relations among purportedly
external variables.2 Note here that “conditioning” is defined to consist of
replacing internal variables with constants; working with conditional prob-
ability distributions, in which “conditional”has a different meaning, causes
no problems.

An example will make clear the assertion that holding internal variables
constant alters the model. Consider the model

y1 = β11x1 + β12x2(1.5)

y2 = β22x2 + β23x3(1.6)

y3 = α31y1 + α32y2(1.7)

(a graph of this model is found as Example 3.3 in Chapter 3). On the
received account of causation, this model implies that y1 causes y3, with
constant α31, ceteris paribus. Here ceteris paribus means that y2 is respeci-
fied to be external.

From eq. (1.6), this respecification implies that either x2 or x3 must
become an internal variable. Suppose that x2 is internal. There results the
model

2Holding constant internal variables that are functions of a single external variable causes
no problem, since doing so is the same as holding constant the external variable.
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y1 = β11x1 + β12x̂2(1.8)

ỹ2 = β22x̂2 + β23x3(1.9)

y3 = α31y1 + α32ỹ2.(1.10)

Here x̂2 denotes the variable x2 now redefined to be an internal variable
(if instead x3 is internal it is replaced by x̂3 rather than x2 by x̂2), and ỹ2
denotes the variable y2 now defined to be external. The model (1.8)-(1.10) is
perfectly acceptable, and it generates the desired conclusion that y1 causes
(by any reasonable definition) y3 with causal coeffi cient α31. However, the
model (1.8)-(1.10) is different from the original model– eqs. (1.5)-(1.7): the
model as altered has different internal and external variables. Accordingly,
the variables in these models will be seen to have different causal relations.
Transferring to the alternative model does not constitute an analysis of
causation in the original model.

Properly viewed, the statement that one internal variable causes another
“ceteris paribus” consists of the assertion that external variables that are
not determinants of the cause variable, but not internal variables or external
variables that are determinants of the cause variable, are held constant.
Reversing the status of external and internal variables is not involved. In
the remainder of this monograph the term “causation” is always taken to
mean causation that is ceteris paribus in this sense, so the “ceteris paribus”
proviso can be omitted.

3. Interventions

We discuss our preferred treatment of causation in most of the remainder
of this monograph.

In the Cowles treatment causation is analyzed in terms of interventions.
In the usage of the Cowles analysts an intervention consists of a modifica-
tion of the structural equations intended to allow the analyst to determine
what would happen under a given hypothetical change in the environment
(Haavelmo [11]; see also Heckman and Pinto [13]). Using a model in this
way to analyze causation involves altering the assumed model, with the
alteration depending on the causal question that is being asked.

The insistence of the Cowles economists on representing interventions
as modifications of structural equations led them away from an alternative
much simpler formalization of interventions using elements of the model
that are already available: external variables. Representing interventions as
hypothetical alterations of the values assumed to be taken on by external
variables means that no change in the model is involved in analyzing inter-
ventions, and enforces explicit specification of what is held constant under
the intervention. There is no loss of generality in requiring that interven-
tions be modeled as alterations of external variables since any conceivable



8 1. STRUCTURAL MODELS

intervention can be accommodated by inclusion of external “shift variables”
in the model.

Let us then initially set the external variables to preassigned values.
The solution to the model under these values is termed the baseline. Then
generate an intervention by changing the assumed value of one or more of
the external variables and recompute the solution. One then determines the
effect of the intervention by comparing the values taken on by the internal
variables under the intervention with those under the baseline specification.

By designating a coeffi cient as an external variable rather than a con-
stant the analyst is allowing for interventions on that variable. Designating
the coeffi cients in eq. (1.1) as variables is perfectly acceptable, but doing so
implies that the model is bilinear, not linear. These specifications are differ-
ent. In an equation characterized as linear the coeffi cients are interpreted as
constants. Labeling the coeffi cient a constant implies that interventions on
that constant are ruled out: we do not ask mathematicians what would hap-
pen if π were equal to a number other than 3.1416, and economists should
not be asking the analogous question about the constants of their models.3

Also, interventions on external variables do not affect the value of constants.
The requirement that analysts explicitly distinguish constants from ex-

ternal variables and treat each consistently, even in analyzing interventions,
enforces clarity about which contemplated interventions the analyst views
as admissible and which are excluded from consideration. Here we part com-
pany from the Cowles economists, who were sometimes unclear about this
distinction.4

In forecasting exercises the general practice is to specify probability dis-
tributions for external variables and then derive the distributions of internal
variables by applying the reduced-form equations. Analyzing interventions
on such models, in contrast, involves specifying particular realizations of
the external variables, as noted above. Contrary to some discussions, there
is no contradiction between assigning probability distributions to external

3Thus analyses of interventions differ from comparative statics or comparative dynamics
exercises, in which changes in constants are acceptable. This is so because the purpose
of the latter exercises is to compare different models, not to determine the effects of an
intervention in a given model.
4In the Cowles treatment of causation, and also in many recent discussions in the philoso-
phy literature, analysts insisted that causal interpretation of a model requires a property
of invariance. The meaning of invariance in the context of implementing alterations of
a model’s structure was never made clear despite much discussion. However, with in-
terventions characterized as consisting of hypothetical changes in the values of external
variables rather than as general structural changes, failure of invariance can only mean
that terms specified as constants should instead be modeled as variables. In well-specified
models labeling α as a constant means that it does not get changed during the course of
the analysis. Therefore α is not a candidate for intervention, and its value is not affected
by interventions.
Reminding analysts that if their models are misspecified their diagnoses of causation are
likely to be wrong is hardly necessary. We see that invariance disappears as a feature of
causal attributions that requires extended discussion.
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variables in using a model to generate predictions and setting the realiza-
tions of these variables to determine effects of interventions. In modeling
the price of some crop an analyst could specify that the price depends on the
harvest, and the harvest depends on the weather. He or she could then pro-
duce a prediction by assuming a probability distribution for weather-related
external variables. Equally, the analyst could analyze what the price of the
crop would be if the weather were good. The former exercise is a forecast,
while the latter constitutes analysis of an intervention. The same model can
be used in either application.





CHAPTER 2

Causation

For any internal variable yi one can define the external set of yi, denoted
E(yi), as the set of external variables xj such that the i, j element of the
reduced form coeffi cient matrix is nonzero. E(yi) is nonempty; otherwise yi
would be a constant rather than a variable. E(yi) is the smallest subset of
the set of external variables required to determine the solution value of yi.
In the model

y1 = β11x1(2.1)

y2 = α21y1 + β22x2(2.2)

the external sets are E(y1) = {x1} and E(y2) = {x1, x2}.
Two distinct variables zj and zi (here z is a variable that may be external

or internal), not both external, are directly connected if there exists at least
one equation in which both appear. Two variables zj and zi are connected
if there exists a path (an ordered set of variables) zj , z1, ..., zn, zi (n ≥ 0)
such that each member is directly connected to its neighbors.

An external variable xj ∈ E(yi) directly causes an internal variable yi
if xj is directly connected to yi. An internal variable yj directly causes an
internal variable yi if yj is directly connected to yi and also E(yj) ⊂⊂ E(yi).
Here “... ⊂⊂ ...”means “... is a proper subset of ...”. This specification
constitutes the proper subset condition for direct causation. The requirement
E(yj) ⊂ E(yi) states that every external variable that is in the external set of
yj is also in the external set of yi, as the intuitive idea of causation suggests.
The rationale for this specification is that an intervention on yj is identified
with an intervention on one or more of the variables in its external set,
and causation of yi by yj requires that this intervention also affect yi. This
condition is a critical element of the treatment of causation here.

The requirement for a proper subset, rather than just a subset, means
that there exists at least one variable that is a member of E(yi) but not
of E(yj). This condition distinguishes causation from simultaneous determi-
nation, under which we have E(yi) = E(yj). Simultaneous determination
is discussed below. The proper subset condition introduces the asymmetry
that, on our view, is a defining element of causation.1

1Weakening the requirement that E(yj) be a proper subset of E(yi) to a requirement for
a (not necessarily proper) subset would imply that simultaneously-determined variables,
having the same external sets, would be variables that directly cause each other, rather

11
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Direct causation is indicated by an arrow: xj directly causing yi is de-
noted xj → yi, and similarly when the cause variable is internal. The set of
pairs of variables of which one directly causes the other is termed the direct
causal relation (direct causation defines a relation but, being intransitive,
not an ordering).

The direct causal relation in a structural model can be derived by check-
ing for all pairs xj , yi and yj , yi whether the conditions for xj → yi (di-
rect connectedness and xj ∈ E(yi)) and yj → yi (direct connectedness and
E(yj) ⊂⊂ E(yi)) are satisfied.

We have that xj indirectly causes yi along the path xj , y1, ..., yn, yi
(n > 0) if we have xj → y1 → ...→ yn → yi. Here xj → y1 → ...→ yn → yi
is termed a causal path that connects xj and yi. The indirect causal relation
between internal variables is similar: yj indirectly causes yi if there exists
a causal path connecting yj and yi. One variable causes another if the two
variables are causally connected either directly or indirectly, or both, along
one or more causal paths.2 3

Whenever we have xj → yi there exists a coeffi cient measuring the effect
of xj on yi. If we have that xj causes yi indirectly along a unique path, then

than variables neither of which causes the other, as in the text. Under this specification
causation would not be asymmetric (a relation is asymmetric if two variables satisfy the
relation in both directions only when they are equal).
2Curiously, several contributors to the causation literature appear to have confused the
question of whether a variable is external with the unrelated question of whether it causes
an internal variable via multiple paths (see, for example, Nakamura-Steinsson [27], p. 67).

3The fact that variables can be causally related along multiple paths appears to create
the possibility that the causal effects cancel. That cannot occur: for x to affect y along
canceling paths would contradict the specification that x is in the external set of y.
This treatment of canceling paths has the implication that the formal treatment of cau-
sation can diverge from ordinary-language usage. An example, widely discussed in the
philosophy literature, specifies that the season determines whether it rains or not. If it
rains the pavement is slippery. If it does not rain sprinklers are turned on and, again, the
pavement is slippery. The (candidate) internal variable consisting of whether the pave-
ment is slippery is a constant: the pavement is always slippery. The rain does not cause
whether or not the pavement is slippery.
For another example, consider a pilot who is able to steer in such a way as to offset exactly
the effect of waves on the direction taken by his boat. Ordinary-language usage would
have that both the waves and the steering are causes of the boat’s direction. In contrast,
the causation analysis proposed here would require relabeling the direction variable as a
constant, that variable having by assumption no variation to explain. The causal ordering
in the model that remains would consist of waves causing steering, and that alone.
It is not clear that the formal treatment of causation proposed here can readily be altered so
as to correspond exactly to informal usage. This divergence between formal and informal
usage is not a problem; it occurs frequently in scientific applications (consider terms from
physics such as “force”and “momentum”). The important question is whether the formal
treatment of causation has useful applications that justify the departure from ordinary-
language usage. Whether this is so is best considered in the context of the examples
discussed below.
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the causal effect of xj on yi– the reduced-form coeffi cient of yi with respect
to xj– equals the product of the coeffi cients of each of the causal pairs along
the causal path. For example, if we have x1 → y1 with coeffi cient β11, and
also y1 → y2 with coeffi cient α21, and if there are no other causal paths
connecting x1 and y2, then the reduced-form coeffi cient of y2 with respect
to x1 equals β11α21. If x1 and y2 are connected along multiple paths one of
which passes through y1, then the effect of x1 on y2 along that path equals
β11α21, but the total effect of x1 on y2 requires consideration of the other
paths (as in Example 3.3).

When the cause variable is internal, and the cause yj is connected to the
effect yi along a unique path, there exists a coeffi cient associated with the
path connecting the two, but that coeffi cient does not necessarily represent
the effect on yi of an intervention on yj . That issue is taken up in Chapter 4
(to anticipate, the problem is that yj causing yi does not rule out the possible
existence of confounding variables even if the causal path connecting yj and
yi is unique).

Aside from the central assumption here that an intervention on an inter-
nal variable is identified with interventions on the elements of that variable’s
external set, the present formalization of causation is similar to that pro-
posed in some of the Cowles analyses, especially Simon [34].

By the definition of causation just given, two internal variables not di-
rectly connected can satisfy E(yj) ⊂⊂ E(yi) without yj causing yi. This
occurs when there is no causal path connecting yj and yi. An example is the
model

y1 = β11x1 + β12x2(2.3)

y2 = β22x2 + β23x3(2.4)

y3 = β33x3 + β34x4(2.5)

y4 = α41y1 + α43y3.(2.6)

We have E(y2) ⊂⊂ E(y4), but no causal path connects y2 and y4 (the paths
y2 ← x2 → y1 → y4 and y2 ← x3 → y3 → y4 connect y2 and y4 but are not
causal paths because the arrows reverse directions). Therefore y2 does not
cause y4. A graph of this model is displayed in Example 3.4.

It could be argued from the fact that interventions on yj are associated
with interventions on the elements of E(yj) that existence of causal paths
from each of the elements of E(yj) to yi (which is implied by E(yj) ⊂ E(yi))
should justify defining yj as a cause of yi whenever we have E(yj) ⊂⊂ E(yi).
Then E(yj) ⊂⊂ E(yi) would imply that yj causes yi regardless of whether
the two are connected along a causal path. Under the revised definition y2
would cause y4 in the example.

However, the fact that the alternative definition would allow yj to cause
yi even though they are not connected along any causal path may be viewed
as counterintuitive. In view of this consideration we elect not to adopt the
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alternative definition. In any case, this question involves the definition of
causal orderings, but not the logically prior and more important question
of how to define the direct causal relation, discussed above. Whether to
adopt the proposed definition or the alternative appears not to involve any
substantive (as opposed to semantic) issues.

Causation is asymmetric and transitive. That being so, it defines a
partial ordering.4 A model’s causal ordering is the set of pairs zj , yi such
that zj causes yi. The external variables are minimal elements of a causal
ordering. The members of a causal ordering, like any partially ordered set,
can be arranged in a sequence such that if zj causes yi it precedes yi in the
sequence. For causal orderings that are not total orderings, as is generally
the case with causation, the converse is not true: zj may precede yi in the
ordering without zj causing yi. When causation is not total there are many
sequences that represent the ordering.

The preceding discussion applies to models that have no simultaneous
blocs. Simultaneous blocs are discussed below.

The causal ordering is implied by the direct causal relation, but not vice-
versa: two models with different direct causal relations can have the same
causal ordering. In the model

y1 = β11x1 + β12x2(2.7)

y2 = α21y1 + β22x2 + β23x3(2.8)

x2 directly causes y2 and indirectly causes y2 via y1. If β22 equals zero x2
causes y2 only indirectly, implying that the two versions have different direct
causal relations. Despite this, the two versions have the same causal order-
ing, represented by x1, x2, y1, x3, y2. Graphs of the direct causal ordering
of this model are presented in Example 3.5.

The causal ordering associated with the reduced form of a structural
model differs from that of the structural model (as seen in the model dis-
cussed in the preface). In a reduced form each internal variable is caused
by each element of its external set, and only these: internal variables do
not cause other internal variables. In a structural model, in contrast, one
internal variable can cause another.

The direct causal relation, unlike the causal ordering, plays a central role
in causal analysis. This is so because the direct causal relation recognizes the
distinction between direct and indirect causation, unlike the causal ordering
(as seen in the model just presented).

Uninterpreted examples of the definitions just presented are found in the
following chapter. Interpreted examples are discussed in Chapter 10.

4Strictly, causation is not an ordering because it is irreflexive: variables do not cause
themselves. Despite this we will follow established practice and use the term “ordering”
in connection with causation.
Asymmetry is vacuously satisfied because, from the proper subset condition, there are no
pairs of variables z1 and z2 that satisfy both z1 → z2 and z2 → z1.
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1. Structural Models and Causation

The notions of direct causation and causation, where in our treatment
the latter is derived from the former, clarify the Cowles assertion that causal
relations between internal variables can be determined from structural mod-
els, but not reduced forms. As we have seen, one internal variable directly
causes another if (1) the two are directly connected, and (2) the proper sub-
set condition is satisfied. The locations of zeros in a model’s reduced form
matrix make it easy to verify from the reduced form whether the proper
subset condition is satisfied. It follows from this that the proper subset
condition plays no role in generating the different status of structural and
reduced-form models as regards causation.

Whether or not two internal variables are directly connected can be
ascertained from the structural form, but not from the reduced form. It
follows that even though it is possible to determine from the reduced form
whether an external variable causes an internal variable, it is impossible to
determine from the reduced form whether the causation is direct or indirect
or both. Internal variables are never connected in reduced forms, implying
that in reduced forms they are not causally related. It is impossible to
determine from the reduced form whether internal variables are causally
related in the corresponding structural model. Thus the fact that structural
models contain a complete characterization of which variables are directly
connected is what distinguishes structural models from reduced forms.

It is seen that the individual equations play a different role in a struc-
tural model than those in a reduced form. It is true that the equations
of either a structural or a reduced-form model can be combined via (re-
versible) arithmetic operations without altering the map from external to
internal variables.5 However, such operations do affect direct connectedness
relations, and therefore alter the causal ordering of the structural model.
It follows that, assuming the analysis involves causal questions, arithmetic
operations (involving more than one equation) must be ruled out, as such
operations change the causal order, thereby changing the model.

