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ABSTRACT 
 

A Novel Class of Selective Non-Nucleoside Inhibitors of Human DNA Methyltransferase 3A 

by 

Sunzeyu Huang 

 

Screening of a small chemical library (Medicines for Malaria Venture Pathogen Box) 

identified two structurally related pyrazolone (inhibitor 1) and pyridazine (inhibitor 2) DNMT3A 

inhibitors with low micromolar inhibition constants. The uncompetitive and mixed type 

inhibition patterns with DNA and AdoMet suggest these molecules act through an allosteric 

mechanism, and thus are unlikely to bind to the enzyme’s active site. Unlike the clinically used 

mechanism based DNMT inhibitors such as decitabine or azacitidine that act via the enzyme 

active site, the inhibitors described here could lead to the development of more selective drugs. 

Both inhibitors show promising selectivity for DNMT3A in comparison to DNMT1 and bacterial 

DNA cytosine methyltransferases. With further study, this could form the basis of preferential 

targeting of de novo DNA methylation over maintenance DNA methylation. 
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Chapter I. A Novel Class of Selective Non-Nucleoside Inhibitors of Human 

DNA Methyltransferase 3A 

This work represented in this chapter was published on Bioorganic and Medicinal Chemistry 

Letters. Copyright to Elsevier Ltd. 

Citation: Huang S, Stillson NJ, Sandoval JE, Yung C, Reich NO, ‘A novel class of selective 

non-nucleoside inhibitors of human DNA methyltransferase 3A’, Bioorganic & Medicinal 

Chemistry Letters, Volume 40, 2021, 127908 

 

A. Introduction  

Epigenetic modifications of proteins and nucleic acids are crucial for normal 

development.1–3 Human DNA undergoes methylation largely at CpG dinucleotides, and the 

patterns are developmentally regulated and tissue-specific; these patterns contribute to the 

epigenetic code, which is essential for viability.3–6 Aberrant methylation patterns can result in 

hypermethylation of gene promoters, leading to the silencing of critical tumor suppressor genes, 

resulting in tumorigenesis.5,6 DNA methylation is carried out by a family of enzymes (DNMTs, 

Figure 1) while demethylation is carried out by the ten-eleven translocation (TET) enzyme 

family.7–10 DNMTs rely on the methyl donor S-adenosyl-l-methionine (AdoMet) and display 

both random and ordered kinetic mechanisms.11–15 The housekeeping protein DNMT1 primarily 

acts on hemimethylated DNA, and the two de novo methyltransferases DNMT3A and DNMT3B, 

act predominately on unmethylated DNA.16–18 The DNMT3s, which also include a catalytically 

inactive regulatory protein DNMT3L, are mostly expressed during the early development phase 
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of mammalian germ cells.1,4,16,19 DNMT1, meanwhile, is expressed throughout the lifetime of 

mammalian somatic cells and is localized near replication forks.17,20 

  

All DNMTs share the same domain architecture. The less conserved of their two domains is 

the N-terminal domain, which contains regulatory segments including the replication fork 

binding RFD sequence in DNMT1 and the H3 binding ADD sequence in DNMT3s.1,4,20,21The 

C-terminal, or catalytic domain has the highly conserved methyltransferase motifs (I-X) that are 

found in both prokaryotic and eukaryotic methyltransferases (see Figure 1).22 These motifs are 

responsible for cofactor binding and catalysis.4,21 DNMT3A forms tetramers with DNA binding 

occurring along the seam of the dimerization domain (see Figure 2).21 Mutations that disrupt the 

oligomeric state of DNMT3A occur in a number of cancers, and in particular, acute myeloid 

Figure 1 – Comparison of the primary structures of human DNMTs. The C-terminal domain contains conserved 
motifs (I-X) and is active in the absence of the N-terminal domain. The N terminal domain has several conserved 
segments known to interact with regulatory proteins and histones. The abbreviations used are: DMAPD – DNA 
methyltransferase associated protein 1 interacting domain, PDB – PCNA binding domain, RFTS – Replication foci 
targeting domain, BAH – bromo-adjacent homology domain, ADD – ATRX-DNMT3-DNMT3L domain. 

