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Abstract

We show that the electroweak symmetry can be broken in a natural and phenomenologically
acceptable way by a neutrino condensate. Therefore, we assume as particle content only the
chiral fermions and gauge bosons of the Standard Model and in addition right-handed neutrinos.
A fundamental Higgs field is absent. We assume instead that new interactions exist that can
effectively be described as four-fermion interactions and that can become critical in the neutrino
sector. We discuss in detail the coupled Dirac—Majorana gap equations which lead to a neutrino
condensate, electroweak symmetry breaking and via the dynamical see-saw mechanism to small
neutrino masses. We show that the effective Lagrangian is that of the Standard Model with massive
neutrinos and with a composite Higgs particle. The mass predictions are consistent with data.

0 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

The generalization of renormalizable relativistic gauge theories to the Standard Model
(SM) was very successful and has been confirmed experimentally in an impressive way,
including detailed tests of radiative correctidridowever, it is important to keep in mind
that the mechanism of electroweak (EW) symmetry breaking is still mostly untested. The
postulated Higgs particle has so far not been observed and there is only indirect evidence
from quantum corrections that a SM Higgs boson should be lighter than about 200 GeV [2].

E-mail addresses: santusch@ph.tum.de (S. Antusch), jkersten@ph.tum.de (J. Kersten), lindner@ph.tum.de
(M. Lindner), mratz@mail.desy.de (M. Ratz).
1 Recent measurements of small deviationg ef2, Apg and sirf @y in the neutrino sector may be the first
signs of physics beyond the SM [1].
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The Higgs sector has furthermore well-known theoretical problems, especially the gauge
hierarchy problem, which strongly suggest that new physics exists which is connected
to the mechanism of EW symmetry breaking. Whatever the correct symmetry breaking
mechanism is, it must satisfy by now a number of stringent direct and indirect constraints.
Given the success of the SM it is, however, immediately clear how an alternative symmetry
breaking scenario can be consistent with data. In the limit where new physics decouples, it
just has to reproduce effectively the SM Higgs sector with a light Higgs particle [3]. If the
model has such a decoupling limit, as in the case discussed in this paper, then deviations
from the SM can be understood as a departure from the decoupling limit.

Motivated by the evidence for neutrino masses, we discuss the possibility that the
EW symmetry is broken dynamically by a neutrino condensate. This would normally
lead to neutrino masses of the order of the symmetry breaking scalg) (200 Ge\}.
Neutrinos may, however, possess both Dirac and Majorana mass terms and the dynamical
generation of large Dirac mass terms leads via the see-saw mechanism [4-6] to small,
phenomenologically acceptable neutrino masses. A composite Higgs particle will emerge
that is not affected by the see-saw mechanism, i.e., it will have a mass of the order of the
EW symmetry breaking scale. The low-energy effective Lagrangian in the decoupling limit
is therefore the SM, with a composite Higgs instead of a fundamental scalar.

A heavy Dirac neutrino mass is similar to the heavy top mass of the order of the EW
scale, which gave rise to speculations that top condensation might be responsible for EW
symmetry breaking [7,8]. However, top condensation is not viable in its simplest version,
since it predicts too large top and Higgs masses. Different non-minimal models are in
principle viable [9-12], and the possibility that third-generation neutrinos contribute to top
condensation was studied by Martin [13]. The condensation of a full fourth generation
(including neutrinos of the fourth generation) [14] was also discussed in this context. We
study the case where only neutrinos are responsible for the dynamical breakdown of the
EW symmetry. We briefly discuss a mixed case as well where combined neutrino and top
condensation leads to an effective two-Higgs scenario with a leptonic and a hadronic Higgs
particle.

The paper is organized as follows: in Section 2 we discuss the condensation of neutrinos,
i.e., we study the relevant system of coupled gap equations in combination with the see-saw
mechanism in the proper mass eigenstate basis. Afterwards, we solve the gap numerically.
The following section contains the phenomenology and the predictions arising from the
renormalization group improved compositeness conditions. Section 4 contains a short
discussion of the option that all three generations of neutrinos condense simultaneously
and in Section 5 we outline briefly the possibility of a combined neutrino-top condensation
scenario.

