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Abstract

We show that the electroweak symmetry can be broken in a natural and phenomenolo
acceptable way by a neutrino condensate. Therefore, we assume as particle content o
chiral fermions and gauge bosons of the Standard Model and in addition right-handed neu
A fundamental Higgs field is absent. We assume instead that new interactions exist th
effectively be described as four-fermion interactions and that can become critical in the ne
sector. We discuss in detail the coupled Dirac–Majorana gap equations which lead to a n
condensate, electroweak symmetry breaking and via the dynamical see-saw mechanism
neutrino masses. We show that the effective Lagrangian is that of the Standard Model with m
neutrinos and with a composite Higgs particle. The mass predictions are consistent with data
 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

The generalization of renormalizable relativistic gauge theories to the Standard
(SM) was very successful and has been confirmed experimentally in an impressiv
including detailed tests of radiative corrections.1 However, it is important to keep in min
that the mechanism of electroweak (EW) symmetry breaking is still mostly untested
postulated Higgs particle has so far not been observed and there is only indirect ev
from quantum corrections that a SM Higgs boson should be lighter than about 200 Ge

E-mail addresses: santusch@ph.tum.de (S. Antusch), jkersten@ph.tum.de (J. Kersten), lindner@ph.
(M. Lindner), mratz@mail.desy.de (M. Ratz).
1 Recent measurements of small deviations ofg−2,AFB and sin2ΘW in the neutrino sector may be the first
signs of physics beyond the SM [1].

0550-3213/03/$ – see front matter 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0550-3213(03)00188-3

http://www.elsevier.com/locate/npe


gauge
ected
aking

raints.
metry
ples, it
f the
viations

at the
ally

namical
small,

merge
of the
limit

e EW
for EW
rsion,
are in
o top
ration
t. We
of the

nd top
Higgs

trinos,
ee-saw
erically.
m the

short
eously
ation

lds an
ever,
204 S. Antusch et al. / Nuclear Physics B 658 (2003) 203–216

The Higgs sector has furthermore well-known theoretical problems, especially the
hierarchy problem, which strongly suggest that new physics exists which is conn
to the mechanism of EW symmetry breaking. Whatever the correct symmetry bre
mechanism is, it must satisfy by now a number of stringent direct and indirect const
Given the success of the SM it is, however, immediately clear how an alternative sym
breaking scenario can be consistent with data. In the limit where new physics decou
just has to reproduce effectively the SM Higgs sector with a light Higgs particle [3]. I
model has such a decoupling limit, as in the case discussed in this paper, then de
from the SM can be understood as a departure from the decoupling limit.

Motivated by the evidence for neutrino masses, we discuss the possibility th
EW symmetry is broken dynamically by a neutrino condensate. This would norm
lead to neutrino masses of the order of the symmetry breaking scale, i.e.,O(200 GeV).
Neutrinos may, however, possess both Dirac and Majorana mass terms and the dy
generation of large Dirac mass terms leads via the see-saw mechanism [4–6] to
phenomenologically acceptable neutrino masses. A composite Higgs particle will e
that is not affected by the see-saw mechanism, i.e., it will have a mass of the order
EW symmetry breaking scale. The low-energy effective Lagrangian in the decoupling
is therefore the SM, with a composite Higgs instead of a fundamental scalar.

A heavy Dirac neutrino mass is similar to the heavy top mass of the order of th
scale, which gave rise to speculations that top condensation might be responsible
symmetry breaking [7,8]. However, top condensation is not viable in its simplest ve
since it predicts too large top and Higgs masses. Different non-minimal models
principle viable [9–12], and the possibility that third-generation neutrinos contribute t
condensation was studied by Martin [13]. The condensation of a full fourth gene
(including neutrinos of the fourth generation) [14] was also discussed in this contex
study the case where only neutrinos are responsible for the dynamical breakdown
EW symmetry. We briefly discuss a mixed case as well where combined neutrino a
condensation leads to an effective two-Higgs scenario with a leptonic and a hadronic
particle.

The paper is organized as follows: in Section 2 we discuss the condensation of neu
i.e., we study the relevant system of coupled gap equations in combination with the s
mechanism in the proper mass eigenstate basis. Afterwards, we solve the gap num
The following section contains the phenomenology and the predictions arising fro
renormalization group improved compositeness conditions. Section 4 contains a
discussion of the option that all three generations of neutrinos condense simultan
and in Section 5 we outline briefly the possibility of a combined neutrino-top condens
scenario.

