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RESEARCH Open Access

Foraging behavior links climate variability
and reproduction in North Pacific albatrosses
Lesley H. Thorne1*, Elliott L. Hazen2,3, Steven J. Bograd2, David G. Foley2,3ˆ, Melinda G. Conners4,
Michelle A. Kappes5,6, Hyemi M. Kim1, Daniel P. Costa6, Yann Tremblay7 and Scott A. Shaffer8,9

Abstract

Background: Climate-driven environmental change in the North Pacific has been well documented, with marked
effects on the habitat and foraging behavior of marine predators. However, the mechanistic linkages connecting
climate-driven changes in behavior to predator populations are not well understood. We evaluated the effects of
climate-driven environmental variability on the reproductive success and foraging behavior of Laysan and
Black-footed albatrosses breeding in the Northwest Hawaiian Islands during both brooding and incubating
periods. We assessed foraging trip metrics and reproductive success using data collected from 2002–2012
and 1981–2012, respectively, relative to variability in the location of the Transition Zone Chlorophyll Front
(TZCF, an important foraging region for albatrosses), sea surface temperature (SST), Multivariate ENSO Index (MEI),
and the North Pacific Gyre Oscillation index (NPGO).

Results: Foraging behavior for both species was influenced by climatic and oceanographic factors. While brooding
chicks, both species traveled farther during La Niña conditions, when NPGO was high and when the TZCF was
farther north (farther from the breeding site). Models showed that reproductive success for both species showed
similar trends, correlating negatively with conditions observed during La Niña events (low MEI, high SST, high NPGO,
increased distance to TZCF), but models for Laysan albatrosses explained a higher proportion of the variation. Spatial
correlations of Laysan albatross reproductive success and SST anomalies highlighted strong negative correlations
(>95 %) between habitat use and SST. Higher trip distance and/or duration during brooding were associated with
decreased reproductive success.

Conclusions: Our findings suggest that during adverse conditions (La Niña conditions, high NPGO, northward
displacement of the TZCF), both Laysan and Black-footed albatrosses took longer foraging trips and/or traveled
farther during brooding, likely resulting in a lower reproductive success due to increased energetic costs. Our
results link climate variability with both albatross behavior and reproductive success, information that is critical
for predicting how albatross populations will respond to future climate change.

Keywords: Albatross, Movement, Reproductive success, Climate, Environmental variability

Background
Top predators in marine systems have shown marked
declines in recent years due to the combined effects of over-
fishing, bycatch, and climate change [1–4]. Upper trophic
level predators play a key role in marine ecosystems, and de-
clines in these species can lead to a wide range of direct and
indirect consequences, including trophic cascades [5–9].

Predictions suggest that there will be both winners and
losers under climate change projections in the North Pacific
[10], but few studies have examined how behavioral plasti-
city mediates top predator responses to climate change.
The effects of climate change on marine systems are

predicted to surpass ecological tipping points in the
future [11, 12], with significant effects forecasted for
habitats used by a number of marine predators [10, 13].
Many studies linking climate to demographic change in
marine predators have focused on responses to broad-
scale variability such as changes in ice cover [e.g., 14–17].
However, more subtle changes such as habitat shifts can
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have important population-level effects and have received
less attention in the literature. Changes in the location of
foraging habitats can make them inaccessible or energet-
ically costly to reach, which can have important impli-
cations for the foraging efficiency and population
trajectories of marine predators [18, 19]. A quantitative
understanding of the biological mechanisms linking cli-
mate to population change is integral to predicting re-
sponses of marine predators to future climate-driven
ecosystem change [14].
Albatrosses are ideal species to examine the behavioral

and demographic implications of climate variability for
marine predators. Highly mobile seabirds such as alba-
trosses are easily monitored, integrate food resources
across a large area, and can be used to indicate changes
in the abundance, size and availability of their prey spe-
cies, as well as underlying oceanographic drivers of these
changes [e.g., 20–23]. Albatrosses and other pelagic sea-
birds have the ability to search for prey over vast ex-
panses of ocean due to their low cost of gliding flight
[24–27], but during breeding their at-sea movements are
spatially and temporally constrained because they must
return to their nest site to exchange parental duties
and/or feed offspring [28–30]. Moreover, the ener-
getic costs of reproduction vary considerably within
the breeding season [31]. For example, during the in-
cubation period, parents can take long foraging trips
(~7-20 d) because their partner can fast for prolonged
periods while incubating the egg. In contrast, parents
brooding small chicks must regularly provision their
rapidly-growing chicks, which dramatically shortens for-
aging trips (typically ~1-3 d) [28, 30, 32, 33]. Because trip
duration is constrained by the food requirements of the
chick, albatrosses brooding chicks are unable to exploit
the more distant foraging areas used during the incuba-
tion period. Consequently, oceanographic variability has
the potential to limit the accessibility of foraging habitat

for breeding albatrosses, especially during the brooding
period. Thus, identifying how this variability influences
albatross behavior when parents are most constrained
(i.e., during brooding) could shed light on the link be-
tween changes in ocean climate and demographic effects
on albatross populations.
Central place foragers, such as albatrosses during

