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ARTICLE OPEN

Exploration of PET and MRI radiomic features for decoding
breast cancer phenotypes and prognosis
Shih-ying Huang1, Benjamin L. Franc1, Roy J. Harnish1, Gengbo Liu2, Debasis Mitra 2, Timothy P. Copeland1, Vignesh A. Arasu1,
John Kornak3, Ella F. Jones1, Spencer C. Behr1, Nola M. Hylton1, Elissa R. Price1, Laura Esserman1,4 and Youngho Seo1,5,6

Radiomics is an emerging technology for imaging biomarker discovery and disease-specific personalized treatment management.
This paper aims to determine the benefit of using multi-modality radiomics data from PET and MR images in the characterization
breast cancer phenotype and prognosis. Eighty-four features were extracted from PET and MR images of 113 breast cancer patients.
Unsupervised clustering based on PET and MRI radiomic features created three subgroups. These derived subgroups were
statistically significantly associated with tumor grade (p= 2.0 × 10−6), tumor overall stage (p= 0.037), breast cancer subtypes (p=
0.0085), and disease recurrence status (p= 0.0053). The PET-derived first-order statistics and gray level co-occurrence matrix (GLCM)
textural features were discriminative of breast cancer tumor grade, which was confirmed by the results of L2-regularization logistic
regression (with repeated nested cross-validation) with an estimated area under the receiver operating characteristic curve (AUC) of
0.76 (95% confidence interval (CI)= [0.62, 0.83]). The results of ElasticNet logistic regression indicated that PET and MR radiomics
distinguished recurrence-free survival, with a mean AUC of 0.75 (95% CI= [0.62, 0.88]) and 0.68 (95% CI= [0.58, 0.81]) for 1 and 2
years, respectively. The MRI-derived GLCM inverse difference moment normalized (IDMN) and the PET-derived GLCM cluster
prominence were among the key features in the predictive models for recurrence-free survival. In conclusion, radiomic features
from PET and MR images could be helpful in deciphering breast cancer phenotypes and may have potential as imaging biomarkers
for prediction of breast cancer recurrence-free survival.

npj Breast Cancer  (2018) 4:24 ; doi:10.1038/s41523-018-0078-2

INTRODUCTION
In cancer management, multiple imaging modalities such as
computed tomography (CT), magnetic resonance imaging (MRI),
positron emission tomography (PET), and single photon emission
computed tomography (SPECT) are often prescribed for tumor
detection, staging, and characterization. As a result, the collective
imaging data are information rich and can be extracted for in-
depth analysis. Recent advances in radiomics have demonstrated
the power of transforming imaging data into multi-dimensional
mineable radiologic features1,2 that are relatable to gene
expression pattern3–5 and have significant predictive/prognostic
power.3,6–8 However, determining the optimal use of multi-
modality radiomic features to correlate with disease phenotypes,
molecular characteristics, and disease prognosis remains an open
problem. While radiomic features from anatomical images, such as
CT, have shown significant potential in predicting survival
outcome, and in associating with clinical and genomic features
of various cancers,2,3,9 there are few studies investigating radio-
mics derived from molecular imaging modalities such as PET/
CT.10–13 There are even fewer studies of radiomics for the same
disease across imaging modalities such as PET and MRI.14 The
added value of these multiple-order and multiple-dimension
image features remains largely unknown. In our study, we
carefully investigated the association of higher-order image

features from PET and MRI with breast cancer phenotypes and
prognosis. The association between the unsupervised clusters of
radiomic features and outcome data was evaluated using χ2 test of
independence. The pairwise relationships between PET and MRI
radiomic features and breast cancer outcome were determined by
Spearman’s rank correlation coefficients (ρ) and proportion of
variance explained by the predictor from multiple regression (
r2mreg) for ordered and unordered clinical outcome, respectively. In
addition, we also examined the predictive performance of
radiomic features to recurrence-free survival (RFS) of up to 5
years following imaging and tumor grade.

RESULTS
Study cohort
This retrospective study included 113 patients diagnosed with
breast cancer. The median patient age at diagnosis of primary
tumor was 49 (range 21–96). Patient and tumor characteristics are
summarized in Table 1.

Unsupervised tumor and feature clustering
For consensus clustering based on PET and MRI radiomic features,
the number of clusters that consistently generated the largest
change in the area under consensus cumulative distribution
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function (CDF) was 3. Table 2 gives a summary of χ2-test of
independence statistics and cluster consensus for all breast cancer
outcomes.

Association of radiomic features with breast cancer outcome
The unsupervised clustering based on both PET and MR radiomic
features in Fig. 1a shows that the tumor clusters were statistically
and significantly associated with tumor grade (p= 2.02 × 10−6, χ2-
test). Figure 1b indicates that 57.8% of tumor cluster I consisted of
poorly-differentiated tumors (high tumor grade) while tumor
clusters II and III were each associated with more differentiated
tumors (lower tumor grade). We observed a strong PET image
feature pattern among tumor clusters for deciphering tumor grade.
Tumor overall stage was statistically significantly associated with the
tumor clusters (p= 0.037, χ2 test) in Fig. 2a. Figure 2b shows that
50.0% of tumor cluster II were stage 2 tumors while 42.5% of tumor
cluster I consisted of stage 0 tumors and 38.5% of tumor cluster III
were stage 3 tumors. Figure 3a shows that the breast cancer
subtypes were statically significantly associated with the radiomic

feature pattern of PET and MR images (P= 0.0085, χ2 test). Figure 3b,
c indicate that 76.6% of tumor cluster I were HR+/HER2+(Luminal B)
and triple-negative tumors while 65.0% of tumor cluster III consisted
of the HR+/HER2− (Luminal A) tumors and 25.0% of the HER2+
tumors were found in tumor cluster II. In addition, the tumor clusters
were statistically significantly associated with whether the disease
would recur, not recur, or was never disease free (P= 0.0053, χ2 test).
In Fig. 4c, 80% of the patients who were never disease free were
found in tumor cluster III.
Primary tumor stage (T-stage) and lymph-node stage (N-stage)

did not reach statistical significance for their association with the
radiomic features (p= 0.19, 0.14, respectively, χ2 test). In addition,
there was no evidence of association between the tumor clusters
and tumor histology (p= 0.084, χ2 test). The association between
the tumor clusters and the anatomical site of disease recurrence
was not conclusive based on the data considered in this study (p
= 0.28, χ2 test).

