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Abstract

A method for selecting data points from a finite set of curve points is discussed.
The given curve points originate from a smooth curve and are weighted with respect
to a local curvature measure. The most significant points are selected and used to
approximate the curve. The selected subset of data points is distributed in such a way
that they are uniformly distributed with respect to integrated absolute curvature. The
technique is tested for various planar curves and is applied to 2D image compression
and volume visualization.

Key words: Approximation; Curvature; Data reduction; Discretization; Parametric
curve

1. Introduction

In the context of discretizing a smooth curve, an efficient scheme for approx-
imating the curve by line segments is discussed. Such a scheme should generate
just as many line segments as necessary to approximate the given curve with
respect to some prescribed error tolerance. It is assumed that the initial curve
is already given by a finite set of points from which a smaller subset of points
is to be constructed. This allows application of the scheme to analytically
defined as well as to discretized curves. The selection of data points is made
based on assigning weights to all initial data points. Eventually, only the most
significant points are used in the piecewise linear curve approximation.
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An obvious choice to measure the significance of a single data point is the
absolute curvature at that point. Therefore, a low-order polynomial approxi-
mation scheme is used to locally approximate the given data points and obtain
local curvature estimates. Each original data point is weighted according to its
associated absolute curvature estimate. Data selection/reduction can be done
using one of these alternatives: Either the number of data points to be selected
is specified, or a maximal error tolerance is defined implying how many points
are required to approximate the curve within this tolerance.

Previous work done in the area of piecewise linear curve approximation
can be found in (Cantoni, 1971; Stone, 1961; Tomek, 1974; Williams, 1978).
A survey of several schemes for data reduction of piecewise linear curves is
provided in (McMaster, 1987). Curvature approximation and data reduction
for triangulated surfaces are discussed in (Hamann, 1993, 1994). The data
selection technique is applied to 2D image compression and volume visual-
ization (ray casting) algorithms. Two standard ray casting methods for 3D
scalar fields are described in (Levoy, 1988) and (Sabella, 1988). The perfor-
mance of such volume visualization methods can be improved significantly by
performing data point selection as a preprocessing step.

First, the method for weighting data points and selecting a proper subset of
them is described. Second, the selection technique is applied to curves (graphs
of univariate functions and parametric curves), 2D image compression, and
ray casting.

2. Local curvature approximation

In the following, it is assumed that a finite set of (ordered) planar data
points originating from a smooth curve is given. This point set is denoted by
X ={x; = (x,y;) |1 =0,...,n}. The curvature at a point x; is approximated
by computing a quadratic polynomial interpolating the three points x;_;, x;,
and x;,;. This polynomial is used to obtain a curvature estimate at x,.

A local coordinate system is constructed for the three data points x;_;, x;,

and x;,, I = 1,...,n— 1. Two difference vectors are computed,
Xi_1—X; Xij1—X;
dy= ZELTEL g gy o il TE @1
i1 — il 1% ;41— x|

where || || denotes the Euclidean norm. Provided that the points x;_;, x;, and
x;,1 are not collinear, a local orthonormal coordinate system with x; as its
origin is defined by the two unit basis vectors

d +d;
dy + da|

If three consecutive data points are collinear, the basis vectors are defined as

by = (b},b)) = and b, = (b}, —b5). (2.2)

by = (b1,b)) = LT

= ————— and b, = (—by,bf). (2.3)
lleie1 — x4
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Xi-1 Xit1

a b, X b, Y b

Fig. 1. Construction of local coordinate system.

The choice of the basis vector b, guarantees that the two points x,;_; and x;
lie on different sides of the line with direction b, and passing through x;.

Obviously, the points x;_; and x;,; can be written with respect to this local
coordinate system as

x,-_1=x,~+ab1+ﬂb2 and x,-+1=x,~+yb1+5b} (2.4)

Thus, the points x;_;, x;, and x;,; have the local coordinates («, ), (0,0),
and (y,d). A quadratic polynomial f(7) = 2,2-=0 a;t' is uniquely defined by
the three interpolation conditions

2

f(a) =) a' =B,
i=0

f(0) =ao =0,

2
f) =) ay' =0 (2.5)
i=0

This construction is illustrated in Fig. 1.