2. Neutrino condensation

We assume as mentioned that some physics exists at high energies which yields an
effective four-fermion picture similar to weak interactions at low energies. However,
contrary to weak interactions we assume that certain four-fermion couplings become strong
enough to trigger the formation of condensates, thus giving masses to some of the fermions
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via gap equations. The remaining fermions could, e.g., obtain masses from further four-
fermion couplings, which only subdominantly contribute to the gap. For top condensation it
was shown how this can be justified in the context of broken renormalizable gauge theories
at high energies, for example, in the framework of so-called top-color models [15]19r
models [16]. In this spirit, we consider the particle content of the SM extended by three
right-handed neutrinos but without a fundamental Higgs field. Instead of the SM Higgs
field we assume four-fermion couplings involving the lepton doublets and the right-handed
neutrinos. In addition, since the right-handed neutrinos are singlets under the SM gauge
group and since there is no protective symmetry, we assume them to have huge Majorana
masses.

In order to show the essential aspects of such a scenario, we consider first the case where
only one of the four-fermion couplings drives the condensation, while the others vanish.
Thus, the four-fermion Lagrangian is

Lat = GV (ELvR) (TRLL), 1)

where we have omitted tHaJ (2) indices and wheré,_, vr stand for the relevant neutrino
degrees of freedom. Moreover, we assume the Majorana mass matrix to be diagonal so
that the condensing pair of neutrinos can be studied independently. Therefore, we need to
consider only one Majorana mass term,

1
—Ly = EMﬁvg +h.c. 2)

We will see that this describes the most interesting features of neutrino condensation. More
general scenarios will be discussed briefly in Sections 4 and 5.

The question whether a non-perturbative solution for the ground state exists in the
presence of the huge Majorana mass, i.e., if the gap equation has a non-trivial solution,
will be studied in Section 2.2. If the gap equation produces a fermion condensate which is
a doublet unde8U (2). and which carries a suitablé(1)y charge, then it is immediately
clear that theSU(2)L ® U(1)y gauge symmetry is broken. For the chosen NJL-like
interaction a composite Higgs particle emerges. This is visualized in Fig. 1, where a
massive scalar pole and three massless Goldstone bosons are produced by the summation
of a certain class of diagrams with dynamical fermion propagators. The Higgs mechanism
and the “eating” of the Goldstone bosons is illustrated in Fig. 2. For more details see,
e.g., [8].

We analyze now the gap equations of our model with an explicit Majorana mass term for
vr. If a non-trivial solution produces dynamically a large Dirac mass term, it breaks the EW
symmetry. Then the presence of the huge singlet Majorana mass will lead to a dynamical
see-saw mechanism with small neutrino masses. A computation of the gap equation in the
basis of mass eigenstates must therefore include in a self-consistent way the possibility of

DX e = e

Fig. 1. The exchange of a virtual composite Higgs scalar can be seen as a sum over all loop contributions involving
the four-fermion vertex in the so-called bubble sum approximation. Hatched blobs denote full propagators.
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Fig. 2. Dynamical generation of gauge boson masses. The bubble sum in the second line is expressed in terms of
the composite Higgs propagator from Fig. 1 in the third line. The shaded blob on the left side is the OPI 2-point
vertex function.

a dynamically generated Dirac mass term,
—«£Lp =Dy vr+ h.c. 3)
2.1. Mass eigenstates and eigenvalues

For any value ofD, the mass eigenstates are two Majorana fermions, given by

(o)=v-() @

with A’ := v + v andp’ := vr + v§ and the orthogonal matrix

U:<co§<p Sln(p>=:<c s)- 5)
—sing cosp —s ¢

The corresponding mass eigenvalues

mkzg(M— 4D? + M?), (6a)

mp:%(M+\/4D2+M2) (6b)

are related t@ by

@ = arctan /—ﬂ. (7
mp

For convenience, we rewrite the singlet Majorana mass term (2) as well as the neutrino part
of the four-fermion interaction (1) in terms of Majorana fermions,