breeding, have limited dispersal and show distant-
dependent costs of accessing resources [34]. Conse-
quently, we would expect that foraging areas that are
predictable in time and space would be particularly
important to these animals. Within the North Pacific,
variability in the location of seasonally predictable
oceanographic features such as the Transition Zone
Chlorophyll Front (TZCF) affects both the distribution
and survival of marine predators [35, 36]. The TZCF mi-
grates seasonally over more than 1000 km north-south
(Fig. 1), typically reaching its southernmost latitude in
February and its northernmost latitude in August [37].
Interannual variability in the location of the TZCF is
driven by broad-scale climatic variability; for example,
a stronger Aleutian low elicits a southward shift of
westerlies, stronger mixing in the transition zone, and
contributes to a southern displacement of the TZCF
[37]. In contrast, the TZCF is displaced northward
with greater meandering during La Niña events. Dis-
placement of the TZCF can influence its utility as for-
aging habitat for top predators; for example, Hawaiian
monk seals showed increases in pup mass and girth
during El Niño events, likely because of closer proximity
to the subtropical front and cooler, more productive wa-
ters during El Niño years [38]. Climate models predict an
expansion of the subtropical gyre and northward shift in
the TZCF over the next century with potential impacts to
top predators including Pacific albatrosses [10, 39].
In the Northwest Hawaiian Islands (hereafter

NWHI), breeding Laysan (Phoebastria immutabilis)

Fig. 1 Location of Tern Island relative to North Pacific subtropical and subarctic gyres and the Transition Zone Chlorophyll Front (TZCF)
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and Black-footed (P. nigripes) albatrosses show con-
siderable interannual variability in reproductive suc-
cess. Laysan and Black-footed albatrosses also exhibit
spatial differences in their foraging distribution; Laysans
forage farther north and west in the subarctic gyre,
whereas Black-footeds forage primarily farther south and
east in the subtropical gyre [29, 33, 40; Fig. 2]. We
hypothesize that the proximity of the TZCF to albatross
breeding sites, as influenced by large-scale climate
modes, affects the behavior and reproductive success of
these species. Specifically, we predict that northward dis-
placement of the TZCF and increases in SST in albatross
habitat during La Niña events are associated with in-
creased trip distance and duration and decreased repro-
ductive success. We posit that these effects have the
greatest impact when parents are brooding small
chicks. Since Laysan albatrosses use waters north of the
TZCF more frequently than Black-footed albatrosses
[29, 33, 40, Fig. 2], we suggest that displacement of the
TZCF will have more pronounced effects on Laysan
albatrosses.
This study has three important differences from previ-

ous studies investigating that habitat use of North Pacific
albatrosses [29, 33]. First, we use telemetry data col-
lected over a ten year period, allowing connections with
large-scale climatic variability (e.g., MEI, NPGO) to be
evaluated in detail. Secondly, we evaluate habitat use
during both the brooding and incubating periods,
whereas previous multi-year studies of North Pacific al-
batrosses examined only incubating tracks [33]. Lastly,
we advance previous studies by linking analyses of tel-
emetry data and oceanographic and climatic data with
reproductive success to examine how environmental
variability and trip metrics influence reproduction in
North Pacific albatrosses.

Methods
Study species
Laysan and Black-footed albatrosses breed sympatrically
on atolls throughout the NWHI and show periodic de-
clines in their reproductive success. The breeding cycle
of both Laysan and Black-footed albatrosses is well de-
fined; eggs are laid in November and December, and the
incubation period lasts for approximately two months.
Adult albatrosses then brood chicks for several weeks
(late January through mid to late February), guard and
provision the chicks for approximately one month and
then return to the breeding site to feed them regularly
before the chicks fledge in June or July [41, 42].
Approximately 4300 Black-footed albatrosses and 3200
Laysan albatrosses nest at Tern Island, representing 6.9
and 0.5 % of the total population in the North Pacific,
respectively [43]. The albatross colony at Midway Atoll
is much larger, comprising approximately 408,000
Laysan and 22,000 Black-footed albatrosses [43]. How-
ever, standardized surveys of the colony at Midway Atoll
were initiated much later than those at Tern Island
(1990s on Midway vs. 1980 on Tern Island) and the
resulting time series is considerably shorter.

Albatross telemetry and reproductive success data
We examined the foraging behavior and reproductive
success of Laysan and Black-footed albatrosses on
Tern Island, French Frigate Shoals, NWHI (23.87°N,
166.28°W). Data on albatross reproductive success at
Tern Island (defined as the number of chicks fledged
per eggs laid) were obtained from the United States
Fish and Wildlife Service (USFWS). Standardized surveys
of breeding birds and active nests have been conducted
at Tern Island since 1980; we used data from 1981-2012
(November-February 1981/82-2011/12) to be consistent