The parametric curve (¢, f(¢)) implied by the graph of f has a certain
curvature at x;, which is used as a measure of x;’s significance. The (signed)
curvature of this local polynomial approximation at x; is given by

£ @) 2
T+ 7202 - T+ a2’

The two parabolas through x, x;, and x, and x,_», x ,_;, and x , are used
to obtain curvature estimates at the end points xo and x,. The curvature
estimates at these points are given by

(2.6)

2a; and 2a;
(1 + (a1 + 2a,0)%)3/2 (1 4+ (a; + 2a,8)?)3*

The coefficients for the parabolas passing through the first three and the last
three data points are considered in this case. If the initial point set originates
from a closed curve, i.e., Xxg = X,, a quadratic polynomial must be computed
that interpolates the three points x,_;, xo, and x ;. The absolute value of the
curvature estimate at a point x; is used as its weight. The absolute curvature
value is denoted by «;.

(2.7)
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It must be mentioned that this curvature approximation scheme is sensitive
to perturbations of the original data points (“noise”). In general, a different
curvature approximation/weighting scheme should be used when dealing with
“noisy” data obtained by real-world measurements. The technique presented in
this paper is intended primarily for computing a piecewise linear approximation
for a given smooth curve. Approximating smooth curves (and surfaces) with
a small number of suitably chosen linear segments is an important problem in
computer graphics, since the rendering time depends on the number of points
used to discretize curves and surfaces.

3. Selecting a specified number of data points

Having computed absolute curvature estimates, x; values are known for each
data point x; and the most important ones can be selected. First, all points
with an associated curvature estimate of zero are removed from the point set
X. Such points lie in the interior of linear segments on the original curve
and are not necessary for a piecewise linear approximation. Only the two end
points, xo and x,, must be kept. The result of removing such points is the
point set

X=X\ {x;|k = 0}U{xox,}. (3.1)

The elements of X are denoted by ¥, ¥1,..., and ¥

The next step is the selection of a specified number of points from the set
X. This in done in such a way that curvature is distributed uniformly with
respect to chord length. This step is explained next.

The chord length of the piecewise linear curve implied by X is defined as

n—1 n—1
S=3 si=) i, (32)
i=0 i=0

where v; = X,,;— X, A piecewise linear function k = k(s), s € [0,S],
approximating the curvature along the curve is determined. This function
interpolates the tuples (3/_osi,Kj41), j = —1,..., (7A—1), where 2,;10 s;i = 0.
Integrating the function & (s) over [0,S] yields

S -1
K= [ks)ds = § 35100 + ri40). (3.3)
0 i=0
By rearranging the summation in (3.3) one obtains
A—1
K = 1Koso + %zki (i1 + 8) + $KnSi—1. (3.4)

i=1

Formula (3.4) emphasizes that the integrated absolute curvature estimate x;
multiplies the lengths of the line segments on both sides, s;_; and s;. Conse-



B. Hamann, J.-L. Chen / Computer Aided Geometric Design 11 (1994) 289-301 293

o
A K=12

Fig. 2. Integrating absolute curvature estimates.

quently, greatest weight is given to data points with high absolute curvature
and long line segments on both sides, while least weight is given to data
points with low absolute curvature and short line segments on both sides. This
interpretation of (3.3) and (3.4) justifies the use of the integrated absolute
curvature estimate K for data point selection. The computation of K is shown
in Fig. 2.

Eventually, the set

y={yO=fo’y1s-~-aym—laym=ffl} (35)

1s generated. The points in Y are chosen in a curvature-related manner. The
specified number of data points is selected such that the integrated absolute
curvature estimate is distributed nearly uniformly with respect to chord length.
Assuming that K > 0, one computes m + 1 values ¢; such that

13

/k(s)ds = j£, j=0,...,m. (3.6)
m

0

Obviously, if K = 0 all data points in the initial set X lie on a line, and the
initial point set has already been reduced to the set X = {x¢,x,} according to
(3.1). In this case, no further processing is necessary.