2. Neutrino condensation

We assume as mentioned that some physics exists at high energies which yie
effective four-fermion picture similar to weak interactions at low energies. How

contrary to weak interactions we assume that certain four-fermion couplings become strong
enough to trigger the formation of condensates, thus giving masses to some of the fermions
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via gap equations. The remaining fermions could, e.g., obtain masses from furthe
fermion couplings, which only subdominantly contribute to the gap. For top condensa
was shown how this can be justified in the context of broken renormalizable gauge th
at high energies, for example, in the framework of so-called top-color models [15] orU(1)
models [16]. In this spirit, we consider the particle content of the SM extended by
right-handed neutrinos but without a fundamental Higgs field. Instead of the SM H
field we assume four-fermion couplings involving the lepton doublets and the right-ha
neutrinos. In addition, since the right-handed neutrinos are singlets under the SM
group and since there is no protective symmetry, we assume them to have huge M
masses.

In order to show the essential aspects of such a scenario, we consider first the cas
only one of the four-fermion couplings drives the condensation, while the others v
Thus, the four-fermion Lagrangian is

(1)L4f =G(ν)(
LνR)(νR
L),

where we have omitted theSU(2) indices and where
L, νR stand for the relevant neutrin
degrees of freedom. Moreover, we assume the Majorana mass matrix to be diag
that the condensing pair of neutrinos can be studied independently. Therefore, we
consider only one Majorana mass term,

(2)−LM = 1

2
MνRν

C
R + h.c.

We will see that this describes the most interesting features of neutrino condensation
general scenarios will be discussed briefly in Sections 4 and 5.

The question whether a non-perturbative solution for the ground state exists
presence of the huge Majorana mass, i.e., if the gap equation has a non-trivial so
will be studied in Section 2.2. If the gap equation produces a fermion condensate w
a doublet underSU(2)L and which carries a suitableU(1)Y charge, then it is immediatel
clear that theSU(2)L ⊗ U(1)Y gauge symmetry is broken. For the chosen NJL-
interaction a composite Higgs particle emerges. This is visualized in Fig. 1, wh
massive scalar pole and three massless Goldstone bosons are produced by the su
of a certain class of diagrams with dynamical fermion propagators. The Higgs mech
and the “eating” of the Goldstone bosons is illustrated in Fig. 2. For more details
e.g., [8].

We analyze now the gap equations of our model with an explicit Majorana mass te
νR. If a non-trivial solution produces dynamically a large Dirac mass term, it breaks th
symmetry. Then the presence of the huge singlet Majorana mass will lead to a dyn
see-saw mechanism with small neutrino masses. A computation of the gap equatio
basis of mass eigenstates must therefore include in a self-consistent way the possi
Fig. 1. The exchange of a virtual composite Higgs scalar can be seen as a sum over all loop contributions involving
the four-fermion vertex in the so-called bubble sum approximation. Hatched blobs denote full propagators.
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Fig. 2. Dynamical generation of gauge boson masses. The bubble sum in the second line is expressed in
the composite Higgs propagator from Fig. 1 in the third line. The shaded blob on the left side is the OPI
vertex function.

a dynamically generated Dirac mass term,

(3)−LD =DνLνR + h.c.

2.1. Mass eigenstates and eigenvalues

For any value ofD, the mass eigenstates are two Majorana fermions, given by

(4)

(
λ

ρ

)
=U ·

(
λ′
ρ′
)

with λ′ := νL + νC
L andρ′ := νR + νC

R and the orthogonal matrix

(5)U =
(

cosϕ sinϕ
−sinϕ cosϕ

)
=:
(

c s

−s c

)
.

The corresponding mass eigenvalues

(6a)mλ = 1

2

(
M −

√
4D2 +M2

)
,

(6b)mρ = 1

2

(
M +

√
4D2 +M2

)
are related toϕ by

(7)ϕ = arctan
√

−mλ

mρ

.