1 1
— Ly = EMﬁvF% +hc. = EMp/PR,o’C +h.c, (8)
Lay =GV (TR (TRW) = G (M Prp') (0" PLY). 9)

The Feynman rules for the interactions of the mass eigenstates are derived from these
Lagrangians by inserting the relations of Eq. (4).
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Fig. 3. Gap equations for, , the mass eigenvalue of the light neutrino, ang the mass eigenvalue of the heavy
neutrino. The explicit Majorana mass from Eg. (8) is indicated by a cross. The shaded blobs on the left side are
the OPI 2-point vertex functions, whereas the hatched blobs on the right side are full propagators.
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2.2. The coupled gap equations

The gap equations for the massesandm,,, corresponding to Fig. 3, are

m); = ZG(”)czsz[m;LIgap(m;L) — mplgap(mp)] +5°M, (10a)

m, = 2G<”)czsz[mplgap(mp) — m;\Igap(m;L)] +cM, (10b)
where we have introduced

1 A? m? [ A?

A is the condensation scale, which acts as a cutoffmhst m, = M due to Egs. (6),
the gap equations are linearly dependent, so that it is sufficient to solve one of them. Note
that since the mass eigenvalues are givembyandm ,, non-trivial solutions also imply
a dynamically generated Dirac maBs Such solutions are found to exist indeed, as will
be shown in Section 2.3. Remarkably, in this kind of gap equations, the heavy Majorana
degree of freedom plays an essential role and does not decouple.

To check the self-consistency of our calculation, we consider the gap equation for a
bilinear term that contains the fieldsand o as shown in Fig. 4. As we are working in
the mass eigenstate basis, this term, which corresponds to an off-diagonat gnimythe
mass matrix, has to vanish identically. We obtain

Mmyp = G [coty — tango]czsz[mklgap(mx) - mplgap(mp)] +cesM
1 1
:Ecokp[m)\—SZM]—I-Etan(p[mp—czM]—}-csM. (12)
Using the gap equations (10) as well as the relations (6) and (7) for the mass eigenvalues,
it follows thatm;, vanishes as required. This confirms that our solution is self-consistent.

2.3. Numerical solution of the gap equation

The gap equation (10a) fon; can be considered as an equation ) and D,
if fixed values are assigned t& and A. For M = 104 GeV and A = 106 GeV, the
solution is shown in Fig. 5. Instead &), we plot the dimensionless coupling constant
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Fig. 4. Self-consistency check for the off-diagonal elements of the gap equations in the mass eigenstate basis. We
find that the right-hand side vanishes as required.

20

15

GO A2

10

10! 10° 10'° 105
D [GeV]

Fig. 5. Characteristic numerical solution of the gap equation for the four-fermion couglfi and the
dynamically generated Dirac mas3 with a Majorana mass¥ = 10'* GeV and a condensation scale
A=108Gev.

g = v G™ A2, We find non-trivial solutions foD, if the couplingg is larger than a critical

value. This result is quite similar to top condensation [7], even though the right-handed
neutrino has a large Majorana mass. Note, however, thatin order to obtain correct solutions,
the exact relations (6) for the mass eigenvalues have to be used rather than an expansion in
powers ofD/M.

In order to obtain a Dirac mass of the order of the EW scale, fine-tuning is required in
the bubble sum approximation as can be seen from the extremely small slope of the graph
in Fig. 5. Even if the same fine-tuning is present in the exact gap equation, loop corrections,
which destabilize the hierarchy in the usual perturbative framework of the SM, do not pose
an additional problem here. In other words, the dynamical scenario under consideration
cannot explain why the hierarchy is large, but it does explain why it remains large. In that
sense the hierarchy is stable and hence the model might even be considered to be on equal
footing with the solution of the hierarchy problem by supersymmetry.