1 120 351 600 651 697 728 900 906 1100 1139 1616
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1 206 355 423 555 569 853
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leukemia (AML).5,23–26 Both catalytically active DNMTs, and in particular, DNMT3A, interact 

with diverse partners and disruptions to these interactions alter the function of DNMT3A and 

contribute to tumor-specific changes in methylation patterns.5,23,27,28 

 

In the last twenty years, interest in developing drugs that target epigenetic pathways has 

increased, particularly for histone and DNA modifying enzymes.29–31 An obvious feature of 

these pathways is their inherent reversibility, unlike mutational changes which frequently 

demand therapeutic strategies leading to cytotoxic interventions. Interestingly, the FDA 

approved DNMT nucleoside inhibitors, azacytidine and decitabine are highly cytotoxic. These 

prodrugs are converted to the triphosphates, incorporated into DNA and inhibit DNMTs through 

the formation of an irreversible suicide complex.30,32,33 The dose-limiting toxicity manifested by 

these drugs has led to the search for non-nucleoside inhibitors; interestingly, many of these act 

by binding the enzyme active site or act by unknown mechanisms29,30.  

 

3A 3L D AdoHy Figure 2 – Crystal 

structure of DNMT3A-3L 

heterotetrameric complex; 

the DNA is modeled from 

the M.HhaI-DNA 

cocrystal structure (PDB 

code 6f57). 



 

 4 

B. Results and Discussion  

Our interest is to determine if new mechanistic classes of DNMT inhibitors can be identified.  

The long term goal is to develop therapeutic approaches not hampered by the toxicity and related 

issues associated with currently used and recently described DNMT inhibitors.29,30 For example, 

there are over 60 known proteins which interact with DNMT3A,34 some of which are implicated 

in directing DNMT3A to inappropriately methylate and regulate tumor suppressor genes.26,27 

Moreover, the clinically identified DNMT3A mutations in diverse cancers are known to alter the 

stability and functional outcomes of the complexes formed between DNMT3A and its partner 

proteins.26,27,35 This network of interactions could be the basis of tumor-specific protein-protein 

inhibitors (PPIs).30,36 Certainly, the recent progress in developing PPIs for diverse therapeutic 

targets, including leukemia, forms a strong basis for such a strategy.37,38 Finally, allosteric 

enzyme modulators can provide a basis for enhanced selectivity and, potentially, decreased 

toxicity.39–41  

Here we describe our initial compound screening effort, relying on open-source chemical 

library constructed from the Medicines for Malaria Venture (MMV) Pathogen Box. The library 

consists of 400 drug-like molecules with known activities against targets for neglected tropical 

diseases. The relative merits of using a library of well-established molecules that show good bio-

activity versus other approaches have been well described.42 Using 50 compounds of the library, 

we first determined that a compound concentration of 60 µM resulted in 5% of the molecules 

showing 90% or more inhibition. We then relied on a modified version of our standard 

radiochemical assay using tritiated AdoMet,26 which measures DNA methylation (see Methods, 

Supplementary). The assay uses poly dI-dC which is an excellent DNMT3A substrate, due to the 

presence of multiple sites for DNMT3A-mediated methylation. The conditions allow for multiple 
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catalytic turnovers with an excess of DNA.26,27 Importantly, many literature reports describing 

DNMT screens are actually done under conditions which compromise interpretation of any 

inhibition effects, such as excess enzyme over DNA, or less than a single catalytic cycle. 43–45 

The screen of the library generated 12 compounds that showed at least 90% inhibition. 

The screening assay was repeated on these 12 compounds to verify the inhibitory properties (see 

Figure 1S) , and the results were used to select two structurally similar compounds for further 

analysis (see compounds 1 and 2, Figure 3). These two compounds were previously identified as 

potential inhibitors of TbrPDEs, a class of phosphodiesterases found in T. brucei – the parasite 

responsible for trypanosomiasis (African sleeping sickness).46 Compounds 1 and 2 both show 

potent and selective inhibition of TbrPDE, good antitrypanosomal effects, and are part of an 

extensive study of TbrPDE inhibitors involving numerous analogs.47 

The inhibitory mechanisms of both compounds were examined by varying both 

substrates. The results were fit to models representing various modes of inhibition (see Methods, 