Pairwise relationship of radiomic features with breast cancer
outcome
Figure 5a indicates that the first-order statistics of PET image
entropyHIST and PET-derived GLCM dissimilarity, entropyGLCM, and
difference average, and difference entropy were estimated to be
positively correlated with tumor grade. The first-order statistics of
PET image uniformity and PET-derived GLCM maximum prob-
ability, energyGLCM, homogeneity, and inverse variance were
negatively correlated with tumor grade (|ρ|≈ 0.48). There was no
correlation (ρ > 0.4) between the PET or MR radiomic features and
T, N, or overall stage.
Figure 5b displays PET image texture features of difference

average, difference entropy, dissimilarity, sum average, and PET
SUVmean and SUVmax (r2mreg � 0.10) contributed to the variance
seen in the feature values among the breast cancer subtypes. For
recurrence-free survival, Fig. 5b indicates that the first-order
statistics of MR image mean and minimum and MR-derived GLCM
average intensity, sum average, difference average, and dissim-
ilarity (r2mreg � 0.10) contributed to the feature variance between
the patient groups who were and were not disease free within 2–5
years. We also found that MR-derived GLCM IDMN, MR-derived
GLCM IDN, and PET-derived GLCM cluster prominence (r2mreg ¼
0.9–0.12) had contribution to the feature variance between the
recurrence-free patient groups within 1 year. A summary of
Spearman’s rank correlation coefficients and proportion of
variance from multiple regression were reported for all PET and
MR image features and the clinical outcome in the supplemental
Tables 1 and 2.

Radiomics exploratory study with small sample size
Based on 8 patients, supplemental Fig. 1 suggests that MR-derived
uniformityHIST (ρ= 0.67) and tumor surface-to-volume ratio (ρ=
0.71) were positively correlated with Oncototype DX score while
MR-derived entropyHIST (ρ=−0.67) and GLCM autocorrelation (ρ
=−0.64) were negatively correlated with Oncotype DX score. In
addition, supplemental Figs. 2 and 3 shows PET radiomics of the
primary tumor was consistent and associated with that of the
recurrent tumors for 6 out of 8 patients.

Radiomic-based classification of recurrence-free survival (RFS) and
tumor grade
Figure 6 shows a heatmap of the nested cross-validation
performance of several classification algorithms at predicting
RFS. The nested cross-validation shows that logistic regression
with ElasticNet regularization and L1 regularization display the
highest predictive performance with a mean AUC of 0.74 (95% CI
= [0.62, 0.88] and [0.61, 0.89], respectively) for predicting
recurrence-free survival in 1 year. For ease of algorithm

Table 1. A summary of patient demographic characteristics is shown

Characteristics (N) Type No. of
patients (%)

Tumor Histology (N= 111) Ductual or lobular carcinoma in situ 5 (4.5)

Invasive ductal carcinoma (IDC) 98 (88.3)

Invasive lobular carcinoma (ILC) 5 (4.5)

Mixed IDC and ILC 3 (2.7)

Tumor Grade (N= 104) 1 (well differentiated) 15 (14.4)

2 (moderately differentiated) 57 (54.8)

3 (poorly differentiated) 32 (30.8)

T stage (N= 102) T0 32 (31.4)

T1 33 (32.4)

T2 27 (26.5)

T3 10 (9.8)

N stage (N= 101) N0 62 (61.4)

N1 32 (31.7)

N2 4 (4.0)

N3 3 (3.0)

Overall stage (N= 104) 0 33 (31.7)

IA, IB, IIA 42 (40.4)

IIB 14 (13.5)

IIIA, IIIB, IIIC 13 (12.5)

IV 2 (1.9)

Breast cancer subtype (N= 107) HR+ /HER2− 56 (52.3)

HR+ /HER2+ 15 (14.0)

HR-/HER2+ 15 (14.0)

HR-/HER2− 21 (19.6)

Disease recurrence (N= 114) No recurrence 81 (71.1)

Recur 23 (20.2)

Never disease free 10 (8.8)

Recurrence site (N= 72) No recurrence 61 (84.7)

Local recurrence 1 (1.4)

Distant recurrence 10 (14.9)

Recurrence free in 1 year (N= 85) Recurrence free 75 (88.2)

Not Recurrence free 10 (11.8)

Recurrence free in 2 years (N= 85) Recurrence free 68 (80.0)

Not Recurrence free 17 (20.0)

Recurrence free in 3 years (N= 85) Recurrence free 67 (78.8)

Not Recurrence free 18 (21.2)

Recurrence free in 4 years (N= 85) Recurrence free 65 (76.5)

Not Recurrence free 20 (23.5)

Recurrence free in 5 years (N= 85) Recurrence free 60 (70.6)

Not Recurrence free 25 (29.4)

For breast cancer subtype definition, HR+ denotes tumors with ER+ or PR
+
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interpretability, we selected ElasticNet logistic regression in this
study for classifying RFS. The ElasticNet logistic regression has
lower predictive performance at predicting recurrence free in 2
years with a mean AUC of 0.68 (95% CI= [0.58, 0.81]). The
ElasticNet logistic regression using all PET and MR radiomics
generated a mean AUC of 0.67 (95% CI= [0.58, 0.78]), 0.64 (95% CI
= [0.55, 0.75]), and 0.57 (95% CI= [0.47, 0.68]) at distinguishing
patients being recurrence free in 3, 4, 5 years, respectively. In
predicting tumor grade, logistic regression with L2 regularization
and Lbfgs, Newtoncg, or Sag solver was found have the highest
predictive performance with a mean AUC of 0.76 (95% CI= [0.72,
0.83]).
Table 3 listed the PET and MR radiomic features that are

dominant in predicting RFS and tumor grade using the optimal
logistic regression algorithm. The key radiomic features for
predicting RFS in 1 year are the MR-derived GLCM IDN, MR-
derived GLCM IDMN, and the PET-derived GLCM cluster promi-
nence. The radiomic features that were consistently dominant in
predicting RFS are the MR-derived GLCM sum average, MR-
derived GLCM average intensity, MR minimum intensity, MR-
derived GLCM IDN, and PET-derived GLCM cluster prominence.
The key radiomic features for predicting tumor grade consisted of
mostly PET-derived GLCM features such as inverse variance and
homogeneity along with PET-derived first-order statistics of PET
SUVmean.