3. Phenomenology
3.1. Effective low-energy theory
The above results for, andm, were obtained in the bubble approximation. In order

to obtain more reliable low-energy results, the renormalization group (RG) running of the
effective theory has to be taken into account. Following the procedure used in [7], we show
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first that the low-energy effective theory of the model with four-fermion interactions is just
the SM with right-handed neutrindsTherefore, we look at the original Lagrangian at the
condensation scale,

L = Liin + Ly + GV (ELVR)(TRLL), (13)

where Lyin contains kinetic terms for the gauge bosons, the usual SM fermions and the
right-handed neutrinos. There is no Higgs field present. We rewriite terms of a static
(non-propagating) scalar auxiliary fiedd

1
90 (14)

This Lagrangian is equivalent to the Lagrangian in Eq. (13), which can be seen by
exploiting the equations of motion for the auxiliary field,

L= Liyin + Lm — ELpvr +h.c) —

¢=—GVIReL. (15)

The same result can be found by integrating out the auxiliary field in the path integral
formalism.

At scales belowA, the dynamics of the theory will induce all renormalizable and gauge
invariant terms that are allowed by symmetries, including a kinetic term and a quartic self-
interaction forg. Thus, the Lagrangian becomes

L= Lxin + LM+ Z(Dup)' (D" ¢) — (ELpvr + hoc)

- A
+iitplo - 2(¢%9)". (16)

Note thatZ, 7 andA are running quantities, even though their dependence on the energy
scaleu is not written explicitly. Foru — A the Lagrangian (16) has to become identical

to the one of Eq. (14), which leads to the following boundary (compositeness) conditions
for the RG evolution:

n—A

750, (17a)
~2 n—A . 1

i o (17b)
4. (17c)

Eqg. (16) is already very similar to the SM Lagrangian. The auxiliary field has acquired a
kinetic term, i.e., it has become a propagating composite Higgs field, but its Lagrangian is
not yet written in the usual normalization whefe= 1. To fix this we perform the rescaling

1

2 We demonstrate this for the simplified case of Section 2, where all non-critical four-fermion couplings
vanish. By including such couplings, the missing Yukawa interactions and masses can easily be incorporated.
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which leads to the Lagrangian
£ = Lin + LM + (D) (D*¢) — yu(ELpvr +h.C)
+m2elp— 5 (9'6)" (19)
where we have defined
m?:= yf%z and A:=yi. (20)

Thus, we have recovered the SM extended by right-handed neutrinos, which proves that the
Lagrangian (13) yields exactly the same low-energy physics, but with additional constraints
on the parameters, namely the compositeness conditions. From Egs. (17) and (18) we find
that the compositeness conditions for the couplings and the mass parameter become

iz ) (21a)

Yy

m2 u— A 1

AN EION (21b)
A p

= ”_;1 0. (21c)
Yy

The low-energy neutrino and Higgs masses are now obtained from the RG equations for
the SM extended by right-handed neutrinos. For the RG analysis in see-saw models, it
is crucial to integrate out the right-handed neutrinos and the corresponding part of the
neutrino Yukawa coupling matrix at the mass thresholds. The computation of the RG
evolution requires thg-functions of all gauge and Yukawa couplings (including those

of the neutrinos), of the quartic Higgs coupling and of the dimension 5 neutrino mass
operator (see, e.g., [17,18]). For completeness, we have listed the refefiamttions in
Appendix A. When integrating out the right-handed neutrinos, the dimension 5 neutrino
mass operator has to be matched at each threshold [19]. In this framework, we calculate
the low-energy parameters, starting with the compositeness conditions at the condensation
scale and solving the relevant systems of coupled differential equations. The results for the
Higgs mass and for the mass of the neutrino participating in condensation turn out to be not
very sensitive to the exact boundary conditions (21b) and (21c) due to the quasi-fixed-point
behavior that arises once Eq. (21a) is satisfied.