If K > 0 interior data points must be selected. The interior data points
Yis -+ Ym— are chosen according to the following rule: If #; is in the interval

(Y _o8is XiE0 i), it is determined whether the condition

! I+1
tj—Zs,- tj—Zs,-
i=0

holds for some / € {-1,0,1,...,7n — 2}; if this condition holds one chooses
yj = Xj4; otherwise, one chooses y; = X;,, For the case r; = S one
defines y,, = X5. This procedure ensures that absolute curvature is distributed
properly. As a result of this strategy, the selected data points must be clustered

<
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* A K =12

2¢ /

0=t0 So So+sl

Fig. 3. Uniform curvature distribution.

in regions with high absolute curvature. Fig. 3 illustrates the computation of
the values ;.

The selection of the points y ; allows points to be selected multiple times,
1.e., it is possible that y j = ¥Yj4+1- Such point multiplicities are removed in a
postprocessing step. This implies that one might obtain less than m + 1 points.
The finally selected point set is ¥ = J7Lo{y;}-

4. Selecting data points based on an error tolerance

Following the approach described in Section 3, one generates a reduced point
set by specifying a number. Alternatively, one can specify an error tolerance
to determine how many (and which) points must be selected/kept in order
to approximate the initial point sequence considering this maximally allowed
error. Choosing the second alternative, one iteratively removes points (the ones
with smallest curvature weights first), until a piecewise linear approximation
is obtained that differs more than the specified tolerance from the initial
piecewise linear curve approximation.

The second alternative for data point selection requires the definition of
an appropriate error measure. In order to measure the distance between the
initial piecewise linear curve and an intermediate piecewise linear curve the
root-mean-square (RMS) error

1 i 1/2
E= ( d,z) (4.1)
n+1 =

is used as error measure. Here, the signed, perpendicular Euclidean distance
d; between an initial point x; € X and an intermediate piecewise linear curve
is used. The distance is given by

di=nj-(x;-y;), (4.2)

where x; is a point on the polygon with vertices x; = Vis Xkils ooy X gy =
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yl =x2

Y3 =x,

Y2 =x,

Fig. 4. Distances between initial and intermediate piecewise linear curve.

Yj+1> and n; is the unit normal of the line passing through y; and y ;. , i.e.,

Vi1 =Y (O 1)
n, =2 “J_ . (4.3)
’ ||.Vj+1—.Vj|| -10

This measure allows the computation of RMS errors for graphs of univariate
functions and for parametric curves. Clearly, £ = 0 if the initial data points
are collinear. The error measure £ can be computed in O(n). Fig. 4 illustrates
the computation of distances between the initial and an intermediate piecewise
linear curve.

5. Test results and applications

The data point selection technique has been tested for univariate functions,
i.e., curves of the form {(¢;, f(¢;)) | ti € [a,b], ti=a+ i(b—-a)/n, | =
0,...,n}, and parametric curves, i.e., curves of the form {(x(z;),y(#)) | ti €
la,b], ti = a+i(b—a)/n, i =0,...,n}. Table 1 lists the test results for
several planar curves. The initial point sets consist of 101 data points and are
reduced by 50% (m = 49), 75% (m = 24), and 90% (m = 9). The RMS
errors are computed based on (4.1).

Fig. 5 shows the data point selection results for a parabola (curve 1 in
Table 1) and Fig. 6 for a trigonometric function (curve 3 in Table 1). The

Table 1
RMS errors (x10~3) for different curves and different degrees of reduction,
X ={x; = (x(t;),y;)) | t; € [a,b], ti=a+ i(b—a)/100, i = 0,...,100}.

Number of selected points

Curve m = 49 m = 24 m=29
1. Parabola: (t,-,tiz), tie[-1,1] 0.49 1.91 11.71
2. Exponential function: (¢, e%), t; € [0,2] 0.34 1.32 9.20
3. Trigonometric function: (¢;,sin(nt;)), t; € [0,2] 3.38 12.35 26.66
4. Circular arc: (cos(mt;),sin(nt;)), t; € [0,1] 0.39 1.63 11.08

5. Elliptic arc: (2cos(mt;),sin(xt;)), t; € [0,1] 0.95 3.88 25.90
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Fig. 5. Data point selection for parabola.
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Fig. 6. Data point selection for trigonometric function.
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Fig. 7. Data selection for 2D image compression.

upper-left corner in both figures shows the initial point set X, the upper-right
corner shows the result for m = 49, the lower-left corner the result for m = 24,
and the lower-right corner the result for m = 9.