DISCUSSION
Higher-dimensional radiomic features were successfully extracted
from both 18F-FDG PET and MR images among patients diagnosed
with breast cancer. In this study, radiomics were clustered in an
unsupervised fashion; in other words, the clustering algorithm had
no prior knowledge of the tumor phenotypes and disease
outcome. The unsupervised learning allowed exploration of any
potential relationship between the PET and MRI radiomics to
breast cancer phenotypic behaviors and disease prognosis. We
found statistically significant association of the PET and MR
radiomics clusters with breast cancer tumor grade, which was
previously reported to have prognostic value for disease survival
rate.15 Among those radiomic features positively associated with
breast cancer tumor grade were the first-order statistics of PET
image entropyHIST and SUVvar and the PET-derived GLCM features
including dissimilarity, entropyGLCM, difference average, different
entropy, and cluster prominence and tendency. Among those
radiomic features negatively associated with breast cancer tumor
grade were the first-order statistics of PET image uniformity and
PET-derived GLCM maximum probability, energyGLCM, homogene-
ity, and inverse variance (|ρ| ≥ 0.45). This finding suggests that 18F-
FDG PET images large in asymmetry (high cluster prominence and
tendency), large in 18F-FDG uptake texture variation (high

dissimilarity and entropyGLCM and low texture energyGLCM) could
be predictive of poorly differentiated breast cancer. In addition,
the PET and MR radiomics were found to be associated with breast
cancer subtypes. In a study of 84 cases, Li et al., 201616 found that
the enhancement texture from the first post-contrast MR images
were highly correlated to the molecular subtypes of breast cancer
(normal-like, luminal A and B, HER2-enriched, and basal-like). This
study suggests that PET and MR images with large texture
variation (large difference entropy and dissimilarity) along with
PET SUVmax and MR peak enhancement could be predictive of
breast cancer subtypes. The finding not only confirmed the result
in Li et al., 2016,16 but also added predictive potential of PET and
MR radiomics over MR radiomics alone. Furthermore, breast
cancer consists of several tumor subtypes and MRI phenotypes
including unicentric mass, multilobulated mass, area enhance-
ment with and without nodularity and septal spreading,17 which
could explain the correspondence between large image texture
variation and breast cancer subtypes.
Our study also investigated the predictive performance of PET

and MR radiomics for breast cancer recurrence free status and
tumor grade. Instead of using 900+ radiomic features such as gray
level size zone matrix features and wavelet-based features
reported in previous studies,3,14,18 we extracted a limited number
of radiomic features from both PET and MR images, which
provided a more succinct number of features (84) considering the
limited sample size (N= 85) in this study. Even though we
extracted the same type of radiomic features from both PET and
MR images, the multi-modality radiomic features were able to
provide additional information since PET and MR images captured
different intrinsic information of tumor biology. Figure 5b shows
that MR-derived GLCM IDMN and IDN, and PET-derived GLCM
cluster prominence were highly correlated with 1-year RFS.
Similarly, MR-derived GLCM IDN and IDMN emerge as key features
for predicting patient 1-year RFS (highest AUC from the ElasticNet
logistic regression). In addition, MR mean and minimum intensity,
MR-derived GLCM average intensity, MR-derived GLCM sum
average (r2mreg ¼ 0.09–0.10), and PET-derived GLCM cluster
prominence (r2mreg ¼ 0.04–0.05), which were among the features
moderately correlated with RFS at 2–5 years, would likely play an
important role in RFS prediction. In a previous study,19 tumor size
and enhancement texture from DCE-MR images were effective at
distinguishing the risk of breast cancer relapse and are also
confirmed in this study. In addition, this study shows that PET-
derived GLCM features such as inverse variance and homogeneity
were the key predictors of tumor grade, confirmed by the
univariate analysis (|ρ|= 0.48) and the nested cross validation.
These PET-derived GLCM features were ranked above the first-
order PET image statistics such as PET SUVmean from nested cross
validation of tumor grade classification. Therefore, a combination
of PET and MR radiomics (both 1st-order statistics and GLCM

Table 2. A summary of χ2 test statistics (p-value and Cramer’s V), median cluster consensus (CC), and the optimal clustering algorithm is listed to
describe the degree of association between the patient clusters with a given clinical feature

Clinical variable Clustering algorithm # of samples p-value (χ2 test) Cramer’s V Median CC

Tumor grade HC, Spearman 104 2.02 × 10−6a 0.39 0.72

Tumor histology PAM, Euc 111 0.084 0.22 0.94

T-stage HC, Spearman 102 0.19 0.21 0.77

N-stage KMdist, Spearman 101 0.14 0.22 0.73

Overall stage PAM, Pearson 104 0.037a 0.28 0.83

Breast cancer subtype HC, Spearman 107 0.0085a 0.28 0.77

Disease recurrence KMdist, Spearman 114 0.0053a 0.25 0.73

Recurrence site PAM, Pearson 72 0.19 0.21 0.86

aindicates there is statistical significance for the χ2 test of independence at the 5% level
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(a)

(b) (c)

Fig. 1 PET and MR radiomics vs. tumor grade heatmap. a A heatmap of the PET and MR radiomic features is shown with the corresponding
tumor grade and the tumor clusters resulted from the optimized consensus clustering. Each column represents a tumor and each row
represents a radiomic feature. The PET and MR radiomic features are shown as z-scores. b The proportion of different grade tumors is shown
for each tumor cluster. The frequency is shown with respect to the total number of tumors in each tumor cluster category. c The proportion of
different tumor clusters is shown for each tumor grade category. The frequency is shown with respect to the total number of tumors in each
tumor grade category
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(a)

(b) (c)

Fig. 2 PET and MR radiomics vs. tumor overall stage heatmap. a A heatmap of the PET and MR radiomic features is shown with the
corresponding tumor overall stage and the tumor clusters resulted from the optimized consensus clustering. b The proportion of different
tumor overall stages is shown for each tumor cluster category. The frequency is shown with respect to the total number of tumors in each
tumor cluster category. c The proportion of different tumor clusters is shown for each tumor overall stage category. The frequency is shown
with respect to the total number of tumors in each tumor overall stage category
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(a)

(b) (c)

Fig. 3 PET and MR radiomics vs. breast cancer subtype heatmap. a A heatmap of the PET and MR radiomic features is shown with the
corresponding breast cancer subtype and the tumor clusters resulted from the optimized consensus clustering. b The proportion of breast
cancer subtypes is shown for each tumor cluster. The frequency is shown with respect to the total number of tumors in each tumor cluster
category. c The proportion of different tumor clusters is shown for each breast cancer subtype. The frequency is shown with respect to the
total number of tumors in each breast cancer subtype category
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(a)