3.2. Neutrino masses at low energy

The RG evolution of the Majorana mass of the light neutrino participating in
condensation is shown in Fig. 6. It can be seen that a large, non-perturbative neutrino
Yukawa coupling is in agreement with the current limits on neutrino masses, if the see-saw
scaleM is large enough. Since the neutrino Yukawa coupling at the condensation scale has
to be non-perturbatively large and is thus not a free parameter of the model, an allowed
range for the neutrino mass translates into an allowed rang#/fdfor instance, with
yy € [2,5], M € [10', 10'>° GeV] at the condensation scale, which we have chosen to
be A = 10'® GeV, we obtain a range:, € [0.02,1.36 eV] for the neutrino mass at low
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Fig. 6. Running of the mass of the neutrino participating in condensation. The starting values for the neutrino
Yukawa coupling are in the rangg, € [2,5] at the scale of new physicsi. The Majorana mass of the
right-handed neutrino i3/ = 10® GeV at A, which we have chosen to be #0GeV in this example. The

gray region shows the possible values of the neutrino mass with the above range of initial values. The resulting
neutrino mass is in agreement with the current limits. It can of course be raised or lowered by Wirging

further depends omt, which is a free parameter of the model. The kink in the evolution of the neutrino mass
corresponds to the mass thresholg.at M. Below M, the heavy singlet is integrated out, producing an effective
dimension 5 operator which yields a see-saw suppressed Majorana mass.

energy. Except for the neutrino and the top, the Yukawa couplings of the fermions have
been omitted.

3.3. Higgs mass prediction

The Higgs mass can be predicted due to the quasi-fixed point in the RG evolution of the
Higgs self-coupling. The running of the Higgs mass from the condensation 4dal¢he
EW scale is shown in Fig. 7 for a wide range of paramelérsy, and at the scaleA.
For A = 10'6 GeV, we obtain Higgs masses in the range 170 Ge¥y < 195 GeV. One
should keep in mind that this prediction depends on the condensationsgcalkich is
a free parameter in our model. As in Section 3.2, except for the neutrino and the top, the
Yukawa couplings of the fermions have been omitted.

4. Three-neutrino condensation

The model discussed so far can be extended to the case where all three generations
of neutrinos participate in the condensation. In general, the low-energy theory contains
several Higgses. However, if the four-fermion couplings satisfy a “factorization relation”
[13],

3 —— 3 — 3 — .
S G, () (e =( 3 h;w)( 3 hf,:)*vzea), @)

f.8:h,i=1 fe=1 h,i=1
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Fig. 7. RG evolution of the “Higgs mas®i i (1) = +/A () /2 vew (With vew = 246 GeV), which equals at the

EW scale the physical Higgs mass. The quasi-fixed point leads to a rather narrow range for the mass at the EW
scale, in this example 170 GeVmpy < 195 GeV. Here we chosg = 106 GeV for the scale of new physics.

The input parameters at this energy were varied within the intemvals [2, 5], M e [10'4, 10155 GeV] and

A € [0, 20]. We further allowedn; € [170,180 GeV. The gray region shows the possible values of the Higgs
mass with these ranges of initial values.

then by following the steps of Egs. (13)—(15), the Lagrangian can be rewritten in terms of

one auxiliary field @ ~ ngh(.”)ﬁf vé. Hence we obtain again a one-Higgs model after
condensation analogous to Section 3.1. The gap equations can be treated as in Section 2. If
three neutrinos condense, the infrared quasi-fixed point of the RG evolution leads to three
heavy Dirac mass eigenvalues. The Majorana mass term of the right-handed neutrino in
Eqg. (2) must now be generalized to a mass maWix for three right-handed neutrinos,

with entries which are unprotected by symmetries, leading to three heavy eigenvalues. The
degeneracy or hierarchy of the see-saw scales is then conveyed rather directly into the full
light neutrino mass pattern. The Higgs mass is almost unchanged compared to the results
of Section 3.3, in spite of the contribution from the Yukawa couplings of the additional
neutrinos. Using the same input parameters as in Fig. 7, now with three equally large Dirac
masses for the neutrinos, we find 175 G€Vhi g < 195 GeV.