The equations of structural models are seen to have an individual iden-
tity that has no counterpart in the equations of reduced-form models. In
reduced-form models the individual equations have no role other than to
collectively define a map from an m-dimensional space of external variables
to an n-dimensional space of internal variables. It is seen that an essen-
tial component of the intuitive idea of direct causation is that it involves
direct connectedness. This dependence of the idea of causation on direct
connectedness was noted in the preface.

5The difference between the interpretation of structural vs. reduced-form relations may
be related to the question, much discussed in the philosophy literature (see Cartwright
[5], for example), of whether structural equations are modular. We do not pursue this
line.
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The fact that structural models and reduced-form models have different
causal orderings has relevance for an earlier debate between statisticians,
economists and members of other disciplines about the meaning of structural
equations. Statisticians and econometricians (see Haavelmo [11], Wermuth
[38] and Pearl [30] for discussion) have taken the view that the coeffi cients of
structural models have no clear meaning because they are not connected to
the probability distribution of internal variables. It is correct that structural
models define the same map from external to internal variables as reduced-
form models. However, the fact that the reduced-form model has a different
direct causal relation from that of the structural model means that causal
information is lost in passing from the structural form to the reduced form.
Specifically, moving from the structural form to the reduced form implies
loss of information about the direct causal relations in which both the cause
and effect variables are internal.

The fact that different structural models may have the same reduced
forms, in which case they are observationally equivalent, implies that, as the
Cowles economists asserted, causation between pairs of internal variables
may not be testable empirically. However, we will see in Chapter 4 that
implementation-neutral causation, a refinement of the notion of causation
discussed here, does have testable implications.

2. Constructing the Direct Causal Relation

An easily implemented recursive algorithm, rather than inspection of
pairs of variables as outlined above, can be used to derive the direct causal
relation in structural models that do not have simultaneous blocs. The
construction begins with the model written in the structural form Ay = Bx.
The derivation consists of a series of rounds and sub-rounds. Each round
and sub-round consists of identifying one or more of the internal variables
as being directly caused by other variables. These internal variables are
elements of the set Λ.

Λ initially is the empty set. In rounds after the first, Λ is defined as
the set of internal variables identified as effects in earlier rounds. Λ gains
members with each round and sub-round.

The first round consists of identifying the equations in which only one
internal variable appears. Each of the external variables appearing in each
of these equations is designated as a direct cause of the internal variable
appearing in that equation. Λ is redefined to consist of the internal variables
so identified. The first round has no sub-rounds.

The first sub-round of the second round begins with identification of the
equations that contain exactly two internal variables, one of which was des-
ignated a member of Λ in the first round. In each of these equations the new
internal variable has an external set that strictly contains the external set of
the variable in Λ. Therefore the internal variable that is in Λ is designated as
a direct cause of the new internal variable. Also, the external variables that
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appear in the equation are labeled as direct causes of the new effect variable.
Finally, the new variables, one per equation so identified, are included in Λ.

The second sub-round of the second round is the same as the first sub-
round– attention is focused on equations that contain two internal variables,
one of which is in Λ– with one alteration. The alteration is that Λ as
redefined in the first sub-round of the second round replaces Λ as redefined in
the first round (the former has more members, implying that new equations
now may satisfy the criterion). As in the first sub-round, the other variables
in each equation are identified as direct causes of the new internal variables.
The third and subsequent sub-rounds are similar. The second round ends
when none of the remaining equations meets the requirement that it contain
exactly one new internal variable.6

The third, fourth and subsequent rounds are similar to the second round
except that the identified equations consist of those containing exactly three,
four or more internal variables, all but one of which are elements of Λ as
defined in earlier rounds. All the variables in each equation are designated
as causes of the new effect variable, and that variable is included in Λ. The
process continues until all the internal variables are members of Λ.

An example will illustrate the construction. Consider the model

y1 = β11x1(2.12)

y2 + α21y1 = β22x2(2.13)

y3 + α32y2 = β33x3(2.14)

y4 + α42y2 + α43y3 = β44x4.(2.15)

The first round identifies the internal variable y1 in eq. (2.12) as an effect
variable, and includes it in Λ. We have x1 → y1. The first sub-round of
the second round identifies y2 in eq. (2.13) as an effect variable, establishes
y1 → y2 and x2 → y2 and adds y2 to Λ. The second sub-round of the second
round identifies y3 in eq. (2.14) as an effect variable, resulting in y2 → y3
and x3 → y3, and adds y3 to Λ. Finally, the third round identifies y4 in eq.

6If for some round or sub-round no equation satisfies the requirement, that round or
sub-round is skipped. For example, in the model

y1 = β11x1(2.9)

y2 = β22x2(2.10)

y3 = α31y1 + α32y2 + β33x3(2.11)

none of the equations has exactly two internal variables, so the second round is skipped.
Models with simultaneous blocs are prone to produce settings in which no equations satisfy
the requisite condition. In such models the recursive construction of the causal ordering
cannot be implemented. This is why simultaneity was excluded above. In models like that
just presented, which does not have simultaneous blocs, skipping rounds does not prevent
conclusion of the recursive construction.
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(2.15) and adds y2 → y4, y3 → y4 and x4 → y4 to the direct causal relation.
This completes the construction.

The calculation just described has an important implication: x is an
element of E(y) if and only if there exists at least one causal path connecting
x and y (that x ∈ E(y) is implied by existence of a causal path between x
and y follows from the definition of a causal path, so the content of the
assertion is that the converse, that x ∈ E(y) implies existence of a causal
path connecting x and y, is also true).

From the definition of external sets, x ∈ E(y) is equivalent to the
reduced-form coeffi cient of x in the equation for y being nonzero. These
reduced-form coeffi cients are readily calculated from the conditional causal
relation as established by the recursive algorithm just outlined. For exam-
ple, in the model just set out the first round establishes that the reduced-
form coeffi cient of y1 with respect to x1 is β11. With β11 6= 0 we have
x1 ∈ E(y1). Similarly, the first sub-round of the second round establishes
that the reduced-form coeffi cient of y2 with respect to x1 is β11α21, imply-
ing x1 ∈ E(y2). The same reasoning applied to all the variables shows that
the set of pairs x, y such that x ∈ E(y) coincides with the set of pairs x, y
that are connected by at least one causal path.

The corresponding result for two internal variables y1 and y2 is that
y1 causes y2 if and only if y1 becomes a member of Λ in an earlier round
than y2 does, implying existence of a causal path that connects y1 and y2.
This corresponds to Simon’s [34] formulation, in which one variable causes
another if the former is determined in a lower recursive bloc than the latter.

In implementing this algorithm it is usually convenient to reparametrize
each equation in each round and sub-round so that the new internal variable
in each equation appears on the left-hand side with a coeffi cient normalized
to 1, with all the variables that directly cause that variable appearing on
the right-hand side. There results a model written in the form y = Ay+Bx.
Here A is triangular and has zeros on the main diagonal. A and B here
differ from A and B in the structural form with which we began (Ay = Bx).
The reparametrized version of the model (2.12)-(2.15) is

y1 = β11x1(2.16)

y2 = α21y1 + β22x2(2.17)

y3 = α32y2 + β33x3(2.18)

y4 = α42y2 + α43y3 + β44x4.(2.19)

We will designate a model written in the form y = Ay+Bx, with A and
B representing the coeffi cient matrices A and B reparametrized from the
original structural model in the manner just described as the causal form of
the model.

This appears similar to the construction criticized in Chapter 1, but here
the causal form representation y = Ay+Bx is derived rather than taken as a
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primitive, contrary to the specification in Chapter 1: here we begin with the
model in the structural form Ay = Bx and derive a model of the causal form
y = Ay+Bx, with A and B reparametrized. Under this construction taking
the variables on the right-hand side of y = Ay +Bx as directly causing the
variable on the left-hand side of each equation is justified even though =
is interpreted in its usual mathematical sense rather than as an assignment
operator. In contrast, the discussion in Chapter 1 involved starting with
y = Ay+x and taking causation as defined by the interpretation of = as an
assignment operator combined with an assumption that A is triangular.7

3. Simultaneous Equations

As noted above, if a model contains m connected internal variables that
all have the same external set (1 < m ≤ n, where n is the number of internal
variables), these variables are simultaneously determined. For example, in
the model

y1 = α12y2 + β11x1(2.20)

y2 = α21y1 + β22x2(2.21)

y1 and y2 are simultaneously determined. Variables that are simultaneously
determined do not cause each other due to failure of the proper subset
condition. We will use the symbol ↔ to denote simultaneous determination
despite the apparent implication of↔ that causation runs in both directions.
Thus the direct causal relation in the model (2.20)-(2.21) is x1 → y1, x1 →
y2, x2 → y1, x2 → y2, y1 ↔ y2.

In the reduced-form version of the model,

y1 = γ11x1 + γ12x2(2.22)

y2 = γ21x1 + γ22x2,(2.23)

y1 and y2 are not simultaneously determined because they are not connected.
If m variables are simultaneously determined there exist m equations

that determine these variables as functions of the external variables and the
internal variables of the model other than those which are simultaneously
determined. These m equations form a simultaneous bloc. In the preceding
sections of this chapter it was assumed that the models contain no simulta-
neous blocs (as in most of the examples below).

7As noted in the preceding chapter, writing a model in the form y = Ay + x has the
problematic implication that performing linear operations on the equations results in a
model that cannot be written in the specified format. This problem could be circum-
vented by including an unrestricted coeffi cient matrix that multiplies the vector of ex-
ternal variables– y = Ay + Bx– but still obtaining causation by interpreting = as an
assignment operator. Taking = as an assignment operator, however, implies that causa-
tion no longer has anything to do with the proper subset condition, which is not necessarily
satisfied among variables labeled as causally related under the proposed characterization
of causation. Accordingly, it is not clear how such a respecification is to be justified.
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The analysis presented above requires modification in the presence of
simultaneous blocs. A causal path was defined above to consist of an ordered
set of variables such that each is connected to its neighbors via → . In the
presence of simultaneously-determined variables we generalize to allow the
connections to be either → or ↔ (but not all ↔). This change reflects
the fact (or, if one prefers, assumption) that causation is communicated by
paths that include simultaneously-determined variables.

To see this, consider the model

y1 = α12y2 + β11x1(2.24)

y2 = α23y3 + β22x2(2.25)

y3 = α31y1 + β33x3,(2.26)

in which the model is a simultaneous bloc (E(y1) = E(y2) = E(y3) =
{x1, x2, x3}; also, y1, y2 and y3 are connected). Here the indirect causal
relation is readily ascertained by comparing pairs of variables subject to the
modification just described so as to allow paths to include simultaneously
determined variables. We have that x1 indirectly causes y3 via the paths
x1 → y1 ↔ y3 and x1 → y2 ↔ y3 (see Figure 3.6). There exists no path con-
necting x1 and y3 the members of which are all connected by →, so without
the modification in the definition of causal paths it would follow from the
definition of a causal path that x1 does not cause y3 despite the fact that
we have x1 ∈ E(y3).

Sometimes two internal variables that appear on intuitive grounds to be
causally related turn out to be simultaneously determined. In an example
from Imbens-Rubin [16], Chapter 1, each of a group of patients is character-
ized by a pair of potential outcomes depending on whether they are treated
by drugs or surgery (the potential outcomes approach to causal analysis is
discussed in Chapter 8 here). Some patients do better using drugs, oth-
ers do better using surgery. The doctor knows the potential outcomes of
each patient and assigns whichever treatment works better with that pa-
tient. Imbens-Rubin characterized four patients by specifying four pairs of
potential outcomes, but, as is standard practice in the potential outcomes
literature, did not present an explicit model. The formal model is easily
specified: the potential outcomes x0 and x1 for each agent are external, and
the treatment for each patient depends nonlinearly (it is the value of a maxi-
mum function) on both potential outcomes for that patient (t = 1 if surgery
works better than drugs, 0 otherwise). The observed outcome is a function of
both potential outcomes and the treatment (specifically, the outcome func-
tion is yobs = x0+ t(x1−x0), where yobs is the observed potential outcome).
In this model the external sets for the treatment for each patient and the
observed outcome both consist of the potential outcomes for that patient.
Accordingly, the treatment and the observed outcome for each patient are
both caused by the potential outcomes, implying that their external sets are
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the same. Therefore treatment and outcome are simultaneously determined,
not causally ordered.8

In the presence of simultaneous blocs the analysis of this chapter prior to
the present section does not completely apply in several other respects. First,
the calculation of reduced-form coeffi cients from path coeffi cients is altered
in the presence of simultaneously-determined variables. This is easily verified
from the simplest example (eqs. (2.20)-(2.21)). Second, as noted above the
recursive construction of the direct causal relation cannot be completed in
the presence of simultaneously-determined variables. This occurs because
at some point prior to the completion of the construction there will exist no
equations with only one new internal variable, so the construction cannot
be concluded. For example, this occurs in the first round in the model
(2.20)-(2.21).

4. Causal Graphs

The easiest way to analyze the direct causal relation, at least with simple
models, is to use graphical methods. In advocating the use of graphical
methods in analyzing causation we follow the mainstream in causal analysis,
notably Pearl [28]. However, our use of graphical methods differs from that
found in the mainstream tradition. In the received analysis the causal graph
is taken directly from the given structural model. When the structural model
is explicitly specified the variables on the right-hand side of each equation
are identified as direct causes of the left-hand side variable owing to the
interpretation of = as an assignment operator. Since this procedure takes
the causal ordering as given, causation itself remains undefined. We took
issue with this specification in Chapter 1.

In our usage a causal graph is a graph that represents the direct causal
relation as defined in the preceding sections: if xj or yj directly causes yi
(xj → yi or yj → yi) the two variables are connected with → in the graph.
Thus the meaning of→ in the graph is the same as in the definition of direct
causation. Similarly, simultaneously-determined variables are connected by
↔ in the graph. Under the alternative form of the algorithm that determines
the direct causal ordering from the structural form of a model, the repara-
metrization results in a graph with arrows pointing from the right-hand side
variables of each equation to the left-hand side variable.

Determining from a causal graph whether xj or yj causes yi consists
of ascertaining whether there exists a causal path connecting (directly or
indirectly) xj or yj and yi by → or ↔ (but not all ↔). This procedure gen-
erates a graph in which each internal variable is caused by its ancestors and

8Incidentally, this example provides further motivation for associating direct causation
with the proper subset condition rather than just a subset condition. Under the latter
definition we would have that the treatment and the outcome cause each other, which
would be bizarre.
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causes its descendants. Parents and children are special cases of ancestors
and descendants where the connection is achieved via a single arrow, so that
causation is direct. Variables connected with ↔ are presumably brothers
and sisters.

A final point is that one generally cannot begin the analysis of causation
with an arbitrarily specified causal graph (or, equivalently, direct causal
relation). For example, consider Figure 3.1 with x3 deleted. The resulting
graph displays y1 as causing y2 despite the fact that it also indicates that
these variables have the same external sets, implying that these variables
are simultaneously determined rather than causally ordered.



CHAPTER 3

Examples

The analysis presented in the preceding chapter is illustrated using ex-
amples. In each case the associated causal graph is displayed at the end of
the chapter.

Example 3.1
The simplest model in which the internal variables are causally ordered

is

y1 = β11x1 + β12x2(3.1)

y2 = α21y1 + β23x3(3.2)

(this is the example discussed in the preface). The two internal variables
are causally ordered: y1 directly causes y2. The causal effect of x1 on y2 is
indirect: the causal coeffi cient equals α21β11, which is the product of the
direct effect of x1 on y1 and the direct effect of y1 on y2. The other causal
effects are similar.

The reduced form for this model is

y1 = γ11x1 + γ12x2(3.3)

y2 = γ21x1 + γ22x2 + γ23x3.(3.4)

In the reduced form y1 does not cause y2 because these variables are not
connected.

Example 3.2
The standard economist’s supply-demand model is

y1 = α12y2 + β11x1(3.5)

y2 = α21y1 + β22x2,(3.6)

discussed in the preceding chapter. Here each of two equations includes
price and quantity (y1 and y2) and one external variable. This is the sim-
plest model that contains a simultaneous bloc. The bloc coincides with the
model, since y1 and y2 are simultaneously determined and are the only in-
ternal variables in the model. The model’s causal graph can be derived by
comparing variables pairwise to determine the existence of direct causation
and simultaneous determination.

23
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Note that y1 does not cause or directly cause y2, or vice-versa, even
though the two are directly connected in both equations.

Example 3.3
In the model

y1 = β11x1 + β12x2(3.7)

y2 = β22x2 + β23x3(3.8)

y3 = α31y1 + α32y2(3.9)

(eqs. (1.5)-(1.7)) the variables y1 and y2 have external sets neither of which
is a subset of the other, and y3 has an external set that properly contains the
external sets of each of y1 and y2. Therefore y1 and y2 are neither causally
related nor simultaneously determined, but each directly causes y3. The
external variable x2 affects y3 via two indirect paths, so the reduced-form
coeffi cient of y3 with respect to x2 is α31β12 + α32β22.