(b) (c)

Fig. 4 PET and MR radiomics vs. disease recurrence status heatmap. a A heatmap of the PET and MR radiomic features is shown with the
corresponding disease recurrence status and the tumor clusters resulted from the optimized consensus clustering. b The proportion of
different disease recurrence categories is shown for each tumor cluster. The frequency is shown with respect to the total number of tumors in
each tumor cluster category. c The proportion of different tumor clusters is shown for each disease recurrence category. The frequency is
shown with respect to the total number of tumors in each disease recurrence category
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(a)

(b)

Fig. 5 Pairwise relationship of radiomics with breast cancer outcome. a A heatmap of Spearman’s rank correlation coefficients (ρ) between the
PET and MR radiomic features and the ordered clinical outcome is shown. Only the radiomic features with |ρ| > 0.2 are displayed. b A heatmap
of proportion of variance from multiple regression (r2mreg) between the PET and MR radiomic features and the unordered clinical outcome is
illustrated. Only the radiomic features with r2mreg > 0.04 are shown

Exploration of PET and MRI radiomic features for decoding breast
Shih-ying Huang et al.

8

npj Breast Cancer (2018)  24 Published in partnership with the Breast Cancer Research Foundation



features) could be more useful as prognosticator of breast cancer.
Furthermore, feature selection for predictive performance may be
more effective in our study due to the cross-validation process we
used rather than depending heavily on the correlation coefficients
from the pairwise univariate analysis.
There are limitations to this study. Some factors may affect the

different outcome between the PET and MRI radiomics, including
the fact that PET and MR images capture intrinsically different
biological and physiological mechanisms. The purpose of the
study was to determine, not to compare, the predictive power of
the PET and MRI radiomics. Furthermore, the PET and MR images
were resampled to the same isotropic voxel size for consistent
image analysis. However, the image voxel upsampling likely
introduced image interpolation effects, which may affect the
accuracy of radiomic features in measuring image information. In
addition, the cross-validation was conducted with different
machine learning algorithms for the initial predictive performance.
The dataset used for this paper was limited by size for a study of
this scope. For future studies, we plan to obtain an independent
image dataset to validate our current findings and thereby further
evaluate the value of image radiomics in predicting disease
prognosis. We hope to expand the dataset used in Supplement
Fig. 1 to investigate the role of PET and MR radiomics in predicting
breast cancer specific genomics. The difference in PET radiomics
between the primary and recurrent tumors (patient # 25 and 116
in Supplemental Figs. 2 and 3) will be further investigated with
larger dataset as a key predictor for the course of treatment for
recurrent disease.
In summary, we investigated the benefit of PET and MRI

radiomics in deciphering breast cancer phenotypes and disease
prognosis. As an initial explorative investigation, this study
demonstrated the potential value of PET and MR image-derived
radiomics in characterizing tumor phenotypes using unsupervised

clustering analysis. In particular, we determined that breast cancer
tumor grade and breast cancer subtypes can be well characterized
by the PET-derived GLCM features and 1st-order statistics. We
found that and 1st-order image statistics and image texture
features of the first post-injection DCE-MR image and PET images
have high potential for predicting recurrence-free survival of
breast cancer and tumor grade. Findings from data exploration
and initial predictive performance evaluation provide optimism for
eventual construction of an effective predictive model based on
both PET and MRI radiomics for improved personalized disease
management and treatment planning.

METHODS
Image datasets
This study was a retrospective study of medical records and medical
images and qualified as exempt by the UCSF Institutional Review Board.
We identified all patients who were diagnosed with invasive breast cancer
between January 1st, 2005 and December 31st, 2009 and underwent both
breast dynamic contrast-enhanced (DCE) MR imaging and whole-body 18F-
Fluorodeoxyglucose (18F-FDG) PET acquired as PET-CT examinations at
different time at UCSF. All imaging studies were acquired prior to
treatment, including surgery, radiation, and/or chemotherapy. In addition
to images of primary tumors, PET images of patients diagnosed with
recurrent metastases (N= 8) were obtained to explore the difference in
radiomics between the primary and recurrent tumors. The PET images
were acquired at more than 5 years after the diagnosis of primary disease.
MR imaging was performed as previously described20 using either a 1.5-
Tesla (T) imaging system (Signa, GE Medical Systems, Milwaukee, WI) or a
3-T imaging system (MagnetomVerio, Siemens Medical Systems, Erlangen,
Germany) with the patient in prone position. The DCE-MRI series consisted
of a three-dimensional (3D), fat-suppressed, T1-weighted gradient echo
sequence in accordance with the ACRIN 6657 imaging protocol.21 MR
imaging was acquired at three time-points: pre-contrast-injection, early
post-contrast-injection, and late post-contrast-injection. 18F-FDG PET/CT

Fig. 6 Heatmap of the predictive performance of radiomics to breast cancer outcome. A heatmap depicts the classification performance in
AUC and 95% confidence interval for several classification algorithms at predicting recurrence-free duration of 1–5 years and tumor grade.
SVM denotes support vector machine. The classification name for logistic regression is defined as [Reg][Solver]LogReg, where [Reg] specifies
the regularization scheme and [Solver] is the solver algorithm. For example, L1LiblinearLogReg denotes logistic regression with L1-
regularization using Liblinear solver
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images were performed with an integrated PET/CT system (Biograph 16,
Siemens Medical Systems or Discovery VCT, GE Medical Systems). The PET/
CT and MR images were reconstructed using the scanner-specific
workstation.