5. Combined neutrino and top condensation

Besides the neutrino condensate discussed in Section 2, there can be a further
condensate connected to the top quark. This means that in addition to the four-fermion
coupling of Eq. (1) for the neutrino, there is a corresponding term for the top quark,
G (grr)(frgL), and a mixed ternG™“") (L vR)(frqL). If G™, G and G become
critical, then in general two independent condensates form, similar to the case of combined
top and bottom condensation [9]. Note that i@ )2 = G™ - G this is a one-

Higgs scenario, which coincides with the model discussed by Martin [13]. However, in
general we are dealing with an effective Two Higgs Doublet Model (2HDM), where the
effective Lagrangian does not coincide with the 2HDMs usually discussed, which are
phenomenologically severely constrained. The scalars which are generated dynamically
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Fig. 8. Running of the “top mass; = y; (u)vew SiN(8)/+/2 in a 2HDM with a leptonic and a hadronic Higgs,
formed by a neutrino and a top condensate, and witl8tarl.3 at the electroweak scale. We have chosen the
value of tar8 such that the quasi-fixed point of the RG evolution reproduges: 175 GeV. The initial range for
the top Yukawa coupling at the scale of new physics, chosen t0 5106 GeV in this example, is; € [2, 5].

The gray region contains the resulting values for the top mass.

here are a “leptonic Higgs',, and a “hadronic Higgs’s;. The mixed couplings "
leads to a term of the forrmftq&;rqbt in the effective Higgs potential. Besides, four-Higgs
interactions with odd numbers gf, and¢; become allowed in the low-energy effective
theory.

An interesting feature of 2HDMs with a leptonic and a hadronic Higgs is that the correct
top mass can now be obtained dynamically as a quasi-fixed point of the RG evolution. This
has been found to be impossible in minimal models with pure top condensation, where the
predicted top mass is too large. In the two-Higgs case, the necessary additional degree of
freedom is the ratio of the VEVs, tgh A top mass of approximately 175 GeV is obtained
for tang ~ 1, as illustrated in Fig. 8. This also yields large Dirac masses for the neutrinos,
but due to the see-saw suppression their physical masses remain tiny.

Another issue that has to be addressed is the Higgs mass spectrum, as massless or
very light Higgses would be in conflict with experiments. As suggested by the analysis
of the case with a top and a bottom condensate [9], it should be possible to obtain
phenomenologically viable Higgs masses by making the param%;e;ufficiently large.
Hence, it seems worthwhile to study 2HDMs with neutrino and top condensates in more
detail.

6. Discussion and conclusions

In this article we have studied the possibility that the EW symmetry is broken
dynamically by the formation of a neutrino condensate. We have started from the SM
with right-handed neutrinos, but without a fundamental Higgs field. Instead of the Higgs
field we have postulated strong attractive four-fermion interactions. In addition, we have
included huge Majorana masses for the right-handed neutrinos, since there is no protective
symmetry. The analysis of the coupled Dirac—Majorana gap equations has shown that
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non-trivial solutions exist, which dynamically produce a large Dirac neutrino mass and
which break the EW symmetry in the desired way. However, due to the presence of the
huge Majorana mass term we obtain physical neutrino masses in the phenomenologically
allowed region via the see-saw mechanism. We have illustrated in the auxiliary field
formalism that the NJL-type interactions lead to a composite scalar sector which resembles
a Higgs Lagrangian with certain boundary conditions, i.e., predictions. In particular, the
compositeness conditions require that the Yukawa couplingf the condensing neutrino
becomes non-perturbative at high energies. To evaluate the predictions, we have translated
these boundary conditions in the framework of the low-energy effective Lagrangian into
high-energy boundary conditions for the renormalization group running.