Fig. 2 Habitat used by albatrosses relative to the location of the TZCF. Kernel density distributions (25, 50 and 95 %) are shown for brooding
(a, b; extent indicated in green) and incubating (c, d; extent indicated in black) Laysan and Black-footed albatrosses, respectively. The TZCF is
shown at its northermost (Nov. 4) and southermost (Feb. 25) location during the 2008/2009 incubating and brooding periods to demonstrate
variability in TZCF location within these breeding stages. Note that the TZCF is located further south outside of the albatross breeding season
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with available SST data. Reproductive success data are re-
ferred to by the January/February calendar year (e.g., data
from the November–February 1981/1982 breeding sea-
son are referred to as data from 1982). Albatross nests on
Tern Island were assigned to survey plots and were num-
bered and monitored by USFWS personnel throughout
each breeding season. Chicks were banded, and each nest
was monitored weekly for hatching chicks, chicks present
within 30 m of the nest site, and dead chicks; chicks were
assumed to be dead if not found within 30 m of the nest
site for three successive observations.
Nest desertion by adults is the primary cause of repro-

ductive failure in Laysan and Black-footed albatrosses,
and can be associated with poor foraging conditions,
death of the adults, or inexperienced breeders. Short-
term climatic events such as flooding and storms can
also influence reproductive success over short time
periods [44, 45, USFWS unpublished data]. However,
given the protracted breeding season of Laysan and
Black-footed albatrosses (from November to June), such
short-term events are unlikely to influence reproductive
success of the entire colony. At Tern Island, reproduct-
ive success of these species appears to show periodic
declines during which reproductive success remains de-
pressed for 2–3 years. We suggest that this pattern of
reproductive success is consistent with long-term
oceanographic variability, and we assess this hypothesis
below.
We recorded albatross movements during the incuba-

tion and brooding periods from 2002–2006 and from
2008–2012 using satellite platform terminal transmitters
(30 g Pico-100, Microwave Telemetry, Columbia, MD,
42 g SPOT4 and SPOT5, Wildlife Computers, Redmond,
WA) and GPS data loggers (40 g Technosmart GPS,
35 g TechnoSmart GiPSy, 32 g E&O Technologies, and
30 g igotU, GT-120, Mobile Action Technology Inc,
Taiwan). Tags were attached with Tesa adhesive tape
(Tesa, Hamburg, Germany) to dorsal feathers. All tag
weights represent water-proofed packaged tags and are
well below the maximum mass threshold recommended
for albatrosses [46]. Only complete trips in which tracks
covered the entire trip (leaving from and retuning to
Tern Island) were included in the analysis; a total of 93
trips for Laysan and 97 trips for Black-footed albatrosses
were included in the analysis (Table 1), and only one trip
per individual was tracked and included in the analysis.
Trip duration decreased towards the end of the incuba-
tion period for both species; we therefore included only
incubating trips during the first two months of the incu-
bation period (November and December), when trip
duration remained consistent (Pearson’s correlation
coefficient between trip duration and day of breeding
season <0.15, p value > 0.4 for both species). Trip dur-
ation was consistent throughout the brooding period

(late January through late February) for both species
(Pearson’s correlation coefficient between trip duration
and day of breeding season < 0.15, p value > 0.3 for both
species). GPS and PTT tag data were resampled to a six-
hour time scale in order to provide sufficiently detailed
spatial information at a time scale that was appropriate
for both tag types. Resampling was conducted using the
Minimum Covariance Determinant (MCD) in the MASS
library (version 7.3-31) of the R statistical package
(version 3.0.2) in order to provide a robust estimate of
location at each time step that is not strongly influenced
by outliers occurring due to the spatial resolution of
telemetry data. When fewer than four locations were
available within a time window, MCD cannot be com-
puted and the coordinate-wise median was used [47].
For each albatross foraging trip, we assessed cumula-

tive trip distance, maximum distance travelled from
Tern Island, and the duration of each trip using the
ArgosFilter (version 0.63) and MASS libraries in R. To
examine albatross movement in relation to the location
of the TZCF, we calculated distances to TZCF for each
location on each track using daily rasters of distance to
TZCF (see below) and assessed which tagged birds spent
time north of the TZCF. We produced kernel density
distributions for both species during incubating and
brooding periods. Kernel densities were calculated with
ArcGIS 10.2.2 Spatial Analyst using a fixed radius of
100 km for incubating trips and 50 km for brooding
trips. We then delineated habitat use as the 95, 50 and
25 % isopleths of kernel density distributions [29, 33].

Transition Zone Chlorophyll Front (TZCF)
The TZCF is a basin-wide front, spanning more than
8000 km from west to east across the North Pacific.

Table 1 Tracks used in analyses by species, breeding stage, tag
type and year

Species Laysan Black-footed

Stage Incubating Brooding Incubating Brooding

Year GPS PTT GPS PTT GPS PTT GPS PTT

2003 0 1 0 3 0 5 0 4

2004 0 7 0 0 0 6 0 0

2005 1 8 0 14 0 4 0 12

2006 0 4 0 12 0 2 0 11

2007 0 0 0 0 0 0 0 0

2008 0 2 1 9 0 2 1 6

2009 0 0 9 0 1 3 11 0

2010 0 5 4 1 0 4 6 0

2011 2 5 0 0 5 3 0 0

2012 1 2 9 0 3 4 5 0

TOTAL 4 34 23 39 9 33 23 33
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Representing a zone of convergence, the TZCF separates
the cool, well-mixed, nutrient-rich waters of the subarc-
tic gyre from the warmer, stratified, nutrient-poor waters
of the subtropical gyre [35]. The TZCF is characterized
by a sharp chlorophyll gradient, and is defined by a
surface chlorophyll value of 0.2 mg/m3 [35]. The 18 °C
isotherm in SST has been demonstrated to provide a
proxy for the location of the TZCF [37].
During the breeding season of albatrosses in the North