Supplemental). The potencies (KI values) of compounds 1 and 2 against DNMT3A range from 

3.7 to 18 µM (AdoMet) and 11 to 41 µM (poly dI-dC), which compare favorably to numerous 

published efforts.29,30 The best fits to the inhibition data for both compounds against poly dI-dC 

and AdoMet are consistent with mixed type or uncompetitive mechanisms (see Figure 3, Table 

1). Importantly, both mechanisms require that compounds 1 and 2 bind allosterically, away from 

the active site of the enzyme. The mixed type mechanism allows for scenarios in which the 

inhibitor binds both forms of the enzyme with the pertinent substrate bound, or unbound. In 

contrast, the uncompetitive mechanisms (Figure 3, Table 1, Compound 2) implicate a 

mechanism wherein the inhibitor only binds to the form of the enzyme already bound by the 
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DNA. The mechanisms of other DNMT inhibitors, when reported, often display competitive 

mechanisms with DNA, AdoMet, or both.30,44,48 The simplest interpretation of these mechanisms 

is that the inhibitor binds the same site as DNA or AdoMet, or, minimally, binds the same form 

of the enzyme bound by these substrates.49  

 

 

 

Table 1 – Values for the various fits of inhibitors with respect to both substrates. Fits 

were determined using the Noncompetitive and Uncompetitive nonlinear regression models in 

Prism 8.4.3. The reported bounds define the 95% confidence interval of the Ki value.  
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Figure 3 – Best fit plots of the inhibition with respect to both 
substrates, poly dI-dC (A, B) and AdoMet (C, D). Assays were 
performed with 150 nM DNMT3A with an excess of the substrate being 
held constant. Radiolabeled 3H-AdoMet was used to determine product 
formation. All reactions were assayed for 30 min, then quenched with 
0.1% SDS and spotted onto charged nylon membranes for detection. 
Data was collected with two replicates (n=2). Fitting was performed with 
standard inhibition equations being applied to the whole model. 
Extracted Ki values are boxed, while corresponding reciprocal plot with 
best-fit lines are shown in top right. Structures of inhibitors are shown 
(left). 
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The widespread cellular reliance on AdoMet-dependent methyltransferases suggests that the 

development of drugs specific for DNA methyltransferases or drugs that distinguish between 

DNMT1 and DNMT3A will be challenging. This is reflected by the fact that the majority of 

DNA methyltransferase inhibitors are poorly selective for DNMT3A, likely contributing to the 

limiting toxicity displayed by these compounds.30 DNMT1 is critical to cell viability and given 

the prevalence of DNMT1 throughout the lifetime of somatic cells, the selective inhibition of 

DNMT3A over DNMT1 is important in the development of cancer treatments.7 This is especially 

true of cancers like AML, where prevalence of DNMT3A mutations is particularly high. Further 

inhibition studies aimed to see if these compounds would affect DNMT1. Additionally, given the 

implicated allostery, we wanted to investigate if these compounds could inhibit the bacterial 

cytosine methyltransferase M. SssI (see Methods, Supplemental). This protein has a highly 

conserved active site with respect to DNMT3A but does not share its allosteric structure.22 The 

results with respect to DNMT3A and DNMT1 found both compounds show some selectivity, 

with inhibitor 2 being the more selective of the two (see Figure 4). Neither compound shows 

inhibition of the bacterial DNA cytosine methyltransferase M.SssI, even at 60 µM. Both 

compounds show little inhibition of DNMT1 at 6 µM, and compound 2 retains this selectivity 

even at 60 µM. It is intriguing that both inhibitors show greater inhibition of the catalytic domain 

of DNMT3A (residues 628 to 912, see Figure 1) than the full length DNMT3A, suggesting that 

the large N-terminal segment interferes with the inhibition. The basis of this difference has 

diverse molecular explanations, which we are actively investigating. Both compound 1 and 2 are 

still able to modulate the more biologically relevant full-length form of DNMT3A. 
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A B 