For our minimal model discussed in Sections 2 and 3 the effective Lagrangian is the
SM with massive neutrinos. The boundary conditions and the infrared quasi-fixed-point
behavior of the Higgs self-coupling and of the relevant Yukawa couplinigad to two
predictions for a given condensation scaleFor A = 1016 GeV, typical values of, (A)
andA(A) consistent with the boundary conditions, and #re [10'% 10'5° GeV], we
have found a Higgs mass in the range 170 GeM y < 195 GeV, which is in agreement
with current experimental bounds. Moreover, we have found that an upper bound for the
neutrino mass of the order of 1 eV.{0eV) translates into a lower bound for the see-saw
scaleM of the order of 18* GeV (10° GeV).

We have also briefly studied the possibility that more than one neutrino condenses.
This leads in general to several Higgses and under a factorization condition to a one-
Higgs scenario. Furthermore, we have outlined the possibility of a combined neutrino-top
condensation, which corresponds without further assumptions to a two-Higgs model. In
addition, it might be possible to extend neutrino condensation to a supersymmetric model.

We have not attempted to embed these scenarios into a larger framework where the four-
fermion terms are generated in strongly coupled broken gauge theories as it was done in
“top color” theories [15] in the case of top condensatidrhis should be interesting, since
such a framework would, for example, allow to address the question if the gauge couplings
of the extended gauge sector unify above the condensation scale. In addition, threshold
effects near the condensation scale (in combination with extended gauge sectors or by
themselves) might affect unification. Such threshold corrections are generally expected to
be large in this non-perturbative scenario.

To conclude, we have introduced a dynamical realization of electroweak symmetry
breaking with massive neutrinos, where the SM Higgs particle emerges from neutrino
condensation, leading to predictions for the Higgs mass and for the see-saw scale.
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3 Note that such scenarios can possess the attractive property of generating Yukawa couplings via gauge
couplings.
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Appendix A. Renormalization group equations

In the SM extended by right-handed neutrinos one has to consider several effective
theories, corresponding to the ranges between the non-degenerate eigenvalues of the
Majorana mass matrix . At the thresholds, the heavy degrees of freedom are successively
integrated out. As introduced in [19], a supersc(iptdenotes a quantity between thih
and the(n + 1)th mass threshold. With this definition, tiefunctions for the Yukawa
coupling matrices are given by

m (3 Me 3 3, 9
2 2 2
167 ﬂYVZYV{Z Yy Y,) - 2(YeTYe)—Zg1—‘—1g2
®) ()
+ Y)Y + v v, 437y, +3Y7)y, ]} (A.1a)
3 3™Wm 15, 9
lﬁnzﬂyg =Y, {ZYJY - ZYJYU 78 2_ Zg%
I 1O t
+Tr[Y, Y.+ Y, Y, +3Y,Ys +3Y, Y] {. (A.1b)
) 3 3 5 9
2 2 2 2
167'[ ﬂYd = Yd{ZY Yd — EYMY — 1—2g1 — Zgz —8g3
N LR t
+Tr[Y, Yo+ Y, Yy +3Y, Yy +3Y, Y, ] ¢, (A.1lc)
3 3 17 9
2 t T 2 2
) ()
+T[Y] Y. + Y v, 37 v, + 37y, ]} (A.1d)

The g-function for the Majorana mass matrif reads

m " my @ m ™
16728y = (Yo Y M+m(v, v, (A.2)

and the RG evolution of the quartic Higgs self-coupling is determinéd by

3 2
16726, — 612 — 3 (3¢5 + 87) +3¢5 + 5 (s + &3)
(1) ()
F ATV Y, + v v, 437 v, + 3] 7,]

™) () (n) (n)
—sTy vy, + Yy, v Y, 43v)vavlva 4 3vivyv,]. (A3)

4 To our knowledge, thig-function has not yet been written explicitly in the literature.
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Finally, the8-function for the effective neutrino mass operator reads

) () ) ()
16n2f = S (1) W 20w + LtV Pl Y)
2 72 2 2
+2Tr(v]y,) —|—2Tr(YTYU) & e Tr(vy,) ¥
+6Tr(r]v,) % —3g2 % 42 % . (A.4)

The one-loop3-functions for the gauge couplings are of course unchanged compared to
the SM.
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