Pacific (November–June), there is considerable interannual
variability in the location of the TZCF [37] but the front is
generally closest to Tern Island in January and February,
coinciding with the brooding period (Fig. 2). Given the im-
portance of the TZCF as feeding grounds for breeding alba-
trosses, the proximity of the front to the NWHI likely has
important implications for both Laysan and Black-footed
albatrosses. Historical records of SST are available at a finer
temporal and spatial resolution compared to chlorophyll
and can thus be more useful in historical models of habitat
use [37]. We localized the TZCF on a daily time scale
using daily Group for High Resolution SST (GRHSST) im-
ages with a 5 km resolution. We created shapefiles of
TZCF location for each day of the incubating and brood-
ing periods from 1982–2012 (November-February 1981/
1982-2011/2012) and generated rasters of distance to
TZCF for each day in order to examine variability in
frontal location relative to albatross reproductive success
and foraging distribution. Within the albatross brooding
period, the TZCF can range from a minimum of approxi-
mately 400 km to a maximum of approximately 1150 km
from Tern Island. All spatial analyses were conducted in
ArcGIS 10.2.2 using the Spatial Analyst extension and
using the raster (version 2.3-34), geosphere (version 1.3-8)
and Imap (version 1.32) R Statistical packages [48].

Large-scale Oceanographic and Climatic Indices
We obtained time series of the North Pacific Gyre
Oscillation index (NPGO) and the Multivariate El Niño
Southern Oscillation (ENSO) Index (MEI) to represent
large-scale climatic and oceanographic variability in the
central North Pacific (MEI and NPGO data obtained
from http://www.esrl.noaa.gov/psd/enso/mei/table.html
and http://www.o3d.org/npgo/npgo.php, respectively).
NPGO represents the strength of the North Pacific Gyre
[49, 50], where high/low values indicate expansion/
contraction of the gyre, respectively. MEI identifies
El Niño events by incorporating variability in six
oceanographic and climatic variables over the tropical
Pacific [51], with positive values of MEI representing
El Niño conditions, and negative values representing
La Niña conditions. El Niño events have been linked
with southern migrations in the TZCF [37] and the
front migrates in association with expansion/contraction of
the North Pacific gyre, making MEI and NPGO important

variables to evaluate in our models of albatross behavior
and reproductive success.
We used GRHSST data (see above) to examine SST

on an annual scale relative to reproductive success, and
at a daily scale relative to albatross trip metrics. The lo-
cation of the TZCF represents the boundary between the
subarctic and subtropical gyres and therefore reflects
broad-scale patterns in SST, but variability in SST at a
finer spatial scale may influence search effort of foraging
albatrosses [33] and was therefore examined separately.
We produced rasters of mean SST for each year during
the albatross incubating and brooding periods from
1981–2012 (November–February 1981/82–2011/12), as
well as the 31-year mean for this time period. We then
produced rasters of SST anomalies (SSTa) using the for-
mula SSTai = SSTi - SSTmean, where i is the year, SSTi is
the mean SST from November–February for year i and
SSTmean is 31-year SST mean from the November–
February time period. As with reproductive success data,
SST data are referred to by the calendar year of the
January/February period (i.e., SST data from November–
February 1981/1982 are referred to as 1982 SST data).
We assessed SST within the 95 % kernel density iso-
pleths for Laysan and Black-footed albatrosses during
the brooding and incubating stages, respectively. There
are considerable differences in habitat use between
species and breeding stages, and therefore it was im-
portant to assess changes in SST in each region in-
dependently [52].

Statistical Analyses
In order to examine the effects of oceanographic and cli-
matic indices on albatross reproductive success, we ex-
amined average, minimum and maximum values of SST,
MEI and NPGO annually during the albatross breeding
season (November–February). We examined time-lagged
effects on albatross reproductive success using cross-
correlation functions (CCFs). CCFs are useful for identi-
fying predictor variables (xt) that might have lagged
effects on a dependent variable (yt), and examine corre-
lations between the dependent variable and predictor
variables at different time lags (correlations between xt-h
and yt for different time lags represented by h = 0, 1, 2,
3, etc.). Here we identified variables that had time-
lagged effects on albatross reproductive success for time
lags of 0 to 5 years. Variables with significant CCFs were
time-lagged and included as lagged variables for further
analyses. However, after applying model selection
(described below), time lagged variables were not in-
cluded in final models. The final models of albatross re-
productive success included the following variables:
minimum distance to TZCF, minimum NPGO, mini-
mum MEI and mean SST in brooding habitat. Albatross
trips were examined over the ten-year period, and were
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evaluated relative to both broad-scale (monthly MEI and
NPGO) and finer-scale (daily SST and TZCF) oceano-
graphic and climatic variables. Though MEI and NPGO
are broad-scale metrics, these variables vary considerably
over a period of several months and were therefore sam-
pled at the midpoint of albatross foraging trips along
with finer-scale variables. To quantify the effects of these
variables on albatross trip metrics, we assessed mini-
mum, maximum and mean values of distance to TZCF,
NPGO, MEI and SST in brooding or incubating habitat.
After model selection, minimum SST was used in trip
metrics for Laysan albatrosses, while mean SST was used
in models for Black-footed albatrosses.
We examined relationships between La Niña events,