For convenience, we rewrite the singlet Majorana mass term (2) as well as the neutri
of the four-fermion interaction (1) in terms of Majorana fermions,

(8)−LM = 1

2
MνRν

C
R + h.c.= 1

2
Mρ′PRρ

′C + h.c.,

(9)L4ν =G(ν)(νLνR)(νRνL)=G(ν)
(
λ′PRρ

′)(ρ′PLλ
′).
The Feynman rules for the interactions of the mass eigenstates are derived from these
Lagrangians by inserting the relations of Eq. (4).
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Fig. 3. Gap equations formλ, the mass eigenvalue of the light neutrino, andmρ , the mass eigenvalue of the hea
neutrino. The explicit Majorana mass from Eq. (8) is indicated by a cross. The shaded blobs on the left
the OPI 2-point vertex functions, whereas the hatched blobs on the right side are full propagators.

2.2. The coupled gap equations

The gap equations for the massesmλ andmρ , corresponding to Fig. 3, are

(10a)mλ = 2G(ν)c2s2[mλIgap(mλ)−mρIgap(mρ)
]+ s2M,

(10b)mρ = 2G(ν)c2s2[mρIgap(mρ)−mλIgap(mλ)
]+ c2M,

where we have introduced

(11)
1

2
Igap(m) := − Λ2

16π2

[
1− m2

Λ2
ln

(
Λ2

m2
+ 1

)]
.

Λ is the condensation scale, which acts as a cutoff. Asmλ + mρ = M due to Eqs. (6)
the gap equations are linearly dependent, so that it is sufficient to solve one of them
that since the mass eigenvalues are given bymλ andmρ , non-trivial solutions also imply
a dynamically generated Dirac massD. Such solutions are found to exist indeed, as w
be shown in Section 2.3. Remarkably, in this kind of gap equations, the heavy Ma
degree of freedom plays an essential role and does not decouple.

To check the self-consistency of our calculation, we consider the gap equation
bilinear term that contains the fieldsλ andρ as shown in Fig. 4. As we are working
the mass eigenstate basis, this term, which corresponds to an off-diagonal entrymλρ in the
mass matrix, has to vanish identically. We obtain

mλρ =G(ν)[cotϕ − tanϕ]c2s2[mλIgap(mλ)−mρIgap(mρ)
]+ csM

(12)= 1

2
cotϕ

[
mλ − s2M

]+ 1

2
tanϕ

[
mρ − c2M

]+ csM.

Using the gap equations (10) as well as the relations (6) and (7) for the mass eigen
it follows thatmλρ vanishes as required. This confirms that our solution is self-consis

2.3. Numerical solution of the gap equation

The gap equation (10a) formλ can be considered as an equation forG(ν) andD,

if fixed values are assigned toM andΛ. For M = 1014 GeV andΛ = 1016 GeV, the
solution is shown in Fig. 5. Instead ofG(ν), we plot the dimensionless coupling constant
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Fig. 4. Self-consistency check for the off-diagonal elements of the gap equations in the mass eigenstate b
find that the right-hand side vanishes as required.

Fig. 5. Characteristic numerical solution of the gap equation for the four-fermion couplingG(ν) and the
dynamically generated Dirac massD with a Majorana massM = 1014 GeV and a condensation sca
Λ= 1016 GeV.

g = √
G(ν)Λ2. We find non-trivial solutions forD, if the couplingg is larger than a critica

value. This result is quite similar to top condensation [7], even though the right-ha
neutrino has a large Majorana mass. Note, however, that in order to obtain correct so
the exact relations (6) for the mass eigenvalues have to be used rather than an expa
powers ofD/M.

In order to obtain a Dirac mass of the order of the EW scale, fine-tuning is requir
the bubble sum approximation as can be seen from the extremely small slope of the
in Fig. 5. Even if the same fine-tuning is present in the exact gap equation, loop corre
which destabilize the hierarchy in the usual perturbative framework of the SM, do no
an additional problem here. In other words, the dynamical scenario under conside
cannot explain why the hierarchy is large, but it does explain why it remains large. I
sense the hierarchy is stable and hence the model might even be considered to be
footing with the solution of the hierarchy problem by supersymmetry.

3. Phenomenology

3.1. Effective low-energy theory

The above results formρ andmλ were obtained in the bubble approximation. In or

to obtain more reliable low-energy results, the renormalization group (RG) running of the
effective theory has to be taken into account. Following the procedure used in [7], we show
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first that the low-energy effective theory of the model with four-fermion interactions is
the SM with right-handed neutrinos.2 Therefore, we look at the original Lagrangian at
condensation scaleΛ,

(13)L = Lkin + LM +G(ν)(
LνR)(νR
L),

whereLkin contains kinetic terms for the gauge bosons, the usual SM fermions an
right-handed neutrinos. There is no Higgs field present. We rewriteL in terms of a static
(non-propagating) scalar auxiliary fieldφ,

(14)L = Lkin + LM − (
LφνR + h.c.)− 1

G(ν)
φ†φ.

