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ABSTRACT

We present ALMA CO (2–1) detections in 11 gas-rich cluster galaxies at z ∼ 1.6, constituting the largest sample of molecular

gas measurements in z > 1.5 clusters to date. The observations span three galaxy clusters, derived from the Spitzer Adaptation

of the Red-sequence Cluster Survey. We augment the > 5σ detections of the CO (2–1) fluxes with multi-band photometry,

yielding stellar masses and infrared-derived star formation rates, to place some of the first constraints on molecular gas properties

in z ∼ 1.6 cluster environments. We measure sizable gas reservoirs of 0.5− 2× 1011M⊙ in these objects, with high gas fractions

(fgas) and long depletion timescales (τ ), averaging 62% and 1.4 Gyr, respectively. We compare our cluster galaxies to the scaling

relations of the coeval field, in the context of how gas fractions and depletion timescales vary with respect to the star-forming

main sequence. We find that our cluster galaxies lie systematically off the field scaling relations at z = 1.6 toward enhanced gas

fractions, at a level of ∼ 4σ, but have consistent depletion timescales. Exploiting CO detections in lower-redshift clusters from

the literature, we investigate the evolution of the gas fraction in cluster galaxies, finding it to mimic the strong rise with redshift

in the field. We emphasize the utility of detecting abundant gas-rich galaxies in high-redshift clusters, deeming them as crucial

laboratories for future statistical studies.

Keywords: galaxies: clusters: general — galaxies: evolution — galaxies: high-redshift — galaxies: ISM —

galaxies: star formation — infrared: galaxies
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1. INTRODUCTION

Galaxy cluster evolution is intertwined with that of its con-

stituent galaxies. Therefore, in order to understand the for-

mer, we must explore the baryonic processes that shape the

latter. In particular, this requires a solid understanding of the

molecular gas content in cluster galaxies, as this provides the

necessary raw material to fuel star formation. Within these

dense environments, cluster galaxies face hostile conditions,

as substantiated by morphological and physical transforma-

tions. Various mechanisms have been invoked to explain the

differences between cluster and field galaxies, many of which

involve interactions with the intracluster medium (ICM). For

example, ram-pressure stripping has been directly observed

in low-redshift (z . 0.3) cluster galaxies via HI deficiencies

(Jaffé et al. 2015), extraplanar HI gas (Chung et al. 2009),

and long “jellyfish” gas tails (Owers et al. 2012).

The environmental effect of the ICM on molecular gas,

however, is more ambiguous. It is thought that this denser

gas is less susceptible to removal and can therefore survive

the effects of ram-pressure stripping. Indeed, many studies

have found no difference in the molecular gas content be-

tween field and cluster environments, as traced by the emis-

sion lines of 12CO (e.g., Stark et al. 1986; Kenney & Young

1989). However, more recent work has reported molecu-

lar gas deficiencies in cluster galaxies (e.g., Fumagalli et al.

2009; Jablonka et al. 2013; Scott et al. 2013; Boselli et al.

2014).

Technological advances in radio interferometers have en-

abled statistical samples of CO in the field out to z ∼ 3
(e.g. Saintonge et al. 2011; Tacconi et al. 2013, 2017). Clus-

ter samples, however, have primarily focused on low-redshift

systems. A missing key component of molecular gas studies

are observations within high-redshift cluster cores.

Observations (Tran et al. 2010; Brodwin et al. 2013) sug-

gest that z & 1.5 is the peak assembly time for galaxy clus-

ters, and it is thus likely that many of the environmental ef-

fects on cluster galaxies occur at these early times in dense

regions. While there have been some molecular gas observa-

tions in the dense regions of z > 1 clusters, these have been

limited to only a handful of detections (Aravena et al. 2012;

Wagg et al. 2012; Casasola et al. 2013; Hayashi et al. 2017,

Rudnick et al. ApJ submitted). Thus, whether high-redshift

clusters typically harbor gas-rich galaxies, or whether they

are analogous to some of their lower-redshift counterparts,

displaying signs of molecular gas deficiencies, has yet to be

determined conclusively.

Here, we present Cycle 3 ALMA observations of three

massive galaxy clusters at z ∼ 1.6 from the Spitzer Adap-

tation of the Red-sequence Cluster Survey (SpARCS). With

a total of 11 CO (2–1) detections at > 5σ, we are filling

in this CO redshift desert and enabling the first statistical

constraints on gas properties in high-redshift cluster galax-

ies. Stellar masses and star formation rates (SFRs) are based

on a Chabrier initial mass function (Chabrier 2003).