Figure 4 – Inhibitors 1 (A) and 2 (B) modulate the activity of human  de  novo  DNMT3A_CD 
(■), DNMT3A_FL (■) and maintenance DNMT1 (■) DNA methyltransferases but not of the 
bacterial DNA methyltransferase M.SssI (■).  To test the specificity of inhibitor 1 and 2 for these 
distinct types of CpG DNA methyltransferases, assays were performed with 150 nM DNMT3A_CD 
(■), DNMT3A_FL (■), 133 U/mL DNMT1 (■) and 266 U/mL M.SssI (A and B).  Inhibitors 1 (A) 
and 2 (B) were tested at 6 and 60 µM with poly dI-dC and AdoMet at a fixed concentration of 1.8 
ng/µL and 5 µM, respectively.  In all reactions (A and B), enzymes and inhibitor 1 or 2 were pre-
incubated for 15 minutes at 37 °C in methylation reaction buffer (see methods) prior to initiating the 
reaction by the addition of DNA.  Methylation reactions were assayed for 30 min, quenched with 
0.1% SDS and spotted onto charged nylon membranes for detection of radiolabeled 3H-AdoMet 
DNA. Fold decrease was calculated by dividing the product formed in reactions without compound 
1 or 2 by the product formed in reactions with compound 1 or 2. Data reflect the mean ± S.D. of 3 
independent experiments; one-way analysis of variance (ANOVA) was used to compare the values 
of all enzymes for each concentration (6 or 60 µM) of inhibitors 1 (A) or 2 (B); ***, p < 0.01; ns, p 
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C. Conclusion  

In summary, the screening of a small chemical library of known drugs against human 

DNMT3A identified two non-nucleoside molecules of low micromolar potency. Both molecules 

inhibit the enzyme by binding outside the active site, and not only selectively inhibit human over 

bacterial DNMTs, but also shows some promising preferential targeting of de novo over 

maintenance DNA methyltransferases. This highlights the potential use of these molecules for 

the treatment of malignancies associated with disruptions to DNMT3A activity.  The large 

number of analogs of these two inhibitors which have been described provides a promising basis 

for further optimization of this new group of DNMT3A inhibitors, with reasonable prospects of 

showing improved toxicity over known DNA methyltransferase drugs.46  

 

D. Material and Methods  

Protein expression and purification 

The isolated catalytic domain (CD) of DNMT3A (residues 634-912), which was used in 

all DNMT3A assays, has comparable kinetic parameters (kcat, KmDNA, KmAdoMet) and similar 

regulatory responses to DNMT3L to the full length protein.50,51 The protein was expressed using 

codon optimized plasmids pET28a–hDNMT3A_CD (Δ1–611). 52 

All proteins were expressed in NiCo21 (DE3) competent E. coli cells (New England 

Biolabs). Using LB medium, cell cultures were grown at 37 ˚C until an A600 nm of 0.6 was 

reached. Following growth, expression was induced at 28 ˚C using 1 mM isopropyl β-D-

thiogalactopyranoside (Gold Biotechnology). This addition marked the beginning of a 6 h 

induction time that ended with centrifugation and collection of the resulting cell pellet for storage 
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at -80 ˚C. Further purification began with cell lysis via sonication in 50 mM HEPES, 500 mM 

NaCl, 50 mM imidazole, 10% glycerol and 1% phenylmethylsulfonyl fluoride (PMSF) at pH 7.8. 

The solution was clarified by centrifugation and then loaded into an AKTA start FPLC (GE 

Healthcare) for purification. This was performed using a nickel-nitrilotriacetic acid column (GE 

Healthcare), a 50 mM HEPES, 500 mM NaCl, 50 mM imidazole, 10% glycerol and 1% PMSF at 

pH 7.8 buffer for equilibration and a similar 70 mM imidazole buffer for washing. Elution of 

column bound protein was triggered with a 500 mM imidazole buffer equivalent. The storage of 

all collected proteins was done at -80 ˚C in 50 mM KH2PO4/ K2HPO4, 20% glycerol buffer at pH 

7.8. The activity of obtained DNMT3A was determined by methylation assay (described below). 

Methylation Assays 

In vitro methylation assays were used to determine the total amount of product 

(methylated poly dI-dC DNA) generated through the catalytic cycle of active DNMT3A. 

