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Abstract

L constructive theory of nemory organisacion
ras Dbeen developed, based upon the principle of
aon=rtemporal prediczion. The ctheory predicts much
5 tha experimenctal findings 2a recall and
Tar-enzing and praviies a computational foundation
for 3sme of the intui:ive notiins af the society of
aind thaeory. This paper describes an experimental
=rechizecture that i3 being used to study this form
9¢ learning. The architecture is a highly
iiszributed systam that achisves 'structural’
lear~ing through the application of a particularly
zowerful form of natural constraint.

Zaviovds - Non-Tamporal Prediction, Disctributed
2r-tlem so0lving, Sociezy of Mind, Models of
Learning, Skill acquisition.

Introduction

“rogress in VL3I techniques aloag with the
amergence &f 3ome highly diatributed architectures
such as Fahlman | ! ] and Hillis [ 2 | has awakened
an ilateresat .n examining what can be done with
certain archizestures based on simple 'neuron like'
procsssors, such as Hiavon 34 and Feldman
.5 ]. & theory of learning based on the priaciple
of non-temporal prediction has besn developad that
is completely data~driven [ 6 7 ]. In this paper,
4e ipscribe an experimental architecture that Ls

seing ased tc study this form of learning.

Non-Temporal Prediction

Learning and memory can be viewed as
nechanisms {or che acquisizion of knowledge.
“zowl2dge itself can be viewed as a means of
predicting avents in the world. Qur survival is in
a lirze part Jependant on our ability to 'predict’
the world. I: is supposed that learning has evolved
T2 meet tals need. Making predictions about the
world camn be classified ints two broad categories.
FTirst, tnece is the class of predictions that are
time relzo=ed. An understanding of ‘Sravity' might
te :lassified %a this way, to understand 'gravity’
i3 =0 rpreiic: that when a thing 13 dropped it will
f21i =0 the2 grzund (or the class of predictions of
which that %3 a simple example). This form of
srediction ia tize related because the two defining
72073 .<hz dropping and the 4hittiag on the floor)
ar? 2ispar-ize in time. [ne secund catagory, to
aizn this pacsr i3 aspecifically addreased,
eras ara:disctisns that are unrelated to timae.
2ind of prediction concerns the classification
avea=s. “are, learmiag the :cncep: ot an 'arch’
J 23 makinz a prediction about what objects
tizus2 'arza’. inen examples 37 arches that
f2ra t3 tni3 prediction are encountered they
#ill be recognised as such, just as dropping an
2ct that subsequently falls to the ground is
recognised 13 indicating the presence of 'gravicy'.
Tha 4iffarence, ‘2 that the second category i=s
inrelzzed o time. There are several reasons way it

.8 nmeful =3 make <his form ¢ diatinction.

=+

; Many sneories o7 learning and forgetting
ar2 hased 4dpgoa tha2 aortion af trace decay-
Aagensy ~xrclaias s2arvaln observable
sn2ncieneon, 2t i3 diffiaulr o juatify
raaputat.onacly and <+ives rise to some
s2 15 aroblems dhen dealing with aredictive
sisuasions »{ vasily disparate times.
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(2) Many of the affecta for which recency
#as proposed can be adequately explained
without refarence to 'time' or 'trace decay'.

4 ) ‘any protlems that at first appear to be
ramporal in nature can be expressed In rterms
of the non-temporal paradigm. It is not known
whether all situations can be transformed in
this way. It may be that learning for
'temporal’' situacions is itself a learned
atrategy, there i3 some evidence to suppor:
this conjecturs.

(4) It ts possible to 3olve the problem of
non-temporal prediction computationally im
tarms of a highly distribuced architecturs of
simple processors.