gyre expansion, TZCF location and SST on albatross trip
metrics and reproductive success using several analytical
approaches. We used Pearson’s correlation coefficients
and Wilcoxon signed rank tests to examine relationships
among different oceanographic variables and between
trip metrics and reproductive success. We applied
Principal Component Analysis (PCA) combined with
Generalized Linear Models (GLMs) to examine the over-
all effects of multiple climatic indices. PCA provides a
means of summarizing the variability across a number of
correlated variables (MEI, NPGO, SST, proximity of
TZCF to Tern Island) into fewer independent, orthog-
onal axes. GLMs are statistical regression models [53]
that allow for different types of predictors (continuous,
binary, ordinal) to be evaluated [e.g., 54]. Here we con-
structed separate PCAs to summarize environmental
variation and to evaluate their effects on Laysan and
Black-footed albatrosses, respectively, at two scales: at an
annual level to evaluate effects on reproductive success,
and at the trip level to assess effects on albatross trip
metrics. We then used GLMs to evaluate how repro-
ductive success and trip metrics were influenced by the
environment (PC axes), and included PC axes with
greater than 15 % of variance explained as predictor var-
iables. We examined the two species’ brooding and incu-
bating periods separately due to the differences in the
timing, spatial habitat use of albatrosses, and associated
differences in environmental variables. This allowed us
to resolve how relationships with predictor variables
differed between the brooding and incubating periods,
thus indicating how metrics of albatross foraging dif-
fered during the most constraining period of breeding
(brooding). For all GLMs, we used Akaike Information
Criterion (AIC) [55] to select variables for the most
parsimonious model [56]. PCAs and GLMs were
performed using the stats (version 3.0.2) and mgcv
(version 1.7-29) R Statistical packages, respectively.
To further examine relationships between albatross

trip metrics and proximate oceanographic variables, we
compared trip metrics with MEI, NPGO, SST, and

distance to TZCF (assessed as values above/below the
mean values) using Wilcoxon signed rank tests. We also
compared trip metrics below/above mean reproductive
success using Wilcoxon signed rank tests.
We used spatial correlations to illustrate how the

relationship between SSTa and albatross reproductive
success varied spatially. Using the 31-year time series
for both reproductive success and SSTa (November–
February average for each year from 1981–2012) described
above, annual reproductive success was correlated with
each SSTa grid cell using Pearson’s correlation coefficients,
producing a spatial correlation between these two datasets
for each grid cell.

Results
Variability in oceanographic and climatic variables
The study area showed considerable variability in the
oceanographic and climatic metrics over the 31-year
period, both within and among years. Minimum and
maximum values of these metrics are shown in Table 2,
along with correlations among predictor variables. PCA
loadings for environmental data are shown in Table 3.
Data were calculated at the annual level and mean SST
was calculated from Laysan albatross and Black-footed
albatross brooding habitats, respectively. During La Niña
conditions, NPGO was higher, the TZCF was located
further north, and SST was higher (Fig. 3). Note that El
Niño events have different effects in the eastern North
Pacific, where higher SST is associated with El Niño
conditions [e.g., 57–59].

Oceanographic and climate effects on trip metrics
Final models for albatross trip metrics demonstrated that
environmental variables and indices influenced foraging

Table 2 Correlations between environmental variables and
minimum/maximum values of variables used in PCA/GLM
analyses

Correlations MEI NPGO Distance
to TZCF

Mean SST
(Laysan)

Mean SST
(Black-footed)

MEI 1.00

NPGO −0.60 1.00

Distance to TZCF −0.36 0.69 1.00

Mean SST −0.48 0.61 0.76 1.00

(Laysan)

Mean SST −0.51 0.58 0.73 0.91 1.00

(Black-footed)

Minimum −1.68 −3.00 411 km 14.32 °C 20.78 °C

Maximum 3.00 2.96 1154 km 26.18 °C 24.52 °C

Correlations were evaluated at an annual time scale over a 31-year period
(November–February mean values, 1982–2012); mean SST was calculated in
brooding habitat of Laysan and Black-footed albatrosses, respectively
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behavior (Table 4). We focus on PC axes that were sig-
nificant predictor variables in final models and associ-
ated environmental variables with high loadings (>0.4;
Table 3, summarized in Table 4).
Models of brooding Laysan albatross trips generally

performed well, explaining 11–21 % of the variation in
trip metrics, and highlighted the importance of large-
scale climate variables. Brooding Laysan albatrosses trav-
eled farther and traveled north of the TZCF more
frequently during La Niña conditions, when NPGO was
high and when the TZCF was farther north. When the
TZCF was farther north, brooding Laysan albatrosses
took longer trips (Table 4, Fig. 3). Similar trends were
observed for Black-footed albatrosses, with models
explaining 9–17 % of variability in trip metrics. Brooding
Black-footed albatrosses traveled farther during La Niña
conditions, when NPGO was high and when the TZCF
was farther north, and took longer trips when NPGO
was high. During the brooding period, Black-footed alba-
trosses rarely traveled north of the TZCF (1 of 56 birds
tracked); consequently, models of trips north of the
TZCF were not significant (Table 4). Oceanographic and
climate variables did not have significant impacts on in-
cubating Laysan albatrosses (Table 4, Fig. 4). Incubating
Black-footed albatrosses traveled farther during La Niña
conditions when NPGO was high (Table 4, Fig. 5).