Generally, a different data selection/reduction method should be applied to
“noisy” data. The technique can also be used for data selection for discrete
bivariate and trivariate data sets. A bivariate example is shown in Fig. 7. The
initial data set for the top image in Fig. 7 consists of 401 x 401 function values
fij (mapped to corresponding colors) given as a 2D array. The initial values
are obtained by computing the finite set of trigonometric function values

. i : j :
f(l,]):COS\/(E—IO) +(E_20)
; 2 j 2
+ cos (m—30) -+ (1——20) ,

where [,j = 0,...,400.

The data point selection algorithm is iteratively applied to each row or,
alternatively, to each column in this 2D image. The lower-left image in Fig. 7
shows the result after reducing the number of data in each row by 53%, and
the lower-right image shows the result after reducing the number of data in
each column by 52%.

In the area of volume visualization, the basic principle used to generate
transparent images of 3D volumetric data is the integration of a univariate
“density” function along rays penetrating the given volume. For each ray, the
univariate function to be integrated is determined by approximating “density”
values along the ray. Each ray is uniformly discretized. As a result of this
approach, data lying “deeper” in the volume have a smaller influence on the
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resulting image than data data being close to the 2D viewing plane. Two
standard methods are described in (Levoy, 1988) and (Sabella, 1988).

Normalizing the length of each ray penetrating the 3D volume, one class of
ray casting techniques can be viewed as integration of some “density” function
D(x) along each ray (see (Sabella, 1988)). The resulting intensity I perceived
in the viewing plane is given by

1 X
I=/D(x)exp(—/1/D(y)dy)dx, A= 0. (5.1)
0 y=0

Usually, this integral is approximated by its discrete version

n i—1
Isabena = ZDi exp (—XZDJ), A =0, (5.2)
j=0

i=0

using equidistant spacing between the data points along each ray.

Another way to generate transparent images is based on the following princi-
ple: The effect of a data point with density value D; on the resulting intensity
in the image plane depends on the number of data points “in front of it” (see
(Levoy, 1988)). This model computes the resulting intensity for each ray as

n—1 i—1 n—1
fewy = {3 D11 1) Ht,-} + D, ][ 4 (5.3)
i=0 Jj=0 Jj=0

where ]'[j_zlo tj = 1,and ¢; € [0,1] is a transparency parameter associated with
density value D;. Again, equidistant spacing is used between data along a ray.

Formulas (5.1), (5.2), and (5.3) are simplifications, but still convey the
essential principles used in ray casting. Algorithms based on such methodologies
can be improved significantly by first reducing the number of data points along
each ray before performing the integration step. The computation of Igype, In
(5.2) is of complexity O(n?)! Data point selection can be performed using
the described selection technique. In the example shown in Fig. 8, Sabella’s
algorithm is applied to a 3D medical data set (computerized axial tomography
data). Considering all data points along each ray yields the left image; using
approximately 3% of the data points along each ray generates the right image.
Both images are generated by using 680 x 640 rays. The integration step for
the right image is performed based on linear interpolation of the selected data
points.

6. Conclusions

A new method for selecting points for piecewise linear curve approximation
has been presented. The technique chooses data points with respect to local
absolute curvature estimates. The degree of reduction is controlled either by
a number of points to be selected or by an error tolerance. The test results
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Fig. 8. Using entire and reduced data set for ray casting.

confirm the quality of the approach for planar parametric curves. The new
method can be viewed as an alternative to more “classical” approaches based
on minimizing the average mean-squared error or the maximum absolute
(uniform) error. While those approaches have originated from approximation
theory, the approach introduced in this paper uses simple geometrical concepts.

It is planned to extend the technique to parametric surfaces and graphs of
trivariate functions. Furthermore, the method will be compared with classical
minimization approaches.
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