2. OBSERVATIONS AND ANALYSIS

2.1. z ∼ 1.6 SpARCS Clusters

SpARCS J022426–032330 (J0224), J033057–284300

(J0330) and J022546–035517 (J0225) were discovered

within the 42 deg2 SpARCS fields (Muzzin et al. 2009;

Wilson et al. 2009; Demarco et al. 2010, see Table 1 in Nan-

tais et al. 2016). They were initially identified using a

technique that detects the 1.6µm stellar bump feature as it

spans 3.6 and 4.5µm from 1.3 < z < 1.8 (Papovich et al.

2010; Muzzin et al. 2013). These three clusters are spectro-

scopically confirmed at z = 1.633, z = 1.626, and z = 1.59
(Lidman et al. 2012; Muzzin et al. 2013; Nantais et al. 2016),

respectively, with 115 confirmed members in total. Richness-

based estimates suggest cluster masses & 1014M⊙, placing

them amongst the most massive systems at z ∼ 1.6 (e.g.,

Stanford et al. 2012; Bayliss et al. 2014; Tozzi et al. 2015;

Webb et al. 2015).

Additional 11-band imaging exists from optical/near-

infrared (ugrizYKs) to infrared (3.6/4.5/5.8/8.0µm), al-

lowing for accurate photometric redshifts and stellar masses.

Imaging details and analysis are presented in Nantais et al.

(2016). The central cluster regions have deep HST imaging

from the “See Change” program (GO-13677 and GO-14327)

in F160W on the WFC3-IR camera, with additional observa-

tions in the F105W and F140W filters for J0224 and J0330.

2.2. ALMA Observations

The ALMA Cycle 3 data were taken between 2016 January

13 and January 20 over 12 execution blocks, with 8.4 hr of to-

tal integration time. Each cluster contains two separate point-

ings in Band 3, encompassing a total of 49 spectroscopically-

confirmed cluster members. We used the frequency division

correlator mode in a single baseband to provide a total band-

width of 1.875 GHz.

The maps were calibrated using ALMA reduction pipeline

scripts in CASA version 4.6.0. We chose 0.′′3 pixels and

a spectral resolution of 100 km s−1. We performed mini-

mal cleaning with natural weighting, generating continuum-

subtracted and primary-beam-corrected maps with a field

of view of ∼ 110′′ across. The resulting data cubes

have synthesized beams of ∼4′′×3′′ with a central rms of

∼0.17 mJy beam−1 per channel.

2.3. CO 2–1 Detections

We blindly search the primary-beam corrected image

cubes for CO (2–1) detections, requiring a peak S/N & 5,

and resulting in a final catalog of 11 CO detections over

all 3 clusters. High-resolution HST imaging, in conjunction

with optical spectroscopy and 11-band photometry, allows

for unambiguous counterpart identification of the ALMA

detections (Figure 1). Seven of the 11 CO detections repre-

sent individual cluster members, and the remaining 4 detec-

tions are associated with galaxy pairs. The “pair” systems

(J0224–3680/3624 and J0224–396/424) are slightly blended

in ALMA (and completely blended in the far-infrared imag-

ing). We therefore treat all the pair detections as single com-

bined systems, measuring total gas masses, stellar masses,
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Figure 1. Postage stamps (30′′×30′′) showing the CO (2–1) integrated-intensity maps with zoomed-in 6′′×6′′ HST images. The synthesized

ALMA beam for each map is shown by the white ellipse. We note the blue galaxy to the northeast in J0224–3656 has a photometric redshift of

z = 0.63 and is thus unlikely to be contributing to the CO flux. The last two stamps in the bottom row represent ALMA pair detections.

and SFRs for each pair. This yields nine separate flux mea-

surements.

To measure CO fluxes, we first create integrated-intensity

map by collapsing the image cube over the velocity channels

with significant emission for each source. We then perform

a two-dimensional Gaussian fit on their respective map, and

use the best-fit major and minor FWHM to create a 4σ region

for spectral profile extraction on the full image cube. Within

each of these regions, we model the spectral profile with a

Gaussian function, determining rms errors from the line-free

channels for each source.

The area under the Gaussian spectral profile corresponds

to the full integrated CO flux. These fluxes are subsequently

converted into line luminosities (L′
CO) using Equation (3)

in Solomon & Vanden Bout (2005). To estimate the total

molecular gas mass we use Mgas = αCO(L
′

(2−1)/r21). We

assume sub-thermalized emission with r21 = 0.77, which

is empirically derived in Daddi et al. (2015) and consistent

with the value used in Genzel et al. (2015), and a αCO con-

version factor of 4.36 (M⊙ (K km s−1 pc−2)−1), commonly

used for the Milky Way and in normal star-forming galax-

ies with solar metallicities (Bolatto et al. 2013; Genzel et al.

2015). We note that all but one of the cluster galaxies lie

within 2σ of the main sequence of star formation at z = 1.6.

Table 2.3 displays our final CO (2–1) measurements, along

with corresponding derived quantities.

2.4. Infrared Star Formation Rates

To obtain SFRs, we utilize infrared/far-infrared data from

Spitzer and Herschel. All three clusters are within the

SWIRE Legacy Survey (Lonsdale et al. 2003) and the Her-

schel Mid-infrared Extragalactic Survey (Oliver et al. 2012),

providing MIPS-24µm and SPIRE-250/350/500µm imag-

ing. MIPS counterparts to the ALMA detections are iden-

tified directly on the images, and fluxes are measured with

aperture photometry. Measurement of SPIRE fluxes is less

straightforward due to source confusion in the maps. We

attempt to reduce the blending of SPIRE fluxes by using

MIPS positional priors and employing a simultaneous stack-

ing technique (SIMSTACK; Viero et al. 2013).

As in Webb et al. (2015), we use a Bayesian approach to fit

spectral energy distributions to the infrared fluxes. We first

form a two-dimensional parameter space consisting of 105

templates from Chary & Elbaz (2001), each scaled by 104

amplitudes, ranging from 0 to 100. For each template and

amplitude combination, we compute the χ2 value from the

observed infrared fluxes, creating a two-dimensional proba-

bility distribution. Assuming flat priors on both the ampli-

tude and template, we calculate the weighted mean over the

posterior to determine the infrared luminosity and its uncer-

tainty. This is converted to a SFR using Kennicutt (1998).

The infrared-derived SFRs place the cluster galaxies around

the main sequence at z = 1.6 from Whitaker et al. (2012).

All but one galaxy (J0224–3656) fall within 2σ of the main

sequence.

3. RESULTS

With the first significant sample of CO detections in cluster

galaxies at z ∼ 1.6, we can begin to investigate how the clus-

ter environment might impact the molecular gas reservoirs.

We present our main results below.
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Table 1. Properties of the CO-detected cluster galaxies

ID zCO S/Na SCO∆vb FWHMb Mgas
c Mstellar 〈SFR〉 fgas τ

(Jy km s−1) (km s−1) (1010 M⊙) (1010 M⊙) (M⊙ yr−1) (Gyr)

J0225–371 1.599 6.3 1.18±0.18 401±71 21.9±3.4 6.3+0.8
−0.9 174±78 0.78+0.03

−0.04 1.3±0.6

J0225–460 1.601 5.8 0.63±0.11 509±104 11.7±2.1 9.1+6.0
−3.5 123±61 0.56+0.17

−0.10 0.9±0.5

J0225–281 1.610 6.2 0.59±0.16 122±34 11.1±3.1 6.5+1.7
−1.8 122±50 0.63+0.09

−0.09 0.9±0.4

J0225–541 1.611 14.0 0.70±0.06 307±31 13.3±1.2 6.6+0.8
−0.9 82±30 0.67+0.03

−0.03 1.6±0.6

J0330–57 1.613 5.2 0.31±0.13 155±40 5.9±2.5 3.3+1.8
−1.5 36±21 0.64+0.16

−0.14 1.7±1.2

J0224–3656 1.626 6.8 0.30±0.06 539±113 5.8±1.1 10.0+1.2
−4.4 43±20 0.37+0.05

−0.11 1.4±0.7

J0224–159 1.635 5.2 0.46±0.11 245±68 8.9±2.1 5.9+2.6
−1.1 217±82 0.60+0.12

−0.07 0.4±0.2

J0224–3680/3624d,e 1.626 7.0 1.07±0.19 776±192 20.5±3.6 9.1+3.5
−1.5 68±24 0.69+0.09

−0.05 3.0±1.2

J0224–396/424d 1.634 9.9 1.32±0.12 493±53 25.5±2.4 16.2+3.7
−2.4 166±60 0.61+0.06

−0.04 1.5±0.6

aComputed from the peak flux and noise in the collapsed image cube.

bComputed from a Gaussian fit to the spectral profile.

cCalculated using r21 = 0.77, αCO = 4.36.

dPair galaxies, where the CO luminosity and SFR have been measured for the combined system.

eSpectral profile is fit with a double Gaussian.

3.1. Gas Properties Scaled to the Star-Forming Main

Sequence

The tightness of the main sequence of star formation

(SFR–M⋆) is thought to reflect the gas regulator model,

in which galaxies grow through an influx of fresh gas that

fuels star formation and is subsequently balanced by feed-

back (Bouché et al. 2010). The dependence of gas prop-

erties on the galaxy’s location on the SFR–M⋆ plane is

therefore expected and has been observed in the field (e.g.,

Saintonge et al. 2011, 2016; Genzel et al. 2015).

We investigate the spread of depletion timescales and gas

fractions as a function of relative offset from the main se-

quence in Figure 2. We show the field scaling relations from

Genzel et al. (2015), calculated at z = 1.6 and normalized to

the average stellar mass in our cluster sample. The gas frac-

tion scaling relation has a steep dependence on stellar mass;

we therefore also include tracks using the mass range of the

cluster sample. From these scaling relations, it is evident that

field galaxies further above the main sequence display higher

gas fractions and shorter depletion timescales.

For a given mass, the z ∼ 1.6 cluster galaxies lie at system-

atically higher gas fractions than the scaling relation (of the

appropriate mass). The same is true of depletion timescales,

though most are within a one standard deviation of the rela-

tion. We quantify this offset by summing the individual χ2

values from each data point compared to model track scal-

ing relation at the cluster galaxy’s given stellar mass. This

returns a 8× 10−7 (0.3) likelihood of producing a similar or

worse χ2, roughly corresponding to a ∼ 5σ (1σ) offset in gas

fractions (depletion timescales) compared to the field scaling

relations.

We explore whether this could be due to a selection ef-

fect by including 3σ upper limits for spectroscopically con-

firmed infrared-detected cluster members above the scaling

relation mass limit of 1010M⊙. For each of these seven non-

detections, we create a 400 kms−1 (the average FWHM of

the detected sample) integrated-intensity map centered at the

spectroscopic redshift. The pixel-to-pixel variation in an an-

nulus around the source corresponds to the 1σ rms. We then

estimate the 3σ upper limit on the gas fraction and deple-

tion timescale using the galaxy’s stellar mass and SFR. Most

of the non-detections lie close to the scaling relations, albeit

fewer than the number of CO-detected galaxies lying above.

Therefore, while we cannot rule out the existence of a clus-

ter population consistent with the field, there is still a higher

fraction of cluster galaxies offset from the relation given the

uncertainty in the scaling relation fit. We can thus reasonably

rule out that the offset is purely a selection effect. More-

over, if we include the upper limits in the χ2 calculation by

conservatively assuming the non-detections lie on the scal-

ing relations, the offset significance for the gas fraction only

drops to ∼ 4σ. We note that there is likely some selection

bias in the field samples, further muddling interpretation.

We compare the distribution of gas properties to coeval

field galaxies from 1.2 < z < 1.6 (Daddi et al. 2010;

Tacconi et al. 2013; Decarli et al. 2016; Papovich et al. 2016)
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Figure 2. Relative offset from the star-forming main sequence as a function of molecular gas depletion timescale (left) and gas fraction (right).

The z ∼ 1.6 cluster galaxies (circles) are color-coded by the gas fraction (left) and stellar mass (right). Left-facing triangles correspond to

3σ upper limits for spectroscopically-confirmed star-forming cluster members that are not detected in CO (color-coded by their 3σ upper limit

in fgas on the left). The upward-facing triangle also represents a CO non-detection that has been artificially placed at a lower SFR offset to

minimize the plot range; the actual relative offset value is 4.9. The solid blue line (grey region) in both panels represents the field scaling

relations (1σ fit uncertainties) from Genzel et al. (2015), which have been plotted at z = 1.6 and normalized to the average mass of our

cluster sample. In the right panel, we also include the scaling relations at the upper and lower mass limits. The upper panels show the binned

distribution of each quantity for our cluster galaxies (filled black) and a similar redshift field sample (lined gray) taken from the literature. The

vertical black dotted lines represent the nominal 3σ detection limits of our maps, with the horizontal bars depicting the full range of stellar

masses and SFRs within our cluster CO-detected sample. The cluster galaxies lie systematically at higher gas fractions and longer depletion

timescales than the field scaling relations.

in the upper panel histograms. We restrict the field sample to

galaxies within a similar range of offsets from the main se-

quence as the cluster CO-detected sample, from −1 to 2. We

note the cluster and field comparison samples are evenly dis-

tributed on the SFR–M⋆ plane. The tendency toward higher

gas fractions in cluster galaxies is again conspicuous. To

evaluate the differences, we restrict the analogous field sam-

ple to values of fgas and τ above our nominal 3σ detection

limit in the cluster sample. This is estimated using the typ-

ical rms in the center of the ALMA maps and the average

FWHM, stellar mass, and SFR of our detected sample, yield-

ing a gas fraction and depletion timescale limit of 32% and

0.33 Gyr. Comparing the two distributions above our nomi-

nal detection limits, we perform a Kolmogorov–Smirnovtest,

rejecting the null hypotheses in both cases with 99% confi-

dence. We find an average gas fraction of 62±3.7% and aver-

age depletion timescale of 1.4± 0.2Gyr for our CO-detected

cluster galaxies.

3.2. Evolution of the Gas Fraction in Clusters

In Figure 3, we plot the evolution of the gas fraction. We

compile a subset of 19 additional CO detections in clusters

from the literature from 0.2 < z < 1.5 (Geach et al. 2011;

Aravena et al. 2012; Wagg et al. 2012; Jablonka et al. 2013;

Cybulski et al. 2016) to compare to our z ∼ 1.6 detections.

We similarly restrict the literature detections to > 1010 M⊙

galaxies that fall within a relative offset from −1 to 2 of the

main sequence at their respective redshift, yielding 15 clus-

ter galaxies. Including galaxies markedly above the main

sequence, for example, would inherently bias the literature

detections to higher gas fractions given the aforementioned

correlation in §3.1. We include the rise in the gas frac-

tion for main-sequence field galaxies from the Genzel et al.

(2015) scaling relations, normalized to the average mass of

our cluster galaxies. The gas fraction in cluster galaxies

mimics the strong evolution in the field. Notably, almost

all the z > 1 cluster galaxies lie above the gas fractions

in main-sequence field galaxies, despite half the galaxies ly-

ing slightly below the main sequence. Conversely, gas-rich

galaxies in low-redshift clusters are on average closer to the

field gas fractions. This is suggestive of a steeper evolution

in gas fractions for cluster galaxies than the field, consistent

with semi-analytical (Lagos et al. 2011) and semi-empirical

(Popping et al. 2015) models that predict a stronger evolu-

tion in more massive halos. However, this warrants caution

owing to the heterogeneous nature of the cluster and field
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Figure 3. Evolution of the gas fraction for main-sequence cluster

galaxies, compared to the field scaling relation (black line and gray

region, Genzel et al. 2015). The lower-redshift cluster data are taken

from the literature and limited to a narrow range around the main

sequence at their respective redshifts. On average, z > 1 main-

sequence cluster galaxies have higher gas fractions than the coeval

field.

samples, making interpretation difficult. For example, this

could be dominated by systematic offsets in SFR measure-

ments and/or selection biases.

4. DISCUSSION

We find that star-forming main-sequence cluster galaxies

are systematically concentrated toward higher gas fractions

compared to the field scaling relations at z ∼ 1.6.

This could partially be a selection effect—we cannot fully

exclude the possibility that with deeper data we would detect

more galaxies on or below the scaling relations. However, it

is unlikely the sole cause of the offset as more of our con-

firmed cluster members have CO detections as opposed to

non-detections consistent with the scaling relations. Barring

a selection effect, we propose three other plausible explana-

tions for the offset in gas properties of cluster galaxies rela-

tive to the field.

One possibility could be that for a given gas fraction, SFRs

in z ∼ 1.6 cluster galaxies are suppressed. While the SFRs

in CO-detected cluster galaxies range within ∼ 2σ of the

main sequence, one might expect even higher levels of star

formation given the massive gas reservoirs. Though it seems

unlikely that star formation would begin to cease before the

depletion of molecular gas (Bahé & McCarthy 2015), this

could be due to the varying timescales of the measurements

(Feldmann et al. 2016).

Conversely, taken at face value, this offset implies that

star-forming main-sequence galaxies in cluster environments

have higher gas masses than the field. This could be sug-

gestive of an environmental interaction that perturbs the

molecular gas in cluster galaxies such that a smaller frac-

tion of the gas actively contributes to star formation; this

would require higher gas masses in cluster galaxies com-

pared to field galaxies with the same SFR. Similarly, envi-

ronmental pressure could increase the formation of molec-

ular gas through compression of the interstellar medium

that further prevents gaseous outflows (Fujita & Nagashima

1999; Bahé et al. 2012), yielding higher gas masses than field

galaxies for a given stellar mass. Indeed, simulations find an

increased effectiveness of ram pressure at z ∼ 1 compared

to z = 0 (Bahé & McCarthy 2015). Moreover, Virgo cluster

galaxies have also been found to have an excess of molecular

gas despite being deficient in HI (Mok et al. 2016), though

this is in contrast to many other studies that report a reduc-

tion of molecular gas (e.g., Boselli et al. 2014). Large gas

reservoirs in z > 1.5 clusters are also consistent with the

increased star formation observed in dense regions at this

epoch (e.g., Tran et al. 2010).

Finally, the same αCO may not be appropriate for field and

cluster galaxies alike. We note that reducing the αCO con-

version by 2× for the cluster galaxies would remove the off-

set between the sample and the field scaling relations. This

term is dependent on various factors, most notably metallic-

ity and total mass surface density (Bolatto et al. 2013), both

of which could be affected by the larger-scale environment.

Indeed, the value of αCO slightly decreases for increasing

metallicity (Narayanan et al. 2012). Although galaxies in

high-density environments have marginally higher metallici-

ties (Cooper et al. 2008), a factor of ∼ 2 increase in metallic-

ity would be needed to reduce αCO in our cluster galaxies in

order to align them with field gas fractions. A lower value of

αCO is also preferred for mergers (αCO ∼ 1), due to a combi-

nation of increased gas temperatures and velocity dispersions

that give rise to an amplified CO luminosity (Narayanan et al.

2012). While we do see examples of pair galaxies in our clus-

ter sample, recent work by Delahaye et al. (2017) finds no di-

rect evidence for increased merger activity in z ∼ 1.6 cluster

cores compared to the field. In addition to mergers, a similar

effect could also result from ram-pressure stripping, where

compressed gas at the leading edge of the galaxy would lead

to higher gas temperatures and velocity dispersions, neces-

sitating a lower conversion between CO and H2. If cluster

galaxies indeed warrant a different αCO this in itself is inter-

esting as it implies that environmental studies of molecular

gas need to be more cognizant of systematic αCO variations.

5. CONCLUSION

We present the largest study of molecular gas in z > 1.5
cluster galaxies to date. Using ALMA Band 3, we detect CO

(2–1) in 11 galaxies over 3 massive SpARCS galaxy clusters.

We summarize our results as follows:
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1. The z ∼ 1.6 cluster galaxies have consistent depletion

timescales (τ̄ = 1.4 ± 0.2Gyr), but ∼ 4σ higher gas

fractions (f̄gas = 62 ± 3.7%) for a given offset from

the main sequence compared to the scaling relations of

coeval field galaxies.

2. Cluster galaxies on or around the main sequence

mimic the strong evolution in the gas fraction in

the field, with the trend continuing in clusters up to

z ∼ 1.6.

The origin of the gas fraction excess is not clear—whether

it is a selection effect or stems from a cluster environmen-

tal dependency remains an open question. Larger samples of

high-redshift CO detections in cluster galaxies are required,

preferentially probing a broad scope in the SFR–M⋆ plane,

and over a wide range of cluster halos to mitigate stochastic

cluster-to-cluster variations. Nevertheless, with these data,

it is clear that high-redshift galaxy clusters have an ample

supply of gas-rich galaxies. Given the efficiency of target-

ing high-density fields to obtain multiple detections within a

single field of view, clusters offer an exciting laboratory to

further explore molecular gas properties.
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