Oceanographic and climate effects on reproductive success
At an annual scale, models of reproductive success per-
formed relatively well for Laysan albatrosses, explaining

Table 3 Loadings and variance explained for PC axes used in
analyses of reproductive success and trip metrics

Variable MEI NPGO Distance to
TZCF

SSTa Cumulative
Prop. Var.

Reproductive success analyses (1981–2012)

Laysan albatross

PC1LAAL, annual 0.43 −0.52 −0.52 −0.52 0.71

PC2 LAAL, annual 0.79 −0.16 0.50 0.32 0.88

Black-footed albatross

PC1 BFAL, annual 0.44 −0.53 −0.51 −0.52 0.69

PC2 BFAL, annual 0.79 −0.11 0.53 0.27 0.85

Trip level analyses (2002–2012)

Laysan albatross- Incubating trips

PC1 LAAL, incubating 0.61 0.26 −0.52 −0.54 0.53

PC2 LAAL, incubating −0.28 0.75 −0.41 0.43 0.84

Black-footed albatross- Incubating trips

PC1 BFAL, incubating 0.49 0.46 −0.49 −0.56 0.44

PC2 BFAL, incubating −0.66 0.75 0.31 −0.19 0.76

Laysan albatross- Brooding trips

PC1 LAAL, brooding −0.57 0.43 0.41 0.57 0.49

PC2 LAAL, brooding 0.15 −0.26 0.91 −0.27 0.71

Black-footed albatross- Brooding trips

PC1 BFAL, brooding −0.53 0.40 0.60 −0.44 0.38

PC2 BFAL, brooding −0.49 0.32 0.62 −0.32 0.64
aAfter model selection mean SST was used for models of reproductive success
and Black-footed albatross trip metrics, while minimum SST was used for
models of Laysan albatross trip metrics

Fig. 3 NPGO, distance to TZCF from Tern Island and SST during El Niño and La Niña conditions. Mean monthly values were evaluated in Laysan
albatross brooding habitat for MEI values greater than (El Niño) or less than(La Niña) 0 , respectively, during the albatross incubating and
brooding periods (November–February) from 1982–2012
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35 % of the variability in the data across the 31-year time
series (Table 5). Laysan albatross reproductive success
was negatively correlated with minimum distance to
TZCF, SST and NPGO, and positively correlated with
and MEI (Tables 3 and 5). While the GLM for
Black-footed albatross reproductive success showed
similar relationships, the model explained only 11 %
of the variation. Four years (1984, 1999, 2008 and
2012) showed particularly low reproductive success,
and three of these years (1999, 2008 and 2012) repre-
sented the three highest loadings along PC annual axis
1 for both species (Fig. 6). These three years repre-
sented La Niña conditions and/or conditions in which
NPGO and SST were high and the TZCF was farther
from Tern Island. The TZCF was typically farther
away than the mean frontal location in years with low
albatross reproductive success; however, this was not
true in 1984.
Figure 7 shows the spatial distribution of correlation

coefficients between the time series of albatross repro-
ductive success and each grid point of November–
February average SSTa. Within Laysan albatross brooding
habitat, there were strong negative correlations (>95 %
confidence level) between Laysan albatross reproductive
success and SSTa. Correlations with Black-footed albatross

reproductive success within brooding habitat for this spe-
cies were weaker (<95 % confidence level).
At an annual scale, brooding trip metrics were corre-

lated with reproductive success for both Laysan and
Black-footed albatrosses. Farthest distance traveled and
trip duration were negatively correlated with reproduct-
ive success during the brooding period (Fig. 8).

Discussion
Effects of environmental variability on albatross
foraging trips
Our model results supported our hypothesis that
changes in the foraging behavior of Laysan and Black-
footed albatrosses breeding at Tern Island are dependent
on the location of the TZCF and large-scale climatic
variability. Lower MEI values (La Niña conditions) and
higher NPGO values (expansion of North Pacific gyre)
were correlated with increased distance to the TZCF,
and were associated with longer trip distances for brood-
ing albatrosses. Brooding albatrosses are often unable to
reach the productive waters of the subarctic gyre north
of the TZCF since they must return to the nest every
few days to provision chicks. However, the location of
the TZCF influences productivity in the region south of
the front, where brooding albatrosses forage; when the
front is farther south, primary productivity and presum-
ably also associated prey distributions increase in waters
south of the front [36]. Therefore, as their foraging habi-
tat moves in association with the TZCF, brooding alba-
trosses forage farther from Tern Island when the TZCF
is farther north, taking longer trips to reach their for-
aging habitat (Figs. 3 and 4).
SST is often used as a proxy for oceanographic condi-

tions, with low SST representing improved foraging con-
ditions for seabirds [e.g., 18, 60, 61]. La Niña conditions
were generally associated with increased SST and a more
northerly location of the TZCF (Fig. 3), reflecting poor
foraging conditions for foraging albatrosses. Both species
took particularly distant and long brooding trips during
2008, the strongest La Niña conditions during our tag-
ging study. Our results suggest that albatrosses must
travel farther to find food during La Niña conditions,
particularly during the more spatially constrained brood-
ing period.