Example 3.4
In the model

y1 = β11x1 + β12x2(3.10)

y2 = β22x2 + β23x3(3.11)

y3 = β33x3 + β34x4(3.12)

y4 = α41y1 + α43y3(3.13)

y2 does not cause y4 because y2 is connected to y4 only along paths that are
not causal, as noted in the preceding chapter.

Example 3.5
In the model

y1 = β11x1 + β12x2(3.14)

y2 = α21y1 + β22x2 + β23x3(3.15)

x2 directly causes y2 and indirectly causes y2 via y1 (Figure 3.5(a)). If β22
equals zero x2 does not directly cause y2 (Figure 3.5(b)), implying that the
two versions have different causal graphs. Despite this, the two versions
have the same causal ordering, as discussed in the text.

Example 3.6
The internal variables y1, y2 and y3 in the model

y1 = α12y2 + β11x1(3.16)

y2 = α23y3 + β22x2(3.17)

y3 = α31y1 + β33x3(3.18)

are determined in a single simultaneous bloc. The accompanying figure
shows the causal graph.
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CHAPTER 4

Implementation-Neutral Causation

Chapter 2 included description of the calculation of the numerical ef-
fect of xj on yi when xj causes yi. That algorithm does not generally apply
when the cause variable is internal. An intervention on an internal variable
is generated by any of a set of underlying interventions on the variables in its
external set; that being so, even if yj causes yi different interventions consis-
tent with a given ∆yj can induce different ∆yi. In the model of Example 3.3
the intervention ∆y1 could have been caused by an intervention of ∆y1/β11
on x1 or ∆y1/β12 on x2 (or, of course, a linear combination of these). There
results ∆y3 = α31∆y1 in the first case and ∆y3 = (α31 +α32β22/β12)∆y1 in
the second. The question “What i·s the effect of y1 on y3?”does not specify
which intervention produced ∆y1, leading to the conclusion that the mag-
nitude of the causal effect of y1 on y3 is not well defined. Accordingly, when
the cause variable is internal there is generally no analogue to the reduced-
form coeffi cient that measures causal magnitude when the cause variable is
external.

One could object against this line that in the model of Example 3.3 ∆y1
results unambiguously in an effect α31∆y1 on y3 if y2 is held constant. We
argued in Chapter 1, Section 2 that holding constant an internal variable
in this way constitutes an alteration of the model by inducing a functional
relation between variables specified as external (in this case x2 and x3).
Avoiding altering the model leaves us with the conclusion that the effect of
y1 on y3 in the model of Example 3.3 is in fact inherently ambiguous.

In other cases this ambiguity does not occur. If in addition to yj directly
causing yi we have that all the interventions that lead to a given value of ∆yj
map onto the same value of ∆yi, the effect of ∆yj on yi does not depend
on how ∆yj is implemented (that is, which element(s) of E(yj) is (are)
intervened upon). In that case causation is directly implementation neutral.1

We refer to the causal relation so defined as direct IN-causation. If there
exists a path connecting yj and yi such that each member directly IN-causes
its successor, we have indirect IN-causation. The term IN-causation without
qualification denotes either direct or indirect IN-causation. If yj IN-causes yi
we will write yj ⇒ yi. Thus if we have yj ⇒ yi the analysis of the effect of yj
on yi is essentially the same as when the cause variable is external: the causal
coeffi cient connecting yj and yi is directly analogous to the reduced-form

1It appears that the first use of the term “implementation-neutral causation” was by
Cartwright [5] in her discussion of LeRoy [20].
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coeffi cient connecting xj and yi. Specifically, if yj indirectly IN-causes yi then
the associated coeffi cient equals the product of the coeffi cients associated
with direct IN-causation along the path connecting yj and yi.

Note that, as this discussion indicates, under this definition IN-causation
represented by ⇒, unlike direct causation as represented by →, is not nec-
essarily direct. This difference in the meanings attached to → and ⇒ is
motivated by the fact that → is used to distinguish direct causation from
indirect causation. If one variable IN-causes another, in contrast, it does so
along a unique path: if yj directly IN-causes yk and yk directly IN-causes
yi then yj (indirectly) IN-causes yi (thus IN-causation ⇒, unlike direct cau-
sation →, is transitive). As with causation along a given path when the
cause variable is external, if we have that yj ⇒ yi IN-causation is either
direct or indirect. However, unlike causation, which can be both direct and
indirect along different paths, IN-causation cannot be both direct and in-
direct. In linear models IN-causal connections, whether direct or indirect,
are always associated with coeffi cients giving a quantitative measure of the
causal effect. Accordingly, there is no need to use notation that distinguishes
between direct and indirect IN-causation.

If xj is external and xj causes yi we always have xj ⇒ yi, in view of the
fact that when the cause variable is external there is no ambiguity about
the intervention.

The causal relation between y1 and y2 in Example 3.1 is implementation
neutral: the effect on y2 of an intervention of ∆y1/β11 on x1 (equal to
α21∆y1) is the same as that of an intervention of ∆y1/β12 on x2. Note that,
in the discussion in Chapter 1 of the ceteris paribus condition, in the model
(1.5)-(1.7) y1 does not IN-cause y3: if the intervention inducing ∆y1 is on
x1, the effect on y3 is different from that occurring if the intervention is
on x2. Therefore the constant α31 cannot be interpreted as representing
IN-causation. The same observation applies to α32.

If an external variable x1 and an internal variable y2 are connected along
a unique causal path then all the causal links on the path from x1 to y2 are
IN-causal. For instance, Example 3.1 has x1 ⇒ y1, y1 ⇒ y2 and x1 ⇒ y2.
The IN-causal coeffi cients are β11, α21 and β11α21, respectively.

The IN-causal ordering consists of all the pairs {xj , yi} and {yj , yi} such
that xj ⇒ yi and yj ⇒ yi. IN-causation will be our primary notion of
causation: if yj causes yi but not yj ⇒ yi we do not have enough information
about the intervention to characterize its effect on yi quantitatively.2

2Sometimes it is useful to work with graphs that depict IN-causation rather than direct
causation, although we do not do so in this monograph. IN-causal graphs are constructed
in the same way as causal graphs: in an IN-causal graph zj is connected to yi with ⇒ if
zj directly IN-causes yi.
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1. IN-Causation in Structural Models

IN-causation is most conveniently analyzed using causal graphs. We
have yj ⇒ yi if yj causes yi and all the causal paths linking members of
E(yj) to yi pass through yj .3 4 If yj directly causes yi but yj ; yi there
exists at least one member of E(yj) that is connected to yi via at least one
causal path that does not pass through yj .5 Such variables are confounding
variables. Existence of confounding variables implies that the effect on yi
of an intervention on yj is different under different interventions, even those
generating the same ∆yj .

In Example 3.3 y1 does not IN-cause y3 because of the existence of a path
directly connecting x2 and y1, and also a path connecting x2 and y3 that
does not pass through y1. Thus x2 is a confounding variable in the causal
relation y1 → y3; existence of a confounding variable implies y1 ; y3.

In Example 3.4 we have y1 ⇒ y4 despite existence of a path that links
x2 to y4 but does not pass through y1. However, that path, while connected,
is not causal. Therefore x2 is not a confounding variable.

IN-causal orderings cannot be deduced from the reduced form even if
every pair yj , yi that satisfies E(yj) ⊂⊂ E(yi) is connected by a causal path,
so that the specification displayed in Example 3.4 is ruled out. This is so
because by definition confounding variables connect with effect variables
along multiple paths, and the reduced form does not distinguish between
cause variables that are connected to effect variables along single paths and
those connected along multiple paths. In Example 3.5(a) we have that y1
does not IN-cause y2 because of the presence of x2 as a confounding variable.
In Example 3.5(b), the reduced form of which has zeros in the same places
as that of Example 3.5(a), y1 does IN-cause y2.

3The above representation of IN-causation in terms of graphs in which all paths from the
external set of the cause variable to the effect variable pass through the cause variable is
described in Woodward [39].
4The converse is not true: in the model

y1 = β11x1(4.1)

y2 = α21y1 + β21x1 + β22x2(4.2)

we have that the effect of an intervention on y1 unambiguously induces an effect of y2 of
(α21 +β21/β11)∆y1. Therefore we have y1 ⇒ y2 despite existence of a path connecting x1
and y2 that does not pass through y1. This can occur because E(y1) is a singleton, implying
that there is no ambiguity about the intervention. An interpreted example is found in
Chapter 9. We will (without notice) sometimes ignore the case of singleton external sets
and identify implementation neutrality with absence of paths that connect effect variables
with elements of their external sets without passing through the cause variable.
5Recall that in this monograph linearity is assumed (except where noted). It will be
observed below that the result just cited does not carry over to nonlinear models.
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2. Conditional IN-Causation

It is useful to formulate a notion of causation that can be quantified when
we have that yj causes yi but not yj ⇒ yi. Such statements are available
if we condition on a nonempty proper subset Ψ of E(yj), meaning that the
variables in that subset are replaced by constants. These statements involve
conditional IN-causation. Depending on Ψ, we may or may not have that
all the variables that are confounders of the causal relation between yj and
yi are members of Ψ. If so, yj IN-causes yi conditional on Ψ, and we will
write yj ⇒ yi|Ψ. In linear models that do not contain simultaneous blocs,
for any yj and yi such that yj causes but does not IN-cause yi there exists
some Ψ such that we have yj ⇒ yi|Ψ. For example, this necessarily occurs if
Ψ consists of all but one of the elements of E(yj) and the remaining external
variable connects with yi only via paths that pass through yj .6 7

Hereafter “yj IN-causes yi” without qualification is taken to refer to
unconditional IN-causation. Also, “yj conditionally causes yi”will be taken
to denote conditional IN-causation for some Ψ.

Note the stipulation that the variables being held constant are external.
It was observed above that conditioning on internal variables effectively
converts these to external variables, and also induces functional relations
among variables characterized as external. Therefore doing so constitutes
an alteration of the model. No such functional relations among external
variables are induced when the variables conditioned on are external.

As with unconditional IN-causation, the existence of conditional IN-
causation can be inferred from the direct causal relation, and therefore from
the causal graph, but generally not from the causal ordering. In the model

y1 = β11x1 + β12x2 + β13x3(4.3)

y2 = α21y1 + β22x2 + β23x3 + β24x4(4.4)

we have y1 ⇒ y2|x 2, x3 but not y1 ⇒ y2|x3, because the confounding variable
x2 is not a member of Ψ, which in the latter case consists of the set {x3}.
With β22 = 0 we do have y1 ⇒ y2|x3 despite the facts that the reduced
forms of both versions of the model can be written as

y1 = γ11x1 + γ12x2 + γ13x3(4.5)

y2 = γ21x1 + γ22x2 + γ23x3 + γ24x4(4.6)

and the structural models have the same causal ordering.

6For an example of the failure of this assertion in nonlinear models see the Thistlethwaite-
Campbell model [37] discussed below; for failure in models that contain simultaneous
blocs, see Figure 10.2 below.
7If yj causes yi and E(yj) is a singleton, then E(yj) has no nonempty proper subsets, im-
plying that no conditional causation is defined. The Thistlethwaite-Campbell [37] model
discussed in Chapter 9 is an example in which the treatment variable has an external set
that is a singleton. Other instances are found in Chapter 10.
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Conditional IN-causation may have no clear interpretation. Having spec-
ified that all the variables in E(yj) cause yj , what does it mean to reverse
this by holding some of these variables constant? In Example 3.3 we have
y1 ⇒ y3|x2 but not y1 ⇒ y3. With x2 held constant the intervention is on
x1 alone, suggesting that the causal relation is between x1 and y3, not y1
and y3. Why then refer to y1 at all?

In many cases this argument has merit. However, we will see below
that in some contexts we are primarily interested in conditional causation
between internal variables, not in unconditional causation between exter-
nal and internal variables. First, often the task is to determine whether
the causal relation between two specific variables (such as treatment and
outcome) is unconditional or conditional, and not in identifying pairs of
variables that are unconditionally IN-causally related. Second, in many
cases the relevant external variable may be unobserved, in which case the
necessity of an arbitrary normalization of its causal coeffi cient renders the
numerical magnitude of that coeffi cient meaningless. For example, in Figure
3.5(a) we have y1 ⇒ y2|x2, so that a change in y2 is necessarily attributable
to an intervention on x1. If x1 is unobserved the coeffi cient measuring its
effect on y2 is meaningless. In contrast, the coeffi cient associated with the
conditional IN-causal ordering y1 ⇒ y2|x2 is well defined and identified if
y1 and y2 (but not necessarily x2, as shown below) are observed. Several
examples in which this occurs are discussed below. Third, in some models
the relation between the cause and effect variables may be linear even when
the equations of the model that determine the cause variable are nonlin-
ear. In that case conditional causal relations are easier to characterize and
interpret– conditional IN-causation is quantified by one causal coeffi cient–
than unconditional causal relations (see the discussion of nonlinear models
below). Again, examples are found in Chapters 7 and 10.
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CHAPTER 5

Causation and Probability

In this chapter and its successors we investigate the connection between
causation, correlation and regression. Doing so requires introduction of
probabilities. Up to now probability distributions have not been discussed,
the reason being that probability is not involved in the characterization of
causal orderings, which has been our concern up to now. Henceforth it
is assumed that external variables are generated according to probability
distributions that are taken to be part of the specification of the model.
Probability distributions of the internal variables are derived by applying
the model to the assumed distribution of external variables.

1. Observed and Unobserved Variables

Also, we have not distinguished variables according to whether they
are observed (except in passing). The reason again is that whether or not
one variable causes or IN-causes another in a model– the subject of our
discussion up to now– does not depend on whether the analyst can observe
them. Thus we used x and y to denote external and internal variables
whether or not they are observed.

Now we are passing from determining causal orderings to empirical test-
ing of the causal orderings in proposed models and estimation of causal
coeffi cients. IN-causal coeffi cients are identified statistically only when both
the cause variable and the effect variable are observed. Consequently any
empirical work related to causation requires that the analyst specify which
variables are observed.

We will use capital letters to denote variables observed by the analyst
and lower-case letters to denote variables that are unobserved (and when the
discussion does not depend on whether or not they are observed, as through-
out the preceding chapters). As a simplification, all internal variables Y are
assumed to be observed.1 As noted in Chapter 1, the presence of unobserved
external variables implies that the coeffi cient matrices B or G include ones

1For full generality it would be necessary to allow for the existence of unobserved internal
variables (“latent variables”). In that case we would have

(5.1) A

[
Y
y

]
= B

[
X
x

]
.

Most of the examples below do not include latent variables, so we make no formal allowance
for them in the notation.
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to reflect the normalizations required in the presence of unobserved external
variables.2

2. Independent External Variables

Except as noted in the next section it is assumed that the external
variables, not being connected by the equations of the model, are uncondi-
tionally independently distributed (of course, they are generally correlated
conditional on internal variables3). Independence is a very strong assump-
tion, and most of the diffi culty in determining causal orderings comes from
the fact that it is usually not obvious which variables are to be taken as
external, given that that specification usually entails the assumption that
they are independent random variables.4

The reason the independence assumption is needed is that without some
restriction on the joint probability distribution of external variables we gen-
erally find that the coeffi cients associated with IN-causal orderings are not
identified even if the relevant variables are observed. For example, if X IN-
causes Y the causation coeffi cient is not identified if X is correlated with
the error term in a regression of Y on X.

If in a proposed model some of the variables provisionally specified as
external are observed they may have nonzero sample correlations, which
conflicts with the requirement just stated. The simplest way to respond to
this problem is to interpret nonzero sample correlations as reflecting sample
variation, so that the correlation is ignored. All models are simplifications,
and in some settings ignoring apparent correlations among external variables
may be an admissible procedure.

However, in most contexts taking that path is unacceptable, insofar as
it amounts to assuming away problems that are likely to be of first-order
importance empirically. An alternative and usually preferable procedure is

2If any unobserved external variable appears in more than one structural equation some
coeffi cients of that variable may not equal 1. Specifying all coeffi cients of such variables
equal to 1 would imply the assumption that the external variable has the same effect
quantitatively on more than one internal variable. In general this is an unlikely specifica-
tion given that coeffi cients depend on the units in which variables are measured, which is
arbitrary in the case of unobserved variables.
However, in some situations setting to 1 several coeffi cients of an unobserved external
variable that appears in more than one equation may be acceptable (see Chapter 10, note
3 for an example).
3In a well-known example of a correlation induced by conditioning on an internal variable,
suppose that actors are famous if they are either good looking or talented. Even if these
attributes are independently distributed across the general population of actors, they will
be negatively correlated conditional on an actor being famous: an untalented famous actor
is necessarily good looking.
4Investigators exhibit a strong preference for controlled experiments when they are feasible.
This is so because when treatments are assigned by lotteries there is no doubt about the
correctness of the assumption that the treatment variable is statistically independent of
all external variables other than the lottery outcome.
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to assume that existence of a nonnegligible correlation between two observed
variables indicates that those variables are causally related, and therefore
cannot both be external. In many applications, such as the private school
example discussed below, one has a strong prior belief in the existence of
such a causal link. At a minimum, resolving the misspecification involves
respecifying one of the two correlated variables as internal.5 Doing so makes
it necessary to introduce a new external variable, presumably unobserved.
Also, it is necessary to augment the model by including a new equation
expressing the variable respecified to be internal as a function of the other
of the correlated external variables and the new external variable. The
operative assumption now is that the new external variable is independent of
whichever of the correlated variables is external, and also of all other external
variables.6 Thus all external variables are independent in the reformulated
model.