Reactions with 150 nM DNMT3A tetramer were carried out at 37 ˚C, pH 7.8 in 50 mM 

KH2PO4/K2HPO4 , 1 mM DTT, 0.2 mg/mL BSA, 20 mM NaCl and 5 µM AdoMet (composed of 

4.5 µM unlabeled and 0.5 µM 3H-methyl labeled cofactor). 20 µL assays were preincubated for 

20 min at 37 ˚C followed by the addition of 1.8 ng/µL poly dI-dC DNA. After the specified 

assay time, the reactions were quenched with 0.1% SDS and spotted onto Hybond-XL 

membranes (GE Healthcare). The membranes were washed with both 50 mM KH2PO4/ K2HPO4 

and ethanol. Following a drying period, samples were analyzed using a Beckmann LS6000 liquid 

scintillation counter. 
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Library screening 

Screening was done in 96 conical well plates (Costar). The average maximum turnover 

rate from 8 wells with 150 nM DNMT3A WT served as control groups. A master mix contained 

reaction buffer (50 mM KH2PO4/K2HPO4, 1 mM EDTA, 1 mM DTT, 0.2 mg/ml of BSA, 20 mM 

NaCl), and 5 μM AdoMet (from a 50 μM stock composed of 45 μM unlabeled and 5 μM 3H-

methyl labeled at pH 7.8) and 150 nM 3A were mixed and then aliquoted into each well. 

Chemical library compounds (Pathogen box) were added into each well at 60 μM and incubated 

at 37 °C for 60 mins after addition of 5 μM poly dI-dC. All wells were quenched with 0.1% SDS 

(1:1) after 1-hour. Samples (15μL) were spotted onto Hybond-XL membranes (GE Healthcare), 

washed, and dried. 

Kinetic studies 

To determine the dependence of inhibition on the individual cofactors, methylation 

assays (described above) were performed with inhibitor at three different concentrations (0 μM, 

~IC50, Excess), one cofactor held constant (5 µM AdoMet or 12.0 ng/µL poly dI-dC), and the 

other varied. For the variation of AdoMet, concentrations of 10, 4, 1, 0.5, 0.2, 0.16, and 0.08 µM 

were used, while for the variation of DNA, 0.15, 0.25, 0.3, 0.5, 1, 1.5, +3.0 and 12.0 ng/μL poly 

dI-dC DNA were used.  
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Data Analysis 

Using Prism 8.4.3. all data was fit both to non-linear models and converted to 

double-reciprocal format and fitted to linear-models. Using the tabulated Goodness of Fit 

(R2) values, the most statistically likely mechanism of inhibition was chosen (Table 1S). 

 

 

 

Specificity of inhibitors to human DNA methyltransferases 

To assess the specificity of inhibitor 1 and 2 for DNMT3A, DNA methylation assays (described 

above) were performed with each inhibitor at two distinct concentrations (6 or 60 μM) with both 

poly dI-dC DNA (1.8 ng/µL) and AdoMet (5 µM) held at a constant concentration.  The distinct 

types of DNA methyltransferases and their concentrations were as follows: 150 nM full-length 

(DNMT3A_FL) or catalytic domain DNMT3A (DNMT3A_CD), 133 U/mL DNMT1 (purchased 

form NEB) and 266 U/mL M.SssI (purchased form NEB).   

Inhibitor 1 2 

Cofactor AdoMet poly dI-dC AdoMet poly dI-dC 

Competitive Fit 0.8927 0.7690 0.9507 0.5304 

Uncompetitive Fit  0.9467 0.8124 0.9833 0.8909 

Noncompetitive Fit 0.9571 0.8312 0.9804 0.8572 

Table 1S – R2 values for the non-linear fits of the available inhibition data with respect to 

three generalized inhibition mechanisms: competitive, uncompetitive and noncompetitive 

(mixed type). 
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Figure 1S – Results from the secondary screen. 

Compounds that exhibited more than 90% inhibition 

in the primary screen of the Pathogen Box library 

were subjected to duplicate (n=2) repetition of the 

inhibition. Actvity assays were performed as 

described in the Methods. The compounds are 

designated by their location in the library and 

reference structures are provided below. Compound 

1 is designated AC05 while compound 2 is BC02. 