La Niña conditions linked to decreases in albatross
reproductive success
Our results demonstrate how environmental variability
influences the reproductive success of Laysan and Black-
footed albatrosses breeding at Tern Island. Climatic and
oceanographic factors that were associated with in-
creases in trip length and range in brooding albatrosses
(La Niña conditions, northward displacement of the
TZCF, increased NPGO) were also associated with

Table 4 Predictor variables and p-values in final models of trip
metrics relative to PC axes

Model variables Dominant
environmental
variables in PCs

Farthest
distance
traveled

Trip
duration

Proportion
of Trips North

of TZCF

Laysan Albatross- Incubating trips

(Intercept) NS NS NS

Black-footed Albatross-Incubating trips

(Intercept) 2.00E-16 NS NS

PC 2 BFAL, incubating MEI (−), NPGO (+),
Dist. TZCF (+)

4.60E-02

R2 0.11

Laysan Albatross-Brooding trips

(Intercept) 2.00E-16 3.30E-16 2.00E-16

PC 1 LAAL, brooding MEI (−), NPGO (+),
Dist. TZCF (+),
SST (+)

1.83E-02 4.62E-02

PC 2 LAAL, brooding Dist. TZCF (+) 1.22E-02 4.60E-02

R2 0.21 0.11 0.16

Black-footed Albatross-Brooding trips

(Intercept) 2.00E-16 7.01E-11 NS

PC 1 BFAL, brooding MEI (−), NPGO (+),
Dist. TZCF (+),
SST (−)

9.68E-08 4.20E-02

R2 0.17 0.085

NS indicates that final models were not significant (p > 0.05). Relationships
with dominant environmental variables (loadings >0.3) are shown for each PC.
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decreased reproductive success. Lower reproductive
success was observed when the North Pacific subtropical
gyre appeared to be in a period of expansion (positive
NPGO) and, consequently, when the TZCF was farther
away from Tern Island, representing a farther distance to
travel to foraging grounds. Years with particularly low
values of reproductive success in both study species were
associated with extreme values in climatic and oceano-
graphic variables, typically representing La Niña condi-
tions. The TZCF was farther north (farther from Tern
Island) in 1998, 2008 and 2012, which were years

exhibiting dramatic declines in albatross reproductive
success (Fig. 6). In contrast, both Laysan and Black-
footed albatrosses showed a marked decline in reproduct-
ive success in 1984, a year which was not found to be
anomalous in terms of environmental conditions. This
year followed a very strong El Niño in 1982–1983 and
represented a transition to La Niña conditions.
Spatial correlations between albatross reproductive

success and annual SSTa highlight the importance of
considering spatial patterns when linking marine preda-
tors with climate-driven environmental change. Maps of

Fig. 4 Laysan albatross trip metrics relative to environmental variables used in analyses. Low (high) values of environmental variables represent
values lower (higher) than the mean. Comparisons were conducted using Wilcoxon signed rank tests; * indicates p values < 0.05, • indicates
p values < 0.10
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spatial correlations indicated that associations between
albatross reproductive success and SSTa vary dramatic-
ally in the North Pacific, making it critical to link move-
ment and foraging habitat with demographic trends,
particularly for wide-ranging predators. Negative corre-
lations between SSTa and reproductive success were par-
ticularly strong within brooding habitat for Laysan’s
albatross (Fig. 7), providing further support for the im-
portance of the brooding stage in understanding climate
impacts on this species.

While El Niño events have been linked with increases
in SST and decreased foraging success and declining
population trends of marine predators in the California
Current [e.g., 57–59], La Niña events were associated
with increased SST in the central North Pacific and de-
creases in albatross reproductive success at Tern Island.
Monk seals in this area also rely on the TZCF for for-
aging and have shown similar relationships, with in-
creases in body condition and survival during El Niño
events [38].

Fig. 5 Black-footed albatross trip metrics relative to environmental variables used in analyses. Low (high) values of environmental variables
represent values lower (higher) than the mean. Comparisons were conducted using Wilcoxon signed rank tests; * indicates p values < 0.05,
• indicates p values < 0.10
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Foraging behavior linked to decreases in albatross
reproductive success
Higher trip distance and duration during brooding trips
were associated with decreased reproductive success
(Fig. 8), indicating the importance of maximizing food
delivery to the chick during this period. Brooding trip
distance and duration showed positive relationships with
poor foraging conditions (La Niña conditions, expansion
of the North Pacific gyre, and/or increased distance to
the TZCF), suggesting increased energy expenditure by
brooding birds during poor conditions negatively im-
pacts reproductive success. Albatross are long-lived birds
that maintain their own body condition over the survival
of their chicks [e.g., 62] and our findings suggest that
high energetic costs of brooding trips during poor foraging
conditions may cause adults to abandon their nests.