There remains the question of what happens if the analyst is not willing
to specify either of two observed correlated variables as external. Analyt-
ically this is not a problem: one introduces two new unobserved indepen-
dently distributed external variables instead of one as above, and relabels
the two observed correlated variables as internal. Then each of the observed
internal variables is specified to be a linear function of both new external
variables. This results in the two observed variables being treated symmet-
rically: they are determined in a simultaneous bloc by the two unobserved
external variables. The consequence of weakening (by relaxing the assump-
tion that one of the correlated variables is external) the specification of the
model in this way is that it is more diffi cult to obtain IN-causation. This

5Simpson’s Paradox refers to a setting in which the resolution of correlated variables
implicitly treated as external is more involved. The supposed paradox is that it is possible
that a treatment that, based on correlations, appears to be successful with both men and
women taken separately may appear to be unsuccessful in a mixed population of men and
women. Under the presumption that correlations necessarily represent causation, this
appears paradoxical.
The apparent paradox owes to the implicit specification that the treatment variable is
external. The resolution is obtained by recognizing that treatment is properly modeled as
internal, depending on both gender and an external shock. A formal model incorporating
this specification would specify that gender affects the outcome directly as well as via
the treatment variable. Accordingly, the causal effect of the aggregate treatment on the
aggregate outcome is not implementation neutral: gender is a confounding variable in the
causal relation between treatment and outcome. This implies that the correlation between
aggregate treatment and aggregate outcome does not have a causal interpretation. There-
fore there is no presumption that it has the same sign as the corresponding correlations
for men and women taken separately, which do have a causal interpretation.
6Note the contrast with regression theory. The existence of correlation between two ex-
planatory variables causes no problems in estimating coeffi cients in a bivariate regression.
That this is true is exactly the point of multiple regression. Here, in contrast, the task is
not to estimate coeffi cients that may or may not be interpretable causally, but to establish
causal orderings and estimate IN-causal coeffi cients when they are well defined.
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construction is discussed in Chapter 10, Section 1. As the Cowles econo-
mists led us to expect, models that do not incorporate strong assumptions
do not have strong empirical implications.

3. Mean-Independent External Variables

In some applications it is desirable to specify a functional dependence
between one internal variable and several explanatory variables all of which
are binary (so that they take on one of two possible values, usually specified
as 0 and 1). This is particularly so in treatment evaluations: one wants to
specify as binary the treatment variable and sometimes also the variables
that cause it. If there exist at least two explanatory variables and they are
binary and independent, then in linear models the dependent variable will
not be binary.

To ensure that the dependent variable is at least potentially binary it is
necessary to weaken the specification of independence to mean-independence.
Random variable z2 is mean-independent of z1 if E(z2|z1) = E(z2) for all z1.
The assumption of mean-independence is weaker than full independence,
but stronger than uncorrelatedness (except with normal distributions, for
which all three are equivalent). Thus weakening the independence assump-
tion to mean-independence preserves the implication of full independence
that all correlations in a model’s variables reflect the structural equations
of the model rather than depending on uninterpreted correlations among
external variables.

The result that the range of a function of two variables, one of which
is mean-independent of the other, can be binary facilitates empirical inves-
tigation via regression of causal relations among binary variables. This is
so because the theory of linear regression requires that unobserved explana-
tory variables be mean-independent of observed explanatory variables; full
independence is not required. Below we will present an interpreted example
involving binary variables in which one of the external variables is mean-
independent of the other, but the two are not fully independent.

It is true that substituting mean-independence for the stronger assump-
tion of full independence may be seen as conflicting with the argument made
above that external variables should be free of any probabilistic interdepen-
dence whatsoever. Under this argument the proposed weakening of the
independence assumption must be disallowed. The force of this argument
is not to be minimized. However, we do not take this step; insisting on
full independence would complicate the analysis of models involving binary
external variables.

An example will make clear the implementation of the mean-independence
specification. Suppose that we have

(5.2) y = δ + βx1 + x2,
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with x1 and x2 specified to be external binary variables.7 Let x1 be given
by

(5.3) x1 =

{
1 with probability 1/2
0 with probability 1/2

.

The variable x2 is assumed to be given by

(5.4) x2 =

{
1− δ with probability δ
−δ with probability 1− δ

if x1 = 0, and

(5.5) x2 =

{
1− δ − β with probability δ + β
−δ − β with probability 1− δ − β

if x1 = 1. Here x2 is mean-independent of x1, but not fully independent.
Eq. (5.2) implies that y is binary, with the distribution

(5.6) y =

{
1 with probability δ + β/2

0 with probability 1− δ − β/2 .

Chapter 10, Section 1 includes an application of this use of the mean-
independent specification.

7Assume 0 < δ < 1 and 0 < δ + β < 1 to ensure that the computed probabilities are
admissible.





CHAPTER 6

Causation, Correlation and Regression

In this chapter the connection between causation on one hand and cor-
relation, regression and conditional distributions on the other is discussed.

1. Causation and Correlation

Holland [14] cited G. A. Barnard as writing “That correlation is not
causation is perhaps the first thing that must be said.” It is often also the
last thing that is said. Repeating this mantra does not make clear what
the relations are between causation and statistical measures of association.
Results from the preceding analysis allow clarification of such questions.

An internal variable y is probabilistically dependent on (that is, not
probabilistically independent of) an external variable x if and only if x ∈
E(y), so that there exists a causal path that connects x and y. Further, y2 is
dependent on x conditional on y1 if and only if there exists a causal path that
connects x and y2 that does not include y1.1 To see this, consider Example
3.1, in which the only causal path connecting x2 and y2 passes through y1.
We have

(6.1) F2(y2) = F3((y2 − α21y1)/β23),
where F2 is the cumulative distribution of y2 conditional on y1, and F3 is
the cumulative distribution of x3. The right-hand side does not include x2,
implying that x2 and y2 are probabilistically independent conditional on
y1. In Example 3.3, on the other hand, existence of the path x2 → y2 →
y3, which does not pass through y1, implies that y3 is dependent on x2
conditional on y1.

Two internal variables y1 and y2 are probabilistically dependent if and
only if for some x there exists a causal path from x to y1 and also a path
from x to y2, so that the external sets of y1 and y2 overlap. Consistent with

1It was observed in Chapter 1 that conditioning on an internal variable constitutes an
alteration of the model. Conditioning there, referring to respecifying internal variables
as external, had no connection with probabilities. Here, in contrast, we are using “con-
ditioning” in its probability sense. Obviously taking expectations conditional on internal
variables does not constitute an alteration of the model.
It would be best to designate these dissimilar operations– one involving causation, the
other correlation– by different names. Regrettably, both usages of “conditioning”are well
entrenched, although rarely distinguished. The same point applies to the ambiguous term
“holding constant”. The context here will always make clear which meaning is intended.
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E(y1) having a nonempty intersection with E(y2), one of these variables may
or may not cause the other, or they may be simultaneously determined.
Thus absence of statistical dependence implies absence of causation, but the
presence of statistical dependence does not imply causation. The mantra,
construed as the assertion that neither of two correlated variables necessarily
causes the other because there may exist external variables that cause both,
is correct.2

2. Covariances and Regressions

Every internal variable yi in a linear model can be written as

(6.2) yi − E(yi) =
∑
j

γij(xj − E(xj)),

where j indexes the variables in E(yi), and the γij are elements of the reduced
form coeffi cient matrix. The assumptions that the xj are independent and
have finite second moments implies that we have

(6.3) γij =
cov(yi, xj)
var(xj)

.

Similarly, if we have yj ⇒ yi and IN-causation is direct, αij satisfies

(6.4) αij =
cov(yi, yj)
var(yj)

.

To see this, consider the model (3.14)-(3.15), which has y1 ⇒ y2|x2 but not
y1 ⇒ y2. Simplifying by setting the means of x1, x2 and x3 equal to 0, we
have

(6.5) cov(y1, y2) = E(y1y2) = α21var(y1) + β12β22var(x2).

In the special case β22 = 0 the model (3.14)-(3.15) reduces to the model
of Example 3.1, in which we have y1 ⇒ y2. From eq. (6.5), the regression
coeffi cient of y2 on y1 equals α21 in that case. Thus when we have y1 ⇒ y2
not only is the causal coeffi cient well defined, but also it coincides with the
population regression coeffi cient of y2 on y1. It follows that, assuming that
y1 and y2 are observed, the causal coeffi cient can be consistently estimated
by least squares.

These results have implications for the most basic regression theory.
Textbook expositions emphasize that consistent regression estimators are
available only if the regressor is assumed to be uncorrelated with the error.
The uncorrelatedness result is true by construction for any two variables

2In the philosophy literature this assertion is the “principle of the common cause”. It is
correct in our setting. Philosophers have debated whether it is true in general. See, for
example, Reiss [31].
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(with finite second moments) regardless of the causal relation between the
dependent and explanatory variables, or lack thereof.3 Let y3 be the error
term in a regression of y2 on y1. We have

(6.6) y3 = y2 −
cov(y2, y1)
var(y1)

y1,

from which it is immediate that cov(y3, y1) = 0. It is hard to imagine what
it means for an regression error to be correlated with a regressor; if it is
correlated with a regressor it is not a regression error. However, for the
present purpose the question is not whether a regression error is uncorrelated
with the regressors, but whether the error in the causal equation is correlated
with the regressors (equivalently, whether the error in the causal equation
coincides with the error in the regression), which it may or may not be. This
issue is discussed in the following section.

3. Regressions Based on Causal Equations

Under the reparametrization outlined on p. 18 the causal form of a struc-
tural model displays each internal variable of the model as directly caused
by each member of a subset of the external and internal variables of the
model (a different subset for each internal variable, of course). Depending
on the model, the causal coeffi cients may represent either unconditional or
conditional direct IN-causation.

Consider an equation of the causal form in which at least one of the right-
hand side variables is observed. That equation is a candidate to be viewed as
a regression. In that candidate regression the effect variable is the dependent
variable and the observed causal variables are the explanatory variables. It
is assumed that all the observed variables that appear on the right-hand
side of the causal equation, and only these (pending discussion below), are
entered as explanatory variables. The error term in the candidate regression
is the counterpart of the unobserved variables in the causal equation.

Whether or not the candidate regression is interpretable as a regres-
sion depends on the error term– that is, the unobserved variables (which
are external; recall that we are assuming that all internal variables are
observed)– that appear in the causal equation for Yn. The critical deter-
minant is whether the union of the external sets of these variables is or is
not disjoint from the union of the external sets of the observed variables in
that equation. If so, the error in the candidate regression is independent
of the explanatory variables. That being so, the coeffi cients in the univari-
ate or multivariate regression of Yn on the explanatory variables coincide

3This point was made by Angrist and Pischke [3], p. 128 in their critique of prevailing
instruction in econometrics. These authors did not indicate what conclusion could be
drawn from this observation, contenting themselves with the statement that “it’s hard to
see how this statement [that errors must be assumed to be uncorrelated with regressors]
promotes clear thinking about causal effects.”
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with the causal coeffi cients, so the candidate regression is in fact a regres-
sion (mean-independence of the error from the explanatory variables is the
defining attribute of a regression). This regression is termed the associated
regression for that causal equation. Least squares provides consistent esti-
mates of the causal coeffi cients in each causal equation that has an associated
regression.

The causal coeffi cients of the observed variables in the associated re-
gression may calibrate either unconditional or conditional causation. For an
example of the latter, consider the causal model

Y1 = x1 + β12x2(6.7)

Y2 = x2 + x3(6.8)

Y3 = α31Y1 + α32Y2 + x4,(6.9)

which coincides with Example 3.3 except for inclusion of the unobserved
external variable x4 in eq. (6.9). Neither Y1 nor Y2 IN-causes Y3 uncon-
ditionally, but each does IN-cause Y3 conditional on x2. Here a bivariate
regression of Y3 on Y1 and Y2 is the associated regression for the causal
equation (6.9), implying that the regression coeffi cients of Y1 and Y2 coin-
cide with the conditional causal coeffi cients α31 and α32.

The causal coeffi cients that appear in a given equation of a causal model
determine the magnitude of direct causation only. The same variable that
directly causes an effect variable may also cause it indirectly along a differ-
ent path; these indirect links are not represented in the causal regression.
Examples in which regression coeffi cients measure the direct effect of a cause
variable on an effect variable, but not its indirect effect, are found in Chapter
10.

On the other hand, the union of the external sets of the explanatory vari-
ables may include one or more of the unobserved variables in the regression.
If so, the unobserved term in the causal equation is not mean-independent of
the explanatory variables in the candidate regression. Equivalently, the un-
observed term in the causal relation does not coincide with the corresponding
regression error, which by construction is mean-independent of the explana-
tory variables. Also equivalently, the regression coeffi cients do not coincide
with the causal coeffi cients, implying that least-squares estimation does not
produce consistent estimates of causal coeffi cients. In that case the causal
equation under discussion does not have an associated regression. Estima-
tion techniques other than least squares, such as instrumental variables or
regression discontinuity (both discussed below), are needed to resolve this
problem.

For an example in which the candidate regression is not an associated
regression, suppose that eq. (6.9) is replaced by

(6.10) Y3 = α31Y1 + α32Y2 + β32x2 + x4,
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so that x2 directly causes all three internal variables. Here the candidate
regression involves the same explanatory variables, Y1 and Y2, as under eq.
(6.9). However, it is not an associated regression due to the fact that x2 is
in the external sets of Y1 and Y2, and is also a component of the regression
error. Accordingly, the regression coeffi cients of Y1 and Y2 differ from α31
and α32, the coeffi cients measuring the effects of Y1 and Y2 on Y3 conditional
on x2.

In the preceding discussion it was assumed that the explanatory variables
in the regression coincide with the observed variables in the causal equation.
If, contrary to this, the regression is specified to include variables that do not
appear in the causal equation, or does not include variables that do appear in
the causal equation, the candidate regression is disqualified as an associated
regression. Accordingly, least-squares will generate inconsistent estimates of
causal coeffi cients. For example, assume that eq. (6.9) is replaced with

(6.11) Y3 = α31Y1 + x4,

so that the regression of Y3 on Y1 alone now is the associated regression
for the causal equation (6.11) (Figure 6.1): the single regression coeffi cient
coincides with the causal coeffi cient α31. The fact that Y1 and Y2 have
overlapping external sets implies that they are correlated. It follows that the
regression coeffi cient of Y3 on Y1 in the bivariate regression that also includes
Y2 as an explanatory variable differs from the corresponding coeffi cient in
the univariate regression of Y3 on Y1. Similarly, the regression coeffi cient
of Y2, being generally nonzero, is not interpretable as a causal coeffi cient.
Analysis of the opposite case, in which the candidate regression deletes an
observed variable that appears in the causal equation, is similar.

If the causal equation that determines Yn has an associated regression,
and if that regression contains a single observed explanatory variable, that
variable IN-causes Yn. However, we have seen that if there exist two or
more internal explanatory variables in the associated regression it is pos-
sible that neither of these IN-causes Yn, consistent with existence of an
associated regression. An important implication is that coeffi cients associ-
ated with conditional causation can sometimes be estimated consistently by
least squares even when unconditional causation fails. The model presented
above exemplifies this.

4. Instrumental Variables

In the model

Y1 = α11X1 + β12x2(6.12)

Y2 = α21Y1 + x2 + x3(6.13)

we have Y1 ⇒ Y2|x2, with causal coeffi cient α21. However, the regression of
Y2 on Y1 is not an associated regression for the causal relation (6.13). This
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is so because the unobserved term in eq. (6.13) is not mean-independent
of Y1, in view of the fact that x2 is a determinant of Y1, from eq. (6.12).
Therefore the coeffi cient in the least-squares regression of Y2 on Y1 does
not equal α21. We conclude that least-squares regression does not produce
a consistent estimator of the coeffi cient associated with Y1 ⇒ Y2|x2.

However, α21 can be estimated, implying that the effect of Y1 on Y2
conditional on x2 can be evaluated. From the fact that a reduced-form
coeffi cient equals the product of the coeffi cients associated with the direct
causal relations along the causal path, we have

(6.14) α21 =
γ21
β11

=
cov(X1, Y2)/var(X1)
cov(X1, Y1)/var(X1)

=
cov(X1, Y2)
cov(X1, Y1)

.

The rightmost term in eq. (6.14) is recognized as the population counterpart
of the instrumental variables estimate of α21, with the instrument being X1.
Because X1, Y1 and Y2 are observed the instrumental variables regression
can be implemented empirically. This is so even though x2, the variable
that confounds the unconditional IN-causal relation between Y2 and Y1, is
assumed to be unobserved.