Image segmentation, standardization, and pre-processing
Tumor regions on MR images were identified using an established
enhancement criteria of 70% applied to the first post-contrast image.22

This empirical threshold was based on visual agreement with radiological
assessments in clinical practice.23 Normal-appearing stromal tissue
surrounding the tumor was subsequently defined as fibroglandular tissue
and was segmented from adipose tissue using a fuzzy C-means clustering
method.24 Tumors in the PET images were segmented semi-automatically
using a region-growing algorithm (MeVisLab©, MeVis Medical Solutions
AG). The segmented tumor regions were confirmed by trained radiologists
(S.B., M.D.). The in-plane image resolution ranged from 0.5 mm to 1.2 mm
and 4.1 mm to 5.5 mm for MR and PET images, respectively. The axial
image resolution ranged from 0.5 mm to 2.8 mm and 2.0 mm to 5.6 mm for
MR and PET images, respectively. For appropriate image feature
comparison, all MR and PET images were resampled to the same voxel
dimension of 0.5 × 0.5 × 0.5 mm3 and 2.0 × 2.0 × 2.0 mm3, respectively. PET
images were converted into the unit of standard uptake value (SUV),
normalized by patient body weight and the decay-corrected injected
activity.25

Radiomic features
We defined 42 radiomic image features to characterize tumors in the
following categories: intensity (9), shape (8), and texture features (25).
Table 4 shows the summary describing the radiomic features extracted in
this study. Mathematical definitions of all radiomic features were described
in this previous study.3 For this explorative study, we extracted only GLCM
texture features since they have been shown effective as a potential
imaging biomarker.26,27 The intensity features described the first-order
statistics of the image signal intensity and histogram-based statistics,
which characterize the distribution of the tumor intensity. The intensity
histogram of the tumor region was generated with a fixed bin width of
voxel intensity for all images. The shape features captured the three-
dimensional (3D) geometric attributes of the tumor. The texture features
provided spatial relationship between neighboring voxels within the
tumor region to quantify intra-tumor heterogeneity. The texture features
were derived from gray level co-occurrence matrix (GLCM), which presents
how combinations of discretized gray levels of neighboring voxels are
distributed along a given image direction. In this study, image features
were extraction from MR images acquired at the first post-injection time
point. The first-order statistics and GLCMs were generated from the PET
and MR images discretized with a fixed voxel-intensity bin width of 0.1 and
5.0 for PET and MR images, respectively. Generally, there are 26 connected
neighborhoods in 3D for GLCM, which yields 13 unique directions within
the neighborhood for a voxel distance of 1. Thus, 13 GLCMs were
generated for each 3D image dataset, and the mean of the texture features
computed from the 13 GLCMs were reported for each tumor region. All
image features were computed using in-house software based on Python
(version 2.7.14) and Insight Segmentation and Registration Toolkit (ITK,
version 4.10.1). The value of radiomic features were validated with those
computed with Pyradiomics open-source software.28

Clinical dataset
The following clinical data was collected from patient charts contained in
the electronic health system: tumor histologic type, tumor grade, estrogen
receptor (ER), progesterone receptor (PR), and human epidermal growth
factor receptor 2 (HER2) status. The breast cancer subtypes were then
grouped into the following categories where, additionally, hormone
receptor (HR) status was defined as positive (+) when the ER or PR or
both receptors were positive on immunohistochemistry: HR+/HER2−, HR
+/HER2+, HR-/HER2+, HR-/HER2−. The primary tumor staging (T-stage),
regional lymph node staging (N-stage), and overall staging, as defined by
the American Joint Committee on Cancer,29 as well as presence, site, and
date of disease recurrence and recurrence site were extracted from the
institution’s cancer registry. The cancer recurrence status was categorized
as no recurrence, recurrence, never disease free. The recurrence site had
the categories of no recurrence, any local recurrence, any distant
recurrence, such as recurrence in bone or systemically. To investigate

Table 3. The feature importance of the repeated nested cross-
validation with optimal logistic regression algorithm with PET and MR
radiomic features set is summarized

Outcome Important features

Disease free in 1 year (ElasticNet) MR GLCM IDN (99.1%)

MR GLCM IDMN (84.1%)

PET GLCM cluster prominence (83.0%)

MR entropyHIST (81.5%)

MRI mean intensity (77.5%)

MR GLCM sum entropy (76.2%)

MR GLCM sum average (74.7%)

MR GLCM average intensity (74.7%)

MR minimum intensity (73.9%)

MR GLCM difference entropy (72.0%)

Disease free in 2 years (ElasticNet) MR mean intensity (98.2%)

MR GLCM sum average (98.1%)

MR GLCM average intensity (98.1%)

MR minimum intensity (96.6%)

MR maximum intensity (89.4%)

MR GLCM IDN (87.5%)

MR GLCM difference average (87.1%)

MR GLCM dissimilarity (87.1%)

PET SUVmin (86.3%)

MR tumor compactness2 (84.3%)

Disease free in 3 years (ElasticNet) MRI mean intensity (98.9%)

MR GLCM sum average (98.4%)

MR GLCM average intensity (98.4%)

MR minimum intensity (96.8%)

MR GLCM difference average (85.0%)

MR GLCM dissimilarity (85.0%)

MR maximum intensity (84.8%)

MR tumor compactness2 (83.6%)

PET tumor compactness2 (83.2%)

PET SUVmin (81.7%)

Disease free in 4 years (ElasticNet) MR minimum intensity (94.3%)

MR mean intensity (93.2%)

MR GLCM sum average (91.3%)

MR GLCM average intensity (91.3%)

PET GLCM cluster prominence (85.6%)

MR GLCM IMC2 (85.5%)

PET tumor compactness2 (82.6%)

MR maximum intensity (79.5%)

MR tumor compactness2 (79.2%)

MR GLCM IDN (77.9%)

Disease free in 5 years (ElasticNet) MR minimum intensity (92.0%)

PET GLCM cluster prominence (79.8%)

PET GLCM IDN (78.7%)

MR GLCM IMC2 (78.4%)

PET tumor maximum 3D diameter (77.1%)

MR mean intensity (74.6%)

MR GLCM sum average (70.2%)

MR GLCM average intensity (70.2%)

MR GLCM IDN (69.8%)

MR energyHIST (69.0%)

Binary Tumor Grade (L2LbfgsLogReg) PET GLCM inverse variance (90.6%)

PET GLCM homogeneity1 (85.6%)

PET GLCM homogeneity2 (83.7%)

PET EntropyHIST (79.5%)

PET GLCM sum average (78.4%)

PET GLCM average intensity (78.4%)

PET SUVmean (78.2%)

PET GLCM entropy (76.5%)

PET GLCM sum entropy (72.4%)

PET GLCM difference average (70.3%)

The number in () is the proportion of the number of times that the feature
was considered ‘important’ during the repeated nested CV out of the
maximum number of CVs (3000)
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the effectiveness of PET and MR radiomic features to predict the duration
until disease recurrence, the recurrence-free survival (RFS) was repeatedly
dichotomized using cutoff times of 1, 2, 3, 4, and 5 years. The patients who
were recurrence-free beyond the cutoff time were labeled 1, whereas
those who were not recurrence-free were labeled 0. Furthermore, we
evaluated the value of PET and MR radiomic features to predict tumor
grade. The tumor grade was dichotomized such that those with tumor
grade (T1) and (T2) were labeled 0 and those with tumor grade 3 (T3) and 4
(T4) were labeled 1. In addition, we obtained Oncotype DX score for 8
patients out of this study cohort to explore the pairwise relationship
between tumor genomic data and radiomics. All data analysis was
performed on clinical data extracted from our clinical imaging database,
and there was no clinical trial associated with this study cohort.