Laysan albatrosses show strong responses to poor
foraging conditions
Reproductive success was higher in Black-footed alba-
trosses than in Laysan albatrosses during poor condi-
tions despite increases in the distance and duration of
brooding trips; during good conditions, the reproductive
success of both species was similar (Fig. 9). This suggests
that Black-footed albatrosses are better suited to dealing
with variable environmental conditions, while Laysan
albatrosses perform better (demonstrating a higher re-
productive success relative to the 31-year mean for this
species) when environmental conditions are favorable.
When unconstrained by brooding requirements, the for-
aging habitat of Laysan albatrosses is farther north than
that of Black-footed albatrosses [29, 33] and Laysan alba-
trosses frequently travel north of the TZCF during incu-
bating trips (Figs. 1 and 4). Our results suggest that this
more distant foraging habitat is generally unreachable to
Laysan albatrosses during the more constraining brood-
ing period. For Laysan albatrosses, temporal constraints
of the brooding period combined with an increased dis-
tance to high latitude foraging appear to contribute to the
mean overall lower reproductive success observed for this
species grounds in comparison to Black-footed albatrosses
(0.62 +/−0.18 chicks fledged per eggs laid for Laysan alba-
trosses, 0.70 +/−0.11 chicks fledged per eggs laid for Black-
footed albatrosses from 1981/1982–2011/2012).

Effects of wind variability on the accessibility of foraging
habitat
Recent studies have indicated the importance of wind
speed and direction to albatross populations [19, 64].

Fig. 6 Reproductive success relative to PC1annual scores for Laysan (a) and Black-footed albatrosses (b). Solid lines represent reproductive success,
while dashed lines represent PC1annual axes

Table 5 Predictor variables and p-values in final models of
albatross reproductive success relative to PC axes

Model variables Dominant environmental
variables in PCs

Reproductive success

Laysan albatross

Intercept 2.00E-16

PC1LAAL, annual MEI (+), NPGO (−),
Dist. TZCF (−), SST (−)

2.00E-16

R2 0.35

Black-footed albatross

Intercept 2.00E-16

PC1BFAL, annual MEI (+), NPGO (−),
Dist. TZCF (−), SST (−)

9.90E-04

R2 0.11
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Fig. 8 Relationships between brooding trip metrics and reproductive success for Laysan albatrosses and Black-footed albatrosses. Low (high)
values of reprodcutive success represent values lower (higher) than the mean. Comparisons were conducted using Wilcoxon signed rank tests;
* indicates p values < 0.05, • indicates p values < 0.10

Fig. 7 Spatial correlations between (a) Laysan and (b) Black-footed albatross reproductive success and SSTa. Correlation coefficients were calculated
on an annual scale using November–February SSTa and albatross reproductive success. The solid black lines denote the threshold value for the
95 % confidence level. Brooding habitat is shown as a reference for both species
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Increases in reproductive success and poleward shifts in
foraging range in Southern Ocean albatrosses have been
linked with stronger winds that have moved poleward
[19]. Though overall conditions for foraging albatrosses
appear to be suboptimal during La Niña events in the
central North Pacific (higher SST, increased distance to
TZCF), stronger trade winds during La Niña events [63]
may provide energetic benefits. Black-footed albatrosses,
likely more limited in their foraging ranges due to higher
wing-loading [64], may take advantage of increased trade
winds during La Niña events to travel farther with lower
energy requirements. Future work will focus on quanti-
fying and comparing the effects of wind direction and
intensity on the foraging movements of brooding Laysan
and Black-footed albatrosses in order to evaluate this
hypothesis in detail.

Conclusions
Though many studies have linked seabird foraging
behavior or reproductive success with environmental
factors such as SST [e.g., 14, 65–68], few studies have
quantified the behavioral mechanisms that underlie
population responses to environmental variability. Our
results demonstrate how oceanographic and climatic fac-
tors influence albatross foraging behavior, and how this
translates to reproductive success. These links appear to

be mediated through constraints on movement and time
at sea during the brooding phase, when increased ener-
getic demands associated with frequent feedings of
chicks imposes limits on the duration of foraging trips
of the parents. The location of the TZCF, NPGO state,
and ENSO conditions in the central Pacific were found
to be important drivers of these responses. Increases in
foraging range and duration in response to environmen-
tal conditions were associated with lowered reproductive
success (Fig. 8).
Our findings highlight the importance of habitat shifts

in response to climate-induced environmental change
and the potential for these shifts to influence popula-
tions of marine predators. Climate change predictions
for the North Pacific suggest that changes to albatross
habitat may be amplified in future years. The TZCF has
shifted farther north over the past 30 years as the sub-
tropical gyre has expanded [Thorne, unpublished data],
which has likely reduced accessibility to preferred feed-
ing grounds for breeding albatrosses. For example, we
estimated that the TZCF was within the mean flight
range of a brooding Laysan albatross during 17 % of days
during the brooding period from 1982–1991 compared
to only 3 % of days from 2002–2012. Climate models
suggest that this northward trend will continue in the
future and that SST in the expanding subtropical biome
will increase dramatically by the end of the century [39].
Our results suggest that these patterns will cause de-
creases in the reproductive output of albatrosses and
reduced colony performance in the Northwest Hawaiian
Islands, although these species will face cumulative ef-
fects from climate impacts, either muting or accelerating
this decline. This study demonstrates the importance of
elucidating links between oceanography, behavior and
population change to understand likely ecosystem re-
sponse to climate variability and change.
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