As this example indicates, a valid instrument must be an observed ele-
ment of the external set of the cause variable, and must be related to the
effect variable only through paths that pass through the cause variable.

See Chapter 10, Example 2 for this use of instrumental variables esti-
mation.

x1 x2 x3 x4

Y1 Y2

Y3

Figure 6.1



CHAPTER 7

Extensions

Our focus so far has been on static linear models. As seen in preced-
ing and succeeding chapters, extensive results are available for that case.
Frequently, however, more general settings are required. In this chapter we
briefly discuss what happens under more general specifications.

1. Nonlinear Models

Sometimes the logic of the model being analyzed forces a nonlinear spec-
ification. A common example is a model of execution by firing squad, in
which case the victim dies if any of the executioners hits his target. This
causation is most easily modeled using a maximum function, which is in-
herently nonlinear. It is worthwhile discussing, if only in passing, to what
extent the analysis of linear models applies in the nonlinear case.

With nonlinear models maps from external to internal variables are well
defined only when the structural equations have a solution that is unique (in
the linear case existence and uniqueness are guaranteed by the assumption
that A in eq. (1.1) is nonsingular, but no such simple condition carries
over to nonlinear settings). Therefore it is necessary to assume separately
that models are such that the solution exists and is unique. We make this
assumption throughout.

Even if the model has a unique solution, in nonlinear settings the effect
on an internal variable of an intervention on an external variable gener-
ally depends on the assumed values of other external variables. Further,
in analyzing interventions in nonlinear models it is necessary to specify the
baseline value of each external variable and its value under intervention
individually– the difference between the two is not suffi cient to determine
the effect of the intervention, contrary to the case in linear models. Ac-
cordingly, the constant that measures causation in the linear case (assuming
implementation neutrality) is replaced in the nonlinear case by an internal
variable that depends on all the relevant external variables.

In a nonlinear setting the definition of external sets must be modified to
allow for the altered form of the dependence of effects on causes. We define
the external set of yi as the set of external variables each of which affects yi
for some, but not necessarily all, values of the other members of the set. By
that standard all the members of the firing squad cause the outcome, because
each member’s shot determines whether the vectim is killed in the event that
all the other members’shots miss the victim. This definition implies that
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some specifications of the baseline and the intervention result in a causal
effect of zero: a member’s shot does not affect the outcome if any of the other
members hits his target. In contrast, in linear settings if an external variable
causes an internal variable the effect of an intervention is never zero. The
definition just presented may appear arbitrary by the standards of common
usage, but it preserves the interpretation of the external set as the smallest
subset of the external variables that allows a complete determination of the
effect variable.

We noted in Chapter 5 that in problems in which the treatment variable
and also the external variables that cause the treatment variable are binary
it is possible to preserve linearity, although at the cost of weakening the as-
sumption that the external variables are independent. If instead the function
determining the treatment variable is nonlinear, then the treatment variable
may be binary even though the external variables are fully independent and
may or may not be binary.

Given the modification specified above in the definition of external sets,
we can carry over from the linear case the definition of the direct causal
relation: x1 directly causes y2 if x1 ∈ E(y2) and x1 is directly connected to
y2. Correspondingly, y1 directly causes y2 if y1 is directly connected to y2
and E(y1) ⊂⊂ E(y2). Similarly, the definition of IN-causation is unchanged;
a variable IN-causes an internal variable if it causes that variable, and if
also all interventions consistent with a given change in the cause variable
generate the same change in the effect variable.

Frequently it is convenient to specify models in which the treatment,
being binary, is generated by a nonlinear function, but the relation between
treatment and outcome is linear and IN-causal. For example, we can specify
that y1 is generated by a nonlinear equation such as

(7.1) y1 =

{
1 if β11x1 + β12x2 ≥ 0

0 otherwise
.

We have that x1 and x2 IN-cause y1, with the effect of an intervention on x1
depending separately on both the baseline value of x1 and its value under
intervention (as opposed to depending on only the difference between the
two, as in the linear case), and also on x2, due to the nonlinearity of eq.
(7.1). Assume that y2 is determined by

(7.2) y2 = α21y1 + β23x3.

In the model (7.1)-(7.2) we have y1 ⇒ y2, with the causal coeffi cient α21.
The fact that IN-causation of y2 by y1 is representable by a single coeffi cient
here reflects the fact that even though the model as a whole is nonlinear,
eq. (7.2) is linear. This model has the causal graph shown as Figure 3.1,
coinciding with the causal graph that represents the corresponding linear
model.
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In Chapter 4 it was noted that in linear models if we have y1 → y2 and
E(y1) is a singleton, then y1 IN-causes y2 even if there exists a path connect-
ing the single variable constituting E(y1) and y2 that does not pass through
y1. This result does not necessarily carry over to nonlinear models. The rea-
son is that in linear models the map from y1 to y2 can be inverted, implying
that when E(y1) is a singleton specifying ∆y1 is equivalent to specifying the
intervention itself. It follows that the effect on y2 of the intervention on y1
is unambiguous even though it involves a path that does not pass through
y1. In the nonlinear case, however, y1 → y2 may not be invertible even when
E(y1) is a singleton, implying that specifying ∆y1 may not give enough in-
formation about the intervention to determine its effect on y2. An example
in which this occurs is discussed in Chapter 9.

2. Parameters

In Chapter 1 we referred to models of the form Ay = Bx as linear,
implying that the coeffi cient matrices A and B were characterized as con-
stants. If so, the members of A and B are not subject to intervention.
But coeffi cients can also be variables in the mathematical sense, so we need
terminology that distinguishes coeffi cients that are specified to be mathe-
matical variables from those specified to be constants. Coeffi cients that are
variables in the mathematical sense are termed parameters.1 Models that
take the form (1.1) in which the elements of A and B are treated as pa-
rameters are bilinear in variables, not linear. It follows that much of the
discussion above of nonlinear models applies when coeffi cients are specified
as parameters rather than constants.

It is essential that model-builders specify whether coeffi cients are to
be interpreted as constants or parameters. If parameters, they must be
designated as external or internal, just as with other variables, and model
specification must include the map from external parameters to internal pa-
rameters as well as that from parameters and external variables to internal
variables.2 The reduced form of a nonlinear model, if it exists (meaning
if the model’s solution exists and is unique), consists of functions mapping
external variables, including external parameters, to internal variables and
internal parameters. Sometimes the terms “deep parameters” and “shal-
low parameters”are adopted in place of external and internal parameters.
Thus the model consists of functions relating shallow parameters to deep

1In classroom lectures Lawrence Klein defined parameters as “constants that vary”. We
graduate students were amused, as Klein intended; with hindsight we should have been
puzzled.
2Some settings incorporate the specification that constants are linked by functional rela-
tions. For example, if external variables are related by mean-independence rather than
full independence the constants that describe their respective distributions are linked by
functional restrictions (as with β and δ in Chapter 5, Section 3). Another example is
found in the following section. These constants need be relabeled as parameters only if
interventions on them, or affecting them, are introduced.
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parameters, and also functions relating parameters to variables that are not
parameters. External sets include deep parameters as well as external vari-
ables that are not parameters. Otherwise the analysis of causation is the
same whether or not the model includes parameters.

The effects on internal variables of interventions on shallow parameters
are generally not defined due to failure of IN-causation. This is the Lucas
[24] Critique. An example is discussed in the following section.

3. Multidate Models

Causation analysis is essentially the same in multidate models as in the
single-date models studied up to now. Demonstrating this requires extending
the terminology. In many discussions involving multidate models the term
“variable” is used in reference to an n-tuple or sequence of mathematical
variables indexed by time (assuming discrete time), and also to the elements
of the sequence. To avoid this ambiguity we will call such an n-tuple or
sequence a process, and reserve the term “variable”for single mathematical
variables. If y is a process, then, the elements yt of the process are termed
variables. Thus in multidate models we have two types of mathematical
variables: elements of processes and parameters.

In many discussions causation is represented as being inextricably linked
to time: causes are viewed as necessarily preceding effects in time. This
identification dates at least to Hume [15]. If so, static multidate models–
models in which internal variables have external sets that include future-
dated variables– are ruled out. Insisting on this point is a mistake: there
is no justification for a doctrinaire injunction against multidate models in
which all information is revealed at a single initial date. Analysts typically
represent revelation of information by assuming that processes are measur-
able with respect to a filtration. The definition of a filtration allows the
σ-algebra that represents currently available information to be the same at
every date. Such models allow internal variables to depend on future-date
external variables. Under this treatment multidate models without gradual
revelation of information are legitimate (if usually unrealistic), a special case
of dynamic models. Thus there is no intrinsic link between causation and
time.

Most multidate models involving causation specify that information strictly
increases over time, so that the σ-algebra representing information at any
date is a proper subset of each σ-algebra at a later date. In such models
the dating convention is usually that the time subscript of each variable is
the earliest date at which that variable is measurable. It follows that causes
precede or are contemporaneous with effects: the external set of yj,t+1 con-
tains external variables that are not measurable at t, so we cannot have
yj.t+1 → yi,t.
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The simplest effi cient markets finance model will illustrate analysis of
causation in multidate models, and will indicate the consequences of spec-
ifying coeffi cients as constants vs. parameters. The model relates three
processes: two internal processes consisting of dividends yd and stock prices
yp, and an uninterpreted external process x. The variables constituting these
processes are denoted ydt , y

p
t and xt. Suppose that dividends follow a first-

order autoregression:

yd0 = x0(7.3)

ydt+1 = αddy
d
t + xt+1, t = 0, 1, ...(7.4)

(|αdd| < 1), where x is a process consisting of independently and identically
distributed random shocks. Stock prices obey

(7.5) ypt = δEt(y
p
t+1 + ydt+1),

so that δ, the discount rate, is the reciprocal of the expected gross rate of
return, assumed to be the same at every date. Here Et denotes mathe-
matical expectation conditional on information available at t. For now the
coeffi cients αdd and δ are specified to be constants, not parameters. Solving
the model (and ruling out bubbles) results in

(7.6) ypt = αpd y
d
t ,

where αpd satisfies

(7.7) αpd =
δαdd

1− δαdd
,

by an easy calculation. The causal graph for this model for dates 0, 1 and
2 is shown in Figure 7.1.

The same model can be written either as (7.3)-(7.4)-(7.5), with coeffi -
cients δ and αdd, or as (7.3)-(7.4)-(7.6), with coeffi cients αdd and αpd. These
models are equivalent due to the fact that the coeffi cients satisfy eq. (7.7).
The equivalence between these two parametrizations depends on the specifi-
cation of the coeffi cients as constants rather than parameters. The external
set of ydt is {xt, ..., x0}. The external set of y

p
t is the same, implying that y

d
t

and ypt are simultaneously determined.
Suppose now that δ, αdd and αpd are specified as parameters rather

than constants, and assume that αdd and δ are external, implying that αpd
is internal. This specification corresponds to the usual presentation of this
model: agents’rate of time preference and the autocorrelation coeffi cient of
dividends determine the equilibrium dividend yield. Then the external set
for αpd is {δ, αdd}, and the external sets for ydt and pdt are {δ, αdd, xt, ..., x0},
so that, again, ydt and p

d
t are simultaneously determined.
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Consider the effect of an intervention on the deep parameter δ from δb

in the baseline to δi under intervention. The effect on αpd is given by

(7.8) αipd − αbpd =
δiαdd

1− δiαdd
− δbαdd

1− δbαdd
,

from eq. (7.7). As discussed in the preceding section, from the nonlinearity
of eq. (7.7) the left-hand side cannot be written as a function of δi − δb;
the values of these variables must be specified separately. Also, the effect
on αpd of the intervention on δ depends on αdd, which is not involved in the
intervention. The analysis of the intervention on the elements of the process
yp is similar.

From eq. (7.7) there is no ambiguity about hypothesizing interventions
in δ or αdd on the internal parameter αpd or any of the internal variables.
However, the effect of αpd on the internal variables is ambiguous due to fail-
ure of IN-causation: an intervention on αpd could reflect an intervention on
either δ or on αdd, and these have different effects on the internal variables.
This is the Lucas Critique [24] referred to in the preceding section: uncondi-
tional effects of interventions on shallow parameters may not be well defined
due to failure of IN-causation. The causal graph for this model with coef-
ficients interpreted as parameters rather than constants is shown in Figure
7.2(a).

One might prefer to solve out shallow parameters. In the present model
the only shallow parameter is αpd. The causal graph with αpd solved out is
shown in Figure 7.2(b). Although formally the causal graphs differ according
to whether or not shallow parameters are solved out, substantively the two
models are the same.

4. The Causal Markov Condition

An important tool that has been used in modeling networks is the causal
Markov condition, which makes possible empirical testing of causal order-
ings. The causal Markov condition, as formulated by Spirtes, Glymour and
Scheines [36], for example, states that every variable of a model is probabilis-
tically independent of all variables other than its descendants and parents,
given its parents.

The status of the causal Markov condition is ambiguous. In places it
is treated as a derivable implication of the other assumptions defining a
model. Alternatively, it is treated as an axiom separate from other assump-
tions specifying the structure of the model. Or it may be regarded as part
of the definition of a Bayesian network; this presumption usually involves
sidestepping the question of whether a causal graph is a Bayesian network.
Finally, it is sometimes treated as a substantive proposition that can be
evaluated on philosophical grounds (see Hausman and Woodward [12] for
extended discussion).
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The most obvious problem here is that, from elementary probability
theory, two random variables are always independent conditional on one of
them. It follows from the fact that any internal variable is a deterministic
function of its parents that we can certainly delete “and parents”from the
definition of the causal Markov condition. This point was noted by Hausman
and Woodward. A slightly less obvious point is that, again because any
internal variable can be written as a deterministic function of its parents, any
internal variable is independent of all variables, including its descendants,
conditional on its parents. It follows that under that reading the causal
Markov condition as just stated is valid, but trivially so.

These points depend on the definition adopted in this monograph of par-
ents as the set of all variables that directly cause the variable in question.
Shocks, being random variables, are included in the set of parents of the
variables they cause. In treatments of causation one often sees discussions
that presume that error terms are not causal parents. However, no guidance
is given as to the basis for distinguishing variables that are causal parents
from those that cause a variable but are not counted among its parents.
Variables characterized as errors are unobserved, but there is no apparent
justification for denying their status as causal parents for this reason: the
definition of causal orderings presented above does not depend on whether
variables are observed. Hausman and Woodward explicitly posited existence
of causal variables that are not included in the model under consideration
and therefore do not qualify as parents. Presumably these appear as vari-
ables in some unspecified meta-model. It is not explained what purpose is
served by introducing this complication.

There exist propositions similar to the causal Markov condition as for-
mulated above that are correct and nontrivial, and are easily derived in
the framework set out here. We set forth one such proposition: if we have
y1 ⇒ y2, then y2 is independent of any ancestor of y1, conditional on y1.
This follows from the result from Section 1 of the preceding chapter; if y3
is an ancestor of y1 and is correlated with y2 conditional on y1, then there
exists a path connecting y3 and y2 that does not pass through y1. If so, any
member of E(y3) is a confounding variable, implying y1 ; y2.

The proposition just stated has a partial converse: if yj → yk → yi and
yj is independent of yi conditional on yk, then we have yj ⇒ yi. The fact
that we have yj → yk → yi implies that there exist paths connecting yj and
yi. The fact that yj and yi are independent conditional on yk implies that
all causal paths connecting yj and yi pass through yk. This is the definition
of IN-causation.

Existence of such theoretical results implies that, as part of a compound
hypothesis, IN-causation is testable. The availability of a partial converse
suggests that in some settings the test may have high power.
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CHAPTER 8

Potential Outcomes

The treatment of causation proposed in this monograph is essentially
a refinement of the approach of the Cowles economists, particularly Simon
[34]. A central feature of the Cowles account is that it is based on explicit
specification of a formal model consisting of observed and unobserved vari-
ables that are linked by equations. This model defines the population; the
goal of statistical analysis is to estimate the model’s coeffi cients and to test
hypotheses about them based on a sample of draws from the population.
In most (but not all) Cowles treatments, internal and external variables are
distinguished, so that there is no doubt about which variables the model
is intended to explain and which are taken as given. A clear distinction
is drawn between the population and the sample. Thus the statistics are
defined as functions of the observations in the sample, and are taken as
estimators of the underlying population coeffi cients.

This seems basic and completely noncontroversial, but it is not so. Treat-
ments of causation in sociology and a variety of other disciplines have taken
a different path, one involving “potential outcomes” (see Morgan-Winship
[26] and Imbens-Rubin [16] for recent expositions). With the increasing
interest in treatment evaluation, the potential outcomes approach has been
widely adopted in economics in recent years. In contrast, econometricians
and macroeconomists who connect with the Cowles tradition appear to be
a dying breed.

The central idea of the potential outcomes approach is that it explicitly
specifies treatment outcomes for both the case when the treatment is applied
to an individual and when it is not. Thus for agent i we have Y 1i if the
treatment is applied and Y 0i if it is not (note that we are departing from
the notation defined above, instead following the notation of the potential
outcomes literature by using Y and T to denote the outcome and treatment
variables).