Data analysis
For data exploration, we performed unsupervised clustering of tumors,
using consensus clustering30 based on PET and MR radiomic features.
Consensus clustering is a method that provides consensus across multiple
runs of a clustering algorithm by subsampling data as a way to evaluate
the cluster stability and the best number of clusters for a given dataset. For
a cluster class, a cluster’s consensus was computed as the average
proportion of clustering runs in which two items are clustered together
between all pairs of items belonging to the same cluster.30 To determine
the optimal clustering algorithm, we performed consensus clustering with
the following algorithms: hierarchical clustering with agglomerative ward
linkage (HC),31 K-means (KM) on a data matrix, K-means on a distance
matrix (KMdist),32 and partitioning around medoids (PAM).33 We used 1-
Pearson correlation (Pearson), 1 - Spearman correlation (Spearman), and 1-

Table 4. A summary describing the radiomic features extracted from the PET and MR images are shown

Feature type Feature name Description

First-order statistics
(FOstats)

Min, max Minimum and maximum of the image intensity values

Mean, variance

Skewness Measure of lopsidedness of the intensity distribution

Kurtosis Measure of the heaviness of the tail of the intensity distribution

EntropyHIST Measure of randomness in an image

EnergyHIST
UniformityHIST Degree of image intensity having similar probability

Shape and size (SS) Volume

Compactness1 and Compactness2 As a function of volume and surface area

Maximum 3D diameter The largest pairwise Euclidean distance between voxels on the tumor
surface

Spherical disproportion Degree of similarity in surface area between the shape and that with a
radius of a sphere with the same volume as the tumor

Sphericity

Surface area

Surface-to-volume ratio

Texture (TX) Autocorrelation Measure of texture fineness and coarseness

Cluster prominence Measure of image asymmetry of the GLCM

Cluster shade Measure of the skewness of the GLCM

Cluster tendency Measure of voxel clusters of similar gray-level values

Contrast Measure of the local variations presented in the image

Correlation Measure of the linear dependency of image intensity of the
neighboring voxels

Difference entropy Measure of the variability in neighboring intensity value differences

Difference average Relationships between voxel clusters with similar intensity values and
voxel clusters with different intensity values

Difference variance Measure of heterogeneity

Average intensity The mean gray level intensity of the GLCM vertical or horizontal
distribution

dissimilarity

EnergyGLCM Measure of homogeneity of an image

EntropyGLCM Measure of image texture randomness

Homogeneity1 and Homogeneity2

Inverse difference moment normalized (IDMN) and
inverse difference normalized (IDN)

Measure of the local homogeneity of an image

Inverse variance

Maximum probability The number of most occurred pair of neighboring intensity values

Sum average Average value of the GLCM

Sum entropy Measure of randomness of the GLCM

Sum variance High weight on the elements different from the GLCM average value

Sum squares Measure of the neighboring intensity level pairs about the mean
GLCM intensity level

IMC1 and IMC2
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Euclidean distance (Euc) as the dissimilarity measure. We performed the
consensus clustering with resampling (10,000 iterations). The number of
clusters was estimated by the cluster number that gave the largest change
in area under the consensus cumulative distribution function (CDF). The
median of the cluster’s consensus (median cluster consensus) was
computed among all cluster classes for the optimal clustering setting
(algorithms and the number of clusters). We performed the χ2-test of
independence between the tumor cluster labels and each clinical feature
for inference of data association. Cramer’s V34 were computed to measure
the strength of association for the χ2-test of independence. For each
clinical feature, the optimal clustering algorithm was selected as the one
that estimated the highest Cramer’s V between the tumor clusters and the
clinical feature. We used a significance level of 0.05 for detecting a
statistically significant association in the χ2-tests of independence. To
facilitate the selection of radiomic features important to predict a clinical
outcome, Spearman’s rank correlation coefficients (ρ) were computed to
evaluate the strength and direction of association between an ordered
clinical outcome (tumor grade, stages, and Oncotype DX score) and a
radiomic feature. For an unordered clinical outcome, such as breast cancer
subtype, we fitted multiple regression models and used the proportion of
variance explained by the predictor (r2mreg) to indicate the strength of
association. Consensus clustering was performed using ConsensusCluster-
Plus35 implemented in R. The χ2-test was performed using chi2_contigency
implemented in the Python Scipy statistics package. The multiple
regression and Spearman’s rank-order correlation coefficient were
implemented in R (version 3.3.2).

Classification of recurrence-free survival and tumor grade
Several machine learning algorithms, including support vector machine,
random forest, and logistic regression with L1, L2, and ElasticNet
regularization, were investigated to classify the dichotomized disease
recurrence outcome based on a range of different cutoff times. For logistic
regression, algorithm solvers including Liblinear36 (L1 and L2), Saga37 (L1),
Lbfgs38 (L2), Newtoncg39 (L2), and Sag40 (L2) were explored. All radiomic
features were normalized to a standard z-score prior to any model training.
The predictive performance of the classifier methods was quantified using
the area under receiver operator characteristic curve (AUC). The model
parameters were optimized using stratified nested cross-validation (CV),41

with 3-fold inner and outer cross validation repeated 10 times. The nested
cross-validation approach repeatedly splits the data into training,
validation, and testing sets in order to avoid potential for over-fitting
when estimating optimal tuning parameters and to provide unbiased
estimation of the prediction performance. Stratification with respect to
label class was applied during the nested cross-validation such that the
folds were made by preserving the proportion of samples for each label
class. The mean and 95% confidence interval of the nested cross-validation
AUCs (thresholding the logistic regression predicted probabilities) were
reported over the 1000 repetitions using a bootstrap approach.42 All PET
and MR radiomic features were included in the nested cross-validation. In
predicting RSF, we reported ElasticNet logistic regression algorithm for the
ease of interpretability. To examine the predictive power of the PET and
MR radiomic features, the features with the fitted coefficient >0 were
tallied among 1000 repetitions of 3-fold outer cross-validation loop. The
proportion of the times that a radiomic feature was selected out of 3000
CVs was ranked and the top 10 features were presented as the key features
for predicting recurrence-free survival. In predicting tumor grade, we
reported logistic regression with L2 regularization and Lbfgs solver. The
key predictors were determined by those with the |model fitted coefficient|
>0.01 and ranked according to the method described above. Cross-
validation was implemented using Python (version 3.5.5), and machine
learning algorithms used in this study were implemented in the Python
scikit-learn package.43

Code availability
All software custom-built for extracting radiomics from MR and PET
images, data analysis, and cross validation is available on request from the
corresponding author (Y.S.).