This Lagrangian is equivalent to the Lagrangian in Eq. (13), which can be see
exploiting the equations of motion for the auxiliary field,

(15)φ = −G(ν)νR
L .

The same result can be found by integrating out the auxiliary field in the path in
formalism.

At scales belowΛ, the dynamics of the theory will induce all renormalizable and ga
invariant terms that are allowed by symmetries, including a kinetic term and a quarti
interaction forφ. Thus, the Lagrangian becomes

L = Lkin + LM +Z(Dµφ)
†(Dµφ

)− (
LφνR + h.c.)

(16)+ m̃2φ†φ − λ̃

4

(
φ†φ

)2
.

Note thatZ, m̃ andλ̃ are running quantities, even though their dependence on the e
scaleµ is not written explicitly. Forµ → Λ the Lagrangian (16) has to become identi
to the one of Eq. (14), which leads to the following boundary (compositeness) cond
for the RG evolution:

(17a)Z
µ→Λ−→ 0,

(17b)m̃2 µ→Λ−→ − 1

G(ν)
,

(17c)λ̃
µ→Λ−→ 0.

Eq. (16) is already very similar to the SM Lagrangian. The auxiliary field has acqui
kinetic term, i.e., it has become a propagating composite Higgs field, but its Lagrang
not yet written in the usual normalization whereZ ≡ 1. To fix this we perform the rescalin

(18)φ −→ 1√
Z
φ ≡ yνφ,
2 We demonstrate this for the simplified case of Section 2, where all non-critical four-fermion couplings
vanish. By including such couplings, the missing Yukawa interactions and masses can easily be incorporated.
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which leads to the Lagrangian

L = Lkin + LM + (Dµφ)
†(Dµφ

)− yν(
LφνR + h.c.)

(19)+m2φ†φ − λ

4

(
φ†φ

)2
,

where we have defined

(20)m2 := y2
ν m̃

2 and λ := y4
ν λ̃.

Thus, we have recovered the SM extended by right-handed neutrinos, which proves
Lagrangian (13) yields exactly the same low-energy physics, but with additional cons
on the parameters, namely the compositeness conditions. From Eqs. (17) and (18)
that the compositeness conditions for the couplings and the mass parameter becom

(21a)
1

y2
ν

µ→Λ−→ 0,

(21b)
m2

y2
ν

µ→Λ−→ − 1

G(ν)
,

(21c)
λ

y4
ν

µ→Λ−→ 0.

The low-energy neutrino and Higgs masses are now obtained from the RG equatio
the SM extended by right-handed neutrinos. For the RG analysis in see-saw mo
is crucial to integrate out the right-handed neutrinos and the corresponding part
neutrino Yukawa coupling matrix at the mass thresholds. The computation of th
evolution requires theβ-functions of all gauge and Yukawa couplings (including th
of the neutrinos), of the quartic Higgs coupling and of the dimension 5 neutrino
operator (see, e.g., [17,18]). For completeness, we have listed the relevantβ-functions in
Appendix A. When integrating out the right-handed neutrinos, the dimension 5 ne
mass operator has to be matched at each threshold [19]. In this framework, we ca
the low-energy parameters, starting with the compositeness conditions at the conde
scale and solving the relevant systems of coupled differential equations. The results
Higgs mass and for the mass of the neutrino participating in condensation turn out to
very sensitive to the exact boundary conditions (21b) and (21c) due to the quasi-fixed
behavior that arises once Eq. (21a) is satisfied.

3.2. Neutrino masses at low energy

The RG evolution of the Majorana mass of the light neutrino participating
condensation is shown in Fig. 6. It can be seen that a large, non-perturbative ne
Yukawa coupling is in agreement with the current limits on neutrino masses, if the se
scaleM is large enough. Since the neutrino Yukawa coupling at the condensation sca
to be non-perturbatively large and is thus not a free parameter of the model, an a
range for the neutrino mass translates into an allowed range forM. For instance, with

yν ∈ [2,5], M ∈ [1014,1015.5 GeV] at the condensation scale, which we have chosen to
beΛ = 1016 GeV, we obtain a rangemν ∈ [0.02,1.36 eV] for the neutrino mass at low
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Fig. 6. Running of the mass of the neutrino participating in condensation. The starting values for the n
Yukawa coupling are in the rangeyν ∈ [2,5] at the scale of new physics,Λ. The Majorana mass of th
right-handed neutrino isM = 1015 GeV atΛ, which we have chosen to be 1016 GeV in this example. The
gray region shows the possible values of the neutrino mass with the above range of initial values. The r
neutrino mass is in agreement with the current limits. It can of course be raised or lowered by varyingM and
further depends onΛ, which is a free parameter of the model. The kink in the evolution of the neutrino
corresponds to the mass threshold atµ =M . BelowM , the heavy singlet is integrated out, producing an effec
dimension 5 operator which yields a see-saw suppressed Majorana mass.

energy. Except for the neutrino and the top, the Yukawa couplings of the fermions
been omitted.

3.3. Higgs mass prediction

The Higgs mass can be predicted due to the quasi-fixed point in the RG evolution
Higgs self-coupling. The running of the Higgs mass from the condensation scaleΛ to the
EW scale is shown in Fig. 7 for a wide range of parametersM, yν andλ at the scaleΛ.
ForΛ= 1016 GeV, we obtain Higgs masses in the range 170 GeV�mH � 195 GeV. One
should keep in mind that this prediction depends on the condensation scaleΛ, which is
a free parameter in our model. As in Section 3.2, except for the neutrino and the to
Yukawa couplings of the fermions have been omitted.

4. Three-neutrino condensation

The model discussed so far can be extended to the case where all three gen
of neutrinos participate in the condensation. In general, the low-energy theory co
several Higgses. However, if the four-fermion couplings satisfy a “factorization rela
[13],

3∑
(ν) ( f g)( h i

) (
3∑

(ν) f g

)(
3∑

(ν)∗ h i

)

(22)

f,g,h,i=1

Gfghi 
L νR νR
L =
f,g=1

hfg 
L νR
h,i=1

hih νR
L ,
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Fig. 7. RG evolution of the “Higgs mass”mH (µ)= √
λ(µ)/2vEW (with vEW = 246 GeV), which equals at th

EW scale the physical Higgs mass. The quasi-fixed point leads to a rather narrow range for the mass a
scale, in this example 170 GeV� mH � 195 GeV. Here we choseΛ = 1016 GeV for the scale of new physics
The input parameters at this energy were varied within the intervalsyν ∈ [2,5], M ∈ [1014,1015.5 GeV] and
λ ∈ [0,20]. We further allowedmt ∈ [170,180 GeV]. The gray region shows the possible values of the Hi
mass with these ranges of initial values.

then by following the steps of Eqs. (13)–(15), the Lagrangian can be rewritten in ter

one auxiliary fieldΦ ∼∑
fg h

(ν)
fg 


f
L ν

g
R. Hence we obtain again a one-Higgs model a

condensation analogous to Section 3.1. The gap equations can be treated as in Sec
three neutrinos condense, the infrared quasi-fixed point of the RG evolution leads to
heavy Dirac mass eigenvalues. The Majorana mass term of the right-handed neu
Eq. (2) must now be generalized to a mass matrixMij for three right-handed neutrino
with entries which are unprotected by symmetries, leading to three heavy eigenvalue
degeneracy or hierarchy of the see-saw scales is then conveyed rather directly into
light neutrino mass pattern. The Higgs mass is almost unchanged compared to the
of Section 3.3, in spite of the contribution from the Yukawa couplings of the addit
neutrinos. Using the same input parameters as in Fig. 7, now with three equally large
masses for the neutrinos, we find 175 GeV�mH � 195 GeV.

5. Combined neutrino and top condensation

Besides the neutrino condensate discussed in Section 2, there can be a
condensate connected to the top quark. This means that in addition to the four-fe
coupling of Eq. (1) for the neutrino, there is a corresponding term for the top q
G(t)(qLtR)(tRqL), and a mixed termG(νt)(
LνR)(tRqL). If G(ν),G(t) andG(νt) become
critical, then in general two independent condensates form, similar to the case of com
top and bottom condensation [9]. Note that for(G(νt))2 = G(ν) · G(t) this is a one-
Higgs scenario, which coincides with the model discussed by Martin [13]. Howev
general we are dealing with an effective Two Higgs Doublet Model (2HDM), where

effective Lagrangian does not coincide with the 2HDMs usually discussed, which are
phenomenologically severely constrained. The scalars which are generated dynamically
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Fig. 8. Running of the “top mass”mt = yt (µ)vEW sin(β)/
√

2 in a 2HDM with a leptonic and a hadronic Higg
formed by a neutrino and a top condensate, and with tanβ = 1.3 at the electroweak scale. We have chosen
value of tanβ such that the quasi-fixed point of the RG evolution reproducesmt ≈ 175 GeV. The initial range fo
the top Yukawa coupling at the scale of new physics, chosen to beΛ= 1016 GeV in this example, isyt ∈ [2,5].
The gray region contains the resulting values for the top mass.

here are a “leptonic Higgs”,φν , and a “hadronic Higgs”,φt . The mixed couplingG(νt)

leads to a term of the formm2
νtφ

†
νφt in the effective Higgs potential. Besides, four-Hig

interactions with odd numbers ofφν andφt become allowed in the low-energy effecti
theory.

An interesting feature of 2HDMs with a leptonic and a hadronic Higgs is that the co
top mass can now be obtained dynamically as a quasi-fixed point of the RG evolution
has been found to be impossible in minimal models with pure top condensation, whe
predicted top mass is too large. In the two-Higgs case, the necessary additional de
freedom is the ratio of the VEVs, tanβ . A top mass of approximately 175 GeV is obtain
for tanβ ≈ 1, as illustrated in Fig. 8. This also yields large Dirac masses for the neut
but due to the see-saw suppression their physical masses remain tiny.

Another issue that has to be addressed is the Higgs mass spectrum, as mas
very light Higgses would be in conflict with experiments. As suggested by the an
of the case with a top and a bottom condensate [9], it should be possible to
phenomenologically viable Higgs masses by making the parameterm2

νt sufficiently large.
Hence, it seems worthwhile to study 2HDMs with neutrino and top condensates in
detail.

6. Discussion and conclusions

In this article we have studied the possibility that the EW symmetry is bro
dynamically by the formation of a neutrino condensate. We have started from th
with right-handed neutrinos, but without a fundamental Higgs field. Instead of the H
field we have postulated strong attractive four-fermion interactions. In addition, we

included huge Majorana masses for the right-handed neutrinos, since there is no protective
symmetry. The analysis of the coupled Dirac–Majorana gap equations has shown that
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non-trivial solutions exist, which dynamically produce a large Dirac neutrino mass
which break the EW symmetry in the desired way. However, due to the presence
huge Majorana mass term we obtain physical neutrino masses in the phenomenolo
allowed region via the see-saw mechanism. We have illustrated in the auxiliary
formalism that the NJL-type interactions lead to a composite scalar sector which rese
a Higgs Lagrangian with certain boundary conditions, i.e., predictions. In particula
compositeness conditions require that the Yukawa couplingyν of the condensing neutrin
becomes non-perturbative at high energies. To evaluate the predictions, we have tra
these boundary conditions in the framework of the low-energy effective Lagrangia
high-energy boundary conditions for the renormalization group running.

For our minimal model discussed in Sections 2 and 3 the effective Lagrangian
SM with massive neutrinos. The boundary conditions and the infrared quasi-fixed
behavior of the Higgs self-coupling and of the relevant Yukawa couplingyν lead to two
predictions for a given condensation scaleΛ. ForΛ= 1016 GeV, typical values ofyν(Λ)
andλ(Λ) consistent with the boundary conditions, and forM ∈ [1014,1015.5 GeV], we
have found a Higgs mass in the range 170 GeV�mH � 195 GeV, which is in agreemen
with current experimental bounds. Moreover, we have found that an upper bound f
neutrino mass of the order of 1 eV (0.1 eV) translates into a lower bound for the see-s
scaleM of the order of 1014 GeV (1015 GeV).

We have also briefly studied the possibility that more than one neutrino conde
This leads in general to several Higgses and under a factorization condition to a
Higgs scenario. Furthermore, we have outlined the possibility of a combined neutrin
condensation, which corresponds without further assumptions to a two-Higgs mod
addition, it might be possible to extend neutrino condensation to a supersymmetric

We have not attempted to embed these scenarios into a larger framework where th
fermion terms are generated in strongly coupled broken gauge theories as it was d
“top color” theories [15] in the case of top condensation.3 This should be interesting, sinc
such a framework would, for example, allow to address the question if the gauge cou
of the extended gauge sector unify above the condensation scale. In addition, th
effects near the condensation scale (in combination with extended gauge sector
themselves) might affect unification. Such threshold corrections are generally expe
be large in this non-perturbative scenario.

To conclude, we have introduced a dynamical realization of electroweak sym
breaking with massive neutrinos, where the SM Higgs particle emerges from ne
condensation, leading to predictions for the Higgs mass and for the see-saw scale.
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Appendix A. Renormalization group equations

In the SM extended by right-handed neutrinos one has to consider several ef
theories, corresponding to the ranges between the non-degenerate eigenvalue
Majorana mass matrixM. At the thresholds, the heavy degrees of freedom are succes
integrated out. As introduced in [19], a superscript(n) denotes a quantity between thenth
and the(n + 1)th mass threshold. With this definition, theβ-functions for the Yukawa
coupling matrices are given by

16π2
(n)

βYν = (n)

Yν

{
3

2

((n)
Y †
ν

(n)

Yν
)− 3

2

(
Y †
e Ye

)− 3

4
g2

1 − 9

4
g2

2

(A.1a)+ Tr
[
Y †
e Ye +

(n)

Y †
ν

(n)

Yν +3Y †
d Yd + 3Y †

uYu
]}
,

16π2
(n)

βYe = Ye

{
3

2
Y †
e Ye − 3

2

(n)

Y †
ν

(n)

Yν −15

4
g2

1 − 9

4
g2

2

(A.1b)+ Tr
[
Y †
e Ye +

(n)

Y †
ν

(n)

Yν +3Y †
d Yd + 3Y †

uYu
]}
,

16π2
(n)

βYd = Yd

{
3

2
Y

†
d Yd − 3

2
Y †
u Yu − 5

12
g2

1 − 9

4
g2

2 − 8g2
3

(A.1c)+ Tr
[
Y †
e Ye +

(n)

Y †
ν

(n)

Yν +3Y †
d Yd + 3Y †

uYu
]}
,

16π2
(n)

βYu = Yu

{
3

2
Y †
uYu − 3

2
Y

†
d Yd − 17

12
g2

1 − 9

4
g2

2 − 8g2
3

(A.1d)+ Tr
[
Y †
e Ye +

(n)

Y †
ν

(n)

Yν +3Y †
d Yd + 3Y †

uYu
]}
.

Theβ-function for the Majorana mass matrixM reads

(A.2)16π2
(n)

βM = ((n)
Yν

(n)

Y †
ν

) (n)
M+ (n)

M
((n)
Yν

(n)

Y †
ν

)T
,

and the RG evolution of the quartic Higgs self-coupling is determined by4

16π2
(n)

βλ = 6λ2 − 3λ
(
3g2

2 + g2
1

)+ 3g4
2 + 3

2

(
g2

1 + g2
2

)2
+ 4λTr

[
Y †
e Ye +

(n)

Y †
ν

(n)

Yν +3Y †
d Yd + 3Y †

uYu
]

(A.3)− 8 Tr
[
Y †
e YeY

†
e Ye +

(n)

Y †
ν

(n)

Yν

(n)

Y †
ν

(n)

Yν +3Y †
d YdY

†
d Yd + 3Y †

uYuY
†
u Yu

]
.

4 To our knowledge, thisβ-function has not yet been written explicitly in the literature.
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Finally, theβ-function for the effective neutrino mass operator reads

16π2
(n)

βκ = −3

2

(
Y †
e Ye

)T (n)
κ −3

2

(n)
κ
(
Y †
e Ye

)+ 1

2

((n)
Y †
ν

(n)

Yν
)T (n)

κ +1

2

(n)
κ
((n)
Y †
ν

(n)

Yν
)

+ 2 Tr
(
Y †
e Ye

) (n)
κ +2 Tr

((n)
Y †
ν

(n)

Yν
) (n)
κ +6 Tr

(
Y †
u Yu

) (n)
κ

(A.4)+ 6 Tr
(
Y

†
d Yd

) (n)
κ −3g2

2
(n)
κ +λ

(n)
κ .

The one-loopβ-functions for the gauge couplings are of course unchanged compa
the SM.
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