Learning by Modification
The notion that learning usually takes the
form of modifying an existing skill is ‘ntuitively
attractive. Many attempts at capturing this
intuition computationally have been tried, STRIPS

L 3 , employed an augmenzed triangle table thac

1llowed old plans to be ‘modified’ to suit new

situations, an ‘iea recently extended by Carbonmell

[ 3 ] Uinsky [ 10 ] discussed a form of learniag

in which new agents arise by 'splitting off’ from

old onmes, with only small changes and essentially
the same data connections. The mechanism presented
ia this paper follows the spirit of Minsky's 'agent
splitting’ but differs in detail. The architecture

sresented differs in that instead of splitting a

single process (by copying) and then modifying the

copy, +% supports multiple copies of {almost)

identical agenta. Learning <involves taking a

‘suitable subset' of these agents and modifying it.

Before describing the architecture itself, wve

should make a few peints regarding the significancs

of this difference.

(1) It seems likely that natural systems
such as the human brain can support this form
of 'redundency’.

(2) Having multiple copies introduces a
degree of 'fault tollerence', in particular,
the 'Grandmother Problem' does not arise.

(3) Most significantly, having many copies
neanas that a data driven mechanism can be
atilized to achieve the 'split’ instead of
needing a top down decisiom to split.

Understanding Discontinuous Changes in Capability

Instead of having a single agent that can
perform a given task, the architecture supports

.many such agenta. We will rafer to a set of similar
‘igents as a process-get. The agents of a

process-set compete to influence the atate of the
systam. Each agent provides its own prognosis and
some indication of how reliable it believes this
prognosis to be (based on a simple probabilistic
analysis). One agent's prognosis will be chosen as
the most credible alternative. The computation of
credibility will also bea computed on the basis »f a
simple probabilistic analysis. Instead of
hypothesizing that when a thing i3 learned its
3trength gradually increases, or when it is
fargotten, it gradually decresses |[trace decay),
this model 3f learning distinguishes several phases
3f learning. First, the agent is generated In
isolation (we will demonactrate one algoritha for
agent creation when expounding the details of cthe
architecture). Then, the agent Tust be refined
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‘discover its own boundaries and be able to
iccurately compute tne reliability of its own

srognosis). Tinally, the agen: must be discovered

by ather agen:a already in :he system. This final
stage 13 one in which the agents credibility is
ccaputed as the result of a probabiliscic analysis,
and corresponds closely to tne notion of forming
{-lines expounded by Minsky _ !! ,. When a new and
necessary igent i3 created, it3 success causes its
c=edinility =5 rise until enough samples have been
sbtained to raise its credibility to a level above
that of the previcus 'favorite' ageant for this
task. At thiz ooint, =he new agent will suddenly be
13ed in place of the previous favorite, giving rise
t3 1an abservable iiscontinuoua change Lin
perfarmance.
The Experimental Architecture

The axperizental architecture can be described
it several levels. At one level, is the general
systam topology defined by a number of intuitive
ssnneetivity restricrions described in | 7 | and in
asre detail in _ 6 |. Space prevents a discussion
of zhis aspect of the architecture. The heirarchy
can be decomposed Into neigzhborhoods of agents that
will, for the purposes of this paper be totally
ccnnected | tae overall heirarchy allows the
sonnecti ity cowpuexity o be xapt iinear despicte
the total connectivity within neighborhoeds,
“urtherore, the comnectivity within a aeighborhood
san be relaxed [ 2 ] without loss of generality). A
neizhbarhood contains two computatiomally distinct
cocponents. The processors, that zay be programmed
zo compute a predictive rule, and the creators that
orogram processors for the purposes of generating
new agents (learnming) and replenishing process-set
3ize when process splitting has resulted in an
iasufficient process-set cardinality
‘fhnuuekee;lin.s). We will discusas the creator and the
orocessor objects seperately. A programmed
srocessor will be refered o as an agent.

The snatomy of a Heighborhood

Consider a neighborhood to be a two
dimensional sheet of processing elements. Bach
processor in the region recileves an input from
osutaide the neighborhood, being totally connected
2ach processor also recieves inputs from the
scutputs of every other processor in the
neizhborhood.
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Figure |

The qeighborhood itself ia divided {into smaller
ovarlaping 'regions’ (See Figure 1). Each Ragion
containd a 3inaglie creator and a large number of
processors. The creator has access to all local
inputy 3 the processors within the region, and the
outputs of =ach processor in the region. The
creatar can cause one or more of the processors in
Lt3 region o be re-programmed.

Comoutation serforzed by a Creator

The creator aonitors both the laputs local to
tha region and the number of processors zhat
respond o the input. If tco faw processors respond
to an ioput, the creator selects the processors
that are least successful and re-programs thea so
as to increase the process-set cardinality. The
creator is continually performing the following
sequence of computations.

(1) Compute the activity of the Lnputs %o
‘he region. This involves counting the number
of active inputs locally. Let the activity be
denoted by activity.

(2) Compute the response size. This involves
counting the nuamber of processors ia the
regioa that responded to the inputs. Let the
response size be denoted by response.

(3) Compute the expected responss siza. In
the present system, the expected response
size is a linear function of the activity.

(4) If ressponse{expeczed, re-program
reaponse-expectad processors. i3 involves
choosing the required oumber of processors,
the least successful ones are chosen first.
Bach processor keeps a record of its success.
In 2ur impiementation, sach region keeps a
sorted lisct of processors, when n new
processors are required, the first n are
taken from this sorted list. In a truely
parallel system such as might be found in
3iological systemsa, this process can be
achieved simply by broadcasting a re-program
command to all processors and using a system
of inhibition to prevent re-programming of
the better processors (for a development of
this idea see [ 6 J).

Processing Inputs
It is convenient to describe the operation of
the processors in two stagea. First, how esach input
to a processor is handled on an individual basis,

and second how these inputs are combined to form a

prognoais.
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figure 2

Zach input to a processor i3 processed by in input
weighting funcrtion. Pigure 2 illustrates the
fanctien aof thia process. Sach input weighting
function (corresponding to input,) samples its
input wvhenever the process is activé. In this way,
the input weighting funmction computes for ita
iaput, the credibility that that input is
indicative of the event being diagnosed -- the
probability that the input will be active when the
event is diagnosed P(i.npu:i | this.agent.active).

Other Processor functions.
“nce the inputa have been welghted according
to their credibility, they can be combined to form
the prognosis.
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Figure 3
Figure 3 illustrates the basic operatiom of the

1iagnosis part of a processor. The value of success

is adjusted whenever the agent is active. Space
arevents further development of this idea here,
howaver, low success values indicate failure in
inplemeating a predictive rule, and such processors
will be re-programmed by their creator when a new
agent is required. The inhereat limitations of
simple Linear Threshold devices such as the
srognosis function, are used as a powerful natural
constraint. This guarentees that most agents ¢that
are created will eventually die (success will fall
until it is eventually rs—programnod5. This gives
rise to a very ecenomical use of processors without
tne need for 3 knowledge drivemn resource
(processor) allocation system (these ideas are
developed in detvail in [ 6 J).
Conclusion
Que 30 a lack of space, many significant
Jetails and much of the theory had to be omitted.
Zxperiments with a LISP based implementation of the
system outlinmed in this paper have been
encouraging. Complex structural descriptions can
been l2armed by the system. The system is robust in
that usually, no ageat is so important that its
cemoval will be critical (due to duplication), and
a aigh degree of noise can be tollerated. An
aul{ysis of the systems noise immunity can be found
in { 6 /. It is interesting that as the regions
approach saturation (most processors are
successfully programmed as agents), it becomes
increasingly difficult to learnm a new rule. This is
because, bYefore a new agent can achieve a
respectable success it is re-programmed bdy its
sreatdr because it {3 still the least successful
agent. Only intensive training will result in the
new agent being learnmed, and this will be at the
203t 57 sne Oof the other successful agents. Full
details of the architecture, and Jjustification of
:its design can be found in [ 6 J.
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