Data availability
The imaging data that support the findings of this are available on request.
Please contact the following authors for specific image and clinical data
used in this study: Y. Seo for the whole-body PET/CT image and N.M.
Hylton for the breast MR images. The imaging data are not publicly

available due to them containing information that could compromise
research participant privacy. Please contact L. Esserman for the ONCOTYPE
DX score of the limited number of patients. The radiomics data extracted
from the PET and MR images along with the corresponding clinical
outcome in this study are available in this file (https://ucsf.box.com/s/
dqopi5rgxc9u79zbjo53t6wai8dmf5uu). Each unique tumor is identified by
the column name ‘ptid_side’.

ACKNOWLEDGEMENTS
The study was supported in part by Department of Defense Grant W81XWH-17-1-
0033, Precision Imaging of Cancer and Therapy Program (PICT) in Departments of
Radiation Oncology, and Radiology and Biomedical Imaging, UCSF, and National
Cancer Institute Grant R01 CA154561.

AUTHOR CONTRIBUTIONS
S.H., B.L.F., and Y.S. designed the study. N.M.H. and E.F.J. provided the breast MR
image data and clinical and MR-related insights for breast cancer diagnosis and
prognosis. E.R.P. and L.E. provided the ONCOTYPE DX score for the limited number of
patients in this study cohort. R.H. performed the PET tumor segmentation, managed
PET and MR images, and developed image processing software for this study. S.H.
performed all the data analysis, developed in-house software for extracting radiomics
and data analysis, and writing of the manuscript. T.P.C. and V.A.A. extracted necessary
clinical data from the medical record and UCSF cancer registry. S.B. provided clinical
insight for tumors extracted from the PET images. J.K. provided statistical
consultation for all the analysis reported in this manuscript. G.L. and D.M.
collaborated with us for developing accurate predictive models based on machine
learning and feature engineering.

ADDITIONAL INFORMATION
Supplementary information accompanies the paper on the npj Breast Cancer
website (https://doi.org/10.1038/s41523-018-0078-2).

Competing interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

REFERENCES
1. Kumar, V. et al. Radiomics: the process and the challenges. Magn. Reson. Imaging

30, 1234–1248 (2012).
2. Lambin, P. et al. Radiomics: extracting more information from medical images

using advanced feature analysis. Eur. J. Cancer 48, 441–446 (2012).
3. Aerts, H. J. W. L. et al. Decoding tumour phenotype by noninvasive imaging using

a quantitative radiomics approach. Nat. Commun. 5, 4006 (2014).
4. Nicolasjilwan, M. et al. Addition of MR imaging features and genetic biomarkers

strengthens glioblastoma survival prediction in TCGA patients. J. Neuroradiol. 42,
212–221 (2015).

5. Segal, E. et al. Decoding global gene expression programs in liver cancer by
noninvasive imaging. Nat. Biotechnol. 25, 675–680 (2007).

6. Cook, G. J. R. et al. Are pretreatment 18F-FDG PET tumor textural features in
non–small cell lung cancer associated with response and survival after chemor-
adiotherapy? J. Nucl. Med. 54, 19–26 (2013).

7. Coroller, T. P. et al. CT-based radiomic signature predicts distant metastasis in
lung adenocarcinoma. Radiother. Oncol. 114, 345–350 (2015).

8. Parmar, C. et al. Radiomic feature clusters and prognostic signatures specific for
lung and head and neck cancer. Sci. Rep. 5, 1–10 (2015).

9. Lambin, P. et al. Radiomics: the bridge between medical imaging and persona-
lized medicine. Nat. Rev. Clin. Oncol. 14, 749–762 (2017).

10. Win, T. et al. Tumor heterogeneity and permeability as measured on the CT
component of PET/CT predict survival in patients with non–small cell lung cancer.
Clin. Cancer Res. 3591–3600 (2013).https://doi.org/10.1158/1078-0432.CCR-12-
1307.

11. Xu, R., Kido, S. & Suga, K. Texture analysis on 18 F-FDG PET/CT images to dif-
ferentiate malignant and benign bone and soft-tissue lesions. Ann. Nucl. Med.
926–935 (2014). https://doi.org/10.1007/s12149-014-0895-9.

12. Desseroit, M., Visvikis, D. & Tixier, F. Development of a nomogram combining
clinical staging with 18 F-FDG PET/CT image features in non-small-cell lung
cancer stage I – III. Eur. J. Nucl. Med. Mol. Imaging 1477–1485 (2016). https://doi.
org/10.1007/s00259-016-3325-5.

Exploration of PET and MRI radiomic features for decoding breast
Shih-ying Huang et al.

12

npj Breast Cancer (2018)  24 Published in partnership with the Breast Cancer Research Foundation

https://ucsf.box.com/s/dqopi5rgxc9u79zbjo53t6wai8dmf5uu
https://ucsf.box.com/s/dqopi5rgxc9u79zbjo53t6wai8dmf5uu
https://doi.org/10.1038/s41523-018-0078-2
https://doi.org/10.1158/1078-0432.CCR-12-1307
https://doi.org/10.1158/1078-0432.CCR-12-1307
https://doi.org/10.1007/s12149-014-0895-9
https://doi.org/10.1007/s00259-016-3325-5
https://doi.org/10.1007/s00259-016-3325-5


13. Vaidya, M. et al. Combined PET/CT image characteristics for radiotherapy tumor
response in lung cancer. Radiother. Oncol. 102, 239–245 (2012).