The fact that Y 1i and Y 0i cannot both be observed has been taken to
constitute the central problem of causal analysis (Holland [14]). Here we
have an immediate consequence of the failure to distinguish beween popu-
lations and samples. If one has an underlying model of the population that
is accurate to a reasonable extent, then the unobserved outcomes can be
determined with reasonable accuracy. It is exactly the point of specifying
formal models that doing so makes possible such identifications.

55
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Pearl [29] in his comments on Dawid [9] made this point explicitly and
clearly. Assume that we have observations of 2, 3 and 6 for mass, acceleration
and force, in conformity with Newton’s law. But suppose instead that mass
had been 4 instead of 2, and that force is not directly observed. This does
not pose any deep existential problem for causal analysis– Newton’s law
allows us to be confident that force is 12. Thus to the extent that the model
is accurate, the value for the unobserved potential outcome implied by the
model will be accurate.

The problem, of course, is that we can rarely be as confident of the un-
derlying model as this example implies (although even Newton’s laws were
revised with the advent of relativity). The obvious fact that potential out-
comes cannot all be observed should indeed be viewed as a critical problem
with causal analysis as conducted under the potential outcomes approach.
However, this is so only because the essential step of specifying a model that
describes an underlying population and evaluating its accuracy, and distin-
guishing that model from a sample consisting of draws from the population,
has been skipped (this is especially clear in Holland [14]). The fundamental
problem of causal analysis is not that some potential outcomes are unob-
served; the problem is that it is usually diffi cult to come up with convincing
rationales for specifications of which variables can be assumed external.

The potential outcomes approach deletes the distinction, central to the
approach taken here, between the population, characterized as a theoretical
construct, and the sample.1 The data, rather than being viewed as draws
from a population, are themselves designated as the population, or as a
subset of a larger set of agents designated as the population. The observed
values of outcome variables Y obs

i (= Ti · Y 1i + (1 − Ti) · Y 0i ), where Ti is
a binary variable designating treatment assignment, are random variables.
However, this is so not because Y 1i and Y

0
i are random variables, but because

treatment assignment, represented by the binary variable Ti, is taken to be
a random variable. That this is so is not clear from the potential outcomes
literature because, although the range of Ti as {0, 1} is clearly specified,
the provenance of Ti is not characterized (if Ti is the value of a function,
what is the domain of that function?). However, the frequent application in
the potential outcomes literature of notation associated with mathematical
expectation to Y obs

i and related variables allows for no other interpretation.

1Observe in this connection that in the notation above we followed the potential outcomes
specification, which associates what are termed the population outcomes with the agent-
specific values Y 0

i and Y
1
i . In the potential outcomes usage, potential outcomes that are

not agent-subscripted denote averages (often called expectations) over individuals, not
variables in a theoretical model as here.
In the terminology of the potential outcomes approach agent-specific variables are associ-
ated with the sample, not the population. Nothing in the potential-outcomes framework
corresponds to the population as defined here.
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1. Characterizing Potential Outcomes

It is not clear whether in adopting the notation Y 0i and Y
1
i proponents of

the potential outcomes approach intend the specification that the outcome
for agent i depends on no variables other than the treatment variable for
agent i. The notation, which displays the dependence of Yi on Ti but not
that on other causal variables, supports this interpretation. This exclusion
of explanatory variables other than T leads to obvious diffi culties. It is
problematic to specify, for example, that a patient’s outcome depends on
whether he or she is treated for the disease, but not on whether he or she
has the disease.

Another piece of textual evidence points in the same direction: propo-
nents of the potential outcomes approach emphasize the importance of the
Stable Unit Treatment Value assumption (Rubin [33]), which requires (1)
that the outcome for agent i does not depend on the treatment status of
other agents, and (2) that the treatment status for agent i determines a
unique outcome for agent i.2 The fact that the SUTV assumption is viewed
as underlying the specification of treatment outcomes as Y 0i and Y

1
i suggests

that proponents of potential outcomes regard it as essential to exclude all
variables other than the i-th agent’s treatment as determinants of the i-th
agent’s outcome, as implied by the notation.

If the notation Y 0 and Y 1 is meant to specify that outcome Y depends
only on treatment T we have that the external sets of Y and T are the same:
any external variable that causes T also causes Y, and vice-versa. In that
case T does not cause Y under the definition adopted here, due to failure of
the proper subset condition. This analysis, supposedly of causation, is seen
to replace causation with simultaneous determination.

To avoid this outcome we assume that the structural equation expressing
the functional relation between Y and T contains an additional term:

(8.1) Y = αY TT + term.

If E(term) (meaning the union of the external sets of all the variables in
“term”) contains at least one variable not in E(T ), then we have T → Y.
Assuming that T is a binary variable and that an intervention on T does
not affect “term”, we have from eq. (8.1) that the potential outcomes Y 1

and Y 0 are given by

2There does not seem to be any substantive reason for excluding dependence of outcomes
on other agents’treatments, or other potential causal variables, in this way. It is worth
observing that this assumption excludes a class of models that is of central importance
in applied work. For example, it is altogether reasonable to specify that the i-th agent’s
probability of incurring a disease depends not only on whether he was vaccinated, but also
on whether others in his community were vaccinated.
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Y 1 = αY T + term(8.2)

Y 0 = term,(8.3)

where “term” is the same in eqs. (8.2) and (8.3). It follows that αY T
measures the effect of the treatment, Y 1 − Y 0.

Since an intervention on T is attributable to interventions on any of the
variables in E(T ), the condition that the intervention on T does not affect
“term” is guaranteed to be satisfied only if E(T ) and E(term) are disjoint.
Disjointness of these sets is a suffi cient condition for IN-causation of Y by
T . An external variable that appeared in both E(T ) and E(term) would be a
confounding variable, the presence of which would render the effect on Y of
an intervention on T ambiguous. This failure of IN-causation would imply
that the effect of the intervention on Y , being undefined, would not equal
αY T .

It is seen that, translated into the terminology set out here, potential
outcomes are well defined only when either T and Y are simultaneously
determined or T IN-causes Y. Thus the assumption that Y 0 and Y 1 are well
defined implies that if the relation between T and Y is causal, it is IN-causal:
there are no confounding variables (as defined here), and therefore there is
no diffi culty in estimating the causal coeffi cient by least-squares regression.3

2. Confounding Variables

As would be expected from the foregoing discussion, the analysis of
confounding variables in the potential outcomes literature differs from that
outlined in this monograph. The definitions of confounding variables are dif-
ferent: under the usage employed here a confounding variable is an external
variable that causes the treatment variable and also the outcome variable
via a causal path that does not pass through the cause variable. As just
argued, the assumption that the potential outcomes are well defined implies
that there are no confounding variables.

In the potential outcomes literature, in contrast, it appears that con-
founding variables are defined as variables that are correlated with both
the treatment variable and the outcome variable, although again this is not
clear. These definitions are not the same: any variable x in the external set

3It follows that if potential outcomes are well defined the effect of treatment on the treated
is the same as on the untreated. This result is most easily verified from an example.
Consider a model the causal graph of which is Figure 3.1. Here y1, the treatment, is binary,
and the underlying model may be linear or nonlinear. Intervention on the treatment
consists of changing the assumed value of x1 or x2, holding constant the other, so as to
change y1 from 0 to 1, or vice-versa. The (absolute value of the) difference between the
potential outcomes is the same regardless of whether y1 = 0 is the baseline and y1 = 1 is
the intervention, or vice-versa. It follows that the effect of altering an agent’s treatment
status from treated to untreated is the negative of the effect of the opposite alteration.
This is so despite the fact that, in general, altering x1 or x2 changes the probability of an
agent’s being treated.
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of the treatment variable is correlated with both the treatment variable and
the outcome variable. Despite these correlations being nonzero, x is not a
confounding variable under our definition if all the paths connecting x with
the outcome variable pass through the treatment variable.

In the potential outcomes literature it is assumed that the causal co-
effi cient is well defined even in the presence of confounding variables, even
though it cannot be identified with the regression coeffi cient of outcome
on cause. In contrast, here we have asserted that in the presence of con-
founding variables unconditional IN-causal coeffi cients are undefined. As we
have seen, we have conditional IN-causation if the conditioning set includes
the confounding variables. If so the coeffi cient quantifying conditional IN-
causation is well defined. For example, in Example 3.3 we have y1 ; y3,
due to the presence of x2 as a confounding variable, but also y1 ⇒ y3|x2.
Therefore the coeffi cient quantifying the effect of y1 on y3 holding constant
x2 is well defined. In the potential outcomes literature no distinction is
drawn between unconditional and conditional causation.

A variety of statistical treatments are proposed to deal with the inconsis-
tency supposedly introduced by differential access to treatment induced by
confounding variables, assuming these to be observed. Rosenbaum and Ru-
bin [32] proposed propensity scores, defined as statistics based on observed
confounding variables that measure differences in treatment probabilities
(see Athey-Imbens [4] for a recent discussion). It is asserted that if propen-
sity scores are held constant then the inconsistency induced by differential
access to treatment is eliminated.

The contention that differential access to treatment necessarily induces
inconsistency is incorrect: as just noted, existence of variables affecting the
likelihood of treatment is consistent with IN-causation of outcomes by treat-
ments as long as these variables influence outcomes only via paths that in-
clude the treatment. Having assumed that Y 0i and Y 1i are well defined,
proponents of potential outcomes are excluding causal paths to the outcome
variable that do not include the treatment, thus guaranteeing IN-causation
regardless of the possible existence of differential access to treatment.





CHAPTER 9

Treatment Evaluation

In recent years a large literature has come into existence specializing cau-
sation analysis to the task of determining the effect of a treatment variable
on an outcome variable. Most, but not all, of the papers in the treatment
evaluation literature use the potential outcomes terminology, discussed in
the preceding chapter. Here we avoid repetition by focusing on aspects of
treatment evaluation other than those associated with use of the potential
outcomes framework.

The task is to evaluate the effect of a treatment on a population of agents.
The evaluation is based on analysis of a sample from the population of agents
for which data are available. Each member of the sample is represented by an
observed variable Zt (which at this point may or may not be external, as the
notation indicates) that characterizes the level of the treatment undergone
by that member and an observed internal variable Yo that measures the
outcome for that member. The model assumed to generate the data includes
these variables and generally also other variables that may or may not be
observed.

To determine the effect of the treatment on the outcome the simplest
assumption is that the outcome depends linearly on the treatment:

(9.1) Yo = βotZt + x,

where x is an unobserved external noise term. The variables are agent-
specific; the subscript denoting agents is deleted. If Zt is assumed to be
external, we have Zt (≡ Xt) ⇒ Yo, with βot measuring the strength of
causation. The least-squares estimate β̂ot obtained by regressing Yo on Xt

in the sample of agents is a consistent estimator of the population coeffi cient
βot.

If treatments are assigned randomly (or if for any reason the analyst is
willing to assume that Zt is independent of all the other external variables)
the assumption that Zt is external is admissible. Usually, however, in treat-
ment evaluations the analyst believes that Zt (≡ Yt) is internal, implying
that Yt does not necessarily IN-cause Yo. That being so, Yt may not be
independent of x in eq. (9.1). Consequently, the least-squares coeffi cient
α̂ot (replacing β̂ot) does not necessarily consistently estimate αot (replacing
βot). With Yt designating an internal variable, the analyst must include in
the model an equation or equations that determine it. The causal relation
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in the revised model between Yt and Yo depends on whether Yt IN-causes
Yo, either unconditionally or conditional on other variables of the model.

1. Supplemental Instruction

The analysis of treatment evaluation when the treatment variable is
internal is best conducted in the context of an example. This example is
drawn from Thistlethwaite-Campbell [37] (it is presented here rather than
in Chapter 10 because it is used again in the following section). Suppose
that a group of students has taken Examination 1, with scores denoted X1.
Later they take Examination 2, receiving scores Y2. X1 and Y2 are presumed
to be correlated; students who do well on Examination 1 are likely also to
do well on Examination 2.

After Examination 1 students with scores X1 that are above a cutoff,
normalized at 0, are given special supplemental instruction that is not avail-
able to weaker students. The problem is to estimate the effect of the special
instruction on Y2. To that end, define a treatment dummy Yt as equal to 1
if X1 ≥ 0, 0 otherwise. We have the model

(9.2) Y2 = α2tYt + β21X1 + x2,

where x2 is an unobserved error.
It appears from eq. (9.2) that the model is linear, and the designation of

such models as linear is frequently encountered in the treatment evaluation
literature (Lee-Lemieux [18], p. 286, for example). The reduced form for
this model is

Yt =

{
1 if X1 ≥ 0
0 otherwise

(9.3)

Y2 =

{
α2t + β21X1 + x2 if X1 ≥ 0
β21X1 + x2 otherwise

,(9.4)

which is not linear affi ne. The appearance of linearity in the structural
form and nonlinearity in the reduced form is surprising. It reflects the
practice, frequently encountered in the treatment evaluation literature, of
suppressing explicit recognition of some functional relations among variables
in structural models. In the present example this is done by treating Yt as if
it were a new external variable, as distinguished from representing it as the
dependent variable in an explicitly stated equation of the model (eq. (9.3)
here). If Yt is clearly specified as an internal variable, then eq. (9.3) must be
included along with eq. (9.2) as part of the structural version of the model.
The revised structural form of the model, now consisting of eqs. (9.2) and
(9.3), is nonlinear, like the reduced form.

The relation between X1 and Y2 being nonlinear, the causal effect of
X1 on Y2 cannot be associated with a single coeffi cient that multiplies the
intervention on X1. Instead, the baseline value of X1 and the value of
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X1 under intervention, denoted Xb
1 and X

i
1, respectively, must be specified

separately (see p. 47 above). The effect on Y2 of an intervention on X1 is
given by

(9.5) ∆Y2 =

 α2t + β21∆X1 if X
b
1 < 0 and Xi

1 ≥ 0,
−α2t + β21∆X1 if X

b
1 ≥ 0 and Xi

1 < 0,
β21∆X1 otherwise.

In discussions of such models in the treatment evaluation literature it
is presumed that the question “What is the effect of Yt on Y2?” has an
unambiguous answer, and also that the answer is α2t. In the model just
set out an intervention on Yt is induced by an intervention on X1, and X1
causes Y2 via both a direct and an indirect path. However, we do not have
Yt ⇒ Y2 due to existence of a path directly connectingX1 with Y2.1 It follows
that the effect on Y2 of an intervention on Yt cannot be determined without
further information about the underlying intervention on X1. In particular,
the coeffi cient α2t cannot be characterized as measuring causation, either
unconditionally or conditionally.2

2. Regression Discontinuity

Analysts evaluating treatment effectiveness are increasingly relying on
statistical procedures involving regression discontinuity to estimate causal
coeffi cients (see Lee-Lemieux [18] for a survey). The idea is that if samples
are restricted to data that are near (but, of course, on both sides of) a
discontinuity, then the causal effect of an intervention on the forcing variable
can be estimated more accurately than if observations are included in which
the forcing variable is not near the discontinuity.

It is diffi cult to find in the treatment evaluation literature explicit at-
tempts to justify this claim. It is suggested that if the individuals being
sampled are similar with respect to the forcing variable they are likely also
to be similar with respect to unobserved causal variables. This is held to
mitigate inconsistency attributed to differential access to treatment, and

1It was noted in Chapter 7 that in linear models if the treatment variable has an external
set consisting of a singleton, then the treatment variable IN-causes the effect variable
despite the existence of a direct path connecting the variable constituting the external set
with the effect variable. It was also observed that in nonlinear models this result may not
obtain if the map from X1 to Yt is not invertible. That is the situation here.
Note also that in the example under discussion there does not exist Ψ such that Yt ⇒ Y2|Ψ;
the fact that X1 is the only member of E(Yt) implies that holding constant X1 effectively
converts Yt to a constant, rendering the model meaningless. This also was discussed in
Chapter 7.
2In the television quiz show “Jeopardy”Alex Trebek provides the answer and the contes-
tant responds with the corresponding question. If the answer is “α2t∆Yt”the correspond-
ing question would seem to be “Given an assumed baseline value Xb

1 for X1, what is the
effect on Yo of an intervention that sets X1 equal to Xi

1?”The result in the text implies
that there is no pair Xb

1 , X
i
1 that generates the requisite question (other than the trivial

Xb
1 = Xi

1).
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also other unspecified biases. This assertion is problematic on several levels.
Most simply, we showed in the preceding chapter that differential access to
treatment does not necessarily interfere with IN-causation. Further, there is
no clear basis for the assertion that individuals who are similar with respect
to one variable are also similar with respect to others. Finally, restricting
samples to similar individuals reduces sample variation, which in general
makes estimation less accurate, not more.

Regression discontinuity is most easily discussed in the context of an
example. The model is that of Thistlethwaite-Campbell set out in the pre-
ceding section. These authors are credited with introducing regression dis-
continuity in the paper under discussion. There is no doubt that regres-
sion discontinuity is an important idea, but we will see that Thistlethwaite-
Campbell’s model is not the vehicle that makes clear why it makes sense to
ignore data away from the discontinuity.

Despite the fact that the coeffi cient α2t does not have a causal interpreta-
tion, it can still be estimated using the bivariate linear regression (9.2). This
exercise is essentially the same problem as that of constructing a forecast
of the dependent variable at a designated value of the independent variable.
As is well known, if the objective function is to minimize mean-square er-
ror the best forecast is the regression value of the dependent variable at
the designated value of the independent variable. It is easily shown that
this forecast gives more weight to observations near the forecast point.3 In
this sense, it is appropriate to place greater weight on observations near the
discontinuity, as recommended in the regression discontinuity literature, in
constructing the forecast.

However, this argument does not justify deleting any observations. Least
squares regressions place equal weight on all observations in constructing
coeffi cient estimates; deleting data strictly increases mean-square forecast
errors. Thus the essential features of a model involving regression disconti-
nuity in which effi cient estimation involves ignoring data far from the dis-
continuity point are not found in the Thistlethwaite-Campbell model. We
will have to look elsewhere for justification for regression discontinuity.

We are interested in models in which Y1 and Y2 are both observed, and
we have Y1 → Y2. If causation here is implementation neutral the regression
coeffi cient is optimally estimated by least squares. If Y1 ; Y2 there nec-
essarily exists at least one confounding variable; suppose that there exists
just one. We wish to estimate the IN-causal effect of Y1 on Y2 conditional
on the confounding variable. The essential feature of the algorithm that
we require is that either the path that links the confounding variable to
the cause variable or the path linking it to the effect variable contains a

3For example, suppose that the analyst has two data points, (x, y) = (1, y1) and (x, y) =
(2, y2), and wishes to forecast y at x = 0. The regression consists of the line that passes
through the two data points, and the mean-square error minimizing forecast consists of
the intercept of this line. This is easily seen to be 2y1 − y2, which attaches greater weight
to y1 than to y2.
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discontinuity. If so, restricting the data on the forcing variable– the con-
founding variable– to values near the discontinuity has the effect of (almost)
disconnecting the path that does not have a discontinuity. The result is that
the forcing variable is no longer a confounding variable. With Y1 now IN-
causing the outcome variable, the causal coeffi cient is well defined and equal
to the population regression coeffi cient. Accordingly, it can be estimated
consistently by least squares.

An interpreted model in which regression discontinuity estimation is
applied is discussed in Chapter 10, Example 3.





CHAPTER 10

Interpreted Examples

In this chapter five examples of the preceding analysis are discussed.
The variables in the models analyzed in this chapter have economic inter-
pretations; accordingly, we augment the notation by including mnemonics
as subscripts. For example, in the model of Section 1 Yi represents income
(internal and observed) and xa is a dummy for family affl uence (external
and unobserved). As above, we will use Z and z to denote variables not yet
labeled as internal or external.

1. Private vs. Public Universities

The first example consists of a simplified version of an exercise discussed
by Angrist-Pischke [2], which itself is a simplified version of a model devel-
oped by Dale-Krueger [8].

Suppose that we are interested in determining the effect on subsequent
income Yi of a student’s attending a private university rather than a public
university. The simplest procedure is to run a regression of income on a
dummy variable Zp representing attendance at a private university. That
exercise typically results in a high number. However, Angrist-Pischke ob-
served that there is a strong possibility of what they called an omitted
variables bias here: students that attend private universities typically come
from more affl uent families than those who attend public universities, and
this difference may affect lifetime income in ways not related to the dif-
ferential effect of private university attendance. Thus family affl uence is a
confounding variable, the existence of which biases upward the estimated
coeffi cient of the attendance variable.

The established practice, followed by Angrist-Pischke, is to correct for
this omitted variables bias by controlling for family affl uence, which is done
by including a proxy for family affl uence in the regression. It was presumed
that including a confounding variable in a regression effectively holds that
variable constant, so that it is no longer a confounding variable. Follow-
ing Dale-Krueger, Angrist-Pischke proposed using the set of universities to
which each student applied as a proxy for family affl uence. The idea was
that students from affl uent families would be more likely to apply to private
universities instead of, or in addition to, public universities. They defined
the dummy Za as 1 for students who applied to more private than public
universities, and as 0 for those who did not. Under the established proce-
dure, including Za along with Zp as an explanatory variable for Yi was held
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to eliminate the omitted variables bias. The resulting regression coeffi cient
of Yi on Zp, being free of omitted variables bias due to the presence of Za in
the regression, would, it was believed, provide an accurate estimate of the
effect on Yi of attendance at a private university.

In Angrist-Pischke’s discussion it is stated that the roles of Zp and Za
are symmetric: either can be the causal variable of primary interest, with
the other as the confounding variable. Thus one can reverse the roles of the
causal and confounding variables so as to determine the effect of Za on Yi
holding constant Zp. The bivariate regression of Yi on Za and Zp is repre-
sented as providing a good estimate of the causal effect of each explanatory
variable on Yi given the other.

Angrist-Pischke presented a simple example of this calculation using
made-up data. Five former students have subsequent income shown in the
second column of Table 1. They have different values for Zp and Za, shown
in the third and fourth columns. Table 2 reports the coeffi cients in a bivari-
ate regression of Yi on Zp and Za and univariate regressions on each of these
separately.1 The coeffi cient of Zp is lower in the bivariate regression than
in the univariate regression. Angrist-Pischke interpreted this difference as
confirming the conjecture that failure to control for family affl uence in the
real-world counterpart of the univariate regression of Yi on Zp leads to an
upward-biased estimate of the effect of private university attendance on sub-
sequent income. Angrist-Pischke’s discussion implied that the coeffi cients in
regression 1 provide good estimates of the effects of Zp and Za on Yi: each of
the regression coeffi cients measures the effect of the associated explanatory
variable on income, ceteris paribus.

Several aspects of this chain of reasoning are of interest. First, the
analysis of causation proceeds without benefit of any explicit specification
of which variables are external and which, besides income, are internal.
The interpretation of Zp and Za as both being external conflicts with the
rationale– that Za causes both Zp and Yi (or Zp causes both Za and Yi)– for
including Za in the regression in the first place. Second, the verdict that the
best estimate of the effect of private university education on income is that
given by the bivariate regression amounts to an assertion that one correlation
provides a better estimate of causation than another. Here, it would seem,
we are inferring causation directly from correlation, a practice that in many
other contexts is suspect. Third, the fact that the two explanatory variables
are treated symmetrically in the preferred regression implies that the status
of a variable as a cause or a confounder depends on how the analyst proposes
to interpret the model, not on the model itself.

We present an alternative discussion of the example based on IN-causal
analysis. The fact that the bivariate regression produces different coeffi cients

1We are taking the population regression coeffi cients as coinciding with their sample coun-
terparts. This is an acceptable simplification because we are not interested in sample
variation here.
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from the univariate regressions implies that the dummies are correlated. In
any case, the existence of a positive correlation is clear from Table 1: the
expectation of Zp conditional on Za = 1 is 2/3, whereas that expectation
conditional on Za = 0 is 1/2. This in turn suggests that Za and Zp are
linked by a (or several) functional relation(s). Any such links should be
brought into the model; ignoring them will be seen to induce error in the
interpretation of estimated coeffi cients.

The simplest specification is that one of the dummies is internal and
one is external, with the internal dummy specified as a function of the ex-
ternal dummy and a new unobserved external variable representing idiosyn-
cratic shocks to the internal dummy. First, assume that Za is external (and
therefore relabeled Xa), as would be implied by the assumption that fam-
ily affl uence is a direct determinant of both private university attendance
and lifetime income. We include in the model a regression expressing Zp
(now relabeled Yp) as a function of Xa and an unobserved external error xp
(regession 4 in the Table 2). In the example the estimated regression is

(10.1) Yp = 0.5 + 0.167Xa + xp,

where Xa is given by

(10.2) Xa =

{
1 with probability 3/5
0 with probability 2/5

.

The error xp is specified as

(10.3) xp =

{
1/2 with probability 1/2
−1/2 with probability 1/2

if Xa = 0, and

(10.4) xp =

{
1/3 with probability 2/3
−2/3 with probability 1/3

ifXa = 1. This specification implies that Yp takes on value 0 with probability
2/5 and 1 with probability 3/5, as in the data in Table 1. Note here that xp
is mean-independent of Xa, although not independent, as discussed above.
Finally, the model also includes an equation reflecting the dependence of Yi
on its parents:

(10.5) Yi = 10Yp + 60Xa + xi.

Figure 10.1(a) gives a causal graph of the resulting model. From regres-
sion 1 affl uence Xa affects Yi directly, with coeffi cient 60. It also has an
indirect effect via Yp of 1.67, equal to the product of the coeffi cient of Yp
with respect to Xa (0.167) and the coeffi cient of Yi with respect to Yp (10).
The total effect of Xa on Yi is 61.67. We see that the univariate regression in
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regression 3 gives the correct causal coeffi cient, which includes both direct
and indirect effects, whereas the coeffi cient of Xa in regression 1 gives only
the direct effect.

The unconditional effect of Yp on Yi is not well defined due to the failure
of IN-causation: an intervention ∆Yp could have been generated either by
an intervention ∆Yp on xp, resulting in ∆Yi = 10∆Yp, or an intervention
equal to (10+60/0.167)∆Yp = 370∆Yp if the intervention is on Xa. However,
the effect of Yp on Yi conditional on Xa, 10∆Yp, is well defined because in
that case the intervention, being on xp alone, is unambiguous. Thus one
must be careful to distinguish the unconditional effect of Yp on Yi, which
is undefined, from the effect of Yp on Yi conditional on Xa, which is well
defined and is equal to the coeffi cient of the arrow connecting Yp and Yi in
the graph.

Here we have another example in which unconditional IN-causation fails,
but conditional causation exists, and is of primary interest. A family consid-
ering private versus public universities knows whether it is affl uent or not,
implying that its decision is based on the effect on income of school choice
conditional on affl uence, not the unconditional effect. It is worth noting
that the model incorporates the assumption that the effect on income of
university choice conditional on affl uence is the same for both values of the
affl uence variable.2

We see that characterizing Za as external and Zp as internal results
in an asymmetric treatment of their coeffi cients in the bivariate regression.
The coeffi cient of Xa reflects its direct effect on Yi, not the total effect; the
coeffi cient of Yp reflects conditional causation, not unconditional causation.
This contrasts with the received analysis, which as noted above would inter-
pret both coeffi cients in the bivariate regression as measuring presumably
the same type of causation conditional on the value of the other. We have
that Xa IN-causes Yi, with coeffi cient equal to that of the univariate regres-
sion of Yi on Za, while Zp does not unconditionally IN-cause Yi, implying
that neither the coeffi cient of Zp in the univariate regression nor that in the
bivariate regression has an unconditional IN-causal interpretation.

Now consider the case in which Zp rather than Za is external (Figure
10.1(b)). To be sure, in the context of the assumed setting it is not easy
to motivate this specification: the fact that a student attends a private
university does not increase family affl uence (just the opposite). Thus in
the current context it would be acceptable to rule out this specification a
priori. However, in most cases (in the following section, for example) it is not

2This example makes clear the importance of the distinction, emphasized in several places
above, between the two meanings assigned to “conditional”: the fact that the effect on
Yi of an intervention on Yp conditional on Xp is the same for both values of Xp implies
that the conditional expectation of the effect of Yp on Yi coincides with the unconditional
expectation. Here “conditional”is used in its probabilistic sense. The observation that the
unconditional effect of Yp on Yi is undefined uses “conditional”to mean holding constant
Xp. There is no inconsistency.
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obvious which variables are external, so it is worthwhile working through the
reversed case here. As will be clear, the interpretation of multiple regression
coeffi cients as measuring causation is analogous in the two cases, but with
the interpretation of the variables’regression coeffi cients reversed.

If Zp is external (hence is relabeled Xp) a regression generating the
effect of Xp on Za (relabeled ya) must be included in the model. This
equation, regression 5 in Table 2, turns out to be the same as regression
(10.1) (regression 4), with Zp and Za reversed (reflecting the fact that the
example has the special property that a plot of (Zp, Za) pairs is symmetric
around the 45-degree line). The univariate regression 2 shows that the effect
of Xp on Yi is 20. This consists of a direct effect of 10 and an indirect effect
through Ya of 10 (equal to the product of 0.167 and 60). The effect of Ya on
Yi is not well defined due to failure of IN-causation. The effect of Ya on Yi
holding constant Xp is 60, and the effect of Xp on Yi is 60 + 6 · 10 = 120.

In Chapter 5 we considered the case when the analyst is unwilling to
assume that either of two observed variables is external. It is easy to ac-
commodate this specification, but it was noted that weakening the specifica-
tion of the model in this way results in fewer implications for IN-causation
and coeffi cient identification. It is worthwhile showing this in the context
of the present model. Suppose that the binary proxies are both specified
as internal, resulting in the notation Yp and Ya. These are specified to be
linear functions of unobserved independently distributed external variables
x1 and x2. The variances of Yp and Ya and their covariance can be used to
parametrize the variances of x1 and x2 and one of the constants linking x1
and x2 with Yp and Ya. The other coeffi cients in the determination of Yp and
Ya are normalized at 1, reflecting the fact that x1 and x2 are not observed.3

The causal graph for this model is shown in Figure 10.2. The binary
proxies are simultaneously determined, and each causes Yi. None of the
internal variables are IN-causally related, unconditionally or conditionally,
implying that these causal effects cannot be quantified. Once again we see
the correctness of the Cowles emphasis on the need for strong theoretical
restrictions– in this case the specification that at least one of the observed
variables is external– if models are to generate testable implications.

3We have

Yp = x1 + βp2x2(10.6)

Ya = x1 + x2.(10.7)

Here any three of the four coeffi cients relating Yp and Ya to x1 and x2 could have been
normalized at 1. This reflects the fact that many joint distributions of x1 and x2 would
generate the same distribution of Yp and Ya. The choice among these is arbitrary.
From eqs. (10.6) and (10.7) one can calculate the variances of x1 and x2 and the constant
βp2 from the variances of Yp and Ya and their covariance.
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2. Effect of Military Service on Income

Angrist’s [1] paper evaluating the effects of military service on lifetime
income provides another setting in which the analysis proposed here can be
implemented. As will be seen, the analysis here differs from that by Angrist.

The starting point in Angrist’s discussion is the relation

(10.8) Yi = βivXv + xi,

stating that lifetime income Yi depends on veteran status Xv and an unob-
served error term xi. In eq. (10.8) we have that Xv IN-causes Yi, with βiv
measuring the magnitude of the effect. The simplest version of this model
would have Xv and xi external and probabilistically independent, implying
that βiv can be estimated by ordinary least squares. The diffi culty is that
eq. (10.8) is likely to be a misspecification. To the extent that veteran
status is correlated with such unobserved variables as ability to earn a high
income in civilian employment, which in turn may be a component of xi,
we may have a confounding problem. As a result, the coeffi cient βiv may be
interpretable as an IN-causal coeffi cient only due to a misspecification.

Angrist’s solution was to use a measure Xe of eligibility for conscription
as an instrument in estimating βiv. Xe was specified to consist of the number
associated with each agent under the draft lottery in the Viet Nam war.
Whether or not an agent is likely to be drafted based on his lottery number
is correlated with whether or not he served in the military– the treatment–
but, arguably, not with other determinants of lifetime income. This, Angrist
suggested, establishes the suitability of Xe as an instrument in estimating
βiv, interpreted as a causal coeffi cient.

This justification for draft eligibility as an instrument in estimating the
coeffi cient Angrist associated with the effect of veteran status on income
seems persuasive, but the informal treatment of the correlation between Xv

and xi is problematic. Investigating this diffi culty involves dispensing with
the purely verbal treatment of draft eligibility and income ability in favor
of working with a model that incorporates these variables explicitly.

Let za represent an agent’s ability to earn a high income in civilian
employment. The new variablesXe and za are not part of the original formal
model, consisting of eq. (10.8). We now expand that model to incorporate
them, and use the augmented model to deconstruct the correlation between
Zv and zi. Note that the notation change from x to z indicates that we are
provisionally relaxing the specification that these variables are external.

The problem is to specify which variables are external in the expanded
model. There are two possibilities. First, consider what Angrist charac-
terized as the simplest specification: agents in military service accumulate
human capital at a different rate from those in civilian employment, result-
ing in different future incomes when they compete in civilian job markets
against nonveterans. This requires relabeling za as ya. We also relabel Xv
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as Yv in recognition that veteran status is now specified to depend on both
Xe and a new external variable xv, unobserved. Under this respecification
the augmented model can be written

(10.9) ya = αavYv + xa

(10.10) Yv =

{
1 if βveXe + xv ≥ 0
0 if βveXe + xv < 0

,

(10.11) Yi = αivYv + αiaya + xi.

The external variables Xe, xi, xa and xv are assumed to be distributed
independently. Note that the model here is nonlinear, because of the form
of eq. (10.10).4 The causal graph of the model just specified is shown as
Figure 10.3(a). As can be verified from Figure 10.3(a), Yv IN-causes Yi,
so a least-squares regression of Yi on Yv produces a consistent estimate of
the relevant causal coeffi cient; there is no need for an instrumental vari-
ables estimator. Since Yv affects Yi both directly and indirectly through
ya, the relevant causal coeffi cient is αiv + αiaαav, and that is the constant
consistently estimated in a univariate regression of Yi on Yv. The constants
αiv, αia and αav that quantify the breakdown of the total effect of Yv on Yi
into the direct effect and the indirect effect are not separately identified due
to the assumption that ya is not observed.

Instead of having veteran status IN-causing income ability, we could
reverse the causation and specify that earnings ability IN-causes veteran
status, so that agents are more or less likely to join the armed forces accord-
ing to their income ability in civilian employment. A model that reflects
this respecification is the following:

(10.12) Yv =

{
1 if βveXe + βvaxa + xv ≥ 0
0 if βveXe + βvaxa + xv < 0

(10.13) Yi = αivYv + βiaxa + xi.

As Figure 10.3(b) indicates, in this setting Yv does not IN-cause Yi due
to the presence of the confounding variable xa. Thus αiv cannot be inter-
preted as a coeffi cient measuring unconditional IN-causation. However, Yv
does IN-cause Yi conditional on xa. The coeffi cient αiv associated with this
causal relation is consistently estimated by instrumental variables taking
Xe as an instrument. The role of instrumental variables estimation of coeffi -
cients associated with conditional causation when the confounding variable

4Also, the model incorporates the unobserved internal variable ya; in the discussion above
it was assumed that all internal variables are observed. Formal treatment of this would
require adopting the minor generalization of the causal notation set out in footnote 1 in
Chapter 5.
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is not observed was discussed above. Thus if za is taken to be external An-
grist was correct in asserting that the coeffi cient associated with the causal
relation between Yi and Yv is consistently estimated by instrumental vari-
ables, provided it is understood that the relevant notion of causation here
is conditional causation rather than unconditional causation.

3. Regression Discontinuity

Here we present a model in which a coeffi cient measuring conditional
causation can be estimated via regression discontinuity despite failure of
unconditional IN-causation. The example is loosely based on McCrary-
Royer [25]. The model here is drastically simplified relative to theirs; our
purpose is to illustrate how regression discontinuity works, not to present
an adequate empirical analysis. Unlike McCrary-Royer we explicitly specify
how the confounding variable invalidates ordinary least squares estimates of
causal coeffi cients if the regression discontinuity is not exploited.

We are interested in how maternal education affects various measures
of infant health. If one were willing to assume that the former IN-causes
the latter this link could be estimated directly using ordinary least squares.
However, it is possible that IN-causation fails due to the presence of a con-
founding variable. As discussed in Chapter 9, an estimation involving re-
gression discontinuity can disconnect the path that is continuous, thereby
reversing the status of the variable that confounds the causal relation in
the absence of the regression continuity estimation. With maternal educa-
tion now IN-causing infant mortality, an ordinary least squares regression is
justified.

We present a version of McCrary-Royer’s model that illustrates this:

Yb = f(Xd, x1)(10.14)

ya = βadXd + x2(10.15)

Ye = Xs − Yb(10.16)

Yh = αheYe + ahaya.(10.17)

Eq. (10.14) connects the age at which mothers begin their education, Yb,
to the month and day they were born, Xd. As the notation suggests, this
equation is nonlinear (see the discussion below). Eq. (10.15) connects ya,
family affl uence, with Xd. Eq. (10.16) says that the extent of mothers’
education equals the difference betweenXs, the mother’s age when education
stops, and Yb. Eq. (10.17) connects infant health Yh to mother’s education
and family affl uence. Here x1 and x2 are uninterpreted errors.

The external sets of this model are as follows:
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E(Yb) = {x1, Xd}(10.18)

E(ya) = {x2, Xd}(10.19)

E(Ye) = {x1, Xs, Xd}(10.20)

E(Yh) = {x1, x2, Xs, Xd}.(10.21)

The causal graph for the model is shown in Figure 10.4.
Inspection of the graph shows that Ye does not IN-cause Yh. The con-

founding variable is Xd, which causes Ye through a path including Yb, and
causes Yh through a path that does not include Ye. Following McCrary-
Royer, the age at which a student begins education depends discontinuously
on her date of birth (schools enroll students only when they have passed
their sixth birthday, for example) by some date certain, such as December
1). Then the causal effect ofXd on Yb is discontinuous: students born shortly
before December 1 are younger (they just recently turned 6 on December
1) when they begin school than those born shortly after December 1 (who
are almost 7). If their age at the date they stop their education, Xs, does
not depend on birth date, then students born shortly before December 1 are
more educated on average than those born after December 1.

However, the effect ofXd on ya may reasonably be taken to be linear, and
therefore continuous, implying that if the sample is restricted to students
with dates of birth near December 1, the effect of Xd on ya is negligibly
small. The arrow connecting Xd to ya can be deleted, although the arrow
connecting Xd to Yb remains due to the discontinuity. That done, Xd is no
longer a confounding variable, and we have Ye ⇒ Yh, implying the validity
of least-squares estimation.

Specifying an explicit account of how the regression discontinuity esti-
mation works makes possible an evaluation of the conditions for adequacy of
a regression discontinuity argument. The argument just summarized hinges
on the implication of the model that Xd is an empirically important cause
of ya, since otherwise there is no motive to use regression discontinuity to
break this link. It is, however, diffi cult to see any reason to specify that Xd

causes ya. On the contrary, it seems more reasonable instead to specify a
model in which ya (if external, or one of the external variables that cause it
otherwise) is a major confounding variable: family income clearly strongly
influences both Ye and Yh, the latter through paths that do not include Ye.
The regression discontinuity argument just summarized, being based on des-
ignating Xd as the forcing variable, does nothing to address the bias induced
if ya is the confounding variable.

The point is that regression discontinuity procedures can remedy failures
of IN-causation if the forcing variable, in this caseXd, is also the confounding
variable. Regression discontinuity arguments are therefore persuasive only
to the extent that analysts can motivate the assumption that the forcing
variable and the confounding variable coincide.
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4. Granger Causation

Much has been written about the relation, or lack thereof, between cau-
sation and Granger-causation. These discussions– including Cooley-LeRoy
[7]– are unsatisfactory because no precise definition of causation– as distin-
guished from Granger-causation– is offered and, in particular, no distinction
is drawn between causation and IN-causation. It may be worthwhile to state
how the above analysis of causation bears on this topic.

In the case of two stochastic processes z1 and z2, z1 is strictly exogenous
with respect to z2 if z1 is a function only of its own past values and an un-
observed external process. The process z2 Granger-causes z1 if the optimal
predictions of future values of z1 based on past values of z1 alone can be
improved upon by including lagged values of z2 as explanatory variables. It
is easily shown that if z1 is strictly exogenous with respect to z2 then z2
does not Granger-cause z1. The contrapositive of this is that if z2 Granger-
causes z1 then z1 is not strictly exogenous. Thus Granger-causation is a
test of strict exogeneity, in the sense that acceptance of Granger-causation
implies rejection of strict exogeneity. The converse is that if z2 does not
Granger-cause z1, then z1 is strictly exogenous with respect to z2. This is
not generally true (see Cooley-LeRoy [7]). Therefore acceptance of Granger
non-causation does not imply strict exogeneity.

These results are of interest to the extent that strict exogeneity can be
connected to causation or IN-causation. We investigate this in the context of
an example. Consider a two-equation linear autoregressive model determin-
ing the date-t values Y1t and Y2t of Y1 and Y2, both observed, as functions of
each other, their own once-lagged values, and unobserved external errors x1t
and x2t. The errors are assumed independent cross-sectionally and over time
(the consequences of assuming that errors are correlated cross-sectionally are
discussed in the following section). Y1 and Y2 can be interpreted as the mon-
etary instrument– the money stock or the federal funds rate– and real GDP,
respectively, although this interpretation is not necessary for the argument.
In this model Y1 is strictly exogenous if the errors in the equation for Y2
do not feed back into the equation for Y1, either currently or with a lag.
This condition is satisfied if the coeffi cients of current and lagged Y2 in the
equation for Y1 equal zero.

Under strict exogeneity of Y1 the structural form of the bivariate model
just described is

Y1t = α111Y1,t−1 + x1t(10.22)

Y2t = α210Y1t + α211Y1,t−1 + α221Y2,t−1 + x2t.(10.23)

Here αijλ (i, j ∈ {1, 2}; λ ∈ {0, 1}) denotes the coeffi cient of Yit with respect
to Yj,t−λ. The causal graph for this model for dates t− 1 and t is shown in
Figure 10.5. We have Y1t → Y2t because the external set of Y1t consists of
the errors x1τ , τ ≤ t, which is strictly contained in the external set of Y2t,
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which consists of all the errors x1τ , x2τ , τ ≤ t. Also, Y1t is directly connected
to Y2t, so that both conditions for direct causation are satisfied. However,
we do not have Y1t ⇒ Y2t in the equation system as written: the lagged
error in the Y1 equation that affects Y2t via Y1t also affects Y2t via Y1,t−1
and Y2,t−1, so it is a confounding variable.5 It follows that strict exogeneity
of Y1 does not imply that α210 can be interpreted as quantifying the effect of
Y1t on Y2t. We have Y1t ⇒ Y2t, so that α210 does represent the causal effect
of Y1t on Y2t, under the additional restriction that α221 equals 0.

Thus neither Granger noncausation nor the stronger assumption of strict
exogeneity of Y1t is suffi cient to establish unconditional IN-causation. If
α221 is nonzero the question “What is the effect on Y2t of an intervention
that brings about ∆Y1t?”does not have an unambiguous answer: different
interventions consistent with a given change in Y1t have different effects on
Y2t.

Whether or not we have α221 = 0 it can be asserted that strict exogeneity
implies that Y1t IN-causes Y2t conditional on all the lagged errors in Y1t. This
is, of course, a very strong restriction.

5. Vector Autoregressions

In a major paper Sims [35] expressed the view that the assumptions
used to identify causal relations in many macroeconomic models were not
credible. He argued that forecasting and policy analysis are best undertaken
in the framework of models that avoid identifying assumptions supposedly
(but typically not actually) drawn from economic theory. As regards policy
analysis, this contention proved controversial. It is worthwhile examining
the argument underlying atheoretical policy analysis.

The favored analytical tool is the vector autoregression, in which a vector
of observed internal variables is expressed as a linear function of their lagged
values and a vector of serially independent unobserved external variables. In
the two-variable case with only once-lagged internal variables as explanatory
variables we have

Y1t = α111Y1,t−1 + α121Y2,t−1 + x1t(10.24)

Y2t = α211Y1,t−1 + α221Y2,t−1 + x2t.(10.25)

Here the external variables x1t and x2t are correlated, implying that some
of the causal relations of the model are contained in this uninterpreted cor-
relation. It follows that the coeffi cients αijλ in (10.24)-(10.25) are not inter-
pretable as measuring unconditional IN-causation (this would be true even

5Specifically, if the intervention ∆Y1t is caused by an intervention on x1t the effect on Y2t
is α210∆Y1t. If the intervention is on x1,t−1 its effect on Y2t is α210(1 + α221/α111)∆Y1t.
Here one path from x1,t−1 to Y2t passes through Y1t and the other does not. Thus x1,.t−1
is a confounding variable in the causal relation between Y1t and Y2t. The same applies for
the other lagged terms.
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if x1t and x2t were uncorrelated because the lagged variables do not IN-cause
the contemporaneous variables).

Standard practice involves transforming the model so that the error
terms are independent. In the two-variable case this involves redefining
one of the external variables as the residual in the regression of one of the
external variables on the other. This is, of course, the same operation that
was undertaken in the example of Section 1, where we began with two ob-
served and purportedly external variables that were correlated. Suppose
that x2t is replaced by x′2t, defined by

(10.26) x′2t ≡ x2t − α210x1t,
where α210 is the regression coeffi cient of x2t on x1t, so that x1t and x′2t are
uncorrelated. We have

Y1t = α111Y1,t−1 + α121Y2,t−1 + x1t(10.27)

Y2t = α210Y1t + α211Y1,t−1 + α221Y2,t−1 + x′2t,(10.28)

redefining α211 and α221. The causal graph of eqs. (10.27)-(10.28) for dates
t− 2, t− 1 and t is shown in Figure 10.6. In the model (10.27)-(10.28) the
lagged internal variables cause the current internal variables, but, as noted
above, do not IN-cause them. This is so because the external variables dated
t − 2 and earlier are confounding variables. Thus we have, for example,
Y1,t−1 ⇒ Y1t|(E(Y1,t−2) ∩ E(Y2,t−2)). This condition, of course, is extremely
strong.

Multivariate vector autoregressions, which generalize the bivariate vector
autoregression just discussed, are written in vector-matrix form as

(10.29) Yt = A1Yt−1 + xt,

the analogue of eq. (10.24)-(10.25). Generally more lagged terms are in-
cluded, but there is no need to do so here. The external vector variable
x′t has covariance matrix V. The multivariate analogue of the model repre-
sentation under the alteration just described for the two-variable case, eqs.
(10.27)-(10.28), is

(10.30) Yt = A0Yt +A1Yt−1 + x′t,

with A0 being a triangular matrix and x′t having a diagonal covariance ma-
trix (here A1 is redefined). This is the Choleski decomposition. Note that
eq. (10.30) has the same form as the causal form of a theoretical model, dis-
cussed above. Written in the form of eq. (10.30) the vector autoregression
can be used to compute the impulse response functions. These, being the
causal coeffi cients associated with independently-distributed external vari-
ables, reflect the IN-causal relation between internal variables and current
and lagged external variables. The impulse response functions depend on A0
and A1, which are consistently estimated by least-squares regression due to
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the fact that the error in each equation is uncorrelated with the explanatory
variables in that regression.

Sims [35] characterized the Choleski decomposition as a harmless nor-
malization, similar to the normalizations routinely used to convert underi-
dentified models to identified models (for example, setting the coeffi cients
of unobserved external variables equal to 1, as done above). In fact the
two have nothing in common. Both the models (10.24)-(10.25) and (10.27)-
(10.28) are identified, implying that application of the Choleski decompo-
sition constitutes a substantive change in the model, not a normalization.
This is obvious from the fact that the joint distribution of the external vari-
ables in eqs. (10.24)-(10.25) differs from that in eqs. (10.27)-(10.28) (unlike
the joint distributions of Y1 and Y2, which are the same in the two models).

The fact that A0 is triangular implies that the model is assumed to have
no simultaneous equations, and also that the internal variables are causally
ordered: x1 → x2 → ... → xn. Thus in formulating a vector autoregression
intended for use in policy analysis the analyst must commit to which of the
date-t internal variables cause which others. In the two-equation example it
was assumed that we have y1 → y2; we could equally well have assumed in-
stead y2 → y1. Doing so would generate different impulse-response functions.
It follows that analysts who are unwilling to impose any restrictions on causal
relations involving lagged terms, but are willing to exclude simultaneously-
determined variables and to commit to a particular causal ordering of the
date-t internal variables, will find vector autoregressions a useful analyt-
ical vehicle. This seems to be, at best, a narrow specification (however,
some analysts, such as Christiano, Eichenbaum and Evans [6], are willing
to assume triangularity explicitly; like Sims, they appear to regard this as
a minor regularity condition). This dependence of policy analysis based on
vector autoregressions on strong restrictions raises questions about about
Sims’claim that causal analysis using vector autoregressions allows the an-
alyst to avoid the “incredible”identifying restrictions employed under other
procedures.

student # earnings Zp Za

1 110 1 1
2 100 1 1
3 110 0 1
4 60 1 0
5 30 0 0

Table 1
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regression dependent Zp Za

variable
1 Yi 10 60
2 Yi 20
3 Yi 61.67
4 Yp 0.167
5 Ya 0.167

                 Table 2

xp Xa xa Xp

1 0.167 1 0.167

Yp 60 xi Ya 10 xi

10 1 60 1
Yi Yi

(a) (b)
Figure 10.1

x1 x2

Yp Ya xi

Yi

Figure 10.2
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Xe xv xa Xe xv

xa Yv xi Yv xi

ya Yi Yi

(a) (b)

Figure 10.3

x1 Xd x2 Xs

Yb ya

Yh Ye

Figure 10.4

x1,t­1 x2,t­1

Y1,t­1 Y2,t­1 x1t x2t

Y1t Y2t

Figure 10.5
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x1,t­2 x2,t­2

Y1,t­2 Y2,t­2 x1,t­1 x2,t­1

Y1,t­1 Y2,t­1 x1t x2t

Y1t Y2t

Figure 10.6



CHAPTER 11

Conclusion

Our purpose in this monograph has been to determine how to analyze
causation in the context of a formal model consisting of a set of bloc-recursive
equations. A preliminary step involved thinking carefully about what it
means to analyze causation in the context of a model. We have taken the
view that doing so implies that causal interventions be modeled as changes in
the model’s external variables. Failing to make this connection, we argued,
would constitute implicitly altering the model, which is different from apply-
ing the model as specified. This requirement seems innocuous. However, we
have seen that the developments involved in implementing the requirement
take the analysis in new directions, leading to analyses that are substantially
different from those generated by methods now in general use.
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