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General Instruction Following in a Large-Scale Biologically Plausible Brain Model
Xuan Choo (fchoo@uwaterloo.ca)

Chris Eliasmith (celiasmith@uwaterloo.ca)
Center for Theoretical Neuroscience, University of Waterloo

Waterloo, ON, Canada N2L 3G1

Abstract

We present a spiking neuron brain model implemented in
318,870 LIF neurons organized with distinct cortical modules,
a basal ganglia, and a thalamus, that is capable of flexibly fol-
lowing memorized commands. Neural activity represents a
structured set of rules, such as “If you see a 1, then push button
A, and if you see a 2, then push button B”. Synaptic connec-
tions between these neurons and the basal ganglia, thalamus,
and other areas cause the system to detect when rules should
be applied and to then do so. The model gives a reaction time
difference of 77 ms between the simple and two-choice reac-
tion time tasks, and requires 384 ms per item for sub-vocal
counting, consistent with human experimental results. This is
the first biologically realistic spiking neuron model capable of
flexibly responding to complex structured instructions.
Keywords: neural engineering; spiking neuron model; in-
struction following; instruction processing; cognitive con-
trol; cognitive architectures

Introduction
One of the hallmarks of complex cognition is the ability to
perform a multitude of tasks using the same underlying ar-
chitecture. When given an instruction, the human brain is
capable of processing and executing the instruction without
the need for extensive rewiring of the underlying neural con-
nections. As far as we are aware, no neural model to date has
been shown to exhibit this ability.

Eliasmith et al. (2012) describes what is currently the
world’s largest functional brain model. While the model,
called Spaun (for Semantic Pointer Architecture Unified Net-
work), is able to perform 8 different cognitive tasks with-
out necessitating changes to its architecture, the knowledge
needed to complete these 8 tasks is hard-coded into the ac-
tion selection mechanism (the basal ganglia) of the model,
making it unable to perform any task other than the prede-
fined 8. In this paper, we propose an extension to the Spaun
action selection component making it capable of processing
generic instructions.

Terminology
Four key concepts are discussed in this paper: states, actions,
rules, and instructions.

States are internal variables that the action selection sys-
tem monitors to figure out what is the best action to perform.
States can be both internal (e.g. goal memories, working
memories (WM)) and external (e.g. visual input) to the sys-
tem.

Actions are atomic commands within the architecture, and
are typically motor commands (e.g. “write the number X”,
“push the X button”) or cognitive commands (e.g. “remember
the word X”, “route information from WM area X to WM area

Y”, “add 1 to the value in WM area X”). Apart from motor and
cognitive commands, actions can also be utilized to change
the values of the model’s states.

Rules are conditional statements typically of the form “IF
X, THEN Y” (e.g. “If you see a 1, then push button A”) where
X is a set of conditions which have to be met for the set of
actions Y to be executed. More generally, in Spaun, rules are
statistical maps between cortical states and actions.

An instruction is a combination of rules or actions that
can be executed sequentially (e.g. “Remember the number 1;
add 1 to that number; write the result”) or in any order (e.g.
“If you see a 1, then push button A; If you see a 2, then push
button B”).

Spaun
The architecture of Spaun (the Semantic Pointer Architecture,
or SPA) is composed of 9 distinct but interconnected modules
(see Figure 1A). Of interest to this paper is how the action
selection module interacts with the rest of the model. Fun-
damentally, the action selection module of Spaun is identical
to the basal ganglia (BG) based production system described
in (Stewart, Bekolay, & Eliasmith, 2012), and functions sim-
ilarly to the action selection component of production system
models (e.g. (Anderson, 1996)).

In these systems, action selection is hard-coded by a pre-
defined set of rules. To select an action, the BG monitors
internal cortical state variables and executes a rule whose an-
tecedent best matches the values of the internal state variables
(see Figure 1B). Critically, to encode instructions, the tran-
sitions between each rule in the instruction has to be hard-
coded into the BG as well. For example, if the instruction
was to perform ACTION-A followed by ACTION-B, and then
ACTION-C, the following rules would have to be encoded
into the BG:

IF INIT,THEN state = ACTION-A

IF state = ACTION-A,THEN state = ACTION-B

IF state = ACTION-B,THEN state = ACTION-C

Several ACT-R models (e.g. (Taatgen & Lee, 2003),
(Taatgen, 1999)) able to follow instructions, however no neu-
ral implementation has been previously discussed.

Aside from its architecture, Spaun is also unique in the way
information is represented. Information is encoded and rep-
resented using semantic pointers (Eliasmith, In Press). These
representations are used in the SPA to define a type of vec-
tor symbolic architecture (VSA). In typical VSAs, the vector
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Figure 1: A) High-level architecture of Spaun. B) Method by
which Spaun chooses an action. The action selection system
monitors cortical state variables (solid arrows), selects an ac-
tion that bests matches these states, and effects the action on
efferent modules (dotted arrows).

that represents the number ONE and the vector that repre-
sents the number TWO would be chosen from a random dis-
tribution and thus have no direct relation to each other. In the
SPA however, the semantic pointer for the number TWO is
computed as the bound combination of the semantic pointer
ONE with a vector that represents the concept ADD1, thus
imparting semantic meaning to each vector:

TWO = ONE~ADD1

Similarly, the semantic pointer for the number THREE can
be computed as follows:

THREE = TWO~ADD1
= ONE~ADD1~ADD1

Vector Symbolic Architectures
Vector symbolic architectures have four core properties. First,
information is represented by high-dimensional vectors usu-
ally chosen from a random distribution.

Second, vectors can be combined using a superposition
operation (denoted with a +). Of note, the vector result of
the superposition operation is similar to the original vector
operands, where similarity is measured by a dot product.

Third, vectors can be bound together using a binding oper-
ation (denoted with a ~). Unlike the superposition operator,
the vector result of the binding operation is dissimilar to the
original vector operands.

Last, an approximate inverse operator (denoted with ∗,
such that A∗ is the approximate inverse of A) is defined such

that binding A with A∗ results in approximately the identity
vector I (A~A∗ ≈ I). This property of the approximate in-
verse can be used to unbind previously bound vectors.

Both the superposition and binding operations are anal-
ogous to addition and multiplication in scalar mathematics,
and are often associative, commutative, and distributive.

In the SPA, vector addition is used for superposition, and
circular convolution is used for binding, bearing close sim-
ilarity to the Holographic Reduced Representation (Plate,
2003).

Encoding Instructions
Instructions are encoded using a positional encoding schema
similar to that used in Spaun and in the Ordinal Serial Encod-
ing model of serial working memory (Choo, 2010). Each rule
in the instruction is tagged (bound) to a position vector to in-
dicate its relative order within the instruction. For example,
the instruction “1. RULE1; 2. RULE2” is encoded as

INSTR = P1~RULE1+P2~RULE2

where P1 and P2 are the position vectors. Importantly, since
the position vectors are also semantic pointers, the position
vectors have some relation. That is to say P2 = P1~ADD1,
and likewise for subsequent position vectors.

Individual rules in the instruction are encoded as a super-
position of the conditions that make up the antecedent and
the actions that make up the consequence of the rule. For ex-
ample, the rule “IF STATEA THEN ACTIONB” is encoded
as

RULE = ant(STATEA)+ACTIONB

where ant() is a randomly generated linear operator applied
to the STATEA vector that serves to disambiguate the an-
tecedent and consequent components of the rule.

State conditions are encoded by binding vectors that de-
scribe the state being monitored with the state value required
for the rule to be executed. Thus, the state condition “state =
A” is constructed as

STATEA = STATE~A.

Other conditions can also be combined in this state represen-
tation. For example, if the state conditions was “vision = 3
and state = A” (i.e. looking at a 3 while in state A), then the
state representation would be

VIS3&STATEA = VISION~3+STATE~A.

Actions are encoded by combining the bound result of an
“action” descriptor with the specific action to be performed
with an optional bound result of a “data” descriptor with the
specific data to be used with the action. A “write the number
2” action is thus represented as

WRITE2 = ACTION~WRITE+DATA~2.
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Combining all of the representations above, the full encod-
ing of an instruction can be demonstrated. As an example the
instruction:

1. IF vision = 0,THEN push button A
2. IF vision = 1,THEN push button B

is encoded as

INSTR = P1~ [ant(VISION~0)+
ACTION~PUSH+DATA~BTNA]+

P2~ [ant(VISION~1)+
ACTION~PUSH+DATA~BTNB] (1)

It is important to note that at the end of this computation,
the instruction is encoded as a single vector with the same
dimensionality as the original atomic components.

Decoding Instructions
With the instruction encoding schema presented above, the
instructions can be decoded in one of two ways: by using
positional information, and by using the values of the states
in the system.

Sequential Decoding of Instructions A rule associated
with a specific position within the instruction can be retrieved
by binding the instruction vector with the inverse of the posi-
tion vector.

rule = INSTR~P1∗ (2)
= P1∗~P1~RULE1+P1∗~P2~RULE2
= I~RULE1+P1∗~P2~RULE2
≈ RULE1

Given the rule vector, it is possible to retrieve information
related to the consequent by binding it with the inverse of the
“action” descriptor or the “state” descriptor.

action = rule~ACTION∗ (3)
= [ant(VISION~0)+ACTION~PUSH+

DATA~BTNA]~ACTION∗

≈ I~PUSH = PUSH

Likewise,

data = rule~DATA∗ (4)
= [ant(VISION~0)+ACTION~PUSH+

DATA~BTNA]~DATA∗

≈ I~BTNA = BTNA

After the rule has been executed, the next rule can be
computed by incrementing the position vector (P2 = P1 ~
ADD1)) and repeating Equations 2, 3 & 4 with this new po-
sition vector.

Conditionally Responsive Decoding of Instructions An
instruction can also be decoded using the values of the state
conditions. In order to do so, the value of the state condi-
tion(s) is bound to its associated state descriptor(s), and the
inverse of this result is bound to the instruction vector to
yield the position of the rule that best matches the state con-
dition(s). Using Equation 1 as an example, if the vision state
condition had a value of 1, the position of the rule that best
matches this can be found like so:

pos = INSTR~ (ant(state)~ state val)∗ (5)
= INSTR~ (ant(VISION)~1)∗

= P1~ [ant(VISION~0)...]~ (ant(VISION)~1)∗+
P2~ [ant(VISION~1)...]~ (ant(VISION)~1)∗

≈ P2~ [I+ ...]≈ P2

Once the position vector has been retrieved, the sequential
instruction decoding equations can then be used to obtain the
action and data associated with the rule.

The Model
With the ability to encode and decode general instructions,
modifying the existing Spaun action selection module to take
advantage of this is straightforward. It only entails the addi-
tion of a instruction processing module that implements the
instruction decoding equations (Eq 2 – 5) above. The output
of this module then become new state variables which the ac-
tion selection system monitors when selecting an appropriate
action (see Figure 2).
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Figure 2: Proposed modification to Spaun’s action selection
system with the addition of an instruction processing module
(italicized). As in Figure 1, state monitoring is indicated with
a solid arrow, and action effects with a dotted arrow.

Validation of the model comes in the form of behavioural
analysis as well as matching the model dynamics to human
timing data. The model is implemented with spiking neurons
and biologically realistic synaptic time constants in order to
generate realistic temporal dynamics.

Neural Representation
Fundamental to the SPA is the vector-based representation
of information. We use methods of the Neural Engineer-
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ing Framework (NEF) to accomplish this in spiking neu-
rons (Eliasmith & Anderson, 2003). Georgopoulos et al.
(1986) demonstrated that motor neurons are well character-
ized as having responses driven by their preferred direction
to movement in two dimensions. The NEF generalizes this
notion to suggest that neurons can represent any number of
dimensions, and the neuron’s preferred direction determines
its activity with regards to its input in a given vector space.
Mathematically, the current J flowing into a neuron can be
calculated using as

J(x) = α(e ·x)+ Jbias, (6)

where α and Jbias are neuronal scaling terms, e is the neuron’s
preferred direction (or encoding vector), and x is the vector
to be represented. The inner product computes the similarity
between the encoding and input vector and determines how
much current is being fed to the neuron. The leaky integrate-
and-fire (LIF) neuron model equation is then used to convert
this current into a firing rate.

a(x) = G[J(x)] =
1

τre f − τRC ln
(

1− Jth

J(x)

) (7)

In the equation above, τre f is the neuron refractory time con-
stant, τRC is the neuron RC time constant, and Jth is the neu-
ron threshold firing current. With a population of neurons, it
then possible to derive optimal decoding vectors that can be
used to convert the neural activity back into the high dimen-
sional vector space. Eliasmith and Anderson (2003) demon-
strate how these decoders d can be computed.

d = Γ
−1

ϒ, where

Γi j =
∫

ai(x)a j(x) dx ϒi =
∫

ai(x)x dx
(8)

An estimate of the original vector x can then be generated by
multiplying each neuron’s decoding vector with its activity.

x̂ = ∑
i

ai(x)di (9)

The encoding and decoding vectors can also be used to de-
termine the optimal connection weights between two neural
populations.

wi j = α je jdi (10)

Taking into account a specific function while solving for the
decoding vectors yields the set of connection weights that will
cause the neurons in the post-synaptic population to compute
said function. For example,

f̂ (x) = ∑
i

ai(x)d
f
i , (11)

where d f are the decoding vectors solved with the function f
incorporated into Equation 8. In other words, these equations
allow us to build a spiking neuron model that performs ar-
bitrary specified computations. See Eliasmith and Anderson
(2003) for additional details.

Neural Implementation
The model proposed here relies on two key functions: the
binding operation and working memory.

The binding operation is performed by a two step process.
First the Fourier transform (FT) of both input vectors is com-
puted, and these are multiplied element-wise. Performing an
inverse Fourier transform (IFT) on this result provides the de-
sired answer. That is,

A~B = IFT (FT (A)�FT (B)), (12)

where � is the element-wise multiplication operation. The
FT, IFT and element-wise multiplication are functions that
can be computed by spiking neurons using the methods dis-
cussed in the previous section (see Equation 11).

The working memory component is identical to that used
in Spaun. This component is implemented by a recurrent net-
work that is able to stably store information over time. The
storage and retrieval of information is determined by gates
controlled by the basal ganglia.

Response Timing
In this section we compare the behaviour of the model to two
different tasks: the choice reaction time task, and a sub-vocal
counting task. The choice reaction time task demonstrates
the model’s ability to perform unordered instructions, while
the sub-vocal counting task demonstrates the model’s ability
to perform sequential instructions. Note that for both of these
tasks, the architecture of the model remains the same, with the
only difference being the instruction vector and visual stimuli
that it is required to process.

Conditionally Responsive Decoding - Two-Choice
and Simple Reaction Time Task
To test the model’s ability to account for human instruction
processing time, it was tested with the two-choice (CRT)
and simple reaction time (SRT) tasks described in Grice,
Nullmeyer, & Spiker (1982). Since the input stimuli and mo-
tor action performed are similar in both of these tasks, any
difference in reaction time can be attributed to the speed at
which the different instructions are processed.

In the two-choice reaction time task, the subject is in-
structed to push one of two buttons, the identity of which
is indicated by some sort of visual stimuli. To simulate this
with the general instruction following model, it is given the
instruction:

1. IF vision = ZERO, THEN state = Push, motor = A
2. IF vision = ONE, THEN state = Push, motor = B

Figure 3 demonstrates the model performing this instruction.
In the simple reaction time task, the subject is instructed

to push a single button in response to a single stimulus. This
task requires no instruction processing so the rule:

IF vision = TWO, THEN state = Push, motor = C
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ONEZERO

PUSH PUSH

A B

Figure 3: Neural response data for the two-choice reaction time task. Shown are the decoded representations for two neural
populations (an internal state memory, and the motor output), and the visual stimulus provided. Also displayed is the spiking
neural data associated with each of the neural populations. Note that only the cognitive components (i.e. no input stimuli
processing lag nor motor lag) of the reaction time task are being simulated in this model.

is encoded directly in the basal ganglia. By doing so, the
model is able to execute the desired action when presented
with the appropriate stimuli without requiring any additional
processing in the instruction processing module.

The model reports a reaction time difference of 77 ± 34
ms between the two tasks, while Grice, Nullmeyer, & Spiker
report a reaction time difference of 81 ± 72 ms for human
subjects.

Sequential Decoding - Sub-vocal Counting

For this task, the model was given a sub-vocal counting in-
struction. This instruction is formatted as sequence of ac-
tions, and thus have no antecedent.

1. memory = Store, data = X
2. state = Add1
3. state = Write, motor = memory

In the instruction above, the variable X is a vector represent-
ing a digit from 0 to 9. Instructions requiring more than one
count (e.g. add 1 twice), have the second action repeated the
appropriate number of times (and appropriately renumbered).
Figure 4 illustrates the model peforming the sub-vocal count-
ing task for one count.

The mean reported count time per item is 384 ± 29 ms
which falls well between the reported human range of 344 ±
135 ms (Landauer, 1962), and provides a much better match
to the human data than Spaun’s reported count time per item
time of 419 ± 10 ms (Eliasmith et al., 2012).

Simulation Details
In total the model is made up of 318,870 spiking LIF neu-
rons, and uses 256-dimensional semantic pointers. It should
be noted that Spaun utilizes semantic pointers with 512 di-
mensions, and this was reduced for this model to decrease
the amount of time required to simulate the experiments. It
takes 275 ± 25 seconds of CPU time to simulate 1 second of
simulation time on a machine with a 3.40 GHz Core i7-3770
quad-core CPU and 16 GB of RAM.

Discussion
The model presented in this paper demonstrates the ability to
process and execute generic instructions without needing any
changes to the underlying architecture. It is also able to repro-
duce response times in human reported ranges based purely
on the temporal dynamics of the underlying neural implemen-
tation – without the need for data fitting of any kind.

Because the model utilizes semantic pointers to represent
information, it is also highly scalable. The maximum number
of concepts the model is able to represent is dependent on the
dimensionality of the semantic pointer used, and not on the
number of knowledge nodes present in the model. Crawford,
Gingerich and Eliasmith (Crawford, Gingerich, & Eliasmith,
2013) demonstrate that the entirety of WordNet (117,659 con-
cepts) can be represented using 512 dimensional semantic
pointers. Increasing the proposed model to utilize 512 di-
mensional semantic pointers would add an additional 287,488
neurons to the model.

One major limitation to this model, however, is its inabil-
ity to learn frequently executed instructions. In essence, even
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ADDING ADD WRITE
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Figure 4: Neural response data for the sub-vocal counting task. Shown are the decoded representations for three neural pop-
ulations (an internal state memory, working memory (WM), and the motor output), and the visual stimulus provided. Also
displayed is the spiking neural data associated with each of the neural populations. Note that the ADD value for the state
variable indicate both the start and end of the number addition action.

if it is presented with multiple instances of the same instruc-
tion, it is unable to form an expert action for that instruction.
This issue is currently being investigated and integrating this
ability in the proposed model remains as future work.

This paper also makes no mention of how the model
could construct a new instruction vector given purely a vi-
sual stream of words or symbols. Concurrent work done by
Stewart and Eliasmith (Stewart & Eliasmith, 2013) provides
insight on how this issue can be made tractable.
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