14. Vallières, M., Freeman, C. R., Skamene, S. R. & El Naqa, I. A radiomics model from
joint FDG-PET and MRI texture features for the prediction of lung metastases in
soft-tissue sarcomas of the extremities. Phys. Med. Biol. 60, 5471–5496 (2015).

15. Rakha, E. A. et al. Breast cancer prognostic classification in the molecular era: the
role of histological grade. Breast Cancer Res. 12, 207 (2010).

16. Li, H. et al. Quantitative MRI radiomics in the prediction of molecular classifica-
tions of breast cancer subtypes in the TCGA/TCIA data set. NPJ Breast Cancer 2,
16012 (2016).

17. Mukhtar, R. A. et al. Clinically meaningful tumor reduction rates vary by pre-
chemotherapy mri phenotype and tumor subtype in the I-SPY 1 TRIAL (CALGB
150007/150012; ACRIN 6657). Ann. Surg. Oncol. 20, 3823–3830 (2013).

18. Parmar, C., Grossmann, P., Bussink, J., Lambin, P. & Aerts, H. J. W. L. Machine
learning methods for quantitative radiomic biomarkers. Sci. Rep. 5, 13087 (2015).

19. Li, H. et al. MR imaging radiomics signatures for predicting the risk of breast
cancer recurrence as given by research versions of MammaPrint, Oncotype DX,
and PAM50 gene assays. Radiology 0, 152110 (2016).

20. Bolouri, M. S. et al. Triple-negative and non–triple- negative invasive breast
cancer: association between MR and fluorine 18 fluorodeoxyglucose PET Ima-
ging. Radiology 269, 354–361 (2013).

21. ACRIN. Protocol 6657. American College of Radiology Imaging Network https://
www.acrin.org/6657_protocol.aspx.

22. Partridge, S., Heumann, E., & Hylton, N. Semi-automated analysis for MRI of breast
tumors. Stud. Health Technol. Inform. 62, 259–260 (1999).

23. Partridge, S. C. et al. MRI measurements of breast tumor volume predict response
to neoadjuvant chemotherapy and recurrence-free survival. Am. J. Roentgenol.
184(6), 1774–1781 (2005).

24. Klifa, C. et al. Quantification of breast tissue index from MR data using fuzzy
clustering. Conf. Proc. Ieee. Eng. Med. Biol. Soc. 3, 1667–1670 (2004).

25. Fletcher, J. W. & Kinahan, P. E. PET/CT Standardized uptake values (SUVs) in
clinical practice and assessing response to therapy. NIH Public Access 31, 496–505
(2010).

26. Chen, S. et al. Diagnostic classification of solitary pulmonary nodules using dual
time 18F-FDG PET/CT image texture features in granuloma-endemic regions. Sci.
Rep. 7, 9370 (2017).

27. Rahim, M. K. et al. Recent Trends in PET Image Interpretations Using Volumetric
and Texture-based Quantification Methods in NuclearOncology. Nucl. Med. Mol.
Imaging 48, 1–15 (2014).

28. van Griethuysen, J. J. M. et al. Computational radiomics system to decode the
radiographic phenotype. Cancer Res. 77, e104–e107 (2017).

29. American Joint Committee on Cancer. Breast cancer staging. 7th Ed. (2009)
https://cancerstaging.org/references-tools/quickreferences/Documents/
BreastMedium.pdf.

30. Monti, S., Tamayo, P., Mesirov, J. & Golub, T. Consensus clustering: a resampling-
based method for class discovery and visualization of gene expression microarray
data. Mach. Learn. 52, 91–118 (2003).

31. Murtagh, F. & Legendre, P. Ward’ s hierarchical agglomerative clustering method:
which algorithms Implement Ward’ s Criterion? J. Classif. 31, 274–295 (2014).

32. Hartigan, J. A. & Wong, M. A. A K-Means clustering algorithm. Appl. Stat. 28, 100
(1979).

33. Kaufman, L., Rousseeuw, P. J. Finding groups in data: an introduction to cluster
analysis. (1990).

34. Bergsma, W. A bias-correction for Cramer’s V and Tschuprow’s T. J. Korean Stat.
Soc. 42, 323–328 (2013).

35. Wilkerson, M. D. & Hayes, D. N. ConsensusClusterPlus: a class discovery tool with
confidence assessments and item tracking. Bioinformatics 26, 1572–1573 (2010).

36. LIBLINEAR–A Library for Large Linear Classification. accessed online on July 25,
2018.

37. Defazio, A., Bach, F. & Lacoste-Julien, S. SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. Adv. Neural
Inform. Process. Syst. 1–15 (2014). arXiv:1407.0202.

38. Liu, D. C. & Nocedal, J. On the limited memory BFGS method for large scale
optimization. Mathematical Programming. 45, 503–528 (1989).

39. Yu, H. F., Huang, F. L. & Lin, C. J. Dual coordinate descent methods for logistic
regression and maximum entropy models. Mach. Learn. 85, 41–75 (2011).

40. Schmidt, M. et al. Minimizing finite sums with the stochastic average gradient.
(2016), arXiv:1309.2388.

41. Krstajic, D., Buturovic, L. J., Leahy, D. E. & Thomas, S. Cross-validation pitfalls when
selecting and assessing regression and classification models. J. Chemin-. 6, 1–15
(2014).

42. Efron, B. Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26
(1979).

43. Buitinck, L. et al. API design for machine learning software: experiences from the
scikit-learn project. 1–15 (2013). arXiv:1309.0238.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2018

Exploration of PET and MRI radiomic features for decoding breast
Shih-ying Huang et al.

13

Published in partnership with the Breast Cancer Research Foundation npj Breast Cancer (2018)  24 

https://www.acrin.org/6657_protocol.aspx
https://www.acrin.org/6657_protocol.aspx
https://cancerstaging.org/references-tools/quickreferences/Documents/BreastMedium.pdf
https://cancerstaging.org/references-tools/quickreferences/Documents/BreastMedium.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis
	Introduction
	Results
	Study cohort
	Unsupervised tumor and feature clustering
	Association of radiomic features with breast cancer outcome
	Pairwise relationship of radiomic features with breast cancer outcome
	Radiomics exploratory study with small sample size
	Radiomic-based classification of recurrence-free survival (RFS) and tumor grade

	Discussion
	Methods
	Image datasets
	Image segmentation, standardization, and pre-processing
	Radiomic features
	Clinical dataset
	Data analysis
	Classification of recurrence-free survival and tumor grade
	Code availability
	Data availability

	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGMENTS




